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Abstract
European CO2 reduction goals have led to an increase in variable energy sources 
such as wind and solar, and consequently to an energy system that will need more 
flexibility in the future. In Norway, the hydropower reservoirs will enable the coun-
try to play a crucial role in European electrification by delivering flexibility to coun-
tries in Northern Europe. A further source of flexibility is demand response (DR) 
accumulated in residential, commercial, and industrial sectors. The paper discusses 
DR, load shifting, and load shedding based on the application of a stochastic TIMES 
model and it evaluates the role of DR in the Norwegian energy system towards 
2050. The analysis shows that cost-efficient DR operation primarily comes from 
space heating in residential buildings. The use of DR, which is season-dependent, 
increases the volume of electricity trade, including electricity export and import 
to neighboring countries, and it smooths electricity prices. The implementation of 
DR in Norway leads to decreases in expected electricity price and total system cost 
by exporting flexible electricity and importing low price electricity. Additionally, it 
affects hydropower and reservoir management.

Keywords  Demand response · Stochastic optimization · Energy system · 
Hydropower · TIMES model

1  Introduction

Based on EU Reference Scenario 2016 it is projected that from 2020, electricity 
demand will experience a 0.7% growth rate every 5 years [1]. Norway’s climate 
target for 2030, aiming to achieve a more than 40% reduction in greenhouse gas 
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(GHG) emissions compared to the reference year 1990, sets the foundation for 
its long-term goals. Looking ahead, the country’s commitment will continue to 
strengthen, with the target progressively increasing towards an ambitious 80–95% 
reduction in GHG emissions by 2050 [2]. At the same time, high shares of non-
dispatchable renewable energy sources, such as solar and wind energy, will create 
an increasing need for flexibility in European the energy system to mitigate reli-
ability issues [3].

Demand response (DR) can be a tool to keep demand and supply in balance, and 
it can smooth price spikes and protect against system contingencies in energy sys-
tems with a high share of renewables [4]. Stochastic supply and demand variations 
may have a negative influence on prices and supply security if they are not managed. 
DR, alongside other sources of flexibility such as hydropower, batteries, fossil power 
plants with carbon capture and sequestration (CCS), and transmission, is crucial to 
ensure the stability of the energy system. Flexible generators can address the prob-
lem of intermittency by providing fast ramp-up and ramp-down, and by operating at 
low-capacity levels. Transmission can tackle local imbalances but may be limited by 
grid bottlenecks [5]. Flexible demand-side resources can help to balance the power 
system by responding to market needs, such as those triggered by system operator 
requests (direct) and price signals (indirect) [6]. Demand response allows a utility 
to increase flexibility by persuading consumers either to decrease or shift their con-
sumption during peak load time by responding to price signals or predefined agree-
ments with the utilities. A DR program can increase the system’s reliability and 
reduce the prices of ancillary services [7].

This paper is based on the application of a version of the TIMES model used 
by Seljom et al. [8], with a stochastic programming approach that includes inter-
mittent production. In addition, the model is extended to include demand response 
(DR). The paper makes two main contributions. First, it analyzes the impact of 
DR on the Norwegian energy system by considering stochastic programming in a 
TIMES model. Second, it includes a combination of operational uncertainty and 
a sufficient fine time resolution to model demand response, which to our knowl-
edge, has not been done in any earlier studies of long-term general energy system 
models. Boßmann and Eser [9] reviewed various DR models, offering compre-
hensive insights into previous studies and models. We use a two-stage stochas-
tic programming approach in TIMES to model DR and investigate how it can 
increase the value of the flexibility provided by Norwegian hydropower. In our 
study, DR is defined as load shedding and load shifting. TIMES-Norway is for-
mulated as stochastic linear programming and therefore DR operation depends on 
the short-term uncertainties in the system.

Models that are limited to analyses of power systems have some similar 
approaches in common. For example, Marañón-Ledesma and Tomasgard [10] 
combined long-term investment and short-term uncertainty in a power market 
model with DR for Europe by using the European power market model called 
EMPIRE [11]. EMPIRE is formulated as multi-horizon stochastic programming 
model [12], and its structure is similar to that of the TIMES model used in our 
study.
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Another study to analyze the effect of operational DR on long-term investment 
in power systems was conducted by Lohmann and Rebennack [13], who used linear 
and partial-log demand functions to model short-term DR in a long-term capacity 
expansion model. After including the demand function as a new constraint, Lohm-
ann and Rebennack [13] compared different methods to solve a concave maximi-
zation problem and concluded that the tailored Benders decomposition method is 
much faster than the generalized Benders decomposition method and monolithic 
approach. These studies show that the European power system will benefit from 
implementing DR. Some of the important effects are a lower level of load consump-
tion during the peak load time, generation reduction, and investment reduction in 
storage capacity and transmission.

Furthermore, deterministic models have been used to study DR in power mark-
ers; for example, Misconel et  al. [17] used the European electricity market model 
ELTRAMOD to implement DR. The model evaluated the benefit of DR application 
in two European decarbonization pathways that include decentralized and central-
ized power systems. The results show that the solar power profile has a higher corre-
lation with the time pattern of DR potential than the wind power profile. Balasubra-
manian and Balachandra [18] developed a mixed-integer linear programming model 
with incentivized DR, which they applied to their case study of the Karnataka state 
electricity system in southwest India. The authors demonstrate that DR programs are 
an efficient way of smoothing electricity prices, enhancing available capacity utiliza-
tion, and postponing capacity expansion.

