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A B S T R A C T

Profit-maximizing firms hedge risk from uncertainty by deciding on capacity investment and production.
Typically, risk-averse firms monotonically forgo expected profit in exchange for an improved risk measure, e.g.,
conditional value-at-risk (CVaR). However, the stochastic-equilibrium literature exhibits non-monotonicities,
i.e., both CVaR and expected profit increase with risk aversion. We prove that this result arises because
oligopolistic firms account for the price impacts of their own decisions but ignore those of other firms.
Consequently, firms reduce capacity ‘‘too much’’ with risk aversion.
. Introduction

Conventional wisdom and much of the literature on risk aversion
ndicates that insurance against undesirable future outcomes involves

tradeoff. In particular, risk-averse capacity investment is driven by
eturns in less-favorable scenarios, thereby effectively forgoing high
ut uncertain returns in more-favorable scenarios. Consequently, risk-
verse hedging decisions result in lower expected benefits or higher
xpected costs in exchange for less exposure to uncertainty [1]. This
ntuitive outcome from stochastic programming originates from single-
gent settings assuming that uncertain market prices are exogenous.
lternatively, a single-agent setting wherein demand is treated as ex-
genous and stochastic with fixed prices and costs will lead to the same
utcome [2].

Recently, however, several authors have observed situations in
hich risk-averse behavior actually led to higher expected profits.
ore generally, such non-monotonicity occurs in the tradeoff between

he expected profit and the conditional value-at-risk (CVaR) in multi-
gent games with risk-averse agents [3,4]. The CVaR is a coherent risk
easure that reflects the conditional expected profit in the worst 𝛼% of

ases [5]. Similar risk measures have applications in contexts beyond
inance, e.g., energy [6,7] and health [8–10]. In a variety of settings,
isk aversion reduces (expected) profit in different ways. In classi-
al financial markets such as the stock market, risk-averse investors
equire a risk premium for taking on (non-diversifiable) risk, which
ffectively lowers stock prices [11]. In capacity-investment problems,
isk aversion will lead to lower investment and lower output [7,12].
isk-averse retailers with a finite time horizon (or, equivalently, faced
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with high enough discount rates) to sell off a fixed inventory will set
lower prices to avoid the risk of unsold wares [13]. Forward trading,
for instance in energy and commodity markets, commonly leads to
forward contract prices that are lower than expected spot prices due
to risk aversion [4]. In loss-aversion settings, the willingness to invest
in insurance increases with risk aversion. Classical examples include
health insurance [14,15] and travel insurance [16]. In governance
and corporate-social-responsibility settings, measures are invested in to
prevent and to insure against the consequences of reputation-damaging
risk from non-compliance with social or judicial rules [17]. Higher risk
aversion or perceived risk will lead to higher costs and, consequently,
lower profits [18]. Similarly, risk reduction in off-grid energy systems
will lead to higher costs due to higher capacity investment [19].

In early game-theoretic models, risk aversion gave rise to the con-
cepts of minimax and maximin strategies [20], which eventually cul-
minated in the stream of literature concerning robust optimization
[21–23]. A focus on a mere worst-case scenario is extremely risk
averse and often hard to reconcile with rational behavior. More re-
cent work extends and nuances optimality criteria in game-theoretic
settings [24]. Risk and loss aversion in the economic literature are
the main explanatory components for many behavioral decision-making
models. Risk aversion is often considered in terms of expected utility
and diminishing marginal utility. Any risky decision can be formu-
lated as maximizing the expected utility for an appropriately defined
lottery [25]. However, when uncertainty and, consequently, up- and
downside risk is (relatively) small, decision-making behavior is less
driven by risk aversion and may be adequately represented by ex-
pected value optimization [26]. The specific choice of risk measure
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in multi-stage settings can prevent the existence of subgame perfect
equilibria [27], thereby invalidating the time consistency of optimal
strategies [28]. In the quest to address challenges such as tractability
and how much knowledge may be assumed concerning underlying
probabilities, the number of methods available to deal with risk aver-
sion in the field of stochastic programming is ever expanding [29–34].
Recent societal developments encompass the platform economy, shar-
ing economy, and green supply-chain management [35–39] to yield a
multitude of new decision types in investment and pricing, which inte-
grate increasing numbers of agents with heterogeneous risk attitudes.
Hence, methods developed in fields such as stochastic programming
and game theory will have to be expanded to analyze and inform
optimal decision making in such new and relevant settings.

Given this background, intuitively, a risk-averse firm that includes
the CVaR in its objective function uses risk-adjusted probabilities,
e.g., to focus on the less-profitable outcomes (c.f. [40]), and should
lower its expected profit in exchange for a higher CVaR as risk aversion
increases. In this work, we show that this intuition may not hold
when considering price-elastic demand in an equilibrium framework.
While there are various risk measures deployed in the literature besides
CVaR, e.g., VaR [1], the main reason why we use CVaR is because it
is a coherent risk measure with an intuitive economic interpretation
and mathematical tractability. In particular, CVaR respects the sub-
additivity property, i.e., the CVaR of a portfolio of several assets is
always less than or equal to the sum of CVaRs of all assets consid-
ered individually. By contrast, this property does not hold for VaR.
Moreover, VaR reflects a threshold value, which means that it does not
reveal information about the magnitude of the gain or loss beyond that
level. This is in contrast to CVaR. As we also mentioned earlier, CVaR
is the risk measure used in the literature that exhibits a non-monotonic
relationship between risk and return that we wish to explore [3,4].
Finally, as CVaR can be incorporated in linear programming, it is
amenable for a host of optimization problems, including the ones that
we study here.

Using this approach, [41]’s stochastic-equilibrium analysis of
power-sector capacity expansion distills how greater risk aversion leads
to higher equilibrium prices. This arises due to the capacity limitations
that result from risk-averse firms’ adoption of less capital-intensive
technologies. In a similar vein, a stochastic-equilibrium model of the
Northern European gas market finds that lower supply volumes stem
from risk-averse investment [42]. This causes prices to go up and
sometimes offsets the profit loss from lower output.

While such non-monotonic results are observed in the literature, a
rigorous explanation for why they occur has been lacking. Based on
this research gap, we provide a mathematical underpinning for why
both expected profit and CVaR may increase with risk aversion. Toward
that end, we use a stylized model with either price-taking or Cournot
oligopolistic behavior along with a benchmark monopoly model as a
reference for full exertion of market power. This framework allows
us to convert the resulting equilibrium problem into an optimization
one via the extended-cost term [43–45]. Our objective here is not to
rove that the non-monotonic relationship between the expected profit
nd the CVaR holds in general. Instead, it is to provide a conceptual
xplanation for why such seemingly counterintuitive results arise. For
his purpose, a stylized model that abstracts from certain real-world
ttributes, such as asymmetric firms, financial hedging, and startup
onstraints, suffices.

We consider three cases in an investment-and-operational stochastic-
quilibrium problem: perfect competition (PC), Cournot oligopoly (CO),
nd monopoly (MO). We find that greater risk aversion under PC
nduces a firm to reduce its capacity investment. Yet, such a firm
verlooks the impact of both its own decisions as well as other firms’
ecisions on the equilibrium price, i.e., the price-taking conjecture.
nder CO, greater risk aversion leads to less of a reduction in a firm’s
apacity investment because it accounts for its own impact on the

arket-clearing price while still ignoring the effects of competitors’ g

2

decisions. However, a monopolist fully internalizes the price effect of
capacity reduction. Consequently, its capacity reduction corresponds to
its overall level of risk aversion. Since PC and CO firms reduce their
capacities ‘‘too much,’’ this leads to significantly higher prices and
higher expected profits that may actually increase with risk aversion.
We show analytically that this underestimation of price impacts is
linked to assumptions about the elasticity of (residual) market demand.
By contrast, the expected monopoly profit monotonically decreases
with risk aversion.

