
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Charbel Badr

Towards Time-Proportional Profiling
of Low-Power System-on-Chips

Master’s thesis in EMECS
Supervisor: Magnus Jahre
Co-supervisor: Jonathan Rico
September 2023

Charbel Badr

Towards Time-Proportional Profiling of
Low-Power System-on-Chips

Master’s thesis in EMECS
Supervisor: Magnus Jahre
Co-supervisor: Jonathan Rico
September 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Towards Time-Proportional Profiling of Low-Power
System-on-Chips

Charbel Badr

September 4, 2023

Assignment Text

Energy efficiency is a critical constraint in Ultra-Low-Power (ULP) systems. Im-
proving efficiency however requires understanding what the system spends time
on, and the standard approach for acquiring this understanding is to apply per-
formance profiling.

In this thesis, the student should identify a suitable profiling approach, imple-
ment the code profilers, and use them to analyze the performance of the Zephyr
host and communication protocol stack on the nRF52840 platform, thereby identi-
fying performance-critical code regions, i.e., the parts of the system which have
the largest impact on overall execution time. Based on this analysis, the student
should propose optimizations and explain why these optimizations are expected
to improve energy efficiency. If time permits, the student should implement and
evaluate the proposed optimizations.

iii

Abstract

System-on-Chips (SoC) energy efficiency is in higher demand nowadays due to
the positive impact that it can have on various tech markets such as lower-cost
products and better user experience. Code profiling through tracing is considered
the most advantageous in the scope of this thesis as a tool to achieve energy ef-
ficiency. We implemented three different types of code profilers: the statistical
profiler, the deterministic profiler, and the linear profiler. After comparing their
performances, the deterministic profiler was found to perform the best and the
closest to being time proportional. Additionally, these code profilers were also
used in a case study regarding the Bluetooth stack implementation provided by
Nordic Semiconductor. An inefficiency was found and was dealt with by margin-
ally editing the code.

v

Acknowledgments

I would like to thank my supervisor at NTNU Prof. Magnus Jahre and my su-
pervisor at Nordic Semiconductor Jonathan Rico for their continuous technical
support along the journey of this thesis. The discussions we had about the topics
at hand were valuable inputs to this master thesis. I would also like to thank my
family and friends for their emotional support. Their encouragement, advice, and
strong belief in me have been invaluable.

vii

Contents

Assignment Text . iii
Abstract . v
Acknowledgments . vii
Contents . ix
Figures . xi
Tables . xiii
Listings . xv
Acronyms . xvii
1 Introduction . 1

1.1 Assignment Interpretation . 2
1.2 Contributions . 3
1.3 Thesis Organization . 4

2 Background Information . 5
2.1 Performance Analysis Approaches . 5

2.1.1 Statistical Sampling . 5
2.1.2 Binary Instrumentation . 6
2.1.3 Tracing . 6

2.2 Time Proportionality in Profiling . 6
2.3 Bluetooth Host and Controller . 7
2.4 nRF52840 SoC . 8

3 Implementation . 11
3.1 Tracing nRF52840 with JTrace . 11

3.1.1 Debug and Trace Block . 11
3.1.2 JLink SDK . 12
3.1.3 Instruction Pipelining and Hazards 13

3.2 Building the Code Profilers . 14
3.2.1 Statistical Profiler . 14
3.2.2 Deterministic Profiler . 15
3.2.3 Linear Profiler . 17
3.2.4 Instruction to Function Mapping 18
3.2.5 Code Profile Formatting . 18

4 Experimental Setup . 21
4.1 MachSuite . 21

4.1.1 FFT Strided . 21

ix

x C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

4.1.2 GEMM Blocked . 22
4.2 Throughput Sample . 22

5 Results . 25
5.1 MachSuite Algorithms Profile . 25
5.2 The Bluetooth Stack Profile . 26

6 Conclusion . 33
6.1 Conclusion . 33
6.2 Limitations . 33
6.3 Future Work . 34

Bibliography . 35
A Appendix . 39

Figures

1.1 Energy Efficiency on Multiple Levels [1] 2
1.2 Hierarchy of Profiling . 3

2.1 Assigning Cycles Based on NCI, LCI, and TIP [17] 7
2.2 Bluetooth Stack [19] . 8
2.3 nRF52840 Block Diagram . 9

3.1 Design Block Diagram . 12
3.2 nRF52840 with the 20 Pin Interface Soldered. 13
3.3 Debug and Trace Module [23] . 14
3.4 DT Profile Flowchart . 15
3.5 Assembly Instruction Pie Chart in a Sample 17

4.1 Throughput Sample Flowchart . 23

5.1 Cycle Distribution across Instruction Types in the FFT Benchmark . 26
5.2 Cycle Distribution across Instruction Types in the GEMM Benchmark 27
5.3 For Loop v.s While Loop Graph - Statistical Profile 29
5.4 For Loop v.s While Loop Graph - Deterministic Profile 30
5.5 For Loop v.s While Loop Graph - Linear Profile 30
5.6 Optimized Code Cycle Attribution . 31

xi

Tables

A.1 Statistical Profile - For Loop v.s While Loop 39
A.2 Deterministic Profile - For Loop v.s While Loop 39
A.3 Linear Profile - For Loop v.s While Loop 40

xiii

Listings

3.1 Pperf Tool Output . 18
3.2 Sample Code Profile . 19

5.1 Statistical Profile - While Loop . 27
5.2 Deterministic Profile - While Loop . 27
5.3 Linear Profile - While Loop . 28
5.4 While Loop memcpy Implementation 28
5.5 For Loop memcpy Implementation . 28
5.6 Statistical Profile - For Loop . 28
5.7 Linear Profile - For Loop . 28
5.8 Deterministic Profile - For Loop . 29
5.9 Proposed Optimized Code . 31

xv

Acronyms

AHB Advanced High performance Bus. 9

BLE Bluetooth Low Energy. 2, 7, 8, 22

CPU Central Processing Unit. 1, 5, 6, 9

DWT Data Watchpoint and Trace. 12

ETM Embedded Trace Macrocell. 12

FICR Factory Information Configuration Registers. 9

FIFO First In First Out. 6

FPB Flash Patch and Breakpoint. 11

GPIO General Purpose Input/Output. 2

ITM Instrumentation Trace Macrocell. 12

JTAG Joint Test Action Group. 5, 11

LCI Last Committed Instruction. 6

NCI Next Committing Instruction. 6

NVMC Non-Volatile Memory Controller. 9

OS Operating System. 1

PC Program Counter. 5, 6

PMU Performance Monitoring Unit. 5

RAM Random Access Memory. 2

xvii

xviii C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

RTL Register Transfer Language. 1

RTOS Real Time Operating System. 26

SoC System on Chip. v, 1, 2, 4, 6, 8, 9, 13, 33

SWD Serial Wire Debug. 5, 11

TPIU Trace Port Interface Unit. 12

UICR User Information Configuration Registers. 9

Chapter 1

Introduction

The need for energy efficiency in SoCs has been on the rise due to the positive
impact it can have on many big markets such as aerospace, mobile, and arti-
ficial intelligence applications. An achieved energy efficiency could be reflected
in reduced product costs and better user experience. Energy efficiency can be
dealt with on several levels. These include software level, OS/firmware level, ar-
chitecture level, RTL design level, implementation level, and process technology
level [1]. Figure 1.1 shows the strategies that each level has in order to make the
SoC more energy efficient. For the scope of this thesis, we focus on the software
level. To be able to achieve power-aware apps, we require the necessary tools
that should be quite reliable in detecting inefficiencies. In other words, to be able
to come across optimizing a code at hand, robust code profilers are a must, and
implementing them will be one of the main contributions of this thesis.

