
Proceedings of the ASME 2023 42nd International
Conference on Ocean, Offshore and Arctic Engineering

OMAE2023
June 11-16, 2023, Melbourne, Australia

OMAE2023-101930

GRADIENT-BASED DESIGN OPTIMIZATION OF FULLY-FLEXIBLE FLOATING WIND TURBINES USING MODAL
ANALYSIS

Peter J. Rohrer1,∗, Erin E. Bachynski-Polić1, John Marius Hegseth2,

1Norwegian University of Science and Technology, Trondheim, Norway
2Dr.Techn. Olav Olsen, Lysaker, Norway

ABSTRACT
A variety of substructure concepts for floating offshore wind

have been developed. Design optimization can be used to effi-
ciently explore this design space and guide further work. Pre-
vious design optimization studies have been limited by model
simplifications, including the assumption of rigid body motions,
lack of substructure flexibility, and a focus on a single floating
foundation concept. High computational costs of gradient-free
optimization methods have limited the number of design variables
considered. In this work, gradient-based optimization methods
and a frequency-domain modal analysis model based on three-
dimensional modeshapes make it possible to consider a more de-
tailed structural model with reasonable computational cost. This
work implements a linearized aero-hydro-servo-elastic model of
a tension-leg platform wind turbine. The optimization varies siz-
ing parameters and the model computes responses to wind and
wave forcing in multiple environmental conditions. The model
computes forcing and response in generic modes rather than as-
suming rigid body motions. Implementation of the model with
analytical gradients in OpenMDAO allows for efficient optimiza-
tion with dozens of design variables. The optimization results
show reduction of the objective while satisfying constraints. Fur-
thermore, there is potential for this approach to be adapted to
other floating wind turbine substructure designs.

Keywords: design optimization, floating wind turbine,
tension-leg platform, OpenMDAO

1. INTRODUCTION
To meet growing demand and support increasingly large

wind turbine designs, a variety of floating foundation concepts
for offshore wind have been developed. Nonetheless there is still
limited real-world experience with these concepts, and much of
the design space remains unexplored. Multidisciplinary design
optimization can efficiently explore the design space and inform
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further design work. Previous floating wind turbine design op-
timization studies have been limited by model simplifications or
the use of gradient-free optimization approaches. Typical model
simplifications have included the assumption of rigid body mo-
tions, the use of a small number of design variables, and a focus
on a single floating foundation concept. These limitations have
made it difficult to consider large flexible structures and detailed
geometries. The high computational costs of gradient-free op-
timization algorithms have made it impractical to include con-
straints based on fatigue and extreme responses, or a sufficient
number of design variables to account for structural design.

Structural flexibility (or elasticity) is often a concern for
efficiently-designed large structures. Although structural defor-
mations may be small, elasticity often leads to larger local stresses
as well as the potential for resonant flexible responses. For large
floating structures, the interaction of structural deformations and
hydrodynamic loading, hydroelasticity, may be of interest. Borg
et al. [1] found that including substructure flexibility was impor-
tant for understanding sectional loads on a spar-buoy floating wind
turbine, despite limited impact on global motions. Pegalajar-
Jurado et al. [2] studied a ‘semi-flexible’ semi-submersible design
which included a rigid body below the still waterline and flexible
tower beginning at the still waterline, and found coupled bend-
ing frequencies were similar but not identical to a fully-flexible
model. In the definition of a 10MW reference semi-submersible
floating wind turbine, Müller et al. [3] found that the inclusion of
substructure flexibility caused a 25% decrease in the first tower
bending frequency. Silva de Souza and Bachynski [4] considered
the effect of flexible pontoons for a tension-leg platform wind
turbine substructure, and found considering pontoon flexibility
was important for accurately predicting tower bending natural
frequencies. However, hydroelastic effects were negligible: the
deformations had limited effects on the hydrodynamic loading.
State-of-the-art methods for time-domain coupled analysis float-
ing wind turbines now often allow for the consideration of sub-
structure flexibility in relatively complex structures, such as in
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recent work by Thomsen et al. [5] analyzing the TetraSpar con-
cept. A broad review of offshore wind optimization by Chen
and Kim [6] found previous optimizations often include tower
or monopile flexibility, but few works had considered flexible
floating substructures.

A number of specific challenges related to offshore wind
turbine optimization are well outlined by Muskulus [7]. Some
challenges of interest for floating wind are: the large number of
environmental load cases that must be considered, and the signif-
icance of fatigue loads due to higher-order modes and local phe-
nomena. An early attempt at design optimization of floating wind
turbines by Fylling and Berthelsen [8] applied gradient-based op-
timization to a rigid spar-type floating wind turbine model with
moorings and power cables. Their model included up to six de-
sign variables to describe the substructure for a 5 MW turbine.
Their optimization was able to improve upon an unacceptable
initial design, but had difficulties with inaccuracies in the ap-
proximated (finite difference) gradients.