While a risk-averse agent does not aim to maximize expected profit,
the conventional wisdom in stochastic programming has been that
there is an inherent tradeoff between profit maximization and risk
control. Yet, this perspective presupposes exogenous prices and neglects
endogenous price formation as a consequence of the risk-averse agents’
collective behavior. Meanwhile, the literature on game theory has
observed in passing seemingly counterintuitive results whereby risk-
averse agents actually enjoy higher expected profit while also lowering
their risk exposure. A coherent explanation for this finding was missing
in the literature, which we have now rendered by linking the agents’
incentives to market outcomes.

The rest of this paper is organized as follows. Section 2 formulates
the problems and obtains analytical solutions. Section 3 conducts com-
parative statics to test our hypotheses, while Section 4 provides numer-
ical illustrations. Section 5 summarizes our findings and charts future
research topics. The Appendix contains proofs for all propositions.

2. Problem formulation

2.1. Modeling assumptions

We use a stylized market setting with a number of symmetric firms
all supplying a single market for a homogeneous good with stochastic
demand. We assume a two-stage problem in which all firms invest
in capacity in the first stage, and, in the second stage, production is
adapted to the demand scenarios. Capacity investment is the here-
and-now decision, and production is the wait-and-see decision. The
demand scenarios represent high- and low-price outcomes and differ by
the value of the intercept of the inverse-demand curve, which reflects
consumers’ willingness to pay for the good. Risk-neutral firms maximize
expected profits, whereas risk-averse firms maximize the CVaR, a risk
measure that considers only part of the profit in the high-price scenario.
This gives more weight to the lower-profit outcomes, thereby reducing
the risk-adjusted profitability from production, which will dampen
capacity investment. Extremely risk-averse firms may not consider even
all the profit in the low-price scenario.

We assume open-loop decisions, i.e., investment and production
decisions are treated as if they were made simultaneously [46]. There
are 𝑛 = 1,… , 𝑁 identical firms, and the production period has 𝑚 =
1,… ,𝑀 scenarios with corresponding probabilities 0 ≤ 𝑄𝑚 ≤ 1 and

𝑚 𝑄𝑚 = 1. Production by firm 𝑛 in scenario 𝑚 is 0 ≤ 𝑞𝑛,𝑚 ≤ 𝑘𝑛
[units]. The linear inverse-demand function in scenario 𝑚, 𝑃𝑚

(

𝑞𝑚
)

,
as intercept parameter 𝐴𝑚 > 0 [$/unit] and slope parameter 𝐵 > 0
$/unit2], i.e., 𝑃𝑚

(

𝑞𝑚
)

= 𝐴𝑚−𝐵
∑

𝑛 𝑞𝑛,𝑚, where 𝑞𝑚 ≡
∑

𝑛 𝑞𝑛,𝑚. Each firm’s
arginal cost of investment is 𝐼 > 0 [$/unit], whereas its quadratic
roduction cost has parameters 𝐶 > 0 [$/unit] and 𝐷 > 0 [$/unit2].
nvestment by firm 𝑛, 𝑘𝑛 ≥ 0 [units], has 𝜆𝑛,𝑚 ≥ 0 [$/unit] as the shadow
rice of the associated capacity constraint. We write the equilibrium
rice in scenario 𝑚 as 𝜋𝑚 [$/unit]. Without loss of generality, we set

= 2 with 𝑄1 = 𝑄2 = 1
2 and 𝐴2 > 𝐴1 + 𝐼

𝑄2
to ensure that

capacity does not restrict production in (the low-price) scenario 1. Such
restrictiveness may be due to an irrationally high level of risk aversion.
Note that 𝐴1 > 𝐶 also ensures that scenario-1 production is strictly
ositive. Since we model a stylized setting, our parameters are notional
nd merely need to ensure economically meaningful solutions. In effect,
he analytical results hold for any parameter choices that satisfy these

eneral conditions.
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To reflect risk aversion, 0 ≤ 𝑅2 ≤ 𝑄2 is each firm’s subjective
probability about the high-demand scenario. Since the CVaR captures
the conditional expected profit in the worst 𝛼% of the cases, we likewise
reweight those relevant outcomes, i.e., via a risk-adjusted probability
for the high-demand scenario. This approach has similarities to the
concept of risk-adjusted discount rates that has been developed and ap-
plied in various settings [47–50]. In the following subsections, we first
lay out the risk-neutral decision-making problems for the three market
structures, CO, PC, and MO, as stepping stones for the risk-averse setups
that follow thereafter.

2.2. Risk-neutral setting

2.2.1. Cournot oligopoly
Firm 𝑛’s optimization problem is:

max
𝑘𝑛≥0,𝑞𝑛,𝑚≥0

∑

𝑚
𝑄𝑚

[

𝐴𝑚 − 𝐵
∑

𝑛′
𝑞𝑛′ ,𝑚

]

𝑞𝑛,𝑚 − 𝐼𝑘𝑛 −
∑

𝑚
𝑄𝑚

[

𝐶𝑞𝑛,𝑚 + 1
2
𝐷𝑞2𝑛,𝑚

]

(1)

s.t. 𝑞𝑛,𝑚 ≤ 𝑘𝑛 : 𝜆𝑛,𝑚,∀𝑚 (2)

ere, the first term is the expected revenue, the second term is the in-
estment cost, and the third term is the expected production cost. Since
1)–(2) is a convex optimization problem, its Karush–Kuhn–Tucker
KKT) conditions are necessary and sufficient for optimality:

0 ≤ 𝑘𝑛 ⟂ 𝐼 −
∑

𝑚
𝜆𝑛,𝑚 ≥ 0 (3)

0 ≤ 𝑞𝑛,𝑚 ⟂ −𝑄𝑚

[

𝐴𝑚 − 𝐵
∑

𝑛′
𝑞𝑛′ ,𝑚 − 𝐵𝑞𝑛,𝑚 − 𝐶 −𝐷𝑞𝑛,𝑚

]

+ 𝜆𝑛,𝑚 ≥ 0,∀𝑚 (4)

0 ≤ 𝜆𝑛,𝑚 ⟂ 𝑘𝑛 − 𝑞𝑛,𝑚 ≥ 0,∀𝑚 (5)

Assuming interior solutions for primary decision variables, 𝑘𝑛 and 𝑞𝑛,𝑚,
and a binding capacity only in scenario 2, we obtain via symmetry
𝑞𝑚 ≡

∑

𝑛′ 𝑞𝑛′ ,𝑚 = 𝑁𝑞𝑛,𝑚 and 𝑞−𝑚 = (𝑁 − 1)𝑞𝑛,𝑚. KKT condition (4) yields:

𝐶𝑂
𝑛,𝑚 =

𝐴𝑚 − 𝐶 − 𝜆𝑛,𝑚
𝑄𝑚

(𝑁 + 1)𝐵 +𝐷
,∀𝑚 (6)

Since 𝜆𝐶𝑂
𝑛,1 = 0 and 𝜆𝐶𝑂

𝑛,2 = 𝐼 > 0 (from (3)):

