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ABSTRACT Objective: Endoscopy is a medical diagnostic procedure used to see inside the human body
with the help of a camera-attached system called the endoscope. Endoscopic images and videos suffer from
specular reflections (or highlight) and can have an adverse impact on the diagnostic quality of images.
These scattered white regions severely affect the visual appearance of images for both endoscopists and
the computer-aided diagnosis of diseases. Methods & Results: We introduce a new parameter-free matrix
decomposition technique to remove the specular reflections. The proposed method decomposes the original
image into a highlight-free pseudo-low-rank component and a highlight component. Along with the highlight
removal, the approach also removes the boundary artifacts present around the highlight regions, unlike
the previous works based on family of Robust Principal Component Analysis (RPCA). The approach is
evaluated on three publicly available endoscopy datasets: Kvasir Polyp, Kvasir Normal-Pylorus and Kvasir
Capsule datasets. Our evaluation is benchmarked against 4 different state-of-the-art approaches using three
different well-used metrics such as Structural Similarity Index Measure (SSIM), Percentage of highlights
remaining and Coefficient of Variation (CoV). Conclusions: The results show significant improvements over
the compared methods on all three metrics. The approach is further validated for statistical significance where
it emerges better than other state-of-the-art approaches.

INDEX TERMS Specular reflections, singular value thresholding, low rank and sparse decomposition.

Clinical and Translational Impact Statement— The mathematical concepts of low rank and rank decompo-
sition in matrix algebra are translated to remove specularities in the endoscopic images. The result shows the
impact of the proposedmethod in removing specular reflections from endoscopic images indicating improved
diagnosis efficiency for both endoscopists and computer-aided diagnosis systems.

I. INTRODUCTION
Endoscopic procedures are used for the diagnosis of vari-
ous pathologies in the internal human body with the help
of a camera system. The images and videos obtained from
the endoscopic procedure are used to detect any kind
of abnormalities present in the examined organ through
visual interpretation by the endoscopist or sometimes by
a computer-aided diagnosis (CAD) system. If the images
captured by the camera system contain undesired artifacts,
the identification of abnormalities becomes difficult and

challenging. Robust and reliable identification of abnormal-
ities has become a fundamental medical imaging problem
and is extensively studied by researchers [1], [2], [3]. A set
of works focus on resolving these artifacts that originate
at the time of image acquisition [4] and some during the
transmission [5] and compression stages [6], [7].

Six artifacts from image acquisition [4] are identified as
potential challenges to detect pathologies and these include,
a) existence of specular reflections, b) the presence of bub-
bles, c) the blurring of images, d) over-exposed pixels,
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FIGURE 1. Illustration of specular reflection in three different endoscopy
datasets (a) Kvasir Normal-Pylorus dataset [14], (b) Kvasir Capsule
dataset [15] and (c) Kvasir Polyp dataset [14].

e) under-exposed pixels, and f) the presence of debris and
chromatic aberrations. Out of these, the identification of
pathologies is severely hampered by the presence of specular
reflections according to earlier studies [8], [9], [10], [11].
Usually, the watery and smooth surface of the human organs
can produce specular reflections when illuminated from
endoscopes. The light incident on the body surface undergoes
both diffuse and specular reflections [12] due to the complex
characteristics of the organ surface. The diffuse reflection
component resembles the characteristics of the body surface
while the specular reflection component will have the charac-
teristics of illuminant light [13]. Fig. 1 shows an illustration
of specular reflections in endoscopic images from publicly
available datasets [14], [15]. One can note the specular reflec-
tions as scattered white spots impacting the overall quality of
an image.

Such presence of highlights has been reported to result in
failure for feature extraction, especially in surgical navigation
systems that use augmented reality (AR) [8], [9], [10], [11].
This undesirable artifact may further impair the surgeon’s
ability to observe and make decisions on pathology. Remov-
ing specular reflections from endoscopic images, therefore,
is of primary concern to provide medical professionals with
better quality images and to devise better-automated diagno-
sis systems.

In this paper, we present a novel approach for medical
imaging applications that utilize mathematical principles of
matrix decomposition and low-rank structure. Specifically,
we propose the use of low-rank decomposition and singular
value thresholding operations to effectively remove specular
reflections from endoscopic images. Our method offers a
promising solution for improving the quality and visibility of
endoscopic imaging in medical diagnosis and treatment.

In the rest of the paper, previous works related to specular
reflection removal are discussed in Section II. In Section III,
a detailed analysis of highlight images and characteristics of
highlight pixels are discussed. These analyses are used in
Section IV to develop the algorithm to remove the highlights.
In Section V, the results from the experiments to evaluate the
efficacy of the proposed algorithm are presented along with
results from state-of-the-art approaches. We then provide
some concluding remarks in Section VI.