Leimeister et al. [9] developed a framework for wind turbine
optimization based on a generic coupled time-domain model and
performed gradient-free multiobjective optimization of the OC3
spar-buoy floating wind turbine with only three design variables
describing the substructure. Their objectives minimized plat-
form motions and restricted accelerations and inclination based
on a pre-selected design load condition that was deemed to be
the critical condition. Other gradient-free optimization studies
by Hall et al. [10] and Karimi et al. [11] considered a wider
range of floating wind turbine concepts, however optimizations
were generally limited to approximately ten design variables and
rigid structures due to the computational cost of evaluating so
many designs. Hegseth [12] developed a gradient-based design
optimization model of a spar-type floating wind turbine with
over 80 design variables using analytical gradients. Constraints
on manufacturability, extreme response, and fatigue damage us-
ing up to 30 fatigue environmental conditions were applied with
the objective of minimizing cost of the floating wind turbine and
variation in power output. Hegseth’s model considered combined
substructure and tower flexibility, but only included a single two-
dimensional bending mode and two rigid modes of response.
Furthermore, the hydrodynamic formulation developed was only
applicable to vertical cylinders.

This work builds on previous gradient-based optimization
models for floating wind turbines; and introduces methods that
can be applied to other large, flexible floating wind turbine struc-
tures. Gradient-based optimization methods using analytical
derivatives and modal analysis make it possible to efficiently
consider relatively detailed global structural models and multiple
environmental conditions with reasonable computational cost.
The analysis model developed consists of a finite element model
and eigenvalue analysis specific to tension-leg platforms, while
the methods for computing response based on three-dimensional
mode shapes can be broadly applied to other flexible floating
wind turbine designs.

2. MODEL DEVELOPMENT
The gradient-based optimization presented in this paper cen-

ters around a design model, TLPOpt. TLPOpt is a linearized

aero-hydro-servo-elastic model of a flexible tension-leg platform
floating wind turbine. The model can be roughly divided into
two sections: a finite element model based on beam elements
that interprets inputs and computes the coupled modeshapes of
the floating wind turbine; and computation of responses in the
frequency-domain based on modal analysis. Figure 1 shows the
excitation, mass, damping, and stiffness considered in TLPOpt,
excluding mass and stiffness in the finite element model. Turbine
thrust, moment, aerodynamic torque, generator torque, and aero-
dynamic damping act at the hub of the turbine, which has a mass
and inertia. Hydrodynamic excitation and viscous damping act
on the submerged hull. Hydrostatic stiffness is applied at the still
waterline, and tendon stiffness is applied at each tendon attach-
ment point. A schematic of the optimization model arrangement
is shown in Fig. 2. While only two environmental conditions are
shown in the figure, any number of conditions can be included
simultaneously in the model. The model has been developed for
optimization of tension-leg platform floating wind turbines, but is
adaptable to other floating wind turbine substructures with mod-
ifications to the ‘design’ portion of the model. The wind turbine
blades, hub, and nacelle are excluded from the optimization de-
sign space, and are modeled in a simplified manner. This allows
the use of pre-calculated coefficients to determine aerodynamic
forcing and damping. Additionally, while the model is capable of
considering a large number of design variables describing struc-
tural design, it is not well-suited for prediction of complex local
loading scenarios that would typically be considered in a detail-
design stage. Additional details on the development of TLPOpt
can be found in previous work by Rohrer et al. [13]

2.1 Equation of Motion
To enable efficient analysis and the use of gradient-based

optimization methods, TLPOpt computes responses in the
frequency-domain using transfer functions to relate responses
of interest to excitation. The equations of motion are developed
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FIGURE 1: EXCITATION, MASS, DAMPING, AND STIFFNESS IN
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FIGURE 2: FLOWCHART OF OPTIMIZATION MODEL SHOWING DESIGN AND RESPONSE SECTIONS

in the state-space so that the structure and control systems are in-
cluded simultaneously as a single closed loop system. To model
the flexible structure of the floating wind turbine, TLPOpt uses
modes of response from the eigenvalue analysis of the finite el-
ement model, described in Section 2.2. The total response is
represented by the first ten (lowest natural frequency) modes in
the present work. For many designs, the six rigid body modes
appear within the first ten modes. Modal mass (M𝚽), stiffness
(K𝚽), and structural damping matrices (B𝚽) are given in Eqs. (1)
to (3), based on the modal equations and reduction of order in
Cook [14], Chapter 11. The modal matrices are square matrices
of size 𝑚 where 𝑚 is the number of modes used to represent the
total response. The finite element model mass matrix (M) and
stiffness matrix (K) are square matrices of size 𝑛, where 𝑛 is the
number of degrees of freedom in the model. The reduced basis
eigenvector matrix 𝚽m is an 𝑛 by 𝑚 matrix. Mass normaliza-
tion of eigenvectors (following Eq. (1)) leads to diagonal modal
mass and stiffness matrices. By assuming modal damping and
neglecting radiation damping (as discussed in Section 2.3) the
damping matrix is also diagonal. The eigenvalue in each mode
is 𝜔2

𝑖
, corresponding to a natural frequency of 𝜔𝑖 . The modal

damping ratio applied in each mode is Z𝑖 .