Code profiling is the process of gathering parameters such as function calls,
CPU cycles, and other metrics on a sample code while it is running [2]. In order to
build a code profile, tracking instructions in a program is necessary. Analysis tech-
niques mainly fall under 3 branches: statistical sampling, binary instrumentation,
and tracing. Figure 1.2 summarizes the hierarchy of profiling.

1. Statistical Sampling: can be intrusive or non-intrusive. It is an approach
that focuses on retrieving the executed instructions by periodically sampling
the program counter. If it halts the CPU in the process, then it is intrus-
ive. Gperftools [3], Pperf [4] and Pperf [5] are three examples of intrusive
sampling applications. On the other hand, Lynsynn [6] is an example of a
non-intrusive sampler.

2. Binary Instrumentation: is a software-based approach that focuses on edit-
ing the binary of a program to capture useful information about program
flow and executed functions. This could either be static or dynamic depend-
ing on when the binary file editing happens. If it happens before the program
starts, the instrumentation is static while if the editing happens during the
running of the program, the instrumentation is classified as dynamic. Pin [7]
and DynamoRio [8] are examples of dynamic instrumentation while Clang
[9] is an example of static instrumentation.

1

2 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Figure 1.1: Energy Efficiency on Multiple Levels [1]

3. Tracing: is a hardware-based approach that works based on storing instruc-
tions either in a designated area in the RAM of the embedded device or
streaming them directly to GPIO pins. Ninja [10] is an example of an ap-
plication that uses tracing as a method of profiling.

We also include a case study where we put the implemented code profilers in
action in to attempt to optimize the Bluetooth implementation on Nordic Semicon-
ductor SoC. Bluetooth low energy (BLE) is an evolving technology that is found
in many electronics that are used daily such as wireless speakers, wearables, and
in-car entertainment systems [11]. Bluetooth was continuously being enhanced to
include improved connectivity and security. Nordic Semiconductor is considered
to be one of the leading companies working closely with Bluetooth [12]. By 2022,
Nordic Semiconductor was shipping 1 million Bluetooth LE SoCs every day and
they constitute 39% of the market share. This means that optimizing the energy
consumption of the Bluetooth implementation provided by Nordic Semiconductor
could have a significant positive impact on the market.

1.1 Assignment Interpretation

Based on what has been discussed, the list of tasks in this thesis should include
the following:

• Task 1: Identify a method for instruction tracing required for code profiling

Chapter 1: Introduction 3

Figure 1.2: Hierarchy of Profiling

• Task 2: Based on the trace on hand, build different code profilers.
• Task 3: Attach the code profiler/s to a sample code provided by Nordic Semi-

conductor regarding the data path of the Bluetooth stack including both the
host and controller and analyze them
• Task 4: Provide optimization techniques based on the analysis of code pro-

filers.

Task 1 answers which profiling technique we chose for the scope of the thesis.
This comes after studying the different analysis approaches and choosing the one
with the most advantages and minimal disadvantages to the task at hand. Task 2
makes the process of analysis quite easier as a mere instruction trace without a
code profile is much harder to analyze and understand. If multiple code profilers
are implemented, then it is quite necessary that we compare their performances.
Finally, Tasks 3 and 4 are in response to the analysis and optimization require-
ments found in the assignment text.

1.2 Contributions

My contributions after working on this master thesis include the following:

• Contribution 1: Understanding how Segger’s JTrace [13] works as a tool for
instruction tracing, see Section 3.1.
• Contribution 2: Building three types of code profilers "on the go" while get-

ting the stream of instruction trace. This eliminates the need to wait for the
whole instruction stream before processing it, see Section 3.2.
• Contribution 3: Identifying inefficiencies in the snippet of the code involving

Bluetooth datapath after attaching the code profilers to it, see Section 5.2.
• Contribution 4: Providing an optimization technique that causes a speedup

4 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

in Bluetooth code, see Section 5.2.

Mainly, the contributions have a one-to-one relationship with the tasks men-
tioned above. Each contribution in this section comes to answer a task in the
previous one.

1.3 Thesis Organization

The rest of the thesis will be organized as follows:

• Chapter 2 includes background information needed to understand the meth-
ods proposed specifically profiling techniques, time proportionality, nRF52840
SoC, and Bluetooth host and controller.
• Chapter 3 includes the design methodology and the implementation of the

proposed solution. It focuses on understanding the method of instruction
tracing using JTrace [13] and the process of implementing the code pro-
filers.
• Chapter 4 includes the experimental setup of putting the code profilers in

action. There are mainly two experiments, one to understand and analyze
the behavior of the designed code profilers, and the second aims to improve
the Bluetooth implementation provided by Nordic Semiconductor.
• Chapter 5 includes the results of the experiments performed and shows

tables, figures, and statistics of the output. We also analyze the results in
the light of theoretical concepts and previous work.
• Lastly, chapter 6 includes a conclusion of what has been done in this thesis

and also sheds light on limitations and possible future work.

Chapter 2

Background Information

In this section, some technical concepts will be briefly explained as they are ne-
cessary to the understanding of the proposed implementation.

2.1 Performance Analysis Approaches

2.1.1 Statistical Sampling

Intrusive sampling primarily works by sampling PC values or other metrics using
interrupts. The sampling program is usually run on the same host device as the
program being sampled. One example here could be Gperftools [3] which func-
tions on the basis of linking the library to the application code binary and running
it. It samples at a rate of 100 samples per second. Another application that is con-
sidered an intrusive profiler is Pperf [4]. It mainly profiles ELF binary files and
samples for internal and external PMU data including CPU and PC data for every
thread. Similarly, the Linux kernel-based tool Perf [5] is an intrusive profiler that
gathers PMU data. This tool can also keep track of threads’ call stack issued from
time interrupts, system calls, and other system events. The advantages of these
tools are relatively smaller overheads and no additional hardware is required. On
the other hand, one of the biggest disadvantages is the fact that they interrupt the
CPU, which causes real-time applications to be greatly affected. Another drawback
could be the inaccuracy of the profiler due to the sampling bias. In other words,
parts of the code could be oversampled or undersampled.

Non-intrusive sampling works primarily without causing interruption to the
application being sampled. This requires the sampler to be present on a differ-
ent host than that of the application running. The transfer of sampling happens
through protocols such as JTAG or SWD. Lynsyn [6] is an example of a non-
intrusive profiler that gathers PC samples over JTAG. It can gather up to ten thou-
sand measurements per second. However, it is quite important to mention that
Lynsynn is not tracing but rather sampling the application which means it will
miss tracking quite some instructions.

5

6 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

2.1.2 Binary Instrumentation

Binary instrumentation is the process of adding to or changing the binary of
an application program in order to obtain metrics such as function execution
count, code coverage, and other metrics. The process could either be static or
dynamic. This being said, static binary instrumentation is changing the binary be-
fore the runtime while dynamic binary instrumentation usually involves changing
the binaries during the run-time of the program. Pin [7] and DynamoRio [8] are
tools based on dynamic binary instrumentation. Pin is built as an architecture-
independent tool but could use architecture-specific optimizations when needed.
Additionally, Pin uses inlining, liveness analysis, and other techniques to optim-
ize the instrumentation. DynamoRio provides code caching techniques to handle
complex code instrumentation and provides an overhead of zero to thirty per-
cent on operating systems such as Linux and Windows. On the other hand, Clang
instrumentation [9] is considered to be a static binary instrumentation tool. It
provides code coverage, and security analysis and is compatible across languages
such as C, C++, and Objective C. In general, static instrumentation tools have less
overhead than dynamic ones but usually offer a more limited analysis because
some scenarios only occur during runtime.