II. RELATED WORKS AND OUR CONTRIBUTIONS
Different works have been proposed to remove specular
reflections from medical images. Many of them consider the
reflection removal as a two-stage problem [4], [16] [17].
In the first stage, highlight pixels are discovered, and in the
second stage, they are either eliminated or replaced with
approximated original values. In [16], the segmentation of
specular regions is based on non-linear filtering and color
image thresholding. In [17], a specular lobe is identified at
the tail end of the histogram for thoracoscopic images and
is extracted to obtain the highlight pixel map. Kim et al. [18]
proposed using geometric characteristics such as the shape of
the specular region to detect highlight pixels. With the aid of
a thresholding operation, highlight pixels are identified in [4]
and [19] using chromatic information.

The highlight areas are scattered/dispersed throughout the
entire image, as shown in Fig. 1. These specular reflec-
tion components include acute discontinuities towards the
edge of the region and abrupt variations when compared to
the diffusion component of reflections. Yang et al. [20], sug-
gested a filter-based approach to eliminate unwanted spec-
ular reflection and high-frequency components by using an
edge-preserving low-pass filter. However, the method is not
applicable in the instances where the highlight regions create
a continuous band of pixels rather than being dispersed. As a
result, edge-preserving low-pass filters cannot remove the
highlight pixels efficiently on all images.

In [19], [21], and [22] each image pixel is assumed to
consist of two components rather than assigning individual
pixels to a single component as a highlight or non-highlight
component. Corresponding to each pixel, it is assumed that
light gets reflected both as diffuse reflection and specular
reflection. Diffuse reflection assumes the color of the tissue,
and specular reflection assumes the color of the illuminant
light [13]. If the specular reflections are identified using the
properties of the illuminant light, then the diffuse reflection
component can provide a highlight-free image. However, the
surface properties of organs and the motion of the cam-
era in the dynamic environment within the body make the
approachesmentioned [19], [21], and [22], not fully practical.

Arnold et al. [16] used an inpainting method to remove
the highlight pixels preceded by automatic segmentation of
highlight pixels. The approach ignores the global nature of
the image since it uses the local information surrounding the
highlight zone to inpaint the segmented sections. Even though
the method is successful in reproducing segmented parts
accurately, regions close to the edge of the original image
are destroyed if a highlight region is in the neighborhood.
Fig. 2 shows the negative effect of local inpainting [16] on
an image with specular reflection near the edge. A structural
similarity-based inpainting technique is also suggested by
Gao et al. [24].

The deep learning, supervised and semi-supervised meth-
ods are also investigated for specular reflection removal from
both natural and medical images when labeled datasets are
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FIGURE 2. Effect of Inpainting method [16] on original image.

FIGURE 3. Effect of applying Adaptive RPCA [23].

available to train the models [25], [26] [27]. Bobrow et al.
[26] used pairs of coherent and incoherent images for train-
ing. They proposed a deep learning network called DeepLSR
to remove laser speckles from coherent illuminated images.
The incoherent light-emitting diodes are used as the ground
truth images. Funke et al. [27] proposed to use two GANs for
self-training and self-regularization. The Conditional Gen-
erative Adversarial Network (cGAN) considers removing
the specularity as a translation from image to image. The
SpecGAN proposed in [27], trains the network from weakly
labelled training data.

In the absence of labelled datasets (i.e., ground-truth),
specular reflection removal is carried out using the family
of classical matrix decomposition methods such as Robust
Principal Component Analysis (RPCA) [23], [28]. In these
approaches, the highlight region is considered to be sparse in
nature and by removing these sparse components, a highlight-
free image is obtained, as shown in Fig. 3. However, the
highlight component is not completely sparse in nature and
contributes significantly to the low-rank portion of the image
as shown in Fig. 4(a). As a result, the low-rank compo-
nent contains some highlight. Li et al. [23] used an iterative
method to set the parameters of RPCA, which itself is an
iterative algorithm. However, most of the relevant informa-
tion in the case of endoscopy lies in the sparse information
of the image. Removing the sparse component removes this

vital information from the image and further reduces the
robustness of faithfully reproducing a highlight-free image.
A close observation of the images from the Kvasir Polyp,
Kvasir Capsule, and Kvasir Normal-Pylorus datasets reveals
the presence of dark boundary regions around the highlight
pixels which need to be eliminated along with highlights.
The algorithm in [23] does not consider these dark bound-
ary artifacts while reconstructing the image. Fig. 4 provides
an illustration of deficiencies of specular reflection removal
using RPCA based approach when the highlight is not fully
sparse in nature.