M𝚽 = 𝚽m
𝑇M𝚽m = ⌈I⌋ (1)

K𝚽 = 𝚽m
𝑇K𝚽m = ⌈𝜔2

𝑖 ⌋ (2)

B𝚽 = 2Z⃗ ·
√︂
𝚽m

𝑇K𝚽m = ⌈2Z𝑖𝜔𝑖⌋ (3)

Further details on the combination of the structural and con-
trols model and the transfer function in the state-space are given
in Appendix A.

2.2 Finite Element Model
TLPOpt represents the tension-leg platform structure with

a three-dimensional finite element model. Figure 3 depicts the
model with three dimensional cross-sections and nodal locations
shown. A minimum of 40 elements are used for analysis, and the
number of elements can be modified outside of the optimization

loop. All elements in the tower, central column, and pontoons
are represented by Euler-Bernoulli beam elements. The tower
and column are represented by circular cross-section, hollow
beam elements; while the pontoons are represented by square
cross-section, hollow beam elements. Mass and stiffness (ge-
ometric and material) are defined in each element’s local axes,
and transformed to the global axes before assembly of the system
matrices. Rigid links (shown in blue in Fig. 3) are utilized to
connect the pontoon elements with the central column, and to
attach the rotor-nacelle assembly. The use of these rigid links
neglects local flexibility at these connections. Point masses are
added to represent ballast in the central column (if needed) and
the rotor-nacelle assembly. Point stiffnesses are applied to ac-
count for hydrostatic stiffness and the linear springs representing
the tendons. The bending stiffness of the tendons is neglected,
while the linear springs representing the tendons are a boundary
condition enforced on the model. Modal damping equal to 1%
of critical damping is applied to each mode to account for the
uncertain structural damping.

𝑥

𝑦

𝑧

Pontoon 3 Column

Pontoon 1Pontoon 2

Tower

RNA

FIGURE 3: FINITE ELEMENT MODEL IN TLPOPT
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2.3 Hydrodynamic Excitation and Damping
Hydrodynamic excitation is calculated using two linear wave

load approximations, applied in modal (or generalized) coordi-
nates following work by Newman [15]. Wave loading on the cen-
tral column is calculated using MacCamy-Fuchs’s theory [16],
which is based on an analytic solution of the diffraction problem
for a vertical circular cylinder. Wave loading on the pontoons is
based on the MOJS (Morison’s) equation [17], with both horizon-
tal and vertical wave particle kinematics considered and account-
ing for the orientation of pontoons. A Froude-Krylov forcing term
is included on the ends of all submerged members. Wave loading
is calculated at specified wave frequencies, which are bounded to
avoid very low frequencies and high frequencies where there is
little wave excitation, to assemble a total hydrodynamic excita-
tion transfer function. The modal excitation on the column and
pontoons are combined in complex-space: relative phasing is pre-
served, but hydrodynamic interactions between the column and
pontoons are neglected. Wave loading on the tendons is not con-
sidered, nor are mean wave loads or current-effects. Verification
of the wave load approximation is discussed in Section 3.

Viscous damping is approximated for both the main column
and pontoons using the widely-used Borgman form linearization
of the drag term in the MOJS equation [18]. Constant 2D drag
coefficients from DNV [19] are used. The linearization relies
on the standard deviation of structural velocity, creating a cyclic
dependence in the model that must be solved iteratively. Radiation
damping is neglected, as resonant frequencies are typically far
from frequencies where wave radiation is significant.

Added mass effects are considered for all submerged ele-
ments in three dimensions, using a strip theory approach and
constant added mass coefficients from DNV [19]. Added mass is
included in the mass finite element model mass matrix, leading
to ‘wet’ natural modes for the structure. Normal added mass,
tangential added mass, and axial added mass (end effects) are all
included in the mass matrix, though normal added mass domi-
nates.

2.4 Aerodynamic Excitation and Damping
TLPOpt makes use of a linearized quasi-steady version of

blade element momentum theory (BEM), as is typical among
aero-hydro-servo-elastic models. Two common corrections are
applied to the BEM model used: the Prandtl correction for loss
at the hub and tips, and the Glauert correction for high induction
factors; considered by Burton [20] to be the minimum correc-
tions needed. Both dynamic wake and dynamic stall effects are
neglected, as well as aero-elasticity.

To accelerate computation, induction factors (to be used in
the BEM calculation) can be computed and stored for wide ranges
of blade pitch angles and tip-speed ratios. Only the final loads are
needed to interface with the coupled model, so a rotor effective
wind speed can be established to represent the rotor loads with a
scalar value. A detailed derivation of this approach is summarized
in Hegseth’s PhD thesis [12].