𝐶𝑂
𝑛,1 =

𝐴1 − 𝐶
(𝑁 + 1)𝐵 +𝐷

(7)

𝑞𝐶𝑂
𝑛,2 =

𝐴2 − 𝐶 − 𝐼
𝑄2

(𝑁 + 1)𝐵 +𝐷
(8)

𝑘𝐶𝑂
𝑛 =

𝐴2 − 𝐶 − 𝐼
𝑄2

(𝑁 + 1)𝐵 +𝐷
(9)

Consequently, equilibrium prices are 𝜋𝐶𝑂
1 = 𝐶 +(𝐵 +𝐷) 𝑞𝐶𝑂

𝑛,1 and 𝜋𝐶𝑂
2 =

𝐶 + (𝐵 +𝐷) 𝑘𝐶𝑂
𝑛 + 𝐼

𝑄2
, which are obtained by substituting (7) and (8)

nto the inverse-demand function, 𝐴𝑚 − 𝐵
∑

𝑛′ 𝑞𝑛′ ,𝑚.
For two scenarios, as it will never be optimal to invest in capacity

hat is not used in the high-price scenario, i.e., we will have 𝑞𝐶𝑂
𝑛,2 = 𝑘𝐶𝑂

𝑛 ,
he problem (1)–(2) may alternatively be reformulated as follows:

max
𝑛≥0,𝑞𝑛,1≥0

𝑄1

[

𝐴1 −
(𝑁 + 1)

2
𝐵𝑞𝑛,1 − 𝐶 − 𝐷

2
𝑞𝑛,1

]

𝑞𝑛,1

+𝑄2

[

𝐴2 −
(𝑁 + 1)

2
𝐵𝑘𝑛 −

𝐼
𝑄2

− 𝐶 − 𝐷
2
𝑘𝑛

]

𝑘𝑛 (10)

Again, assuming interior solutions, we obtain from the first-order nec-
essary conditions the same results for 𝑞𝐶𝑂

𝑛,1 and 𝑘𝐶𝑂
𝑛 as in (7) and (9),

respectively. For example, the partial derivative of (10) with respect to
3

𝑞𝑛,1 set equal to zero yields 𝑄1
(

𝐴1 −𝑁𝐵𝑞𝑛,1 − 𝐵𝑞𝑛,1 − 𝐶 −𝐷𝑞𝑛,1
)

= 0,
.e., the marginal revenue of firm 𝑛 equals its marginal cost.

.2.2. Perfect competition
Using the reformulated problem from the risk-neutral Cournot

ligopoly (10) and recognizing the role of 𝑁 , the number of firms,
e have the following problem for a risk-neutral perfectly competitive

irm:

max
𝑛≥0,𝑞𝑛,1≥0

𝑄1

[

𝐴1 −
𝑁
2
𝐵𝑞𝑛,1 − 𝐶 − 𝐷

2
𝑞𝑛,1

]

𝑞𝑛,1

+𝑄2

[

𝐴2 −
𝑁
2
𝐵𝑘𝑛 −

𝐼
𝑄2

− 𝐶 − 𝐷
2
𝑘𝑛

]

𝑘𝑛 (11)

Note that when the partial derivative of (11) with respect to 𝑞𝑛,1 is set
equal to zero, we have 𝑄1

(

𝐴1 −𝑁𝐵𝑞𝑛,1 − 𝐶 −𝐷𝑞𝑛,1
)

= 0, i.e., price
quals marginal cost. Thus, optimal decisions are as follows:

𝑃𝐶
𝑛,1 =

𝐴1 − 𝐶
𝑁𝐵 +𝐷

(12)

𝑘𝑃𝐶𝑛 =
𝐴2 − 𝐶 − 𝐼

𝑄2

𝑁𝐵 +𝐷
(13)

Based on the results (12) and (13), perfectly competitive equilib-
rium prices are 𝜋𝑃𝐶

1 = 𝐶 +𝐷𝑞𝑃𝐶𝑛,1 and 𝜋𝑃𝐶
2 = 𝐶 +𝐷𝑘𝑃𝐶𝑛 + 𝐼

𝑄2
.

2.2.3. Monopoly
A monopoly serves as a counterfoil to perfect competition since it

exhibits full exercise of market power. Its total capacity and scenario-1
production decisions are 𝑘̂ and 𝑞1, respectively. Assuming that capacity
is again binding only in scenario 2, we render the monopolist’s profit-
maximization problem in a similar vein as (10). However, in order to
have comparable industry-wide supply curves between a monopoly and
an oligopoly, we modify the monopolist’s production-cost parameters
to 𝐶̂ ≡ 𝐶 and 𝐷̂ ≡ 𝐷

𝑁 . Thus, the profit-maximization problem under a
monopoly is:

max
𝑘̂≥0,𝑞1≥0

𝑄1

[

𝐴1 − 𝐵𝑞1 − 𝐶̂ − 𝐷̂
2
𝑞1

]

𝑞1 +𝑄2

[

𝐴2 − 𝐵𝑘̂ − 𝐼
𝑄2

− 𝐶̂ − 𝐷̂
2
𝑘̂
]

𝑘̂

(14)

By partially differentiating (14) with respect to 𝑞1 and setting the result-
ing expression equal to zero, we have 𝑄1

(

𝐴1 − 𝐵𝑞1 − 𝐵𝑞1 − 𝐶̂ − 𝐷̂𝑞1
)

=
, i.e., the monopolist’s marginal revenue equals its marginal cost. The
esulting optimal quantities under a monopoly are:

̂𝑀𝑂
1 =

𝐴1 − 𝐶̂

2𝐵 + 𝐷̂
(15)

̂𝑀𝑂 =
𝐴2 − 𝐶̂ − 𝐼

𝑄2

2𝐵 + 𝐷̂
(16)

Upon substitution of (15) and (16) into the inverse-demand func-
tion, the monopoly equilibrium prices are 𝜋𝑀𝑂

1 = 𝐶̂ +
(

𝐵 + 𝐷̂
)

𝑞𝑀𝑂
1 and

𝜋𝑀𝑂
2 = 𝐶̂ +

(

𝐵 + 𝐷̂
)

𝑘̂𝑀𝑂 + 𝐼
𝑄2

.

2.3. Risk-averse setting

We now use risk-adjusted probabilities such that 0 ≤ 𝑅2 ≤ 𝑄2. There
re two possibilities per case based on the threshold, 𝑅 ≡ 𝐼

𝐴2−𝐴1
≥ 0,

below which capacity binds in both scenarios (cf. Proposition 1 in
Section 3). Note that a high (low) value of 𝑅2 corresponds to low (high)
risk aversion because it weights profit more (less) in the high-price
scenario.

2.3.1. Cournot oligopoly

Low risk aversion (𝑅2 ≥ 𝑅) The setup of the problem is identical
to that in (10) but with the scenario-2 probability, 𝑄2, replaced by
the subjective scenario-2 probability, 𝑅 :
2
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2

2

i

max
𝑘𝑛≥0,𝑞𝑛,1≥0

𝑄1

[

𝐴1 −
(𝑁 + 1)

2
𝐵𝑞𝑛,1 − 𝐶 − 𝐷

2
𝑞𝑛,1

]

𝑞𝑛,1

+𝑅2

[

𝐴2 −
(𝑁 + 1)

2
𝐵𝑘𝑛 − 𝐶 − 𝐷

2
𝑘𝑛

]

𝑘𝑛 − 𝐼𝑘𝑛 (17)

Unaffected by the change in probability measure, 𝑞𝐶𝑂
𝑛,1 is the same

as in (7), while 𝑘𝐶𝑂
𝑛 becomes:

𝑘𝐶𝑂
𝑛 =

𝐴2 − 𝐶 − 𝐼
𝑅2

(𝑁 + 1)𝐵 +𝐷
(18)

Note that for 𝑅2 = 𝑄2, (18) is identical to (9), while (18) also
exhibits that optimal capacity, 𝑘𝐶𝑂

𝑛 , decreases with increasing risk
aversion, i.e., smaller 𝑅2 (cf. Proposition 2 in Section 3).