With regard to energy system models, previous approaches to modelling DR 
have been deterministic. Gills [4] implemented DR, using deterministic linear pro-
gramming (LP), in a renewable energy mix energy system model (REMix). He 
used REMix to study energy curtailment and power plant generation in Germany 
and found that the main benefit of DR was a decreased need for investment in peak 
power production capacity. Li and Pye [3] used the deterministic UK TIMES model 
to evaluate the effects of DR on the residential sector and electric vehicles (EVs) 
in the UK. Their study revealed that DR reduces the requirements for storage and 
increases the share of low-carbon power in the energy system. Pina et al. [14] used a 
deterministic TIMES model to evaluate the influences of flexible residential loads to 
supplement variable renewable energy on a Portuguese island. Their results showed 
that DR would delay the need for investment in new renewable power plants. Schle-
dorn et  al. [16] applied soft linkage between an energy system model and a DR 
model, in which the modelled DR as a set of ordinary differential equations. After 
considering price-based DR control, their results provided a demand profile for 
the energy system model. Gilson Dranka et al. [19] used the Open-Source Energy 
Modelling System (OSeMOSYS) to investigate the role of energy efficiency and 
demand response in the Brazilian energy system and found that implementing DR 
led to reduced CO2 emissions and reduced total system costs. In addition, they found 
that investments in energy efficiency and DR together increased the energy system 
benefits. Anjo et al. [20] used OSeMOSYS to develop a Portuguese power system 
model in order to investigate the long-term effects of DR. They considered three 
scenarios with different carbon emission assumptions (business as usual, carbon-
free, and without heavy carbon emissions) until 2050 and their results showed that 
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all scenarios benefitted from DR, as there were decreases in total cost and capacity 
installed and increases in the share of renewable capacity. All of the above-discussed 
results show that the role of DR depends on the energy mix of the countries in ques-
tion. Norway has significant hydropower resources and can serve as a flexibility pro-
vider to neighboring countries.

One of the purposes of our study is to see how DR complements the flexibility of 
Norwegian hydropower. In a previous study, Kirkerud et al. [15] used the determin-
istic energy system model BALMOREL to investigate the role of DR in northern 
Europe. Their results showed that space heating and water heating were the primary 
sources of DR in Norway and Sweden. Additionally, they showed that DR variable 
cost was low enough to compete with regulated hydropower, which is the two coun-
tries’ primary source of flexibility. In our model, we have formulated short-term 
uncertainties that can take into account different weather-dependent stochastic sce-
narios when considering the interplay between DR and hydropower.

Several papers address short-term uncertainty in long-term models through the 
application of stochastic programming without the implementation of DR. Different 
sources of short-term stochasticity are wind production, PV production, hydropower 
production and inflows, electricity demand, heat demand, gas demand, and electric-
ity prices. The trade-off between including all sources of short-term uncertainties 
and increasing computational effort should be considered [21]. Both Jin et al. [22] 
and Feng et  al. [23] used long-term energy system models with uncertain param-
eters, such as electricity demand and natural gas price. Furthermore, Gill et al. [24] 
used stochastic mixed integer programming to evaluate the effect of hydro inflow 
uncertainty on the generation capacity expansion planning (GCEP). Seljom et al. [8] 
included uncertain parameters for wind, PV, and hydropower production, as well as 
uncertain prices and demand in a TIMES model to investigate the effect of zero-
energy buildings on the energy system.

In this paper the TIMES model is designed to cover the entire Norwegian energy 
system with multiple end-use sectors and energy carriers. This enables us to link 
energy sectors and investigate how DR potential from various sectors may affect the 
power consumption profile and the interaction with hydropower reservoirs. In our 
approach, we explicitly formulate long-term inelastic demand, but use DR to pro-
vide short-term elasticity. The DR potential depends on different processes and can 
be activated based on the availability of DR in each time slice. We use multi-horizon 
stochastic programming to formulate the problem [12]. We have different stochastic 
sources of renewable energy in the system, such as wind and solar, which can affect 
the operation of hydropower and DR. The Norwegian power system is highly inter-
linked with the European system, which is short on flexibility due to the high share 
of stochastic renewable energy and further prospects. Therefore, one of our impor-
tant research questions is whether DR in Norway can release more flexibility from 
the hydropower system for export to neighboring countries.

The TIMES model includes long-term capacity expansion decisions and short-
term stochastic operations to meet the future energy service demand by minimizing 
system cost [25]. Energy system models such as TIMES do not typically include 
a complex transmission network [26]. Also, the TIMES-Norway model does not 
include details of a power system’s technical constraints (e.g., ramps rates, minimum 
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necessary generation) because the Norwegian system is primarily hydropower-
based. These limitations may lead to underestimations of the value of flexibility and 
DR.

The paper is organized as follows. The next section provides a short overview 
of Norway’s DR potential and costs. Section 2 presents the TIMES-Norway model. 
Section  3 describes how to model DR in TIMES. Section  4 analyses the effects 
of DR on the Norwegian energy system and its export. Section  5 presents our 
conclusions.

2 � The DR potential in the Norwegian energy system

In this section, we elaborate on the costs of DR and the potential in terms of volume. 
Electricity consumption is discussed in relation to three main consumer groups: 
industrial, residential, and commercial.