2.5 Control System
Design of blade pitch and generator torque control systems

is often considered a detailed design step and can be influenced

by a number of site or operator specific factors. TLPOpt makes
use of the well-known baseline blade-pitch controller from the
NREL 5MW reference turbine [21] with a simplified low-pass
filter and no transition strategy. The control system parameters
(proportional and integral gains) are variables in the model and
can be included as design variables. In the present work, the
values for the land-based DTU 10MW reference turbine [22]
are applied. The state-space equations of motion (detailed in
Appendix A) allow for more implementation of advanced controls
systems with more states, inputs, and outputs in future studies.

3. MODEL VERIFICATION
Verification of the responses of TLPOpt to irregular wave

and turbulent wind excitation is presented in Fig. 4. For compar-
ison a baseline tension-leg platform design from Tian’s masters
thesis [23] is modeled in SIMA, a nonlinear aero-hydro-servo-
elastic analysis tool developed by SINTEF Ocean [24, 25]. The
baseline design is a tension-leg platform substructure to support
the DTU 10MW reference turbine [22]. The model in SIMA
closely follows the modeling strategy of TLPOpt with a finite el-
ement model of beam elements representing the combined tower,
column, and pontoons structure. Two notable differences be-
tween TLPOpt and SIMA are the modeling of the rotor and
tendons. The SIMA model considers a spinning rotor and mod-
els the blades as beams, while TLPOpt models the entire RNA as
a rigid body. Beam elements are used to represent the tendons in
SIMA which provides more realistic modeling of tendon nonlin-
earities. Time-domain simulations with the same incoming wave
spectrum are conducted in SIMA and post-processed to compare
with frequency-domain response spectra and standard deviations
from TLPOpt. Verification against another software tool intro-
duces additional uncertainties, though verification with software
is unavoidable given the lack of benchmark experimental results
for tension-leg platform wind turbines.

The verification of bending moments shown in Fig. 4a sug-
gests that TLPOpt is capable of capturing structural responses to
wave-only excitation in the coupled model with reasonable accu-
racy. The response in both SIMA and TLPOpt is dominated by
a wave-frequency component and a resonant peak at the tower
bending frequency. The agreement between the magnitude of the
bending moment is best in the transition from column to tower,
and slightly less good at both the tower base and tower top. At
the tower top the discrepancy is believed to be due to slight dif-
ferences in the definition of the rotor-nacelle assembly inertia
and the flexibility of blades in SIMA. Differences at the tower
bending natural frequency (roughly 0.27 Hz) are due to coupling
of the blade and tower bending in SIMA.

In Fig. 4b, tower bending moments are verified in a com-
bined irregular wave and turbulent wind environment. While
TLPOpt captures the shape of the response spectra well, SIMA
results show a large increase in response magnitude in the wave
frequency range which TLPOpt does not. This is believed to be
due to interactions with the blade-pitch controller (which is not
tuned for a tension-leg platform floating wind turbine) and wave-
induced motions that are most apparent near the turbine’s rated
windspeed of 11.4 m s−1. Previous work (see Rohrer et al. [13]
and Hegseth et al. [26]) found the simplified BEM model used
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(a) Wave-only bending moment response
JONSWAP spectrum: HS = 7.5 m, Tp = 12 s

(b) Wave-Wind bending moment response
JONSWAP spectrum: HS = 7.5 m, Tp = 12 s
Kaimal Turbulence U0 = 11 m/s

(c) Wave-only tendon top response
JONSWAP spectrum: HS = 7.5 m, Tp = 12 s

FIGURE 4: WAVE AND WIND RESPONSE VERFICATION

in TLPOpt results in similar aerodynamic load spectra as dy-
namic BEM results from nonlinear aero-hydro-servo-elastic time
domain analysis.

A verification of tendon top tensions and displacements
shown in Fig. 4c suggests that TLPOpt is capable of capturing
wave-induced horizontal displacements, but struggles to fully
capture tendon top vertical motions and tendon tensions. Hori-
zontal motions are dominated by wave-frequency response, and
TLPOpt predicts the standard deviation of horizontal response
within 5% of SIMA results. Tendon tension results show that
TLPOpt captures a small wave-frequency tension response and an
exaggerated difference between upwave and downwave tendons,
but significantly underpredicts the standard deviation of tendon
tensions. The vertical motion responses show that TLPOpt also
fails to capture a significant portion of the wave-frequency verti-
cal motion, as well as low-frequency and high-frequency vertical
motion responses. The bulk of this underprediction is due to not
modeling set-down, the nonlinear heave motion that is coupled
with surge/sway motions in tension-leg platforms. Figure 4c also
includes spectra for an approximation of set-down vertical motion
and pure heave vertical motion based on the SIMA time-domain
results. These show that the majority of vertical motion seen
in SIMA results can explained by set-down. Set-down has been
neglected thus far in the model as it is specific to tension-leg plat-
forms and design of tendons is not a specific goal of this model.
Several options to include a set-down effect exist, including statis-
tical linearization proposed by Low [27] or modeling the tendons
in the finite element model.