High risk aversion (𝑅2 < 𝑅) Since 𝑘𝐶𝑂
𝑛 decreases monotonically

as 𝑅2 decreases, i.e., the firm becomes more risk averse, under
extremely high levels of risk aversion, the capacity constraint may
become binding in both scenarios. This leads to the following special
case of problem (17) where 𝑞𝑛,1 = 𝑘𝑛:

max
𝑘𝑛≥0

𝑄1

[

𝐴1 −
(𝑁 + 1)

2
𝐵𝑘𝑛 − 𝐶 − 𝐷

2
𝑘𝑛

]

𝑘𝑛

+𝑅2

[

𝐴2 −
(𝑁 + 1)

2
𝐵𝑘𝑛 − 𝐶 − 𝐷

2
𝑘𝑛

]

𝑘𝑛 − 𝐼𝑘𝑛 (19)

This yields 𝑞𝐶𝑂
𝑛,1 = 𝑞𝐶𝑂

𝑛,2 = 𝑘𝐶𝑂
𝑛 , where:

𝑘𝐶𝑂
𝑛 =

(

𝑄1
𝑄1+𝑅2

)

𝐴1 +
(

𝑅2
𝑄1+𝑅2

)

𝐴2 − 𝐶 − 𝐼
𝑄1+𝑅2

(𝑁 + 1)𝐵 +𝐷
(20)

.3.2. Perfect competition
Low risk aversion (𝑅2 ≥ 𝑅) The setup of the problem is similar to
that in (11):

max
𝑘𝑛≥0,𝑞𝑛,1≥0

𝑄1

[

𝐴1 −
𝑁
2
𝐵𝑞𝑛,1 − 𝐶 − 𝐷

2
𝑞𝑛,1

]

𝑞𝑛,1

+𝑅2

[

𝐴2 −
𝑁
2
𝐵𝑘𝑛 − 𝐶 − 𝐷

2
𝑘𝑛
]

𝑘𝑛 − 𝐼𝑘𝑛 (21)

Again, 𝑞𝑃𝐶𝑛,1 is the same as in (12), while 𝑘𝑃𝐶𝑛 becomes:

𝑘𝑃𝐶𝑛 =
𝐴2 − 𝐶 − 𝐼

𝑅2

𝑁𝐵 +𝐷
(22)

High risk aversion (𝑅2 < 𝑅) The monotonic decrease in 𝑘𝑃𝐶𝑛 with
𝑅2 again may cause the capacity constraint to bind in both states,
thereby leading to the following special case of problem (21):

max
𝑘𝑛≥0

𝑄1

[

𝐴1 −
𝑁
2
𝐵𝑘𝑛 − 𝐶 − 𝐷

2
𝑘𝑛
]

𝑘𝑛

+𝑅2

[

𝐴2 −
𝑁
2
𝐵𝑘𝑛 − 𝐶 − 𝐷

2
𝑘𝑛
]

𝑘𝑛 − 𝐼𝑘𝑛 (23)

Thus, we have 𝑞𝑃𝐶𝑛,1 = 𝑞𝑃𝐶𝑛,2 = 𝑘𝑃𝐶𝑛 , where:

𝑘𝑃𝐶𝑛 =

(

𝑄1
𝑄1+𝑅2

)

𝐴1 +
(

𝑅2
𝑄1+𝑅2

)

𝐴2 − 𝐶 − 𝐼
𝑄1+𝑅2

𝑁𝐵 +𝐷
(24)

.3.3. Monopoly
Low risk aversion (𝑅2 ≥ 𝑅) The setup of the problem follows
from that in (14):

max
𝑘̂≥0,𝑞1≥0

𝑄1

[

𝐴1 − 𝐵𝑞1 − 𝐶̂ − 𝐷̂
2
𝑞1

]

𝑞1 +𝑅2

[

𝐴2 − 𝐵𝑘̂ − 𝐶̂ − 𝐷̂
2
𝑘̂
]

𝑘̂− 𝐼𝑘̂

(25)

Independent of the probability measure, 𝑞𝑀𝑂
1 is the same as in (15).

However, 𝑘̂𝑀𝑂 becomes:

𝑘̂𝑀𝑂 =
𝐴2 − 𝐶̂ − 𝐼

𝑅2 (26)

2𝐵 + 𝐷̂

4

High risk aversion (𝑅2 < 𝑅) As before, 𝑘̂𝑀𝑂 decreases monotoni-
cally as 𝑅2 decreases, and the capacity constraint may bind in both
states. This leads to a special case of problem (25):

max
𝑘̂≥0

𝑄1

[

𝐴1 − 𝐵𝑘̂ − 𝐶̂ − 𝐷̂
2
𝑘̂
]

𝑘̂ + 𝑅2

[

𝐴2 − 𝐵𝑘̂ − 𝐶̂ − 𝐷̂
2
𝑘̂
]

𝑘̂ − 𝐼𝑘̂ (27)

Consequently, 𝑞𝑀𝑂
1 = 𝑞𝑀𝑂

2 = 𝑘̂𝑀𝑂, where:

𝑘̂𝑀𝑂 =

(

𝑄1
𝑄1+𝑅2

)

𝐴1 +
(

𝑅2
𝑄1+𝑅2

)

𝐴2 − 𝐶̂ − 𝐼
𝑄1+𝑅2

2𝐵 + 𝐷̂
(28)

3. Comparative statics

Here, we present our main results in the form of five propositions
for which the proofs are given in the Appendix. The risk-adjusted
probability, 𝑅, corresponds to the threshold at which (18) is greater
than (20).

Proposition 1. The critical threshold is 𝑅 = 𝐼
𝐴2−𝐴1

≥ 0.

In effect, 𝑅2 < 𝑅 defines a ‘‘high’’ level of risk aversion in which the
capacity constraint binds in both scenarios.

Next, a more risk-averse firm reduces optimal capacity investment,
which is intuitive.

Proposition 2. Optimal capacity investment decreases with risk aversion,
i.e., 𝜕𝑘𝐶𝑂

𝑛
𝜕𝑅2

> 0, 𝜕𝑘𝑃𝐶𝑛
𝜕𝑅2

> 0, and 𝜕𝑘̂𝑀𝑂

𝜕𝑅2
> 0.

Interestingly, in an extremely risk-averse outcome where 𝑅2 = 0,
capacity investment is determined just by the scenario-1 probability:

Proposition 3. The minimum installed capacity per firm is
𝐴1−𝐶− 𝐼

𝑄1
(𝑁+1)𝐵+𝐷

and
𝐴1−𝐶− 𝐼

𝑄1
𝑁𝐵+𝐷 under Cournot oligopoly and perfect competition, respec-

tively. Meanwhile, the minimum installed capacity for the entire industry

is
𝐴1−𝐶̂− 𝐼

𝑄1
2𝐵+𝐷̂

under monopoly.