We study demand response in terms of two types of DR interventions: load shed-
ding and load shifting. Load shedding is applied to decrease electricity consumption 
during a given period, whereas load shifting moves electricity consumption between 
periods. In line with Gills [27], the following terms are used to describe parameters 
and properties for DR interventions. Shifting time defines the maximum duration 
until load that has been advanced or delayed in load shifting needs to be balanced 
again. Intervention time reflects a limit in the duration of changes in the normal 
demand pattern, namely the number of consecutive time periods that can be affected 
by shedding or shifting. Intervention limit defines the number of DR interventions of 
a specific type within a given time frame, such as a day.

2.1 � The DR potential in Norwegian industries

In Norway, the main sources of DR potential are electricity and heat demand from 
the industrial sector [28]. Figure 1 shows that in Norwegian industries it is possible 
to achieve 476  MW of load shedding potential for different processes [27]. Such 
processes are not able to shift their electricity consumption but can switch to other 
sources of energy. In our model, the only energy source for these processes is elec-
tricity, and the load shedding could be done by either substitution with other fuels or 
stopping production.

Fig. 1   The load shedding potential for energy-intensive processes in Norway
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We model load shedding in industry with an intervention time of up to 4 h, mean-
ing that load can be shed in four consecutive hours and then be normal for at least 
1 h, after which a new DR intervention may start. Load shedding can be activated up 
to 40 times per year as a model assumption. This is consistent with different process 
specifications and the DR potential estimations by Gills [27], Paulus and Borggrefe 
[29], and Stadler [30].

The Norwegian industrial sector can provide 359 MW of load shifting potential 
(Fig. 2). For most processes energy consumption can be shifted for up to 24 h (shift-
ing time), except in the case of industrial ventilation, for which only 2  h shifting 
time is possible.1 During these processes DR interventions can last up to 3 h, with 
the exception of industrial cooling (2 h) and industrial ventilation (1 h). This means 
that the energy in the shifting process needs to be balanced within the shifting time, 
but can deviate from the original load by 2–3 consecutive hours at most. The load 
shifting potential can as a model assumption be exploited 365 times per year, but 
industrial cooling and ventilation enable the activation of DR potential by up to 
1095 times per year [27]. Figure 2 shows different industrial processes and their load 
shifting potential.

The cost linked to DR technology includes investment (e.g., cost of install-
ing storage systems, smart meters, data exchange devices), variable costs (such 
as losses because of load reduction), and fixed costs (such as the cost of data 
exchange). Investment costs are high for cross-sectional technologies (e.g., ven-
tilation, refrigeration), and small for electricity-intensive technologies (at most 
1€ per kW). By contrast, variable costs of activating DR are negligible for cross-
sectional technologies and considerable for electricity-intensive technologies. 
The opportunity costs of load shedding in electricity-intensive industries can be 
calculated based on company cost structure and electricity price. The opportu-
nity costs of load shedding are significantly higher compared to load shifting 
due to the presence of multipurpose storage capacity [31].

The total cost of DR consists of fixed costs and variable costs. Variable costs 
comprise electricity price, and the cost of energy and materials. In Eqs. (1)–(4), 
the structure of costs is the same as presented by Gruber et al. [31]:

Fig. 2   Industrial processes and their load shifting potential in Norway

1  Shifting time refers to the maximum numbers of hours in which a process can shift electricity con-
sumption.



1 3

Analysis of the impact of demand response on the Norwegian energy…

where P is sale price, Pel is electricity price, M is margin, Pma is material cost, VC is 
variable cost, Pen is energy cost, FC is fixed cost, Pr is profit, OC is opportunity cost.

The cost structure plays a crucial role in facilitating the modelling of DR 
programs. In the case of load shifting, the marginal cost of energy-intensive 
processes such as making cement, pulp, and paper, and recycling paper is less 
than 10 €/MWh, with a 305 MW potential. In addition, cross-sectional technolo-
gies, such as industrial ventilation, cooling, and air separation have 54 MW DR 
potential, with a marginal cost of 16 €/MWh. The marginal cost of load shed-
ding is in the range 100–350 €/MWh [27, 29, 30]. The Norwegian DR potential 
and related marginal costs in the industrial sector are shown in Fig. 3.

2.2 � The DR potential in the Norwegian residential sector

The DR potential in Nordic countries, including Norway, is elaborated by Saele 
and Grande [32]. The DR potential in the Norwegian residential sector is catego-
rized in Fig. 4, which shows that the main share comes from space heating and 
heating water, mainly using load shifting.

(1)P = M + VC + FC

(2)VC = Pel + Pma + Pen

(3)Pr = P − VC = M + FC

(4)OC = Pr + Pel

Fig. 3   Merit order of demand response (DR) in the Norwegian industrial sector (load shifting and load 
shedding)



	 M. Ahang et al.

1 3

The residential DR potential is ca. 2300–2600 MW. Stadler [30] describes dif-
ferent processes, as well as the possible DR potential for each process. For exam-
ple, he reports that the DR potential from space heating and hot water is largely 
influenced by outdoor temperature.

Freezers and refrigerators can shift electricity consumption for up to 2  h, in 
which case the DR intervention time would be 1 h. This means that demand could 
be either increased or decreased in hour 1 and balanced in hour 3, while hour 2 
would have normal demand. This source of DR can be activated 1095 times per 
year. Washing machines, tumble dryers, and dishwashers do not have any limita-
tions regarding the number of DR interventions, but the maximum shifting time 
is assumed to be 6 h. A heat circulation pump is able to shift electricity consump-
tion for 2 h and the maximum intervention time is just 1 h. This DR potential can 
be activated 1095 times per year, in line with [27].

The investment cost of implementing DR varies widely, from 0 to 250,000 €/
MW, but the average investment cost is ca. 45,000 €/MW. The processes that are 
managed remotely, such as heating and air conditioning processes, need higher 
investment than other groups due to their installation costs [10].