A. OUR CONTRIBUTIONS
We propose an approach based on the matrix decomposition
method to address the drawbacks of the existing techniques
for specular reflection removal in endoscopic images. Our
major contributions are listed below:

1) We propose a new approach which exploits the
characteristics of highlight pixels with an iterative
decomposition procedure to generate a pseudo-low-
rank component and a highlight component irre-
spective of the degree of sparsity. Unlike normal
RPCA-based algorithms that fail to eliminate the high-
light efficiently, our approach can remove the high-
lights even when the highlight is distributed sparsely
in the image.

2) We propose to exploit human vision-based Hue-
Saturation-Value (HSV) [29] color space to identify the
highlight areas mimicking human vision to determine
the areas of highlight. The variation of highlight distri-
bution in the image has a direct impact on HSV space
and can be used for estimating soft thresholds as given
in Eq. (1) in Section IV further.

3) Our approach eliminates parameter estimation by
exploiting the characteristics of highlight pixels
making it a parameter-free approach unlike previ-
ous approaches. Previous unsupervised methods of

362 VOLUME 11, 2023



J. Joseph et al.: Parameter-Free Matrix Decomposition for Specular Reflections Removal

FIGURE 4. Effect of applying Adaptive RPCA [23] when the highlight is not completely sparse in nature. Images are from the
Kvasir Polyp dataset.

FIGURE 5. Singular value distribution for image with no highlight and highlight components (a) Images with highlight components (b) Highlight
removed images and (c) Singular value distribution.

highlight detection rely highly on the setting up
of its parameters according to the dataset or even
according to the lighting conditions of individual
images [20], [23]. Unlike the earlier works that have

tried to address parameter dependency by iteratively
finding the best match for the parameters through
multiple empirical runs leading to higher execution
time [23], our approach is parameter-free.
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4) We further provide a benchmark evaluation of the pro-
posed approach on three publicly available datasets
using four different state-of-the-art methods to demon-
strate better performance. We supplement our qualita-
tive and quantitative analysis with statistical analysis to
establish the benefits of our proposed method.

III. PRELIMINARY ANALYSIS OF HIGHLIGHT PIXELS
Identifying and removing the highlight pixels requires ade-
quate knowledge of the characteristics and distribution of
highlight pixels. As inspired by [23], we evaluate the singular
value distribution in III-A.

A. SINGULAR VALUE DISTRIBUTION OF
HIGHLIGHT IMAGES
Fig. 5 depicts the study of the distribution of singular val-
ues in highlight-free images and highlight images [23]. It is
observed in Fig. 5c, that the addition of highlight components
into the highlight-free image, causes the distribution of singu-
lar values to change. New singular values are observed in the
tail end of the distribution and magnitudes of upper singular
values differ1

In order to obtain a highlight-free image, the singular val-
ues may be modified by removing the lower singular values
and reducing the magnitudes of the upper singular values.
Since the distribution varies from image to image (Fig. 5(c))
and from one singular value to another, the amount of mod-
ification is difficult to predict. Further, the presence of noise
factors in original image alters the distribution of singular
values almost the same way as with the presence of specular
reflection component. The chromatic characteristics detailed
in Section III-B are used to determine the change in singu-
lar value distribution due to specular reflections. Applying
chromatic characteristics specific to specular reflections can
aid us in isolating the effect of specular reflections from the
confounding effects of noise factors such as camera jitters and
salt and pepper noise introducing uncertainty in estimating
specular reflection robustly. A plausible solution is therefore
to introduce an iterative method, which takes care of this
uncertainty in the distribution by suitably applying the chro-
matic characteristics specific to sepcular reflections.

B. CHARACTERISTICS OF HIGHLIGHT PIXELS
The gastrointestinal tract is usually covered by watery sur-
faces. When light is incident on a normal tissue surface, the
reflected light contains the spectral component corresponding
to the body surface. However, when the tissues are covered
in a watery surface, almost all the spectral components are
reflected back by this smooth Lambertian surface [30] as
shown in Fig. 6. In the second case, the reflected light has the
property of the illuminant used, which is generally having a
large spectral width. As the spectral width increases, more
whiteness is added to the image, which is similar to the

1We refrain from presenting the singular values from the tail end for the
sake of illustration.

FIGURE 6. Reflection from the body surface and watery surface.

dilution of the hue of the color. As the colors are diluted more,
the saturation values become small.

A low absorption rate at the surface results in high-intensity
values for specular reflections compared to the diffuse reflec-
tion rate. This reveals the next prominent characteristic of
the specular reflection: high-intensity value. These two char-
acteristics, low saturation, and high intensity, can be used
to identify the highlight pixels supporting our hypothesis
behind the proposed approach of using human vision-based
processing of images.