2.1.3 Tracing

Tracing buffers and pins keep track of every instruction and either save it in a
buffer in memory or stream it out to another device through the tracing pins. The
data in the buffer is overwritten based on a FIFO protocol. One way of accessing
the tracing buffers is by regular JLink devices. The tracing pins, on the other hand,
require an embedded tracing macrocell (ETM) and specified hardware such as
JTrace to function properly [14]. This method can reach speeds of more than 100
MiB/s. Another application based on tracing is NINJA [10]which offers a malware
analysis framework that traces applications and safely debugs them by using the
ETM and the performance monitor units. This framework is independent of the
operating system of the SoC and has low overheads. The main advantage of these
methods is increased accuracy. However, this comes at the expense of increased
hardware costs.

2.2 Time Proportionality in Profiling

In all of the approaches mentioned above, one important aspect to consider is
the method by which the CPU cycles are being attributed to instructions at re-
spective PC values and how time-proportional they are. Some of these methods
include Next Committing Instruction (NCI) [15], Last Committed Instruction [6]
(LCI), dispatch tagging heuristic [16], and Oracle method [17, 18]. Both, the
next committing instruction and the last committed instruction approaches are
self-explanatory, in the sense that they assign the cycles to the next and last com-

Chapter 2: Background Information 7

Figure 2.1: Assigning Cycles Based on NCI, LCI, and TIP [17]

mitted instructions respectively. The dispatch tagging assigns the cycles to the in-
struction fetched instead of the committed one. According to the findings of [17],
the mentioned approaches are not time-proportional. However, they proposed a
time-proportional instruction profiling approach, the Oracle method, by studying
the edge cases and formulating a state diagram whereby they assign the cycles
to instructions based on an informed decision. Fig. 2.1 shows the case when a
load instruction stalls the pipeline. NCI and LCI blindly assign the cycles to the
Load and I1 instructions respectively. The oracle profiler realizes that this is in the
stalled state and assigns the cycles to the instruction causing the stall, that is the
load.

2.3 Bluetooth Host and Controller

The Bluetooth stack is mainly divided into the Bluetooth host and the controller
[19]. Figure 2.2 shows the protocols and layers inside each of the host and the
controller.

In the Host, the layers include:

1. GAP: Generic Access Protocol. This layer is the get-way between the applic-
ation layer and the Bluetooth stack. It defines the procedures and roles and
manages setting up connections.

2. GATT: Generic Attribute Profile. It is a special case of the Attribute protocol.
It defines mainly two roles which include the client and the server. This layer
also defines the data structure of which the data and information are being
exchanged through BLE.

3. ATT: Attribue Protocol. This is the more general protocol that GATT is built
around. It defines the client-server architecture and organizes the data into

8 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Figure 2.2: Bluetooth Stack [19]

attributes with unique identifiers.
4. SMP: Security Manager Protocol. This layer is responsible for the security of

BLE transfers. It is composed of multiple security algorithms aimed at the
encryption and decryption of BLE.

5. L2CAP: Logical Link Control and Adaptation Protocol. This layer primarily
functions as a multiplexer. It receives data from lower layers into upper
layers and vice versa.

6. HCI: Host Controller Interface. This layer is shared with the controller side
and the main purpose of it is that it manages the interactions between the
host and controller.

On the other hand, the layers on Controller side include:

1. HCI: This layer is shared with the host as described previously.
2. Link Layer: This layer mainly communicates with the physical layer and

is responsible for Cyclic Redundancy Check (CRC) generation, advanced
encryption standards (AES), and data whitening.

3. Physical Layer: This layer defines how packets are sent over the radio. It
defines the hopping scheme and the transmit power.

2.4 nRF52840 SoC

This version of SoC is considered to be the most advanced in the nRF52 series
[20]. It allows for complex concurrency protocols to run and accommodates a
lot of peripherals and features. It supports Bluetooth Low Energy BLE, Bluetooth
mesh, Thread, Zigbee, 802.15.4, ANT, and 2.4 GHz proprietary stacks. This chip

Chapter 2: Background Information 9

Figure 2.3: nRF52840 Block Diagram

is built with an ARM Cortex M4 CPU.
The nRF52840 development kit which is built on top of this SoC can also

accommodate a real-time operating system, which is the Zephyr RTOS. Zephyr
RTOS is designed for devices with constrained resources and supports multiple
architectures [21].

Figure 2.3 shows the block diagram with the core components alongside the
radio module of an nRF52840 development kit. The core components include
a main memory, CPU, Non-Volatile Memory Controller (NVMC), Factory Inform-
ation Configuration Registers (FICR), User Information Configuration Registers
(UICR), EasyDMA (Direct Memory Access), Advanced High-performance Bus (AHB)
and debug and trace module

Chapter 3

Implementation

The implementation phase can be best split into two sections: understanding the
tracing mechanism using JTrace [13] and building the code profilers necessary
to understand and analyze the performance of applications. The block diagram
in Fig 3.1 represents the implementation as a whole. First, the instruction trace
is obtained. Then, after that, three different profilers are created: the Statistical
(ST) Profiler, the Deterministic (DT) Profiler, and the Linear (LI) Profiler. However,
these generate assembly-level instruction profiles. Thus, we used a subsystem in
Pperf [4] that links the assembly instructions to their respective higher-level func-
tions. Finally, these function-level profiles were inputted into a formatter in order
to make them more readable and easier for analysis.

3.1 Tracing nRF52840 with JTrace

The first step here is to solder the 20-pin trace interface on the board. Then, the
JTrace is connected to both the nRF52840 through a ribbon cable and the host
computer through USB. Figure 3.2 shows the pin trace interface that was soldered
to the board and the JTrace connected to it. On the host computer, JLink SDK [22]
was used to interface with the JTrace through Python scripts.

3.1.1 Debug and Trace Block

The trace and debug module consists of multiple blocks [23]. Figure 3.3 shows
the different blocks inside the debug and trace module. The main specifications
of this block include:

1. Serial Wire Debug (SWD): is an interface and debugging protocol that could
be described as an enhancement and a more compact form than JTAG as it
requires fewer pins. It allows memory operations as well as setting break-
points.

2. Flash Patch and Breakpoint (FPB) unit: This unit allows changing the code
temporarily when debugging without changing the original code and allows

11

12 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Figure 3.1: Design Block Diagram

setting breakpoints to the program for further debugging. This unit has two
literal comparators along with six instruction comparators.

3. Data Watchpoint and Trace (DWT) unit: This unit allows multiple function-
alities in the domain of debugging. These include memory monitoring, cycle
counting, timestamp generation, and performance analysis. Additionally,
this unit has four comparators.

4. Instrumentation Trace Macrocell (ITM): This unit mainly revolves about in-
strumentation profiling. It allows for real-time debugging and it encapsu-
lates the trace packets and the timestamps generated from the (DWT).