We have calculated the cost of residential DR services based on the data pre-
sented in Table  1 and the work of Safdar et  al. [33]. The cost of DR is the 

Fig. 4   Distribution of potential load shifting sources in Residential DR

Table 1   Compensation cost in 
the Norwegian residential sector

Load shifting interval (min) Average compen-
sation cost (€/
kWh)

5 0.004
15 0.011
30 0.019
60 0.032
180 0.061
300 0.057
600 0.058



1 3

Analysis of the impact of demand response on the Norwegian energy…

average compensation cost that persuades consumers to shift electricity consump-
tion. Table 1 was prepared by using Eq. (5), where the compensation cost for acti-
vating the load shifting mechanism depends on the certain load, ln during operation 
period tn . In addition, energy price Pe and compensation expected by consumers, 
Comp. , are two important factors in the equation, which relates to both market and 
consumer behavior.

By considering the maximum shifting time for each source of DR and the average 
costs from Table 1, we can calculate the average compensation costs in the Norwegian 
residential sector. Using the average value can contribute to the simplification of the 
time-dependent cost. Hence, in this paper the maximum load shifting potential and the 
average compensation cost for each technology are time independent. However, the cal-
culation of more detailed Norwegian compensation costs is beyond the scope of this 
paper. Identifying such costs is a major challenge in DR analyses, as consumers with 

(5)CCost =

∑N

n=1

�

ln × tn
�

1000
× Pe × Comp.

Table 2   Residential 
compensation costs in the 
TIMES-Norway model

Source of residential DR potential Average compensa-
tion cost (€/MWh)

Water heating 30.6
Space heating 30.6
Heat circulation pump 25.4
Freezers/refrigerators 25.4
Dishwashers/tumble dryers/washing machines 4.0

Fig. 5   Merit order of DR in the Norwegian residential sector
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different utility functions from various countries/regions have different preferences. The 
compensation costs for the Norwegian residential sector are summarized in Table 2.

The merit order of DR in the Norwegian residential sector is presented in Fig. 5.

2.3 � The DR potential in the Norwegian commercial sector

The Norwegian commercial sector can provide around 832 MW of load shifting poten-
tial, but the load shift duration is at most 2 h and the DR intervention time is 1–2 h. 
These potentials can be activated up to 1095 times per year [27]. Figure 6 shows differ-
ent commercial processes in relation to each source of load shifting potential.

Detailed information about the cost of DR in the commercial sector is not avail-
able. However, it has been reported that commercial air conditioning (AC) and ven-
tilation have the lowest costs [34]. Furthermore, Verrier [35] claims that the cost of 
load shifting in the commercial sector is bounded by the costs of DR in the residen-
tial and industrial sectors. DR potential from sources such as cooling hotels/restau-
rants and cooling retail outlets are not considered in our model, due to lack of data. 
We used data in Table 1 and information provided by Álvarez Bel et  al. [34] and 
Verrier [35], to make a rough estimation of the costs of DR in commercial sector. 
The results are summarized in Table 3.

3 � The energy system model with demand response

In this section we first give an overview of the TIMES-Norway energy system model 
and second a more detailed description of the implementation of demand response.

Fig. 6   Load shifting shares of different commercial processes

Table 3   Commercial 
compensation costs in the 
TIMES-Norway model

Source of commercial DR potential Average compen-
sation cost (€/
MWh)

Commercial ventilation and AC 16.5
Water treatment and supply 26.0
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3.1 � IFE‑TIMES‑Norway model

IFE-TIMES-Norway [36] is a long-term optimization model of the Norwe-
gian energy system and is generated by the open-source TIMES (the Integrated 
MARKAL-EFOM System) modelling framework [37]. In this paper, we denote it 
TIMES-Norway. TIMES models are mainly used for modelling energy and envi-
ronmental systems at global, national, and regional energy systems in the medium- 
and long term [25], and they cover the interplay and competition between resources, 
energy carriers, conversion technologies, and end-use demand. TIMES models min-
imize the total discounted cost of the energy system to meet the demand for energy 
services for the analyzed model horizon. The energy system cost includes invest-
ments in both supply and demand technologies, expenses related to the operation of 
capacity, fuel costs, income from energy export, and cost of energy import.

The TIMES model used in this paper was developed by the Institute for Energy 
Technology (IFE) and the Norwegian Water Resources and Energy Directorate 
(NVE), and it is a simplified version of the IFE-TIMES-Norway model [38]. The 
model is a technology-rich model of the Norwegian energy system that is divided 
into five regions corresponding to the current electricity market’s spot price areas. 
The model provides operational and investment decisions from the starting year, 
2015, towards 2050, with seven model periods within this model horizon. Each 
model period is divided into 48 sub-annual time slices, with each season is repre-
sented by 12 2-h time slices. The model has a detailed description of the end use 
of energy, and the demand for energy services is divided into 15 end-use catego-
ries within industry, buildings, and transport in each region. It should be noted that 
in this paper the energy service demand is treated as inelastic and fixed. Energy 
services refer to the services provided by consuming a fuel and not the fuel con-
sumption itself. For example, the transport demand for personal cars is an energy 
service, whereas the fuel used to fuel the cars is the fuel demand. Each energy ser-
vice demand category can be met by existing and new technologies using different 
energy carriers such as electricity, bioenergy, district heating, and fossil fuels. Con-
sequently, in each time slice in the model, the use of energy carriers (e.g. electric-
ity) is a model result and not a model input. Other input data include fuel prices, 
electricity prices in countries with transmission capacity to Norway, renewable 
resources, and technology characteristics such as costs, efficiencies, and lifetime and 
learning curves.