A comparison of the hydrodynamic transfer functions be-

tween TLPOpt and WAMIT for the second, fifth, seventh, and
eighth mode are shown in Fig. 5. WAMIT [28] is a commercially
available software for wave-structure interaction based on poten-
tial theory that can consider wave loading in generalized modes of
deformation. For the baseline design, the second mode is roughly
equivalent to the rigid body surge mode, the fifth mode is the first
combined bending mode in the XZ-plane, the seventh mode is
similar to the rigid body heave mode, and the eighth mode is the
second combined bending mode in the XZ-plane. The results
show qualitative agreement between the hydrodynamic transfer
functions from the approximations and WAMIT results, with the
best agreement seen in mode two and mode five, the lowest fre-
quency modes shown. Mode seven is similar to the rigid body
heave mode, though flexible pontoons mean the heave displace-
ment, and therefore excitation, is not equivalent as seen in the
comparison of WAMIT results for rigid heave and mode seven.
Excitation is undepredicted by TLPOpt for both mode seven and
mode eight, possibly due to the inability to consider interaction
between the column and pontoons in the TLPOpt model.

4. OPTIMIZATION PROBLEM
The TLPOpt model described above is used to conduct

gradient-based design optimization by posing a formal optimiza-
tion problem. The optimization problem consists of design vari-
ables that the optimizer can vary, constraint functions to limit the
feasible design space, and an objective function that the optimiza-
tion intends to minimize. Therefore the optimization problem can
be rewritten as a set of coupled equations. The problem can be
said to be ‘multidisciplinary’ because the design variables, con-
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FIGURE 5: HYDRODYNAMIC TRANSFER FUNCTION VERIFICA-
TION IN SELECTED MODES.

straints, and objective span several analysis disciplines. A formal
definition of this problem can be found in Chapter 1 of Martins
and Ning [29]. The optimization problem is assembled in the
OpenMDAO framework [30], an open-source tool for developing
multidisciplinary optimization models with a focus on gradient-
based optimization. OpenMDAO acts as an interface between
the model representing the physical response of the floating wind
turbine and the mathematical model that the optimization algo-
rithm solves. OpenMDAO implements PyOptSparse [31, 32],
which provides Python implementations of several optimization
algorithms and exploits sparsity in the coupled equations that
form the optimization problem. Specifically, the combination of
OpenMDAO and PyOptSparse allows for efficient computation
of coupled derivatives for large problems (i.e. gradients of the
objective with respect to the design variables) using the modular
analysis and unified derivatives (MAUD) architecture developed
by Hwang and Martins [32]. The SNOPT [33] optimization algo-
rithm was used based on previous work by Hegseth [12]. SNOPT
implements a sequential quadratic programming algorithm, and
is effective at optimization of problems with computationally ex-
pensive objective or constraint functions. The implementation
of TLPOpt in OpenMDAO makes it possible to quickly formu-
late a wide variety of optimization problems, such as the specific
problem considered in this work is described below.

4.1 Problem formulation
The problem formulation presented here demonstrates the

potential for gradient-based design optimization of flexible float-
ing wind turbines, but is not a unique formulation. An infinite
number of combinations of design variables, constraints, and ob-
jectives can be developed based on the goals of the optimization.
Each problem formulation developed requires attention to scal-
ing of the model to ensure optimization convergence. TLPOpt
is defined in physical units, with inputs and outputs spanning
many orders of magnitude (ex: thicknesses in mm and stresses
in MPa), meaning scaling is crucial for reasonable consideration
of all design variables, objectives and constraints. All optimiza-
tions were run on a workstation PC using a single processor core
in under one hour, however the implementation of some compo-
nents requires large amounts (∼100 GB) of memory to calculate
analytical gradients.

4.1.1 Design Variables. The design variables describe the
geometry of the tension-leg platform substructure, and are listed
in Table 1. A total of 28 design variables are considered in the cur-
rent model. The finite element model considers vectorized inputs
describing the diameter and thickness of the tower and column,
side length and thickness of the pontoons, and scalar inputs for
column draft, pontoon length, tendon diameter, and ballast factor.
To reduce the number of design variables, vectorized inputs are
described by shorter vectors of four spline control points. These
control points are fitted with B-splines in OpenMDAO using an
approach from Hwang and Martins [34]. Additional design vari-
ables describe the platform draft, pontoon length, outer diameter
of the tendons, and amount of ballast weight added to the de-
sign. The bounds for each design variable, which strictly limit
the values the optimization algorithm will explore, are given in
Appendix B.