5. Embedded Trace Macrocell (ETM): This unit is responsible for many func-
tionalities such as performance profiling and complex system debugging but
the most important functionality is the instruction tracing that it streams to
external devices.

6. Trace Port Interface Unit (TPIU): This unit multiplexes tracing information
from the two units, the ETM and ITM. It efficiently transmits this inform-
ation across the trace lines. In other words, all tracing information passes
through the (TPIU)

3.1.2 JLink SDK

The JLink SDK [22] was used in order to obtain the instruction trace needed to
build the code profilers. Using this SDK, we were able to extract the assembly in-
struction trace from an input initial address to a breaking point address. Timestamps
were also obtained by the SDK but not for every individual instruction. Instead,
timestamps were issued every n cycles, where n is a power of 2, and associated
with the assembly instruction at hand. In other words, the output of using the
Jlink SDK was an assembly instruction trace, some of which had an associated
timestamp generated from the ITM.

Chapter 3: Implementation 13

Figure 3.2: nRF52840 with the 20 Pin Interface Soldered.

3.1.3 Instruction Pipelining and Hazards

Instruction pipelining is the process of dividing the execution of instructions into
multiple stages that work in parallel with the aim of achieving a certain speedup
[24]. The usual RISC processor is divided into five stages which include: instruc-
tion fetch, instruction decode, instruction execute, memory access, and write back.

On the cortex-M4 based Nordic SoC nRF52840, there exist only three stages
which include [25]:

• The fetch stage
• The decode stage
• The execute stage

The load use hazard is considered to be a true dependency issue in pipelining.
The load use hazard arises when the load instruction is still pending when an
instruction at a later stage in the pipeline requests the data being loaded. Due to
the simplicity of the Arm Cortex M4 pipeline, the load use hazard is not an issue
as the execution of the load happens in the execute stage and there are no further
stages in the pipeline. Hence, a load instruction will simply just stall the pipeline
until it is done. This information will come in handy when assigning cycles to
instructions.

14 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Figure 3.3: Debug and Trace Module [23]

3.2 Building the Code Profilers

The trace that was being recorded from an initial address to the breaking point
address follows this specific format:

Assembly Instruction 1 - Cycles: X
Assembly Instruction 2
.
.
.
Assembly Instruction N
Assembly Instruction N + 1 - Cycles: Y

such that:

Y − X = 2n where n is set by the user (3.1)

While receiving this trace using JLink SDK, three different profilers were cre-
ated namely the Statistical Profiler, the Deterministic Profiler, and the Linear Pro-
filer. The format above will be used in the explanation of how the profilers were
created.

3.2.1 Statistical Profiler

This code profile sheds importance only on the instructions that have timestamps
associated with them. In other words, this profiler works based on sampling the
trace every 2n cycles.

The steps for creating this profile include:

Chapter 3: Implementation 15

Figure 3.4: DT Profile Flowchart

1. If an instruction has an associated cycle timestamp, save the instruction as
a key in a dictionary with whole 2n cycles assigned to this instruction.

2. If this instruction appears again in the scope of the trace, edit the value field
to accumulate the extra 2n cycles.

3. Lastly, assign a percentage to each instruction based on the following equa-
tion:

Total C ycles Associated to the Inst ruct ion
Total C ycles o f Al l Inst ruct ions in the Dict ionar y

(3.2)

3.2.2 Deterministic Profiler

This type of profiler attempts to assign every assembly instruction the number
of cycles it takes based on the analysis of the Cortex M4 instruction set summary
[26]. The implementation of the deterministic profiler is quite more complex than
the other profiles. Fig. 3.4 shows a flow chart of how the deterministic profile
is generated. Each process in this flow chart will be explained in the following
paragraphs.

Creating Samples Dictionary: A sample here refers to the list of assembly
instructions between two generated cycle timestamps. As per the example format
given above, a sample could be a list that begins from Assembly Instruction 1
to Assemble Instruction N. The total number of cycles that the instructions in a
sample take is 2n. The dictionary will thus have the following format:

Sample 1 [(Address 1, Instruction 1), ... , (Address N, Instruction N)]
Sample 2 [Address N+1, Instruction N+1), ... ,(Address Z, Instruction Z)]

Analyzing the samples: After looking at the Cortex M4 instruction set sum-
mary we realize that the number of cycles could be static or might be varying.
The variations in the manual are represented by "P" and "N". The symbol "P" is
the number of cycles for pipeline refill and could be either one, two, or three
cycles. As an average, two cycles will be used in instructions that have the "P"
symbol associated with them. The second symbol ("N") represents the number of
registers in the register list to be stored or loaded. Other symbols include "B" and
"W" which mean the number of cycles for a barrier operation and the number of
cycles waiting for an event respectively. However, they are not common and are

16 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

thus not taken into account for the scope of this thesis. Another aspect to consider
is the special cases mentioned in the load store timing manual [27]. The main
important cases include:

1. The store instruction STR Rx,[Ry,#imm] always takes 1 cycle.
2. LDR [any] will be piplined when possible. Thus, if an LDR is followed by LDR

or STR, the whole LDR-LDR or LDR-STR pairs will only take three cycles

Assigning the cycles: Taking into account what has been discussed earlier,
a series of if-else statements were formulated to assign the cycles to respective
instructions. Regarding instructions with the "N" symbol, the register list size was
counted using regular expressions.

Redistributing the Cycles: After distributing the cycles across the instruc-
tions in a sample, their sum could either be slightly higher or lower than the 2n

cycles. This is possible due to the assumptions and averages being taken along-
side the real-time behavior effect. Another reason might be due to the fact that
load instructions stall the pipeline until the transaction is completed. Also, stat-
istical analysis shows that the samples that have a deviation from the 2n cycles
have a predominant number of load instructions. Figure 3.5 shows that the num-
ber of LDR instructions is the highest in a sample that encounters this deviation.
This makes it a valid reason or a good approximation if we redistribute the extra
cycles by either assigning more cycles to LDRs if the sum is higher than 2n cycles
or taking cycles from the LDRs if the sum is lower than 2n cycles.

The process of redistribution happens by first getting the load instruction
count and calculating two metrics which are the Cycles-per-Instruction (CPI) and
Remainder-Cycles-per-Instruction (RCPI). These metrics are calculated using the
following equations:

C PI =
�

Ex t ra C ycles
LDR Count

�

(3.3)

RC PI = Ex t ra C ycles % LDR Count (3.4)

Then, each LDR instruction is revisited through looping, and the following
equations are performed:

LDR C ycles = Previous C ycles ± C PI ± RC PI (3.5)

RC PI = RC PI − 1 (3.6)

The plus-minus operation is dependent on whether the LDR instructions’ cycles
are being increased or decreased.

After that, the process is quite straightforward to build the profile by mapping
every instruction with the accumulation of cycles obtained from different samples.
A dictionary was used with the key being the instruction address and the value
being the aggregation of cycles.

Chapter 3: Implementation 17

Figure 3.5: Assembly Instruction Pie Chart in a Sample

3.2.3 Linear Profiler

The linear profiler works in a similar manner as the deterministic profile but dif-
fers from it by the method of assigning cycles to instructions. This method equally
distributes the 2n cycles of a sample across the assembly instructions. The method
of doing this is quite similar to the redistribution process in the deterministic
profiler by calculating two metrics which are the Cycles-per-Instruction (CPI) and
Remainder-Cycles-per-Instruction (RCPI). Here the equations slightly differ.