IV. PROPOSED METHOD
Our proposed approach is based on the idea of extracting
the low-rank component embedded in the image, which is
asserted to be highlight-free. We, therefore, intend to decom-
pose the original image with highlight into a highlight-free
pseudo-low-rank component and a sparse highlight compo-
nent. However, the highlight component, which is generally
sparse in nature may contain some useful information, some
of which are vital for the identification of various pathologies.
Conventional RPCA [28] approaches fail to work effectively
with highlight removal as shown in Fig. 7, since the method
tries to explore only the low-rank component hidden in the
original image. This leads to the loss of vital information.
An illustration of such a problem is provided in Fig. 7 where
the resulting low-rank component is highly blurred losing key
information but eliminating the highlight effectively. Care
needs to be exercised to preserve key information by selec-
tively processing the image not to affect the characteristics
of the image around highlight pixels in the image. We, there-
fore, assert that a pseudo-low-rank component that contains
no highlight, instead of generating a truly low-rank com-
ponent, can eliminate the highlights without compromising
the key information. We choose Singular Value Decomposi-
tion (SVD) [31] in our proposed approach for decomposing
matrix as nearly low-rank and sparse components of the
image as against traditional RPCA-based methods.

Our proposed method can be summarized in the following
steps:

• Initially, a mask of highlight pixels is approximated by
utilizing the properties of highlight pixels discussed in
Section III-B.

• The low-rank component of the original image is then
computed using the SVD approach. The remaining com-
ponent is thus sparse, as the lower singular values corre-
spond to them [28].
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FIGURE 7. Conventional RPCA Decomposition (a) Original Image,
(b) Low-Rank Component and (c) Sparse Component.

• At this point, the highlight component contains some
required information and some highlight. The sparse
component contains the distributed highlight and useful
information in the form of sparse. We thus need to
remove highlights from the low-rank component and add
to the sparse component and useful information from the
sparse component and re-insert them into the low-rank
component, respectively.

• Hence, to distinguish the useful information and high-
light in the sparse component, the characteristics of the
highlight and the mask created are utilized. In order to
remove the highlight further from the low-rank com-
ponent, the extraction parameters are changed in the
singular value decomposition.

• These two processes are repeated until no highlight
is present in the low-rank component and no use-
ful information is retained in the sparse component.
The convergence of the algorithm is declared when
the low-rank component is diffuse enough, at which
point the sparse component provides the highlight
component.

A detailed discussion of the various steps to obtain a Pseudo-
Low-Rank component, which is the highlight-free image,
is provided in the next section.

A. PSEUDO-LOW-RANK AND HIGHLIGHT
DECOMPOSITION
As argued earlier, the conventional RPCA framework fails
to decompose the highlight image into highlight-free com-
ponent and highlight component without losing the details.
Hence this work proposes a modification in the decompo-
sition process of the conventional RPCA framework. Let X
denote the original image from which the highlight is to be
removed. We intend to decompose X into a pseudo-low-rank
component L and a highlight component H, unlike conven-
tional RPCA. Although the decomposition of the matrix X
into a low-rank component and a sparse component is simple,
the approximation of the sparse highlight component is not
always true. The highlight components contribute signifi-
cantly to the low-rank structure of the image itself. Again,
some of the very essential features of the source image may
get deleted from the low-rank image. So we introduce a new
matrix decomposition method that utilizes the characteristics
of the highlight pixels.

FIGURE 8. Boundary artifact around the highlight.

1) STEP 1: MASK CREATION
A pixel is said to be a highlight pixel if its saturation value is
less than a certain saturation threshold and its intensity value
is greater than a certain threshold. Setting a hard threshold is
challenging as the illumination differs for different images.
To circumvent the problem, we adopt a soft threshold based
on S and V channels in the HSV color space. Those pixels
which have a saturation value lesser than the average value
of the S channel and intensity value greater than the average
value of V channel can be considered as highlight pixels.
However, if an image does not contain any highlight pixels,
the average values change accordingly and the thresholds
will result in identifying incorrect pixels as highlight pixels
leading to the failure of the method.We, therefore, propose an
ensured minimum threshold value for the S channel as a hard
threshold. The final soft threshold is computed as a minimum
of the above two values. Similarly, a maximum value between
the average intensity of the V channel and a hard threshold is
chosen for computing the soft intensity threshold.

Sτ = min{Smean, Shard}

Vτ = max{Vmean, Vhard} (1)

where, Smean and Vmean are the mean value of S channel and
V channel respectively. Shard and Vhard are the user-defined
fixed thresholds to control the illumination changes in the
scene.