It may be verified that the capacities in (18) and (20) for Cournot
oligopoly (or (22) and (24) for perfect competition or (26) and (28) for
monopoly) converge as 𝑅2 → 𝑅:

Proposition 4. The installed capacity per firm when 𝑅2 = 𝑅 is 𝐴1−𝐶
(𝑁+1)𝐵+𝐷

and 𝐴1−𝐶
𝑁𝐵+𝐷 for Cournot oligopoly and perfect competition, respectively. The

nstalled capacity for the entire industry when 𝑅2 = 𝑅 is 𝐴1−𝐶̂
2𝐵+𝐷̂

under
monopoly.

We next investigate how it may be possible for greater risk aver-
sion to increase the expected profit per firm. As before, there are two
possibilities.

Low risk aversion (𝑅2 ≥ 𝑅) Let the maximized objective function
value of an oligopolistic firm be denoted by 𝐹𝐶𝑂

𝑛 (𝑅2), which is
obtained by inserting the optimal solutions, (7) and (18), into (17):

𝐹 𝐶𝑂
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −
(𝑁 + 1)

2
𝐵𝑞𝐶𝑂

𝑛,1 − 𝐶 − 𝐷
2
𝑞𝐶𝑂
𝑛,1

]

𝑞𝐶𝑂
𝑛,1

+𝑅2

[

𝐴2 −
(𝑁 + 1)

2
𝐵𝑘𝐶𝑂

𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2)

− 𝐼𝑘𝐶𝑂
𝑛 (𝑅2) (29)

Note that we explicitly indicate the dependence of the optimal
capacity on the risk-aversion parameter, 𝑅2. Next, we apply the
envelope theorem [51] to determine 𝜕𝐹𝐶𝑂

𝑛
𝜕𝑅2

:

𝜕𝐹𝐶𝑂
𝑛

𝜕𝑅2
=
[

𝐴2 −
(𝑁 + 1)

2
𝐵𝑘𝐶𝑂

𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2) (30)

It should be emphasized that 𝐹𝐶𝑂
𝑛 (𝑅2) is not the expected profit

of an oligopolistic firm, which is 𝑉 𝐶𝑂(𝑅 ). In fact, the connection
𝑛 2
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between the expected profit per firm, 𝑉 𝐶𝑂
𝑛 (𝑅2), and the maximized

objective function value of the firm under risk aversion, 𝐹𝐶𝑂(𝑅2),
is established by inserting the optimal solutions, (7) and (18), into
(1) with 𝑀 = 2 and a binding capacity constraint only in scenario
2:

𝑉 𝐶𝑂
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −𝑁𝐵𝑞𝐶𝑂
𝑛,1 − 𝐶 − 𝐷

2
𝑞𝐶𝑂
𝑛,1

]

𝑞𝐶𝑂
𝑛,1

+𝑄2

[

𝐴2 −𝑁𝐵𝑘𝐶𝑂
𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2)

−𝐼𝑘𝐶𝑂
𝑛 (𝑅2) (31a)

⇒ 𝑉 𝐶𝑂
𝑛 (𝑅2) = 𝐹𝐶𝑂

𝑛 (𝑅2) −𝑄1
(𝑁 − 1)

2
𝐵
(

𝑞𝐶𝑂
𝑛,1

)2

+
(

𝑄2 − 𝑅2
)

(

𝐴2 − 𝐶 − 𝐷
2
𝑘𝐶𝑂
𝑛 (𝑅2)

)

𝑘𝐶𝑂
𝑛 (𝑅2)

−
(

𝑄2𝑁 − 𝑅2
(𝑁 + 1)

2

)

𝐵𝑘𝐶𝑂
𝑛 (𝑅2)2 (31b)

⇒
𝜕𝑉 𝐶𝑂

𝑛
𝜕𝑅2

=
{(

𝑄2 − 𝑅2
) (

𝐴2 − 𝐶 −𝐷𝑘𝐶𝑂
𝑛 (𝑅2)

)

−𝐵
[

2𝑁𝑄2 − (𝑁 + 1)𝑅2
]

𝑘𝐶𝑂
𝑛 (𝑅2)

} 𝜕𝑘𝐶𝑂
𝑛

𝜕𝑅2
(31c)

Following similar steps for a perfectly competitive firm and a mo-
nopolistic industry, we insert (12) and (22) into (21) to obtain
𝐹 𝑃𝐶
𝑛 (𝑅2) and (15) and (26) into (25) to obtain 𝐹𝑀𝑂(𝑅2):

𝐹 𝑃𝐶
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −
𝑁
2
𝐵𝑞𝑃𝐶𝑛,1 − 𝐶 − 𝐷

2
𝑞𝑃𝐶𝑛,1

]

𝑞𝑃𝐶𝑛,1

+𝑅2

[

𝐴2 −
𝑁
2
𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝑃𝐶𝑛 (𝑅2)

]

𝑘𝑃𝐶𝑛 (𝑅2) − 𝐼𝑘𝑃𝐶𝑛 (𝑅2) (32)

𝐹𝑀𝑂(𝑅2) = 𝑄1

[

𝐴1 − 𝐵𝑞𝑀𝑂
1 − 𝐶̂ − 𝐷̂

2
𝑞𝑀𝑂
1

]

𝑞𝑀𝑂
1

+𝑅2

[

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2) − 𝐼𝑘̂𝑀𝑂(𝑅2) (33)

Application of the envelope theorem to (32) and (33) yields:

𝜕𝐹 𝑃𝐶
𝑛

𝜕𝑅2
=
[

𝐴2 −
𝑁
2
𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝑃𝐶𝑛 (𝑅2)

]

𝑘𝑃𝐶𝑛 (𝑅2) (34)

𝜕𝐹𝑀𝑂

𝜕𝑅2
=
[

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2) (35)

The connection between the maximized objective function value
under risk aversion and the expected profit for PC is derived by
inserting the optimal solutions, (12) and (22), into (1) with 𝑀 = 2
and a binding capacity constraint only in scenario 2:

𝑉 𝑃𝐶
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −𝑁𝐵𝑞𝑃𝐶𝑛,1 − 𝐶 − 𝐷
2
𝑞𝑃𝐶𝑛,1

]

𝑞𝑃𝐶𝑛,1

+𝑄2

[

𝐴2 −𝑁𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝑃𝐶𝑛 (𝑅2)

]

× 𝑘𝑃𝐶𝑛 (𝑅2) − 𝐼𝑘𝑃𝐶𝑛 (𝑅2) (36a)

⇒ 𝑉 𝑃𝐶
𝑛 (𝑅2) = 𝐹 𝑃𝐶

𝑛 (𝑅2) −𝑄1
𝑁
2
𝐵
(

𝑞𝑃𝐶𝑛,1

)2

+
(

𝑄2 − 𝑅2
)

(

𝐴2 − 𝐶 − 𝐷
2
𝑘𝑃𝐶𝑛 (𝑅2)

)

𝑘𝑃𝐶𝑛 (𝑅2)

−
(

𝑄2𝑁 − 𝑅2
𝑁
2

)

𝐵𝑘𝑃𝐶𝑛 (𝑅2)2 (36b)

⇒
𝜕𝑉 𝑃𝐶

𝑛
𝜕𝑅2

=
𝜕𝑘𝑃𝐶𝑛
𝜕𝑅2

{(

𝑄2 − 𝑅2
) (

𝐴2 − 𝐶 −𝐷𝑘𝑃𝐶𝑛 (𝑅2)
)

−
[

2𝑄2 − 𝑅2
]