C PI =
�

2n C ycles
Inst ruct ions Count

�

(3.7)

RC PI = 2n C ycles % Inst ruct ions Count (3.8)

Then, every instruction is visited and assigned cycles based on the following
equations:

Inst ruct ion C ycles = C PI + RC PI (3.9)

RC PI = RC PI − 1 (3.10)

Building the code profile after that requires using a dictionary to store (in-
struction address, accumulation of cycles) pairs.

18 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

3.2.4 Instruction to Function Mapping

After building the three types of code profilers, the output obtained is a list of as-
sembly instructions’ addresses and the aggregation of cycles across the application
program. Thus, we require mapping the instructions to the higher-level functions
in which they are enclosed. To do this, we use a subsystem in Pperf [4]. It works
by creating a cache to a binary file and takes as an input the code profiles created
above and correlates the assembly instructions’ addresses to their functions. This
tool gives the following information about every assembly instruction in the code
profiles:

• Binary file
• Basic Block
• Parent Function
• Line Number
• Assembly Instruction

This tool was quite straightforward to use but a minor edit was performed
which was changing the code in profileLib.py at line 259 from "objdump" to "arm-
linux-gnueabi-objdump" because the binary ELF files obtained from the nRF52840
are elf32-little which the command "objdump" does not support. A sample output
of using this tool is shown below in Listing 3.1

Listing 3.1: Pperf Tool Output

pc;binary;function;basicblock;line;instruction;asm;values
0x0003B492;zephyr.elf;process_queue;f1958;378;pop;pop {r4, r5, r6, pc};7
0x0003B490;zephyr.elf;process_queue;f1958;378;mov;mov r0, r4;1
0x0003B484;zephyr.elf;process_queue;f1958;368;mov;mov r4, r0;1
0x00029816;zephyr.elf;chan_send;f1241;279;add;add sp, #12;1

3.2.5 Code Profile Formatting

The last step to creating understandable code profiles that are easier to analyze
is formatting the output obtained from the Pperf tool. This was done by parsing
the CSV files obtained and sorting the functions and their assembly instruction in
decreasing order of cycle counts. The only information extracted for every instruc-
tion are the address, line number, assembly code, and cycle count. All three code
profiles have the same format but differ only in how the cycles are distributed
among instructions. A sample code profile is shown below in Listing 3.2.

Chapter 3: Implementation 19

Listing 3.2: Sample Code Profile
Function: net_buf_simple_tailroom Total Cycles: 81
+--------------------+--------------+---------------------------+---------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+---------------------------+---------------------+
0x0003CEFE	1251	ldrh r3, [r0, #4]	16
0x0003CF06	1251	ldr r3, [r0, #0]	15
0x0003CF02	1251	ldr r1, [r0, #8]	15
0x0003CF00	1251	ldrh r2, [r0, #6]	15
0x0003CF0C	1252	bx lr	8
0x0003CF0A	1252	subs r0, r2, r3	4
0x0003CF08	1251	subs r3, r3, r1	4
0x0003CF04	1251	subs r2, r2, r3	4
+--------------------+--------------+---------------------------+---------------------+

Function: net_buf_simple_headroom Total Cycles: 12
+--------------------+--------------+--------------------------+---------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+--------------------------+---------------------+
0x0003CEF8	1246	ldr r0, [r0, #8]	5
0x0003CEF6	1246	ldr r2, [r0, #0]	4
0x0003CEFC	1247	bx lr	2
0x0003CEFA	1247	subs r0, r2, r0	1
+--------------------+--------------+--------------------------+---------------------+

Chapter 4

Experimental Setup

This chapter focuses on putting the designed code profilers in action first to com-
pare their performances and second to give an insight into the running applica-
tion programs. Before attaching the code profilers to the Bluetooth-related code,
we analyze their behavior by attaching them to some samples of the MachSuite
benchmark [28]. Then, we trace the Bluetooth-related code that is found in the
Throughput Sample offered by Nordic Semiconductor [29].

4.1 MachSuite

MachSuite is a benchmark of 19 algorithms that imitate low-level kernels for hard-
ware acceleration. This benchmark was designed to enable standardization and
created an easier path to access the research of hardware accelerators [28]. For
the sake of this thesis, we decided to use two algorithms from this benchmark
to test our code profilers and analyze their behavior in tracing instructions and
assigning CPU cycles to them. The main reason for using these algorithms from
MachSuite is their simplicity and ease of analysis even without requiring a code
profile. Thus, the process of tracing with the implemented code profilers becomes
quite verifiable. However, the main problem was that these benchmarks took a
file-based input. To be able to do this on the nRF52840 Nordic development kit,
either the algorithms should be greatly edited to make it compatible with the spe-
cial file system on the nRF52840 or the data should be transferred from input files
into variables in the code programs. The latter was chosen mainly due to simpli-
city and the main goal was not to optimize the algorithms in the Machsuite but to
test the implemented code profilers. The two algorithms include FFT-strided and
GEMM-blocked.

4.1.1 FFT Strided

This algorithm calculates the fast Fourier transform in an iterative manner. The
reason for choosing this algorithm is because of the strided accesses that are found

21

22 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

in the implementation and this helps with further analyzing the load store beha-
vior.

4.1.2 GEMM Blocked

This algorithm is a matrix multiply implementation. The importance of using this
algorithm lies in seeing memory locality in action alongside some arithmetic op-
erations in progress. The algorithm uses a blocking factor of 8 and is inspired by
the proposal of the algorithm in [30]

4.2 Throughput Sample

The throughput sample, as the name suggests, is a sample application developed
by Nordic Semiconductor to test the Bluetooth Low Energy throughput perform-
ance. It makes use of the GATT Throughput service. The application shows the
interaction and performance shift of the throughput as a function of the following
connection parameters

• ATT_MTU: This represents the maximum transmission unit. Increasing this
will allow for bigger payloads and hence better throughput.
• Data Length: Increasing this has a similar effect as increasing the ATT_MTU

as it allows for more data to be transferred in one packet
• Connection Interval: Increasing this metric may increase the throughput as

more packets can be sent in one interval. However, if a packet is lost, the
re-transmission becomes longer.
• Physical Layer (PHY) Data Rate: Increasing this value will make the trans-

missions faster.

Fig. 4.1 shows a flowchart of the throughput sample. The process starts with
initialization and the user decides the roles of the two Nordic boards (nRF52840)
participating in this throughput sample. After the roles are decided, a connection
happens and the devices are paired. If the role of a device is peripheral, then a
server is created and the peripheral device waits for the central device to initiate
contact. If the device is a central device, a server discovery process starts, and
then the MTU parameter is exchanged with the peripheral device. Afterwards, the
user is given the choice to edit the connection parameters or run the throughput
sample. Once the user decides to run the sample, the data is transferred from
the central device to the peripheral device and then read back again from the
peripheral device. Finally, the statistics in terms of timing and the total amount of
data transferred are displayed.

Although aimed to experiment and measure the throughput of BLE, this ap-
plication is a good sample to visit the Bluetooth stack including the host and con-
troller. However, this sample has two main issues to deal with before tracing it
using the implemented code profilers.

Chapter 4: Experimental Setup 23

Figure 4.1: Throughput Sample Flowchart

1. Print statements: Print statements trigger a series of functions in the back-
ground which would be of no benefit to the overall profile. The throughput
sample was thus revisited and the printing statements were eliminated from
the code program.