The transmission capacity within and outside the regions included in the model is 
a model input based on current capacity and ongoing transmission capacity expan-
sion. The electricity prices in the included regions are endogenous, as they are the 
dual values of the electricity balance equation, while the electricity prices in the 
countries with trading capacity with Norway, which include Denmark, Sweden, the 
United Kingdom, Finland, Netherlands, and Germany, are a model input.

The model includes two types of hydropower plants: reservoir plants and run-
of-the-river (RoR). They comprise two different types: existing plants and new 
plant options with different investment costs. The capacity for existing plants is a 
model input, whereas the capacity for the new plant options requires endogenous 
investments. As opposed to the ROR plants, with seasonal-dependent electricity 
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generation, the reservoir plants are flexible between the model’s time slices. The 
annual electricity generation from the reservoir plants is constrained by an annual 
capacity factor, namely the annual production over the maximum theoretical produc-
tion over the course of 1 year.

Existing wind power technology and wind power technology under construc-
tion is an input to the model. Furthermore, for each region, new sources of wind 
power are modelled by 10 technology types that have different costs, operational 
conditions, and upper potentials in each region. Additionally, solar power is split 
into building applied photovoltaics (PV) on commercial buildings and residential 
buildings.

Figure 7 is a schematic diagram of the Norwegian residential energy system. Heat 
demand and hot water demand are satisfied by low temperature heat and electric-
ity. DR processes have similar marginal costs to shift hot water and space heating 
demand, whereas the demand profiles as the main driver for changing the electricity 
prices have different patterns.

3.2 � TIMES‑Norway modelling of short‑term uncertainties

We used two-stage stochastic programming to model short-term uncertainties in the 
generation of wind power, solar power, and hydropower. The TIMES-Norway model 
decides to invest in new processes/technologies and transmission capacities for each 

Fig. 7   The residential energy system in Norway

Fig. 8   A scenario tree for a two-stage stochastic model in TIMES
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long-term period. The decision about long-term periods is connected to short-term 
uncertainties in a scenario tree.

Figure  8 is a schematic diagram of a scenario tree for a two-stage stochastic 
model in TIMES. It represents seven investment-decision periods (blue dots). One 
investment period covers several years and includes short-term operational decisions 
(blue rectangle). Figure 8 shows a representation with 21 scenarios for operations 
in each investment period. Increasing the number of scenarios can make the model 
more realistic but will lead to considerable computational effort. Representation of 
the stochastic variables in the scenario tree is based on moment matching and statis-
tical analysis. For more details of the scenario generation method used in our study 
see [39].

3.3 � Mathematical modelling of DR

Below we give an overview of indices, sets, variables, and parameters:

Indices and sets Description

l ∈ L Set of periods relating to long-term investments
p ∈ P Set of processes
a ∈ A Set of electricity transmission links
d ∈ D Set of DR processes
� ∈ w Set of operational scenarios
s ∈ S Set of time slices
n ∈ N Set of regions
t ∈ T Set of years
k ≠ s ∈ S Set of time slices used to shift activity
Variables
xPro
pl

Capacity investment of process p in period l

xTra
al

Capacity investment of transmission a in period l

xDR
dl

Capacity investment of DR process d in period l

yPro
pnwsl

Generation by process p in region n through 
scenario w at time slice s during period l

yTra
anwsl

Net import
yDR
dnwsl

DR activity by DR process d in region n in sce-
nario w at time slice s during period l

Parameters
Pw Probability of each scenario
cPro
pl

Investment cost of process p in period l

cTra
al

Investment cost of transmission a in period l

cDR
dl

Investment cost of DR process d in period l

vPro
pl

Operational cost of process p in period l

vDR
dl

Operational cost of DR process d in period l
PVl Present value
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The simplified two-stage stochastic TIMES-Norway model with DR is given by

subject to

For all other general constraints see [40] and [41].
Equation (6) shows the objective function that is formulated as a two-stage sto-

chastic program. The objective function minimizes the net present value of 
energy system costs. The first stage covers investment decisions ( x ) and the cost 
of long-term investment regarding different processes, such as generators ( cPro

pl
 ), 

transmission lines ( cTra
al

 ), and DR ( cDR
dl

 ), in period l . The second stage includes all 
short-term operational decisions ( y ), the operational cost of generators ( vPro

pl
 ), and 

the operational cost of DR ( vDR
dl

 ) in period l . Short-term operational decisions 
( yPro

plns�
, yDR

dlsn�
 ) can take different values in different stochastic scenarios w.

Equation (7) represents the balancing equation. Demand,Denwsl , in region n in 
scenario w at time slice s during period l should be satisfied by the summation of 
energy generation,yPro

pnwsl
 , by process p and DR operation,yDR

dnwsl
 , by process d and 

net import,yTra
anwsl

 , in transmission link a in the same region, scenario , time-slice, 
and period.

Load shifting reduces production in specific time slices by shifting energy con-
sumption from those points, called downward regulation, and increases energy 
consumption in other points, called upward regulation. We have applied the stor-
age process in TIMES in order to model load shifting (because in storage, as in 
DR, the balance over time is a main feature), but with some modifications to 
make it possible to define overlapping time window sub-intervals for shifting in 
a stochastic programing formulation. For example, water preheating during off-
peak load time instead of water heating during peak load time can decrease total 
cost. The process is similar to charging a battery when electricity is cheap and 
discharging during peak load time.