TABLE 1: DESIGN VARIABLES IMPLEMENTED IN TLPOPT

Variable Units Meaning

𝐷𝑡𝑜𝑤𝑒𝑟 [m] Outer diameters of tower segments.
𝑡𝑡𝑜𝑤𝑒𝑟 [mm] Wall thicknesses of tower segments.
𝐷𝑐𝑜𝑙𝑢𝑚𝑛 [m] Outer diameters of main column segments.
𝑡𝑐𝑜𝑙𝑢𝑚𝑛 [mm] Wall thicknesses of main column segments.
𝑇 [m] Draft of main column.
𝑠𝑝𝑜𝑛𝑡𝑜𝑜𝑛 [m] Outer side-lengths of pontoon segments.
𝑡𝑝𝑜𝑛𝑡𝑜𝑜𝑛 [mm] Wall thicknesses of pontoon segments.
𝐿𝑝 [m] Length of pontoons. (column to pontoon tip)
𝐷𝑡𝑒𝑛𝑑 [m] Outer diameter of tendons.
𝐵𝐹 [-] Ballast weight as a fraction of column dis-

placement.

4.1.2 Constraints. Constraints limit the feasible design
space for optimization. A particular challenge is definition of
a set of constraints that are sufficient to develop a realistic design
but not overly limiting. Many optimization algorithms (including
SNOPT) must evaluate functions and gradients outside the feasi-
ble region, so constraint functions must return a reasonable value
even when violated. This leads to creative redefinition of certain
constraints or components to ensure a logical return. The bounds
chosen for the design variables are not formally constraints, as

6 Copyright © 2023 by ASME



the optimizer has no ability to consider values outside design
variable bounds.

The first set of constraints introduced is design constraints,
referred to as ‘static’ because they consider a calm-water, no-
wind case. These represent constraints that might be applied to
ensure manufacturability, or allow for unimpeded maintenance
access. A constraint is applied to column, tower, and pontoon
outer dimensions to limit the diameter taper angle to 10◦. An
additional constraint requires the diameter at the column top to
be greater than or equal to that of the tower base. Finally, a
constraint requiring positive pretension in all tendons (buoyancy
greater than weight) is applied.

The second set of ‘dynamic’ constraints is applied to the re-
sponse in three environmental conditions given in Table 2. The
short-term extreme response in each of the three environmental
conditions is checked simultaneously. A vectorized tower buck-
ling constraint is applied using Eq. (4).

𝜎𝑥 <
𝜎𝜎

𝛾𝑀𝛾𝐹
(4)

Where 𝜎𝑥 is axial stress at the tower outer radius, and 𝜎𝜎 is
the critical buckling stress found according to Eurocode 3 [35].
The material factor (𝛾𝑀 = 1.10) and load factor (𝛾𝐹 = 1.35)
recommended by DNV GL are used [36, 37]. Surge displacement
at the still water line is limited to 10% of water depth (20 m for this
study) to avoid excessive tendon angles. A minimum dynamic
tendon tension constraint (minimum of ten percent of pretension)
is applied to the tendons to avoid slacking, and a constraint on
maximum tendon stress at yield stress (𝜎𝑌 = 355 MPa) is applied
for a simple model of maximum tendon tension. Short-term
extreme responses in each environmental condition are calculated
assuming the response variables are Gaussian processes using the
average upcrossing rate (AUR) method [38], given in Eq. (5). In
Eq. (5), b (𝑇) represents the most-probable maximum response,
�̄� is the mean response, 𝜎𝑥 is the standard deviation, a+𝑥 (0) is the
zero-upcrossing rate, and𝑇 is the short-term period length, in this
case one hour. No additional safety factors are considered for the
purposes of this study, though for practical purposes constraint
limits could be adjusted to reflect safety factors.

b (𝑇) = �̄� + 𝜎𝑥

√︁
2 ln (a+𝑥 (0)𝑇) (5)

4.1.3 Objective. The objective is a simple summation of
steel mass, the mass of one tendon, and ten percent of ballast
mass. The mass of a single tendon is used to avoid unfair ‘prefer-
ence’ towards tendon mass in the optimization. Only ten percent
of ballast mass is included to roughly reflect the difference in
cost between ballast and steel mass. This serves as a simple
approximation of the materials usage and cost of the design.

4.2 Analytical Gradients
To enable efficient gradient-based optimization, TLPOpt de-

fines analytical gradients for the entire model. OpenMDAO al-
lows users to define partial derivatives at the component level,
often equivalent to a single function, and uses these defined par-
tials to calculate total derivatives using the MAUD architecture.

Gradient-based optimization algorithms perform best when pro-
vided smooth, continuous gradients (and some require continu-
ity), so robust and correct definition of analytic partial derivatives
is key to successful optimization.

5. OPTIMIZATION RESULTS
Results of the optimization are shown in Table 3 for the base-

line design and the two different ‘levels’ of constraints applied
to the model. The first level applies only the ‘static’ or de-
sign constraints described above. The second level imposes the
same design constraints with additional ‘dynamic’ constraints on
response in three environmental conditions, given in Table 2.
These three environmental conditions are based on the 50-year
contour surface of a joint probability distribution by Johannessen
et al. [39] for the Northern North Sea. EC1 has a wind speed
close to the turbine’s rated wind speed, EC2 is near cut-out wind
speed, and EC3 is above cut-out wind speed.