𝐵𝑁𝑘𝑃𝐶𝑛 (𝑅2)
}

(36c)

Likewise, for MO, the expected profit is defined by inserting the
optimal solutions, (15) and (26), into (14):

𝑉 𝑀𝑂(𝑅2) = 𝑄1

[

𝐴1 − 𝐵𝑞𝑀𝑂
1 − 𝐶̂ − 𝐷̂

2
𝑞𝑀𝑂
1

]

𝑞𝑀𝑂
1

+𝑄2

[

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2)

−𝐼𝑘̂𝑀𝑂(𝑅2) (37a)
⇒ 𝑉 𝑀𝑂(𝑅 ) = 𝐹𝑀𝑂(𝑅 )
2 2

5

+
(

𝑄2 − 𝑅2
)

(

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

)

𝑘̂𝑀𝑂(𝑅2) (37b)

⇒
𝜕𝑉 𝑀𝑂

𝜕𝑅2
=

(

𝑄2 − 𝑅2
) (

𝐴2 − 2𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂𝑘̂𝑀𝑂(𝑅2)
) 𝜕𝑘̂𝑀𝑂

𝜕𝑅2
(37c)

High risk aversion (𝑅2 < 𝑅) In a similar vein, we insert the opti-
mal solution, (20), into (19):

𝐹 𝐶𝑂
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −
(𝑁 + 1)

2
𝐵𝑘𝐶𝑂

𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2)

+𝑅2

[

𝐴2 −
(𝑁 + 1)

2
𝐵𝑘𝐶𝑂

𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2)

− 𝐼𝑘𝐶𝑂
𝑛 (𝑅2) (38)

Application of the envelope theorem yields:

𝜕𝐹𝐶𝑂
𝑛

𝜕𝑅2
=
[

𝐴2 −
(𝑁 + 1)

2
𝐵𝑘𝐶𝑂

𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2) (39)

Again, exploiting the relationship between the expected profit and
the maximized objective function value under risk aversion, we use
(20) in (1) with 𝑀 = 2 and a binding capacity constraint in both
scenarios to yield:

𝑉 𝐶𝑂
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −𝑁𝐵𝑘𝐶𝑂
𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2)

+𝑄2

[

𝐴2 −𝑁𝐵𝑘𝐶𝑂
𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝐶𝑂
𝑛 (𝑅2)

]

𝑘𝐶𝑂
𝑛 (𝑅2)

−𝐼𝑘𝐶𝑂
𝑛 (𝑅2) (40a)

⇒ 𝑉 𝐶𝑂
𝑛 (𝑅2) = 𝐹 𝐶𝑂

𝑛 (𝑅2) −𝑄1
(𝑁 − 1)

2
𝐵𝑘𝐶𝑂

𝑛 (𝑅2)2

+
(

𝑄2 − 𝑅2
)

(

𝐴2 − 𝐶 − 𝐷
2
𝑘𝐶𝑂
𝑛 (𝑅2)

)

𝑘𝐶𝑂
𝑛 (𝑅2)

−
(

𝑄2𝑁 − 𝑅2
(𝑁 + 1)

2

)

𝐵𝑘𝐶𝑂
𝑛 (𝑅2)2 (40b)

⇒
𝜕𝑉 𝐶𝑂

𝑛

𝜕𝑅2
=

𝜕𝑘𝐶𝑂
𝑛

𝜕𝑅2

{(

𝑄2 − 𝑅2
) (

𝐴2 − 𝐶 −𝐷𝑘𝐶𝑂
𝑛 (𝑅2)

)

−𝐵
[

𝑄1(𝑁 − 1) + 2𝑁𝑄2 − (𝑁 + 1)𝑅2
]

𝑘𝐶𝑂
𝑛 (𝑅2)

}

(40c)

Similarly, for a perfectly competitive firm and monopolistic indus-
try, we insert (24) into (23) and (28) into (27), respectively, to
obtain analogous maximized objective function values under risk
aversion:

𝐹 𝑃𝐶
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −
𝑁
2
𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝑃𝐶𝑛 (𝑅2)

]

𝑘𝑃𝐶𝑛 (𝑅2)

+𝑅2

[

𝐴2 −
𝑁
2
𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝑃𝐶𝑛 (𝑅2)

]

𝑘𝑃𝐶𝑛 (𝑅2) − 𝐼𝑘𝑃𝐶𝑛 (𝑅2) (41)

𝐹𝑀𝑂(𝑅2) = 𝑄1

[

𝐴1 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2)

+𝑅2

[

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2) − 𝐼𝑘̂𝑀𝑂(𝑅2) (42)

Application of the envelope theorem to (41) and (42) leads to the
following:

𝜕𝐹 𝑃𝐶
𝑛

𝜕𝑅2
=
[

𝐴2 −
𝑁
2
𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷

2
𝑘𝑃𝐶𝑛 (𝑅2)

]

𝑘𝑃𝐶𝑛 (𝑅2) (43)

𝜕𝐹𝑀𝑂

𝜕𝑅2
=
[

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2) (44)

Subsequently, the expected profit for a PC firm may be derived by
utilizing (24) in (1) with 𝑀 = 2 and a binding capacity constraint
in both scenarios:

𝑉 𝑃𝐶
𝑛 (𝑅2) = 𝑄1

[

𝐴1 −𝑁𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝑃𝐶𝑛 (𝑅2)

]

𝑘𝑃𝐶𝑛 (𝑅2)

+𝑄2

[

𝐴2 −𝑁𝐵𝑘𝑃𝐶𝑛 (𝑅2) − 𝐶 − 𝐷
2
𝑘𝑃𝐶𝑛 (𝑅2)

]

𝑘𝑃𝐶𝑛 (𝑅2)

−𝐼𝑘𝑃𝐶𝑛 (𝑅2) (45a)

⇒ 𝑉 𝑃𝐶
𝑛 (𝑅2) = 𝐹 𝑃𝐶

𝑛 (𝑅2) −𝑄1
𝑁
2
𝐵𝑘𝑃𝐶𝑛 (𝑅2)2

+
(

𝑄 − 𝑅
)

(

𝐴 − 𝐶 − 𝐷𝑘𝑃𝐶 (𝑅 )
)

𝑘𝑃𝐶 (𝑅 )
2 2 2 2 𝑛 2 𝑛 2
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Fig. 1. Capacity and production per scenario per firm with respect to risk aversion, 𝑅2.
𝑄
𝐶

−
(

𝑄2𝑁 − 𝑅2
𝑁
2

)

𝐵𝑘𝑃𝐶𝑛 (𝑅2)2 (45b)

⇒
𝜕𝑉 𝑃𝐶

𝑛
𝜕𝑅2

=
{(

𝑄2 − 𝑅2
) (

𝐴2 − 𝐶 −𝐷𝑘𝑃𝐶𝑛 (𝑅2)
)

−
[

𝑄1 + 2𝑄2 − 𝑅2
]

𝑁𝐵𝑘𝑃𝐶𝑛 (𝑅2)
} 𝜕𝑘𝑃𝐶𝑛

𝜕𝑅2
(45c)

Applying the same principle, the expected profit for a monopoly
results from inserting the optimal solution (28) into (14) with 𝑞𝑀𝑂

1 =
𝑘̂𝑀𝑂(𝑅2):

𝑉 𝑀𝑂(𝑅2) = 𝑄1

[

𝐴1 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2)

+𝑄2

[

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

]

𝑘̂𝑀𝑂(𝑅2)