The load shifting potential, SDR
dlns�

 , in each time slice is modeled in Eq. (8). It is 
limited by the available capacity of DR process d, xDR

dln
 . The DR capacity is not the 

same in different time slices, and therefore an availability factor, �Af
dlns�

 , is applied to 
adjust the DR capacity for each time slice s , period l , and scenario � . Moreover, the 
DR service can be activated a limited number of times during a year. This feature is 
represented by a factor, CAd , scaling the number from 1 year down to the 12 time 
slices.

(6)

MinZ =

�

l∈L

PVl ×

� ∑

p∈P c
Pro

pl
xPro
pl

+
∑

a∈A c
Tra

al
xTra
al

+
∑

d∈D cDR
dl
xDR
dl
+

∑

�∈w Pw

∑

s∈S

∑

n∈N

�

∑

p∈P v
Pro

pl
yPro
plns�

+
∑

p∈P v
DR
dl
yDR
dlsn�

�

�

(7)
∑

p∈P

yPro
pnwsl

+

∑

d∈D

yDR
dnwsl

+

∑

a∈A

yTra
anwsl

= Denwsl n ∈ N, s ∈ S, w ∈ �, l�L

(8)SDR
dlns�

≤ CAd × �
Af

dlns�
× xDR

dln
, d ∈ D, n ∈ N, s ∈ S,� ∈ w, l ∈ L
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Each DR process d in Eq.  (8) has an available capacity, xDR
dln

 , limited by avail-
ability factor, �Af

dlns�
 , for each time slice. Thus, the maximum available capacity may 

vary between time slices.
Equation (9) shows the activity of processes p , yPro

plns�
 , in region n in scenario w at 

time slice s during period l bounded above by the maximum available capacity of 
processes p , xPro

pln
 , in region n during period l and defined with the availability factor 

of processes p,�Af
plns�

 , plus the available DR activity of processes d , yDR
dlns�

 , for each 
time slice.

Three factors may influence the net DR activity in time slice s for process 
d , yDR

dlns�
 , as described in Eq. (10): the sum of DR activity shifted to time-slice s 

from all other time slices k in period l (upward regulation), 
∑

k SI
DR
dlnk�

 , the amount 
shifted from this time slice (downward regulation), SODR

dlns�
 as well as load shedding, 

SHDR
dlns�

 , in region n in scenario w.

For load shifting, the equality between upward regulation, 
∑

k SI
DR
dlnk�

 , and down-
ward regulation, SODR

dlns�
 , in region n in scenario w during period l is described in Eq. 

(11), after making sure that the sum of upward regulation in time slices k are equal 
to the downward regulation in time slice s.

We have also defined a process to generate a commodity called “flexibility,” 
which is supplied to specific processes in the industrial sector (e.g., chlorine, alu-
minum, steel, zinc) to model load shedding. The process is bounded with the load 
shedding potential and related availability factors. In Eq. (12), load shedding for 
process d , SHDR

dlns�
 , in region n in scenario w at time slice s during period l is imple-

mented in the same way as in the other general processes and decreases a part of 
energy-service demand. The DR potential and all limitations regarding load shed-
ding processes have been defined only for downward regulation.

Modelling load shifting requires defining time window sub-intervals. In our 
model with 12 time slices for a representative season, we decompose upward regu-
lation 

∑

k SI
DR
dlnk�

 into 12 flexibility commodities, DR1 to DR12. Maximum shifting 
time must be represented. In Eq. (13) this is illustrated for DR activity in period l 
with a maximum shifting time of two time slices (e.g., heat storage):

(9)
yPro
plns�

≤ CAp × �
Af

plns�
× xPro

pln
+ yDR

dlns�
, p ∈ P, n ∈ N, s ∈ S, � ∈ w, l ∈ L, d ∈ D

(10)

yDR
dlns�

=

(

∑

k

SIDR
dlnk�

)

− SODR
dlns�

+ SHDR
dlns�

, d ∈ D, n ∈ N, s ∈ S, � ∈ w, l ∈ L

(11)
∑

k

SIDR
dlnk�

= SODR
dlns�

, d ∈ D, n ∈ N, s ∈ S, � ∈ w, l ∈ L

(12)SHDR
dlns�

≤ CAd × �
Af

dlns�
× xDR

dln
, d ∈ D, n ∈ N, s ∈ S, � ∈ w, l ∈ L
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Equation (13) shows that the summation of upward regulation in region n in sce-
nario w during period l from time slice 1 to time slice 12 is split into 12 different 
commodities, DR1 to DR12, with a duration of 2 h. It should be noted that by defin-
ing different commodities, any time slice can do both upward and downward regula-
tion. Equation (14) defines downward regulation SODR

dlns�
 in time slices s for s = 1,…, 

12:

In Eq. (14), downward regulation in region n in scenario w during period l at time 
slice 1, SODR

dln1�
 , should be equal to upward regulation at time slices 2 and 3, SIDR1

dln2�
 

and SIDR1
dln3�

 using process DR1. Upward regulation at time slices 3 and 4 is defined 
by DR2. Hence, it is also possible to define intervals with marginal overlapping to 
provide more flexibility to the model.

4 � Results and discussion

In this section we compare the case with and without DR technology in order to 
show the effects of DR on the energy mix, regulated hydropower income, and elec-
tricity prices from 2020 to 2050. RoR plants are not included in the analysis because 
they are not flexibility providers. Therefore, regulated hydropower is hereafter 
referred to a hydropower. Additionally, we discuss how DR impacts the Norwegian 
energy system’s capability to provide flexibility to neighboring countries.