Now, a binary mask M is created with the same size as
the input image X. The mask has ones in the pixel positions
corresponding to the pixels of the original image that satisfies
the conditions for highlight discussed in Section III-B and is
given in Eq. (2). For the (i, j)th pixel,

M(i, j) = 1, if S(i, j) < Sτ and V(i, j) > Vτ (2)

In addition to the highlight components, the presence of
dark regions around the boundary of highlight pixels also
need to be eliminated to avoid boundary inconsistencies.
Close observation of the endoscopic images with highlight
reveals that there is a small dark boundary associated with
highlight regions. An illustration of this artifact is provided
in Fig. 8 for an image from Kvasir Polyp dataset [14]. If such
inconsistencies are not eliminated, the quality of the image
after the highlight removal will be compromised.

In order to remove these boundaries which have differ-
ent characteristics than that of highlights, the mask is to
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FIGURE 9. Highlight image and the corresponding binary Mask generated.

FIGURE 10. Low rank + Sparse Decomposition.

be recalculated. A morphological dilation operation is per-
formed on the available mask to obtain a new mask with a
suitable structuring element2. A typical mask corresponds to
an endoscopic image from the Kvasir Polyp dataset [14] is
given in Fig. 9.

2) STEP 2: EXTRACTING THE LOW-RANK COMPONENT
Once the mask is created, iterative decomposition procedure
can be initiated. Initially the Singular Value Thresholding
(SVT) operator [32] is applied on the original image to obtain
a low-rank componentL and a sparse componentH using Eq.
(3) as illustrated in Fig. 10.

L = Dµ(X)

S = X − L (3)

where, Dµ is the SVT operator with parameter µ. The SVT
operator is defined as,

Dµ(X) = US 1
µ
(6)VT (4)

where, X = U6VT is the SVD of the matrix X, with 6

being the singular value matrix. Sτ (.) is the soft thresholding
operator defined as,

Sτ (X) = [Sτ (x), ∀x ∈ X] (5)

Sτ (x) = sgn(x) × max{x − τ , 0}

The value of µ is selected such that a large number of
singular values towards the tail end of the distribution is made
to zero in the SVT operation. This helps to extract maximum
highlight components from the original image X. The result-
ing low-rank component still contains some highlight regions
and the whole image will be blurred out. The residue matrix
X − L is the sparse component and contains both highlight
and useful information which are sparse in nature.

2We have used a structuring element of 7 × 7 pixels.

3) STEP 3: EXTRACTING THE HIGHLIGHT COMPONENTS
The sparse matrix S is composed of highlight component and
useful information which are sparse in nature. In order to
retrieve the useful information from the sparse matrix, the
mask prepared in Step 1 can be used. Since the positions of
the useful information are mutually exclusive with that of the
highlight pixels, multiplying the sparse matrix with the mask
will provide highlight component only.

H = S ⊗ M (6)

where, ⊗ represents the pixel-wise multiplication and M is
the mask created. The operation is illustrated in Fig. 12.
The remaining part of the sparse matrix, which is the

residue matrix, represents the useful information.

4) STEP 4: ITERATION
If the residue matrix S − H after the multiplication process
is significantly high, step 2 and step 3 are repeated until
this quantity becomes less than a threshold as per the con-
vergence criteria. Each iteration begins with an augmented
image X − H, in which already extracted highlight compo-
nents are removed. While the highlight component which is
mostly sparse is removed, there is no guarantee of eliminating
all highlight regions. The remaining X − H can therefore
be called the pseudo-low-rank component as opposed to the
true low-rank component. Further, the SVT variable µ is
updated in each iteration bymultiplying with a fixed updating
parameter λ. The complete iteration procedure is as follows.

L = Dµ(X − H)

H = (X − L) ⊗ M

µ = λµ (7)

The iteration continues until the residue matrix S - H = X
- L - H is significantly small. The convergence condition is
formulated as,

∥X − L − H∥
2
F ≤ ζ (8)

where ∥.∥2F is the Frobenius norm and ζ is the threshold for
convergence.

The overall process used to obtain the highlight-free image
from the original endoscopic image is described in Fig. 11.
The figure depicts the results obtained at various levels of the
algorithm with respect to one image from the Kvasir Polyp
dataset [14]. Algorithm 1 depicts the complete steps involved
in the proposed method.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
The proposed algorithm is tested on three different datasets
to check for the generalizability of the algorithm. Our aim
is to assess the proposed algorithm’s generalizability by
applying it to diverse datasets containing different types of
modalities and including both normal and pathology sets.
To achieve this, the Kvasir dataset from Simula Research
Laboratory [14] and the Kvasir Capsule dataset [15] are
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FIGURE 11. Various steps in the proposed method.

FIGURE 12. Extraction of highlight component from the Sparse
component.