The baseline design used is modified from Tian’s thesis [23]
which described a tension-leg platform for the DTU 10MW refer-
ence turbine. The applied modifications are increased structural
thicknesses and tower dimensions to have a feasible initial design.
SNOPT does not require that the initial point in the optimization
is feasible, though optimizer robustness and speed are improved
by starting at a feasible point.

TABLE 2: ENVIRONMENTAL CONDITIONS CONSIDERED

Parameter Units EC1 EC2 EC3

Mean Wind Speed at Hub [m s−1] 11.0 21.0 50.0
Significant Wave Height [m] 7.5 9.9 15.1
Spectral Peak Period [s] 12.0 14.0 16.0

The results in Table 3 show designs that have converged
with a relatively weak optimality tolerance, indicating the opti-
mization makes progress in reducing the objective function while
respecting the constraints.

The static case converges at the lower bound of all design
variables. This leads to a dramatic decrease in the hull volume
and objective mass, and the elimination of ballast mass. However,
the design violates nearly all dynamic response constraints (which
were not enforced in this optimization) with slacking tendons and
tendon and tower stress in excess of yield stress.

The dynamic case shows a significant decrease in objective
mass compared to the initial design, though less than in the static
case. The converged design reduces tower and substructure mass,
while increasing ballast mass. The substructure design follows
expected patterns, with larger diameters at the base of the column,
while minimizing diameter at the still waterline. The dynamic
case does not appear to be on the edge of the feasible region
in all response constraints, suggesting that the optimization may
have exited prematurely or the design variable bounds may be
too conservative. Figure 6 shows the tower dimensions and stress
utilization (maximum stress as a fraction of maximum allowable
given in Eq. (4)) along the length of the tower for the baseline
and dynamic case. The dynamic case results in all tower wall
thicknesses being at the lower bound and there is significant
‘excess’ stress capacity in the converged tower design. It is likely
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that with the addition of tower fatigue constraints a more realistic
thickness distribution is possible.

TABLE 3: SELECTED CONVERGED DESIGNS

Variable Units Baseline Static Dynamic

Tendon Diameter [m] 2.70 0.50 1.52
Tendon Pretension [kN] 20,781 9733 28,458
Hull Volume [m3] 17,226 5962 17,874
Volume in Pontoons [%] 37.4 48.3 27.9
Tower Steel Mass [t] 3427 1344 2260
Substruc. Steel Mass [t] 2772 1113 2222
Ballast Mass [t] 4423 0.0 4457
Column Draft [m] 35.3 25.0 36.8
Center of Grav. [m] 6.70 47.7 1.62
Center of Buoy. [m] -21.8 -15.1 -23.9

Max. Surge* [m] 19.84 12.94 12.87
Min. Tend. Tension* [kN] 9065 -122,907 16,752
Max. Tend. Stress* [MPa] 43.5 5553 170
Max. Tow. Base Stress* [MPa] 40.1 420 66.1

Objective Mass [t] 7633 2493 5225
* most probable minimum/maximum in EC3

5.1 Model Limitations

The model and results presented in this work demonstrate
the potential for gradient-based design optimization of floating
wind turbines, but are subject to some key limitations which mo-
tivate future work towards practical gradient-based optimization.
Discrepancies between responses from time-domain aero-hydro-
servo-elastic codes and TLPOpt discussed above, especially con-
cerning tendon tension variation, limit the ability of the model
to consider extreme tension or tendon stress constraints. To bet-
ter model structural design, stiffeners should be included in the
model rather than assuming shell structures. Finally, constraints
based on fatigue limit states should be considered to better reflect
realistic loading scenarios and allow for appropriate structural
sizing. Classification society rules can be implemented as con-
straints in the model to mirror current industry design practices.

In addition to development of the constraints, future work
should focus on developing objective functions that better capture
the design throughout its lifetime. The objective function applied
in this work is deliberately simple, and does not include key por-
tions of the cost including construction complexity, installation,
maintenance, and decommissioning. An objective function could
also seek to minimize environmental or community impact, while
satisfying the same physical design constraints.

As with all optimization algorithms, SNOPT finds local min-
ima. The algorithm is designed to seek global optimality, but it
is impossible to definitively find global minima. Further work is
needed to confirm the converged design represent optima, such
as starting the optimization at several initial designs to ensure the
same optima is found. More detailed views of trends in objec-
tive and constraint values, and variation of the initial point for
optimization can both provide more information on the results.

FIGURE 6: TOWER DIMENSIONS AND STRESS UTILIZATION FOR
BASELINE AND CONVERGED DESIGN.