DR operation in the period 2020–2050 has an upward trend, during which the 
space heating in residential buildings contribute 83–90% of the total DR operation. 
The other important source of DR is hot water in residential buildings (6–14%), 
while industry provides only 3–5% of the total DR operation.

(13)

3
∑

k=2

SIDR1
dlnk�

+

4
∑

k=3

SIDR2
dlnk�

+⋯ +

2
∑

k=1

SIDR12
dlnk�

=

∑

k

SIDR
dlnk�

, d ∈ D, n ∈ N, � ∈ w, l ∈ L

3
∑

k=2

SIDR1
dlnk�

= SODR
dlns�

, d ∈ D, n ∈ N, s = 1,� ∈ w, l ∈ L

4
∑

k=3

SIDR2
dlnk�

= SODR
dlns�

, d ∈ D, n ∈ N, s = 2,� ∈ w, l ∈ L… ,

… ,

(14)
2
∑

k=1

SIDR12
dlnk�

= SODR
dlns�

, d ∈ D, n ∈ N, s = 12,� ∈ w, l ∈ L
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The reason residential space heating activates a high share of the total DR opera-
tion in comparison with residential hot water is evident in Fig. 9. Indeed, the vol-
ume of space heating demand is higher than hot water demand, and the difference 
between peak and valley in the space heating demand curve is more than twice that 
for hot water. In addition, the annual availability factor of residential technologies 
for space heating is higher. By using DR processes to minimize system costs, elec-
tricity price peaks are shaved by changing the space heating and hot water curves. 
Each time slice represents 2 h. The demand volume is deterministic, but considering 
short-term uncertainty for the supply side will affect the DR operation.

The DR operation does not affect the expected annual power production consid-
erably, while the electricity export and import increase. Although the volume of 
net export after implementing DR is roughly similar to the case without DR, DR 
increases the volume of trade (import and export). Figure 10 shows a comparison 
of expected annual production of regulated hydropower (ELC-REG), solar power 
(ELC-SOL), wind power (ELC-WIND), and low temperature heat from district 
heating (LTH-DH) in Norway, as well as trade with neighboring countries with and 

Fig. 9   Residential space heating (RES-H) and hot water (RES-W) demand, winter, 2050

Fig. 10   Expected annual power production and trade
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without DR technologies. DR operation changes the volume of trade by smoothing 
electricity prices and changing short-term operation of generators.

Figure 11 presents the influence of DR operation on hot water and space heat-
ing demand in relation to electricity prices in 2050. The gray areas show the 
range of stochastic scenarios. Our study considers 21 stochastic scenarios; the 
minimum values of all scenarios build the lower boundary of the shaded area, 

Fig. 11   Stochastic electricity prices and DR operation for hot water (RES-W) and space heating (RES-H) 
in 2050
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and the maximum values build the upper boundary. The blue line shows the 
median of stochastic electricity prices before using DR technologies, whereas 
the green line shows the median values after implementing DR. The uppermost 
chart shows how DR operation changes the output of residential technologies 
dedicated to supply energy to space heating demand, the middle chart shows the 

Fig. 12   The expected operation of DR operation in 2050
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same process corresponding hot water demand, and the lowermost chart shows 
the effect of DR operation on electricity prices. For example, by looking at time-
slice 10 from winter specified by the red line in the charts, it can be seen that the 
DR process results in lower level of output from residential technologies. There-
fore, it is expected that lower electricity prices will be seen at the same time. 

Fig. 13   The effects of DR on REG and trade profile, Norway, 2050
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The lowermost chart shows that DR shaves the peaks of electricity prices. Once 
DR operation decreases the demand volume in a specific time slice, the energy 
system experiences lower electricity prices and either power generators should 
reduce power production, or the system should export the extra power. Figure 12 
illustrates the expected DR operation in 2050.

Figure  13 shows how stochastic DR operation affects short-term Norwegian 
hydropower production and net electricity export in 2050. For instance, in winter, 
downward regulation at time slice 10 leads to a higher volume of net export, while 
hydropower production is not influenced.

DR can affect electricity prices by changing demand profiles. Hydropower gen-
eration (REG), as the crucial source of flexibility in Norway, should adapt to that. 
Therefore, after implementing DR, we have a new profile for regulated hydropower 

Fig. 14   The effects of DR on REG and trade profile at NO4, winter, 2050
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(REG). In addition, lower electricity prices and the new REG profile change the vol-
ume of electricity trade with neighboring regions and countries.

Figure  14 illustrates how DR technologies may influence REG and electricity 
trade at node NO4 by considering only one stochastic scenario for the sake of sim-
plicity. NO4 is a long and narrow region located in the north of Norway. The node 
has a border with Russia, Finland, Sweden, and NO3. The supply side at NO4 con-
sists of regulated hydropower plants, RoR power plants, combined heat and power 
(CHP) plants, wind power plants, and solar power plants. On the demand side, apart 
from high voltage electricity demand, trade with neighboring countries and NO3 
affects the total electricity demand at NO4. Here, we discuss four time slices: TS8 
(6–8 am), TS14 (12–2 pm), TS16 (2–4 pm), and TS18 (4–6 pm). DR does not affect 
high voltage electricity demand volume (HV-ELC) at NO4-TS8, but it increases 
HV-ELC at NO3-TS16. Therefore, NO4 uses the flexibility of hydropower plants 
and decreases the amount of electricity export to neighboring countries to meet 
extra HV-ELC at NO3. DR operations from NO4-TS12 to NO4-TS18 are presented 
by Table 4.