2. Automation: The throughput sample depends a lot on user input such as
setting the roles to central or peripheral. Another example would be the
user choosing whether to change the parameters or run the program. The
problem with user input is that tracing becomes much harder as the pro-
gram is halted until receiving feedback from the user. Thus, the process was
automated to choose the roles and run the program without changing the
connection parameters as the important thing here is to see the Bluetooth
stack in action and try to optimize that.

Chapter 5

Results

The results section can be mainly divided into two sections: the MachSuite al-
gorithm profiles and the Bluetooth stack profile.

5.1 MachSuite Algorithms Profile

After tracing the two programs, the FFT benchmark and the GEMM benchmark,
and obtaining the code profiles, the assigning mechanism of cycles to instructions
was further analyzed to compare the performances of the code profilers. Mainly,
the instructions were divided into three types:

1. Data Processing Instructions: These include arithmetic, logic, and other data
manipulation instructions.

2. Data Movement Instructions: These mainly include moving data from or to
the main memory. In other words, they are the load and store instructions.

3. Control Flow Instructions: These include the instructions that decide the
control flow of the program such as branching instructions.

Figures 5.1 and 5.2 show the distribution of cycles in the different types of
profiles across the different types of instructions. In the statistical (ST) profile of
the FFT benchmark, 61% of the cycles were attributed to the data processing in-
structions, 24% of the cycles were attributed to the data movement instructions,
and 15% of the cycles were attributed to the flow control instructions. The de-
terministic (DT) profile follows a quite similar trend with 54% of the cycles given
to data processing instructions, 27% of the cycles given to data movement in-
structions, and 19% of the cycles given to the flow control instructions. However,
the greatest change is noticed in the linear (LI) profile where data processing in-
structions received more than 75% in cycle attribution, and the data movement
instruction received less cycle attribution (9%) than that of the flow control in-
structions (14%). As for the GEMM benchmark, the cycle attribution distribution
followed the same trend as the FFT benchmark with minor changes in percent-
ages across different types of instructions. The respective percentages are shown
in Figure 5.2.

25

26 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Figure 5.1: Cycle Distribution across Instruction Types in the FFT Benchmark

After inspecting the codes of both GEMM and FFT, we realize that they in-
clude a lot of computation instructions which explains why both attribute the
largest amount of cycles to data processing instructions irrespective of the type of
profiler. This also explains the similarity of Figures 5.1 and 5.2. The statistical pro-
filer is also quite accurate here due to the nature of the algorithms being profiled
which encounter a lot of iterations. Thus, statistically speaking, we are covering
the program in terms of tracing while giving importance or bias to instructions that
take more time to execute in getting attributed more cycles. The linear profiler,
on the other hand, performs the worst because it equally distributes the cycles
among instructions without taking into account that data movement or flow con-
trol instructions take more time to execute than data processing instructions. The
deterministic profiler is considered to be the middle ground between both, not
requiring a program to be iterative in nature to be accurate nor evenly distribut-
ing cycles among different types of instructions. It assigns the cycles based on an
informed decision and informed approximations. Additionally, the deterministic
profiler is the closest among the implemented profilers in being time proportional.

5.2 The Bluetooth Stack Profile

After running the trace and building the code profiles from the Bluetooth-based
sample, the three code profiles show an interesting result with the memcpy func-
tion taking relatively the most number of cycles. Additionally, the memcpy func-
tion which is in the "string.c" file from the Zephyr RTOS implementation is directly
proportional to the length of the input buffer of the data that will be transferred
through Bluetooth. In the original throughput sample implementation, the size of

Chapter 5: Results 27

Figure 5.2: Cycle Distribution across Instruction Types in the GEMM Benchmark

the input buffer was 495. Thus, the code profiles of the memcpy function with a
495 input size are presented below in Listings 5.1, 5.2, and 5.3 for further analysis.

Listing 5.1: Statistical Profile - While Loop

Function: memcpy Total Cycles: 0.650489137339601
+--------------------+--------------+-------------------------------------+----------------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+-------------------------------------+----------------------------+
0x0003A2E6	338	ldrb.w r4, [r1], #1	0.2601956549358404
0x0003A2EE	339	b.n 0003a2e0 <memcpy+0x6>	0.2601956549358404
0x0003A2E2	337	bne.n 0003a2e6 <memcpy+0xc>	0.1300978274679202
+--------------------+--------------+-------------------------------------+----------------------------+

Listing 5.2: Deterministic Profile - While Loop
Function: memcpy Total Cycles: 4985
+--------------------+--------------+-------------------------------------+---------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+-------------------------------------+---------------------+
0x0003A2E6	338	ldrb.w r4, [r1], #1	2002
0x0003A2E2	337	bne.n 0003a2e6 <memcpy+0xc>	992
0x0003A2EE	339	b.n 0003a2e0 <memcpy+0x6>	990
0x0003A2E0	337	cmp r1, r2	496
0x0003A2EA	338	strb.w r4, [r3, #1]!	495
0x0003A2E4	349	pop {r4, pc}	5
0x0003A2DA	299	push {r4, lr}	3
0x0003A2DE	299	add r2, r1	1
0x0003A2DC	299	subs r3, r0, #1	1
+--------------------+--------------+-------------------------------------+---------------------+

28 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Listing 5.3: Linear Profile - While Loop

Function: memcpy Total Cycles: 4990
+--------------------+--------------+-------------------------------------+---------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+-------------------------------------+---------------------+
0x0003A2E0	337	cmp r1, r2	1000
0x0003A2E2	337	bne.n 0003a2e6 <memcpy+0xc>	998
0x0003A2EA	338	strb.w r4, [r3, #1]!	996
0x0003A2EE	339	b.n 0003a2e0 <memcpy+0x6>	995
0x0003A2E6	338	ldrb.w r4, [r1], #1	993
0x0003A2E4	349	pop {r4, pc}	2
0x0003A2DE	299	add r2, r1	2
0x0003A2DC	299	subs r3, r0, #1	2
0x0003A2DA	299	push {r4, lr}	2
+--------------------+--------------+-------------------------------------+---------------------+

After inspecting the code, we realize that the memcpy function has only one
while loop and is shown below in Listing 5.4:

Listing 5.4: While Loop memcpy Implementation

while (n > 0) {
*(d_byte++) = *(s_byte++);
n--;

}

After changing the the code to a for loop and running the code profilers again,
it becomes evident that the memcpy function takes less number of cycles and the
edited code is shown in Listing 5.5:

Listing 5.5: For Loop memcpy Implementation

for (int i = n; i > 0; i--)
{

*(d_byte++) = *(s_byte++);
}

The code profiles for the for loop are also shown in Listings 5.6, 5.7 and 5.8.