6. CONCLUSION
This work has presented an improved version of the TLPOpt

model, an optimization model for flexible tension-leg platform
wind turbines, and initial optimization results demonstrating the
potential for gradient-based optimization of floating wind tur-
bines. The model shows reasonable agreement with time-domain
analyses for global structural responses, and has been imple-
mented in the OpenMDAO framework for multidisciplinary op-
timization. Results from optimizations show that the model is
capable of considering stochastic response constraints in mul-
tiple environmental conditions simultaneously. Further model
verification and refinement of optimization problem formulation
are needed to produce more practical results. Finally the model
is developed to consider generic designs, and can be quite eas-
ily adapted or extended to consider other floating wind turbine
substructure designs.
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APPENDIX A. STATESPACE EQUATION OF MOTION
A state-space model is used to represent the linear time-

invariant dynamic system that describes the floating wind turbine
following work by Hegseth [12]. The state-space approach in
TLPOpt combines two models, one for the structural or physical
system, and another for the controls system, into a single closed
loop linear system. Each state-space model (and the total closed
loop system) can be written as a system of equations following
the format of Eq. (6). The state vector (𝑥) and inputs vector (𝑢)
for the closed loop system are given in Eq. (7), for a model with 𝑁

modes of response considered. To create the closed-loop system,
the outputs (𝑦) from the structural model are set equal to the inputs
(𝑢) of the controls model, and the outputs from the controls model
set equal to the controls inputs (not included in Eq. (7)) for the
structural model. The closed loop system state-space matrices
can then be written as concatenations of the matrices from each
model shown in Eq. (8). The closed loop system is used to
develop the generic transfer function Eq. (9), for the linearized
system based on the formulation from Chen [40]. A more detailed
description of these models is given in Hegseth’s PhD thesis [12].

̇⃗𝑥(𝑡) = A𝑥(𝑡) + E𝑢(𝑡)
𝑦(𝑡) = C𝑥(𝑡) + D𝑢(𝑡)

(6)

𝑥 =
[︁
𝑥1 · · · 𝑥𝑁 ̇𝑥1 · · · ̇𝑥𝑁 �̇� 𝜑𝑙 𝑝 �̇�𝑙 𝑝

]︁𝑇
𝑢 =

[︁
𝑣𝐹𝑇

𝑣𝑀𝑇
𝑣𝑄𝐴

𝑒𝑖 (𝜔𝑡 ) · · · 𝑒𝑖 (𝜔𝑡 ) ]︁𝑇 (7)

A =

[︃
As EscCc

EcCs Ac

]︃
, E =

[︃
Esd
0

]︃
, 𝑥 =

[︃
𝑥𝑠
𝑥𝑐

]︃
(8)

H(𝜔) = C
(︂
𝑖𝜔I − A−1

)︂
E + D (9)

The structural model follows from standard frequency-
domain dynamic analysis, with the addition of a single degree of
freedom rotor speed equation of motion. The model includes two
states for each structural mode considered (𝑥1, · · · , 𝑥𝑁 , �̇�1, · · · ,
�̇�𝑁 ), and one state for the rotor speed (�̇�). The state matrix, As is
defined by modal inertia (including hydrodynamic added mass),
damping, and stiffness matrices for frequency-domain analysis
based on Chen [40]. There are two input matrices, one corre-
sponding to external forcing, Esd, and another corresponding to
the control inputs Esc. The output matrix, Cs is a constant and
sparse matrix that ‘selects’ the outputs (in this case, only the rotor
speed) from the states. The feedthrough matrix, Ds is a constant
null matrix.

The controls model is based on the baseline generator torque
and blade-pitch controller described above. The model includes
two states representing low-pass filtered rotor displacement and
speed (𝜑𝑙 𝑝 , �̇�𝑙 𝑝). The state matrix (Ac) and input matrix (Bc)
are developed to filter the rotor speed using a low-pass frequency
(𝜔𝑙 𝑝). Two formulations of the output matrix (Cc) are used
depending on if the mean wind speed is above or below rated
wind speed, outputting either generator torque or blade pitch
angle. The feedthrough matrix Dc is again a constant null matrix.

APPENDIX B. DESIGN VARIABLE BOUNDS
Table 4 provides the bounds on design variables used in

optimization.

TABLE 4: BOUNDS ON DESIGN VARIABLES

Variable Units Lower Bound Upper Bound

𝐷𝑡𝑜𝑤𝑒𝑟 [m] 8.0 18.0
𝑡𝑡𝑜𝑤𝑒𝑟 [mm] 60.0 200.0
𝐷𝑐𝑜𝑙𝑢𝑚𝑛 [m] 12.0 32.0
𝑡𝑐𝑜𝑙𝑢𝑚𝑛 [mm] 60.0 200.0
𝑇 [m] 25.0 55.0
𝑠𝑝𝑜𝑛𝑡𝑜𝑜𝑛 [m] 4.0 10.0
𝑡𝑝𝑜𝑛𝑡𝑜𝑜𝑛 [mm] 44.0 200.0
𝐿𝑝𝑜𝑛𝑡𝑜𝑜𝑛 [m] 15.0 45.0
𝐷𝑡𝑒𝑛𝑑 [m] 0.5 3.0
𝐵𝐹 [-] 1 × 10−6 1.0
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