DR increases HV-ELC at NO4-TS14 in order to shift electricity demand from 
time slices 16 and 18. REG is not changed after implementing DR at NO4-TS16, 
and therefore NO4 exports the extra power to NO3. Down regulation at NO4-TS18 
results in extra electricity export to neighboring countries.

NO2 is located in the south of Norway and by 2050 is connected with Denmark, 
the Netherlands, Germany, and the UK. The region is also linked with two neighbor-
ing regions, NO1 and NO5. The supply side at NO2 is dominated by hydropower 
plants, and the hydropower generation (REG) is used for local electricity demand or 
neighboring nodes. Therefore, by changing electricity demand profile at NO2, NO1, 
and NO5, DR is able to influence electricity trade between NO2 and neighboring 
nodes, as well as the REG profile at NO2. Figure 15 shows the effect of DR on REG 
and electricity trade at NO2 in winter 2050. We use the same nomenclature to refer 
to time slices and technologies. At node NO2, we investigate four time slices: 8, 16, 
18, and 20.

Table  5 lists DR operations that are coincident with electricity demand devia-
tion from the base case after implementing DR. At NO2-TS8 the system encounters 
upward regulation which increases HV-ELC. At the same time DR increases HV-
ELC at nodes NO2 and NO5. Therefore, NO2 has to increase REG, while decreas-
ing electricity export to NO1, NO5, and neighboring countries. Downward regula-
tion at time slices 10 and 12 is the main reason that after applying DR, electricity 
demand is lower than the base case.

Upward regulation at time slice 16 leads to higher HV-ELC at NO2, NO1, and 
NO5. At NO2-TS8, the system decides to meet the extra demand by reducing elec-
tricity export to neighboring countries. This decision helps NO2 to supply more 

Table 4   DR operation from 
NO4-TS12 to NO4-TS18, 
Winter, 2050

Time slice 12 14 16 18

Upward regulation 16 74 – –
Downward regulation – – 41 49
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electricity to NO1 and NO5. By contrast, downward regulation at time slice 18 
results in lower HV-ELC at NO2, NO1, and NO5. This means that NO2 is able to 
export more electricity to neighboring countries, while electricity export to NO1 and 
NO5 experiences lower volume. DR at time slice 20 does not have a similar effect 
on NO1, NO2, and NO5. Upward regulation at NO2-TS10 and NO5-TS10 causes 

Fig. 15   The effect of DR on REG and trade profile at NO2, winter, 2050

Table 5   DR operation from 
NO2-TS12 to NO2-TS18, 
winter, 2050

Time-slice 8 10 12 16 18 20

Upward regulation 294 – – 187 – 230
Downward regulation – 325 141 – 269 –
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higher HV-ELC at these nodes, while downward regulation at NO1-TS10 results in 
lower HV-ELC. The system decides to meet the extra HV-ELC at NO2 by importing 
electricity from neighboring countries and generating more hydropower.

By using the electricity prices and hydropower production of the stochastic sce-
narios in each region, we can calculate the expected income over the scenarios and 
the percentage changes in hydropower plants’ income after applying DR technology. 
The results are shown in Table 6.

5 � Conclusions

The main contributions of our paper are investigation and analysis of the role of 
DR in the Norwegian energy system and implementation of DR with stochastic pro-
gramming in TIMES. We have used the model to study how DR would affect the 
use of flexibility provided by Norwegian hydropower. In our study, DR strategies are 
limited to load shedding and load shifting in the industrial and residential sectors.

The results show that Norwegian DR operation mainly comes from space heating 
demand in residential buildings. By changing electricity trade or electricity produc-
tion in each price region, DR affects the demand side through upward and down-
ward regulations when balancing the demand and supply sides. Hydropower genera-
tion depends on different parameters, such as electricity demand and trade at each 
specific node, electricity prices, and flexibility demand at neighboring nodes. Our 
study shows that after implementing DR, flexibility export increases, and electricity 
import at low prices increase because DR shifts demand from peak load with high 
prices to off-peak load time with low prices. Hence, both export and import increase, 
while net export before and after applying DR processes is the same (Fig. 10).

DR smooths electricity prices. In our model, the hydropower production profile 
is affected by DR because the stochastic factors of the energy system determine 
the possibility of DR operation in each time window, and hydropower can provide 
flexibility with higher value than before. At the same time, electricity prices are 
smoothed, a factor that could decrease the income of hydropower producers, while 
the system benefits. DR operation can decrease curtailment for renewables, and/or 
provide an opportunity to generate more intermittent production by incentivizing 
long-term investment in RES. Our study suggests formulating DR as a short-term 
elastic demand and considering the short-term weather-dependent uncertainties. In 
our study, the electricity export/import prices that the model uses to compare with 

Table 6   Income growth rates 
of hydropower plants in five 
Norwegian regions

Region 2020 2030 2040 2050

NO1 0.01 −0.03 −0.03 −0.04
NO2 0.01 0.00 −0.01 −0.01
NO3 0.00 −0.01 −0.01 0.00
NO4 0.00 0.00 −0.02 −0.01
NO5 0.01 −0.02 −0.02 −0.01
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Norwegian electricity prices are deterministic. Therefore, improving the model link-
age between European power system prices and the Norwegian energy system could 
improve the analysis.

Appendix A. Schematic diagram of the TIMES‑Norway model
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