Algorithm 1 Removing Highlight components from
WCE images

1 Input: X ∈Rw×h×3

2 Output: L ∈Rw×h×3

3 Initialize: L, H = 0, µ = 0.0006, λ = 1.2
4 Read Image to X.
5 Calculate Sτ and Vτ using Eq. (1).
6 Generate the binary MaskM using Eq. (2).
7 Update L & H according to Eq. (7).
8 Check for convergence. The condition is

∥X − L − H∥
2
F <= ζ . If the condition is satisfied, the

Algorithm stops and L gives the highlight-free image.
Else repeat from Step 7.

utilized. We have selected the datasets to ensure the images
of different resolution and quality works equally under the
proposed algorithm.

The Kvasir dataset is an annotated collection of images
used for identifying pathology, comprising eight different
image classes. For evaluation of the proposed work, two
image classes from the Kvasir dataset are selected. The

algorithm is tested on the ‘Polyp’ class, as polyp detection
and segmentation are currently prominent areas of research
in endoscopy. To verify its effectiveness on normal and
pathology images alike, the ‘Normal-Pylorus’ class is ran-
domly selected from the three available normal classes.
These classes will be referred to as the Kvasir Polyp dataset
and Kvasir Normal-Pylorus dataset from now onwards.
500 images with specular reflections from both classes
are selected randomly and are used in the evaluation pro-
cess. We also use the Kvasir Capsule dataset [15], created
using PillCam Capsule Endoscopy System which contains
47,238 labeled images and 117 videos. We have identified
330 images with significant specular reflections and are
selected to evaluate the proposed method3. The images are
selected to ensure that they contain specular reflections in
various amounts for each dataset. Since this method is devel-
oped to remove specular reflections from endoscopic images
for which the ground truth is usually unavailable, the method
is compared with the state-of-the-art highlight removal algo-
rithms based on classical computer vision methods rather
than the deep learning methods.

To holistically evaluate the proposed approach, we com-
pute Structural Similarity Index Measure (SSIM) [33], the
percentage of highlights removed Eq. (9), and Coefficient
of Variation (CoV) [34] as explained in the subsequent
sections. We compare our proposed algorithm with Adap-
tive RPCA proposed by Li et al. [23], inpainting tech-
nique by Arnold et al. [16], NONRPCA method [35] and

3All the algorithms were run on Python 3.9 on Windows 11 platform with
intel(R) Core(TM) i7-10700K CPU @3.79GHz and 32GB RAM.
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FIGURE 13. Result of Applying proposed method to Kvasir Polyp dataset.
(a) Original Image, (b) Highlight Component (c) pseudo-Low-Rank
Component.

RPCA method [28] to establish the benefits of our proposed
approach.

Before delving into quantitative analysis, we present a
qualitative illustration of the proposed approach as shown in
Fig. 13, Fig. 14 and Fig. 15 corresponding to Kvasir Polyp
[14], Kvasir Normal-Pylorus [14] and Kvasir Capsule [15]
datasets, respectively. In each of the figures, (a) represents
the original image with highlight pixels, (b) represents the
highlight component, and (c) represents the highlight-free
pseudo-low-rank component.

A. VISUAL COMPARISON WITH OTHER HIGHLIGHT
REMOVAL ALGORITHMS
A visual comparison of the results is provided in
Fig. 16, Fig. 17 and Fig. 18 for Kvasir Polyp, Kvasir
Normal-Pylorus and Kvasir Capsule datasets respectively.
Adaptive RPCA [23] iteratively finds the decomposition
parameter λ that best suits to remove all the highlight pixels
from the original image. The algorithm works well unless the
highlight component contributes significantly to the low-rank
component of the image. A significant deficiency with Adap-
tive RPCA [23] is the impact of parameter λ, resulting in
very dark colors at the positions of highlight regions when
it tries to remove the highlight component largely rooted in
the original image. The first and second rows in Fig. 16 evi-
dently illustrated the inability of the algorithm to remove the
highlight component. Close observation further reveals that
the boundary artifacts present around the highlight regions
are also intact in all the highlight-removed images.

The results of the inpainting method [16], specifically
for the Kvasir Normal-Pylorus dataset, reveals that the
inpainted regions do not blend with its neighborhood region
although the highlight pixels are removed. NONRPCA [35]

FIGURE 14. Result of Applying proposed method to Kvasir
Normal-Pylorus dataset. (a) Original Image, (b) Highlight Component
(c) pseudo-Low-Rank Component.