−𝐼𝑘̂𝑀𝑂(𝑅2) (46a)
⇒ 𝑉 𝑀𝑂(𝑅2) = 𝐹𝑀𝑂(𝑅2)

+
(

𝑄2 − 𝑅2
)

(

𝐴2 − 𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂
2
𝑘̂𝑀𝑂(𝑅2)

)

𝑘̂𝑀𝑂(𝑅2) (46b)

⇒
𝜕𝑉 𝑀𝑂

𝜕𝑅2
= 𝜕𝑘̂𝑀𝑂

𝜕𝑅2

(

𝑄2 − 𝑅2
) (

𝐴2 − 2𝐵𝑘̂𝑀𝑂(𝑅2) − 𝐶̂ − 𝐷̂𝑘̂𝑀𝑂(𝑅2)
) (46c)

It can now be proven that it is possible for an oligopolistic firm to
ncrease its expected profit while becoming more risk averse. Further-
ore, this seemingly counterintuitive result also holds for a perfectly

ompetitive firm. However, a monopolist’s expected profit decreases
onotonically as risk aversion increases.

roposition 5. The expected profit of an oligopolistic or a perfectly com-
etitive firm increases with risk aversion when 𝑅2 = 𝑄2, i.e.,

𝜕𝑉 𝐶𝑂
𝑛

𝜕𝑅2

|

|

|

|𝑅2=𝑄2

<

0 or 𝜕𝑉 𝑃𝐶
𝑛

𝜕𝑅2

|

|

|

|𝑅2=𝑄2

< 0. The expected profit of a monopolist monotonically

ecreases with risk aversion, i.e., 𝜕𝑉𝑀𝑂

𝜕𝑅2
> 0.

Note that in order to prove that the expected profit of an oligopolistic
firm does not monotonically decrease as risk aversion increases, it
suffices to evaluate its gradient with respect to 𝑅2 at some point 0 ≤
𝑅2 ≤ 𝑄2 and to verify that it is negative. Thus, we choose 𝑅2 = 𝑄2 and
onfirm that as the oligopolistic firm becomes infinitesimally more risk
verse from a position of risk neutrality, its expected profit increases.
6

4. Numerical examples

The parameter values used for the examples are: 𝑁 = 2, 𝑀 = 2,
1 = 0.5, 𝑄2 = 0.5, 𝐴1 = 10, 𝐴2 = 20, 𝐵 = 1, 𝐼 = 2, 𝐶 = 1,
̂ = 1, 𝐷 = 0.5, 𝐷̂ = 0.25, 0 ≤ 𝑅2 ≤ 0.5. In the figures, MO capacity,

production, and profit values are divided by two to facilitate com-
parison. Vertical axes are truncated accordingly to focus on the main
insights. Note that from Proposition 1, we have 𝑅 = 0.2, which explains
the kinks in Figs. 1–3. This phenomenon is precisely an illustration of
Proposition 1’s main result: a high level of risk aversion, i.e., low 𝑅2,
leads to such an extensive restriction in investment that the capacity
constraint binds in both scenarios. By contrast, a relatively high value
of 𝑅2, i.e., low risk aversion, results in expanded capacity investment.
However, this additional capacity will be utilized fully only in the high-
demand scenario since a lower production level maximizes profit in the
low-demand scenario, which causes the production levels in the two
scenarios to diverge. The critical threshold of 𝑅2, i.e., 𝑅, depends on
the capacity-investment cost and consumers’ relative willingness to pay
in the different scenarios.

Fig. 1 illustrates the monotonicity of optimal investment with re-
spect to risk aversion as proven in Proposition 2. Meanwhile, the min-
imum installed capacity per firm from the same figure is also evident
as 1.43, 2.00, and 1.11 under Cournot oligopoly, perfect competition,
and monopoly, respectively, cf. Proposition 3. Moreover, Proposition 4
is also illustrated by Fig. 1 as the optimal investment per firm un-
der Cournot oligopoly, perfect competition, and monopoly at 𝑅2 =
𝑅 is 2.57, 3.60, and 2.00, respectively. Intriguingly, although the
installed capacity decreases monotonically and equilibrium prices in-
crease monotonically with risk aversion, cf. Figs. 1 and 2, the expected
profit, 𝑉 𝐶𝑂

𝑛 (𝑅2) and 𝑉 𝑃𝐶
𝑛 (𝑅2), may increase under Cournot oligopoly

and perfect competition, respectively, but monotonically decreases with
risk aversion for a monopoly (see Fig. 3), which is our main result and
proven rigorously in Proposition 5.

The expected profit in Fig. 3 (likewise the prices in Fig. 2) is an
output as a result of making the optimal decisions in Fig. 1. The purpose
of these illustrations is not only to demonstrate that the conventional
wisdom about the monotonic tradeoff between expected profit and
CVaR in stochastic programming may not hold in an equilibrium frame-
work but also to provide a rigorous proof for why and how it may arise.
Toward this end, consider Figure 5.16 from [1] (reproduced here as
Fig. 4) that is a standard result in stochastic programming when prices
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Fig. 2. Prices per scenario with respect to risk aversion, 𝑅2.
Fig. 3. Expected profit per firm with respect to risk aversion, 𝑅2.
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re taken as exogenous. This efficient frontier is obtained precisely
y solving the deterministic equivalent of a stochastic programming
roblem for different values of 𝛽, i.e., the risk-aversion parameter.
n particular, when 𝛽 = 0, the agent maximizes expected profit, but
hen 𝛽 = 1, it maximizes CVaR. Therefore, it is standard to obtain
ptimal decisions for different levels of risk aversion and subsequently
o compare metrics of interest, viz., expected profit and CVaR. Our
pproach is no different and is fully aligned with that of the literature.

. Conclusions

Via a Nash–Cournot framework, we provide a rigorous proof for
hy risk aversion may increase expected profit in capacity-investment
quilibria under uncertainty. In particular, oligopolistic and perfectly
 c

7

ompetitive firms underestimate the impact of their own decisions on
rice. Thus, they reduce installed capacity ‘‘too much’’ considering their
ctual level of risk aversion.

Given the deregulation of industries such as energy and telecom-
unications, firms increasingly make decisions under imperfect com-
etition and uncertainty. In such potential oligopolies, where barriers
o entry exist due to high capital intensities, the conventional wisdom
bout a monotonic tradeoff between the expected profit and the CVaR
s likely to be affected, thereby complicating investment planning.
ndeed, this has been demonstrated in more detailed analyses of the
nergy sector [41,42]. Consequently, policymakers should anticipate
uch effects when designing markets and crafting policy. In effect,
olicy has conventionally been informed by the view that more un-
ertainty will curb investment by producers as well as their expected
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Fig. 4. Efficient frontier from stochastic programming [1].
rofit. In order to mitigate the undesirable consequences of reduced
nvestment, policymakers could incentivize greater capacity adoption,
.g., via subsidies. However, the effectiveness of those subsidies would
e assessed under the assumption of a single welfare-maximizing entity
hat fully accounts for the impact of its decisions on prices, which does
ot hold in a decentralized industry, cf. Proposition 2. Hence, welfare-
nhancing subsidies would have to be tuned to the level of risk-averse
gents’ responses in PC and CO settings.