Listing 5.6: Statistical Profile - For Loop

Function: memcpy Total Cycles: 0.5890982309794333
+--------------------+--------------+-------------------------------------+------------------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+-------------------------------------+------------------------------+
0x0003A2E2	343	cmp r4, #0	0.33136775492593123
0x0003A2E4	343	bgt.n 0003a2e8 <memcpy+0xe>	0.2209118366172875
0x0003A2DA	299	push {r4, lr}	0.036818639436214586
+--------------------+--------------+-------------------------------------+------------------------------+

Listing 5.7: Linear Profile - For Loop

Function: memcpy Total Cycles: 4010
+--------------------+--------------+-------------------------------------+---------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+-------------------------------------+---------------------+
0x0003A2E0	343	subs r4, r2, r1	673
0x0003A2F0	343	b.n 0003a2e0 <memcpy+0x6>	672
0x0003A2EC	345	strb.w r4, [r3, #1]!	666
0x0003A2E2	343	cmp r4, #0	665
0x0003A2E8	345	ldrb.w r4, [r1], #1	665
0x0003A2E4	343	bgt.n 0003a2e8 <memcpy+0xe>	664
0x0003A2E6	349	pop {r4, pc}	2
0x0003A2DE	343	add r2, r1	1
0x0003A2DC	299	subs r3, r0, #1	1
0x0003A2DA	299	push {r4, lr}	1
+--------------------+--------------+-------------------------------------+---------------------+

Chapter 5: Results 29

Figure 5.3: For Loop v.s While Loop Graph - Statistical Profile

Listing 5.8: Deterministic Profile - For Loop

Function: memcpy Total Cycles: 4003
+--------------------+--------------+-------------------------------------+---------------------+
| Address | Line | Assembly | Cycle Count |
+--------------------+--------------+-------------------------------------+---------------------+
0x0003A2E4	343	bgt.n 0003a2e8 <memcpy+0xe>	992
0x0003A2F0	343	b.n 0003a2e0 <memcpy+0x6>	990
0x0003A2E8	345	ldrb.w r4, [r1], #1	524
0x0003A2E2	343	cmp r4, #0	496
0x0003A2E0	343	subs r4, r2, r1	496
0x0003A2EC	345	strb.w r4, [r3, #1]!	495
0x0003A2E6	349	pop {r4, pc}	5
0x0003A2DA	299	push {r4, lr}	3
0x0003A2DE	343	add r2, r1	1
0x0003A2DC	299	subs r3, r0, #1	1
+--------------------+--------------+-------------------------------------+---------------------+

Thus, a comparative study between both types of loops was conducted. After
generating the code profiles while swiping the value of the input buffer in incre-
ments of 50s for both while and for loops, Tables A.1, A.2, A.3 and Figures 5.3,
5.4, 5.5 were generated.

Figure 5.3 shows the graph of the statistical profile cycle attribution to the
memcpy function as a function of the size of the input buffer. For input sizes less
than 275, the while loop executes in fewer cycles than the for loop. For values
greater than 275, the performance of the for loop becomes slightly better or in
rare cases performs at the same degree (input size = 300). Both the linear and
the deterministic profiles in Figures 5.4 and 5.5 show a more rigid differentiation
in performance as the for loop performs better for input sizes greater than 275
while the while loop performs better for input sizes less than 275. The exact cycle
attribution in the case of deterministic or linear profiles or percentage in the case
of the statistical profile is found in Tables A.1, A.2, A.3.

From the code profiles shown above, we realize that the linear and determin-
istic approaches attribute the memcpy function an almost equal number of cycles in
spite of assigning the individual assembly instructions different number of cycles.
Another interesting finding that is in agreement with the Machsuite results is that

30 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Figure 5.4: For Loop v.s While Loop Graph - Deterministic Profile

Figure 5.5: For Loop v.s While Loop Graph - Linear Profile

for both the for and while loop cases, the deterministic profiles give greater cycle
attribution to data movement instructions and the linear profiles give equal im-
portance to different instruction types when it comes to cycle attribution. The
statistical profiles, however, are quite more random in selecting the instructions
sampled and attributing cycles to them. This could be due to the insufficient num-
ber of iterations needed to be able to track the cycles and instructions in a more
accurate manner.

Thus, from the information analyzed here, a proposed straightforward optim-
ization could be simply checking the input buffer size and deciding whether to
use a while or for loop. The sample code is shown in Listing 5.9.

Chapter 5: Results 31

Figure 5.6: Optimized Code Cycle Attribution

Listing 5.9: Proposed Optimized Code

if (n < 275) {
while (n > 0) {

*(d_byte++) = *(s_byte++);
n--;

}
}
else
{
for (int i = n; i > 0; i--)
{

*(d_byte++) = *(s_byte++);
}

}

Taking the deterministic profiler into account as the most accurate based on
the findings of this section, the deterministic profile graph of the optimized code
in relation to the input buffer size is shown in Figure 5.6. The reason as to why the
for loop performs better than the while loop for higher iterations could be due to
many reasons. It may be that in the for loop, the number of iterations is known to
the compiler and thus compiler optimizations may have been performed. It could
also be that the for loop has lower overhead than a while loop and thus performs
better in such scenarios.

Chapter 6

Conclusion

6.1 Conclusion

In this master thesis, we were motivated to achieve energy efficiency on SoCs
by providing the necessary tools to detect inefficiencies. Upon looking at profiling
techniques, tracing was chosen as the base for our code profiles due to its accuracy
and small overhead. We provided an explanation of the mechanism of tracing and
also implemented three different types of code profilers: The Statistical Profiler,
The Deterministic Profiler, and The Linear Profiler.

We then compared the performances of these profilers by testing them on two
Machsuite benchmark algorithms [28]. Through the analysis of the profiles gener-
ated, we realized that the deterministic profiler performed the best and the closest
to being time proportional due to informed approximations in assigning cycles to
instructions while the linear profiler was the worst due to equal assignment of
cycles to instructions irrespective of their types. The statistical profiler was found
to be accurate in the presence of an iterative application.

These profilers were then used on a case study, the Nordic Semiconductor’s
implementation of Bluetooth stack [29]. An inefficiency was found and confirmed
by all three code profilers. We then edited the snippet of code that was responsible
for this inefficiency and achieved a minor speedup.

6.2 Limitations

The main limitations of this master thesis were the following:

1. Time factor: This master thesis was undergone in almost four months and
a half. A steep learning curve was needed and the outcomes of this thesis
could have been better with more time. However, all the tasks were met in
time due to practical time management.

2. Absence of a golden model: A golden model is a code profile that is time pro-
portional and attribute accurately the cycles to instructions. The absence of
the golden model made it slightly more difficult to analyze the performance

33

34 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

of the code profilers. However, this limitation was overcome by using easily
understandable programs as input to the code profilers.

6.3 Future Work

The list of tasks that can be considered as future work includes the following:

1. A more thorough study when it comes to the approximations and estim-
ations taken for the deterministic profiler. Unit testing could be a good
strategy to determine the accuracy of the assumptions taken.

2. A more thorough analysis as to why the for loop performs better than the
while loop in the case study. These include testing different compiler flags
and isolating the memcpy function from the Bluetooth stack.

3. More case studies could be included to both verify the performance of the
code profilers designed and to improve any given inefficiencies in the given
case studies.

Bibliography

[1] P. Sancheti, A Holistic Approach to Energy-Efficient System-on-Chip, https:
//www.synopsys.com/content/dam/synopsys/solutions/documents/
a- holistic- approach- to- energy- efficient- soc- design- wp.pdf,
[Accessed 30-08-2023].

[2] Janani, What is Code Profiling? – A Detailed Explanation, https://www.
atatus.com/blog/what-is-code-profiling-a-detailed-explanation/,
[Accessed 13-08-2023].

[3] GitHub - Gperftools, https://github.com/gperftools/gperftools/tree/
master, [Accessed 16-08-2023].

[4] GitHub - EECS-NTNU/PPperf, https://github.com/eecs-ntnu/pperf,
[Accessed 16-08-2023].

[5] Linux Perf, https://www.swift.org/server/guides/linux-perf.html,
[Accessed 16-08-2023].