FIGURE 15. Result of Applying proposed method to Kvasir Capsule
dataset. (a) Original Image, (b) Highlight Component
(c) pseudo-Low-Rank Component.

method also suffers from these drawbacks. When coming to
RPCA [28], keeping the parameter λ constant is not going to
give good results as the depth of sparseness is different for
different images. In contrast, the proposed method takes care
of these drawbacks and the results obtained are promising.
With a single parameter setting, the algorithm works well
for all the three datasets considered as indicated in Fig. 16,
Fig. 17 and Fig. 18.
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FIGURE 16. Highlight Removed images from Kvasir Polyp dataset using various algorithms. From left to right: Original image, Adaptive RPCA [23],
Inpainting [16], NONRPCA [35], RPCA [28] and proposed method.

FIGURE 17. Highlight Removed images from Kvasir Normal-Pylorus dataset using various algorithms. From left to right: Original image, Adaptive
RPCA [23], Inpainting [16], NONRPCA [35], RPCA [28] and proposed method.

B. QUANTITATIVE COMPARISON OF THE RESULTS
To further quantify the comparison results, three metrics
such as the Structural Similarity Index Measure (SSIM), the
percentage of highlights remaining and the Coefficient of
Variation (CoV) are computed whose analysis is presented
further.

1) COMPARISON OF SSIM
To evaluate the efficiency of the proposed method, SSIM is
calculated between the initial mask generated for the pro-
posed method and the highlight component obtained after
the decomposition for various methods taken for comparison.

The initial mask is considered the required highlight com-
ponent. Table 1 gives the statistical distribution of the SSIM
scores computed for the Kvasir Polyp [14], Kvasir Normal-
Pylorus [14] and Kvasir Capsule [15] datasets. As there is no
highlight component available from the inpainting method,
the SSIM scores are not calculated for inpainting technique
by Arnold et al. [16].

The higher the SSIM, the better the quality of the highlight
removed. As evident from the results in Table 1, the proposed
approach results in a high SSIM indicating the performance
of the proposed approach in removing the highlight pixels
irrespective of the sparse nature of the highlight component.
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FIGURE 18. Highlight Removed images from Kvasir Polyp dataset using various algorithms. From left to right: Original image, Adaptive RPCA [23],
Inpainting [16], NONRPCA [35], RPCA [28] and proposed method.

FIGURE 19. Statistical distribution of Percentage of highlight remaining in
Kvasir Polyp dataset.

SSIM scores for the proposed method and for the Adaptive
RPCAmethod are comparable. But the scores for NONRPCA
and RPCA methods are very poor as indicated.

2) PERCENTAGE OF HIGHLIGHTS REMAINING
The percentage of highlights remaining is calculated as,

Hr =
Nh
Nt

× 100 (9)

where Hr is the percentage of highlights remaining, Nh is
the number of highlight pixels in the image after highlight
removal and Nt is the total number of pixels in the original
image.

Table 2 shows the distribution of the percentage of
highlights for various algorithms discussed in the previous

FIGURE 20. Statistical distribution of Percentage of highlight remaining in
Kvasir Normal-Pylorus Dataset.

section. Clearly, the proposed method outperforms all the
compared techniques on all three datasets. In addition to
Table 2, we also present Violin-plots to demonstrate the
statistical significance analysis as shown in Fig. 19, Fig. 20
and Fig. 21 for the three datasets. Fig. 19 details the distribu-
tion of the percentage of highlights remaining in the Kvasir
Polyp dataset after the application of various algorithms. The
position of the median for the proposed method lies below
all the other medians. Further, the point of the maximum
width of the violin plot for the proposed method is lower
than other methods. From Fig. 19, it is obvious that the
standard deviation for the proposedmethod isminimumwhen
compared to other methods. This shows the stability of the
proposed method. Similar trends can be observed for both the
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TABLE 1. Statistical distribution of SSIM scores. The scores for Inpainting are not calculated due to the unavailability of actual ground truth. *Note - The
higher the scores, the better the method.

TABLE 2. Statistical distribution of Percentage of Highlight remaining (Hr )(%) computed using Eq. (9). (± represents deviations computed at 95%
confidence interval (CI)). *Note - The lower the scores, the better the method.

TABLE 3. Statistical significance analysis using one-way ANOVA test for the percentage of highlight removed metric and CoV metric. The significance level
was established at 0.05.

Kvasir Normal-Pylorus dataset and Kvasir Capsule dataset as
indicated in Fig. 20 and Fig. 21, respectively.

The statistical significance of the percentage of high-
light removed is deduced by performing a one-way ANOVA
test [36] with a significance level set at 0.05 and is presented
in Table 3. The table clearly demonstrates the significance
as the P-Values are very small. The only case where the two
distributions are almost the same is between the proposed
method and the NONRPCA for the dataset Kvasir Normal-
Pylorus. This is consistent with the observations made in
Fig. 20.