Future work may build upon our framework to assess how risk
version in bi-level problems would affect closed-loop investment de-
isions [46] in a dynamic framework [52] and policy measures [53].
onsidering multi-stage investment problems and games, it would be

nteresting to analyze interactions with time consistency [28] and
ubgame perfect equilibria [54].
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ppendix. Proofs of propositions

roof of Proposition 1. Equate (18) and (20) with 𝑅2 = 𝑅 and solve
or 𝑅. □

roof of Proposition 2. There are two possibilities depending on the
alue of 𝑅 :
2

8

Low risk aversion (𝑅2 ≥ 𝑅) Partially differentiate (18), (22), and
(26) with respect to 𝑅2 to yield

𝐼𝑅−2
2

(𝑁+1)𝐵+𝐷 > 0,
𝐼𝑅−2

2
𝑁𝐵+𝐷 > 0, and

𝐼𝑅−2
2

2𝐵+𝐷̂
> 0, respectively.

High risk aversion (𝑅2 < 𝑅) Partially differentiate (20), (24), and
(28) with respect to 𝑅2 to yield 𝐼+𝑄1(𝐴2−𝐴1)

[(𝑁+1)𝐵+𝐷](𝑄1+𝑅2)2
> 0,

𝐼+𝑄1(𝐴2−𝐴1)
(𝑁𝐵+𝐷)(𝑄1+𝑅2)2

> 0, and 𝐼+𝑄1(𝐴2−𝐴1)
(

2𝐵+𝐷̂
)

(𝑄1+𝑅2)2
> 0, respectively. □

Proof of Proposition 3. Taking lim𝑅2→0 𝑘𝐶𝑂
𝑛 in (20), lim𝑅2→0 𝑘𝑃𝐶𝑛 in

(24), and lim𝑅2→0 𝑘̂𝑀𝑂 in (28) yields the result. □

Proof of Proposition 4. There are two possibilities depending on the
value of 𝑅2:

Low risk aversion (𝑅2 ≥ 𝑅) Use (18) in lim𝑅2→𝑅 𝑘𝐶𝑂
𝑛 to obtain

𝐴2−𝐶− 𝐼
𝐼

𝐴2−𝐴1
(𝑁+1)𝐵+𝐷 , (22) in lim𝑅2→𝑅 𝑘𝑃𝐶𝑛 to obtain

𝐴2−𝐶− 𝐼
𝐼

𝐴2−𝐴1
𝑁𝐵+𝐷 , and (26) in

lim𝑅2→𝑅 𝑘̂𝑀𝑂 to obtain
𝐴2−𝐶̂− 𝐼

𝐼
𝐴2−𝐴1

2𝐵+𝐷̂
, which yields 𝐴1−𝐶

(𝑁+1)𝐵+𝐷 , 𝐴1−𝐶
𝑁𝐵+𝐷 ,

and 𝐴1−𝐶̂
2𝐵+𝐷̂

, respectively.

High risk aversion (𝑅2 < 𝑅) Use (20) in lim𝑅2→𝑅 𝑘𝐶𝑂
𝑛 to obtain

𝑄1𝐴1(𝐴2−𝐴1)+𝐼𝐴2−𝐼(𝐴2−𝐴1)
(𝐴2−𝐴1)𝑄1+𝐼

−𝐶

(𝑁+1)𝐵+𝐷 , (24) in lim𝑅2→𝑅 𝑘𝑃𝐶𝑛 to obtain
𝑄1𝐴1(𝐴2−𝐴1)+𝐼𝐴2−𝐼(𝐴2−𝐴1)

(𝐴2−𝐴1)𝑄1+𝐼
−𝐶

𝑁𝐵+𝐷 , and (28) in lim𝑅2→𝑅 𝑘̂𝑀𝑂 to obtain
𝑄1𝐴1(𝐴2−𝐴1)+𝐼𝐴2−𝐼(𝐴2−𝐴1)

(𝐴2−𝐴1)𝑄1+𝐼
−𝐶̂

2𝐵+𝐷̂
, which yields 𝐴1−𝐶

(𝑁+1)𝐵+𝐷 , 𝐴1−𝐶
𝑁𝐵+𝐷 , and 𝐴1−𝐶

2𝐵+𝐷̂
,

respectively. □

Proof of Proposition 5. Evaluate (31c) at 𝑅2 = 𝑄2 using (18):

𝜕𝑉 𝐶𝑂
𝑛

𝜕𝑅2

|

|

|

|

|𝑅2=𝑄2

= −𝐵
[

2𝑁𝑄2 − (𝑁 + 1)𝑄2
]

𝑘𝐶𝑂
𝑛 (𝑄2)

𝜕𝑘𝐶𝑂
𝑛

𝜕𝑅2

|

|

|

|

|𝑅2=𝑄2

= −𝐵 (𝑁 − 1)𝑄2

(

𝐼𝑄−2
2

(𝑁 + 1)𝐵 +𝐷

)

⎛

⎜

⎜

𝐴2 − 𝐶 − 𝐼
𝑄2

(𝑁 + 1)𝐵 +𝐷

⎞

⎟

⎟

< 0

⎝ ⎠
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i

Evaluate (36c) at 𝑅2 = 𝑄2 using (22):

𝜕𝑉 𝑃𝐶
𝑛

𝜕𝑅2

|

|

|

|

|𝑅2=𝑄2

= −𝑄2𝐵𝑁𝑘𝑃𝐶𝑛 (𝑄2)
𝜕𝑘𝑃𝐶𝑛
𝜕𝑅2

|

|

|

|

|𝑅2=𝑄2

= −𝑄2𝐵𝑁

(

𝐼𝑄−2
2

𝑁𝐵 +𝐷

)

⎛

⎜

⎜

⎝

𝐴2 − 𝐶 − 𝐼
𝑄2

𝑁𝐵 +𝐷

⎞

⎟

⎟

⎠

< 0

For the monopolist, there are two possibilities depending on the level
of risk aversion, 𝑅2, and its relation to the critical threshold, 𝑅, as given
n Proposition 1.

Low risk aversion (𝑅2 ≥ 𝑅) Evaluate (37c) using (26):

𝜕𝑉 𝑀𝑂

𝜕𝑅2
=

(

𝑄2 − 𝑅2
)

⎡

⎢

⎢

⎢

⎣

𝐴2 − 𝐶̂ −
(

2𝐵 + 𝐷̂
)

(

𝐴2 − 𝐶̂ − 𝐼
𝑅2

)

2𝐵 + 𝐷̂

⎤

⎥

⎥

⎥

⎦

𝜕𝑘̂𝑀𝑂

𝜕𝑅2

=
(

𝑄2 − 𝑅2
)

(

𝐼
𝑅2

)

(

𝐼𝑅−2
2

2𝐵 + 𝐷̂

)

> 0

High risk aversion (𝑅2 < 𝑅) Evaluate (46c) using (28):

𝜕𝑉 𝑀𝑂

𝜕𝑅2
=

(

𝑄2 − 𝑅2
)

[

𝐴2 − 𝐶̂ −
(

2𝐵 + 𝐷̂
)

(

𝐴1𝑄1 + 𝐴2𝑅2 − 𝐼 − 𝐶̂
(

𝑄1 + 𝑅2
))

(

2𝐵 + 𝐷̂
) (

𝑄1 + 𝑅2
)

]

𝜕𝑘̂𝑀𝑂

𝜕𝑅2

=
(

𝑄2 − 𝑅2
)

(
(

𝐴2 − 𝐴1
)

𝑄1 + 𝐼
𝑄1 + 𝑅2

)(
(

𝐴2 − 𝐴1
)

𝑄1 + 𝐼
(

2𝐵 + 𝐷̂
) (

𝑄1 + 𝑅2
)2

)

> 0 □
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