3) COEFFICIENT OF VARIATION (CoV)
Although the highlights are removed completely, the recon-
structed regions should blend with their surroundings to not
compromise the quality of the image. We, therefore, employ
the Coefficient of Variation (CoV) to measure the image
quality in the vicinity of the highlight regions. It is the ratio
between the standard deviation σ and mean of the region µ,
i.e. [34],

CoV =
σ

µ
(10)
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TABLE 4. Statistical distribution of Coefficient of Variation (CoV) *Note - The lower the scores, the better the method.

FIGURE 21. Statistical distribution of Percentage of highlight remaining in
Kvasir Capsule Dataset.

FIGURE 22. Bounding boxes showing the neighborhood of highlight
regions for calculation of CoV.

CoV is calculated for the neighborhood of all the highlight
regions as shown in Fig. 22 and the CoV score for the whole
image is obtained as the mean value for all the regions.
If the reconstructed regions blend with their surroundings,
the normalized standard deviation is expected to be small.
On the other hand, if the reconstructed regions fall far away
from the neighborhood values, the normalized standard devi-
ation and the CoV score will be high.

The CoV values are calculated on all three datasets,
Kvasir Polyp, Kvasir Capsule and Kvasir Normal-Pylorus,

FIGURE 23. Illustration of low blending with the near neighborhood of
the reconstructed highlight regions. The regions inside the red lines show
similarity to other regions in the whole image in the right-hand image.

and similar values are computed for state-of-the-art methods
as presented in Table 4. The proposed method shows good
blending of reconstructed regions with their surroundings as
compared to other state-of-the-art methods used for compari-
son. This is in accordance with the visual comparison results
from Fig. 16, Fig. 17 and Fig. 18. The quantitative significant
analyses are presented in Table 3 with the help of one way
ANOVA test at significant level (p<0.05). The P-Values are
much smaller than the significance level set. The scores for
the original image is the average CoV for the highlight image.
As the highlight regions’ chromatic distribution is completely
different from the chromatic distribution of the surroundings,
the CoV score will be high for images with highlight as
indicated in Table 4.

C. LIMITATIONS OF THE PROPOSED METHOD
Although the method works efficiently on various datasets,
it suffers from some demerits. Because of the global nature of
the singular value thresholding operation and low rank-based
extraction, sometimes it is impossible to blend perfectly with
the near neighborhood of the reconstructed region as shown in
Fig. 23. If the original image can be seen as two independent
areas separated by the illustrative red line, we can see the
major portion of the area in the image is covered by the
region below the red line. Our method estimates the low rank
based on the whole image and the lower portion of the image
(below the red line) contributes significantly to estimating the
low-rank component of the image. As the major contributor
to the image is the lower region, the reconstructed sections
have chromatic similarity to the lower portion than the upper
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FIGURE 24. Illustration of failed cases of overexposed images when
applying the proposed method.

portion. This leads to the degradation in the blending of the
reconstructed regions and hence the value of the Coefficient
Of Variation.

Further, if the overexposed regions cover a large por-
tion of the image, as shown in column one in Fig. 24,
our approach becomes restricted. The contribution of
high-intensity regions to the low-rank component is very
high and as our algorithm depends on the contribution of
each feature to the low-rank component of the image, the
overexposed regions can contribute significantly to the low-
rank component. Column two in Fig. 24 shows the result of
the application of our method to some overexposed images
resulting in poor highlight-free images.

D. POTENTIAL FUTURE WORKS
Conditional GANs can be used to remove highlights from
endoscopic images by conditioning the generator network
on the input image with highlights as well as an additional
condition that describes the highlight regions in the image.
To train the conditional GAN for highlight removal, a dataset
of endoscopic images with corresponding highlight region
conditions should be used. The network is trained tominimize
the difference between the generated output image and the
ground truth image without highlights, while also ensuring
that the discriminator can distinguish between real and fake
images. Once the network is trained, it can remove highlights

from new endoscopic images by conditioning on the highlight
region condition. However, the availability of large-scale data
for training a cGAN still remains an open problem.

VI. CONCLUSION
The proposed algorithm decomposes the original highlight
image into a pseudo-low-rank component and a highlight
component. The highlight-free image, which is the desired
output, will then be the pseudo-low-rank component. The
paper exploits the non-sparse nature of the highlight compo-
nent to propose a generalizable method. The method does not
require any parameter setting, and thereby no fine-tuning is
involved making it a parameter-free approach. Our results on
three different public datasets suggest the promising nature of
the proposed algorithm. Even though the proposed algorithm
works well for various datasets, the reconstructed regions do
not completely blend with their surroundings. We hypoth-
esize this to be a result of the global nature of the low-
rank decomposition. Further, this method does not recover
the actual information behind the highlight region. In future
works, the idea proposed in the paper can be extended to
include the information from temporal frames to recover the
actual information behind the highlight regions.
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