[6] A. Djupdal, B. Gottschall, F. Ghasemi and M. Jahre, ‘Lynsyn and Lynsyn-
Lite: The STHEM Power Measurement Units,’ in Towards Ubiquitous Low-
power Image Processing Platforms, M. Jahre, D. Göhringer and P. Millet, Eds.
Springer International Publishing, 2021.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi and K. Hazelwood, ‘Pin: Building Customized Program Ana-
lysis Tools with Dynamic Instrumentation,’ in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Association for Computing Machinery, 2005.

[8] D. Bruening and D. Lane, ‘Efficient, transparent, and comprehensive runtime
code manipulation,’ 2004.

[9] Clang 7 Documentation, https://releases.llvm.org/7.1.0/tools/
clang/docs/UsersManual.html, [Accessed 16-08-2023].

[10] Z. Ning and F. Zhang, ‘Hardware-Assisted Transparent Tracing and De-
bugging on ARM,’ IEEE Transactions on Information Forensics and Security,
2019.

[11] T. Staff, Telink | The Evolution of Bluetooth® to Becoming a Low-Power Pro-
tocol, https://www.telink-semi.com/evolution-of-bluetooth-to-
becoming-a-low-power-protocol/, [Accessed 12-08-2023].

35

https://www.synopsys.com/content/dam/synopsys/solutions/documents/a-holistic-approach-to-energy-efficient-soc-design-wp.pdf
https://www.synopsys.com/content/dam/synopsys/solutions/documents/a-holistic-approach-to-energy-efficient-soc-design-wp.pdf
https://www.synopsys.com/content/dam/synopsys/solutions/documents/a-holistic-approach-to-energy-efficient-soc-design-wp.pdf
https://www.atatus.com/blog/what-is-code-profiling-a-detailed-explanation/
https://www.atatus.com/blog/what-is-code-profiling-a-detailed-explanation/
https://github.com/gperftools/gperftools/tree/master
https://github.com/gperftools/gperftools/tree/master
https://github.com/eecs-ntnu/pperf
https://www.swift.org/server/guides/linux-perf.html
https://releases.llvm.org/7.1.0/tools/clang/docs/UsersManual.html
https://releases.llvm.org/7.1.0/tools/clang/docs/UsersManual.html
https://www.telink-semi.com/evolution-of-bluetooth-to-becoming-a-low-power-protocol/
https://www.telink-semi.com/evolution-of-bluetooth-to-becoming-a-low-power-protocol/

36 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

[12] Bluetooth Low Energy - Nordic Semiconductor, https://www.nordicsemi.
com/Products/Bluetooth-Low-Energy, [Accessed 21-08-2023].

[13] SEGGER J-Trace Streaming Trace Probes, https://www.segger.com/products/
debug-probes/j-trace/, [Accessed 13-08-2023].

[14] Setting Up Trace with Ozone - SEGGER Wiki, https://wiki.segger.com/
Setting_Up_Trace_with_Ozone, [Accessed 19-08-2023].

[15] Intel® 64 and IA-32 Architectures Software Developer Manuals, https://
www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html, [Accessed 31-08-2023].

[16] P. J. Drongowsk, ‘Instruction-Based Sampling: A New Performance Analysis
Technique for AMD Family 10th Processor,’ AMD, 2007.

[17] B. Gottschall, L. Eeckhout and M. Jahre, ‘TIP: Time-Proportional Instruc-
tion Profiling,’ in Proceedings of the International Symposium on Computer
Architecture (ISCA), Association for Computing Machinery, 2021.

[18] B. Gottschall, L. Eeckhout and M. Jahre, ‘TEA: Time-Proportional Event
Analysis,’ in Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), Association for Computing Machinery, 2023.

[19] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino and D. Formica, ‘Perform-
ance Evaluation of Bluetooth Low Energy: A Systematic Review,’ Sensors,
2017.

[20] NRF52840 - Nordic Semiconductor, https://www.nordicsemi.com/products/
nrf52840, [Accessed 30-08-2023].

[21] Introduction: Zephyr Project Documentation, https://docs.zephyrproject.
org/latest/introduction/index.html, [Accessed 30-08-2023].

[22] SEGGER J-Link SDK, https://www.segger.com/products/debug-probes/
j-link/technology/j-link-sdk/, [Accessed 23-08-2023].

[23] Nordic Semiconductor Infocenter, https://infocenter.nordicsemi.com/
index.jsp, [Accessed 23-08-2023].

[24] Instruction Level Parallelism - GeeksforGeeks, https://www.geeksforgeeks.
org/instruction-level-parallelism/?ref=lbp, [Accessed 20-08-2023].

[25] Cortex-M4 - ARM, https://developer.arm.com/Processors/Cortex-M4,
[Accessed 20-08-2023].

[26] Instruction Set Summary - ARM, https://developer.arm.com/documentation/
ddi0439/b/Programmers-Model/Instruction-set-summary/Cortex-M4-
instructions, [Accessed 25-08-2023].

[27] Load Store Timings - ARM, https://developer.arm.com/documentation/
ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-
timings, [Accessed 25-08-2023].

https://www.nordicsemi.com/Products/Bluetooth-Low-Energy
https://www.nordicsemi.com/Products/Bluetooth-Low-Energy
https://www.segger.com/products/debug-probes/j-trace/
https://www.segger.com/products/debug-probes/j-trace/
https://wiki.segger.com/Setting_Up_Trace_with_Ozone
https://wiki.segger.com/Setting_Up_Trace_with_Ozone
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.nordicsemi.com/products/nrf52840
https://www.nordicsemi.com/products/nrf52840
https://docs.zephyrproject.org/latest/introduction/index.html
https://docs.zephyrproject.org/latest/introduction/index.html
https://www.segger.com/products/debug-probes/j-link/technology/j-link-sdk/
https://www.segger.com/products/debug-probes/j-link/technology/j-link-sdk/
https://infocenter.nordicsemi.com/index.jsp
https://infocenter.nordicsemi.com/index.jsp
https://www.geeksforgeeks.org/instruction-level-parallelism/?ref=lbp
https://www.geeksforgeeks.org/instruction-level-parallelism/?ref=lbp
https://developer.arm.com/Processors/Cortex-M4
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Cortex-M4-instructions
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Cortex-M4-instructions
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Cortex-M4-instructions
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings
https://developer.arm.com/documentation/ddi0439/b/Programmers-Model/Instruction-set-summary/Load-store-timings

Bibliography 37

[28] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei and D. Brooks, ‘MachSuite: Bench-
marks for Accelerator Design and Customized Architectures,’ in 2014 IEEE
International Symposium on Workload Characterization (IISWC), 2014.

[29] Bluetooth: Throughputs; nRF Connect SDK 2.4.99 Documentation, https:
//developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/
samples/bluetooth/throughput/README.html, [Accessed 27-08-2023].

[30] M. D. Lam, E. E. Rothberg and M. E. Wolf, ‘The Cache Performance and
Optimizations of Blocked Algorithms,’ in Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, Association for Computing Machinery, 1991.

https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/samples/bluetooth/throughput/README.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/samples/bluetooth/throughput/README.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/nrf/samples/bluetooth/throughput/README.html

Appendix A

Appendix

Input Buffer Size While Loop (Cycles) For Loop (Cycles)
100 0.209 0.321
150 0.246 0.397
200 0.33 0.452
250 0.359 0.5
275 0.5 0.452
300 0.468 0.482
350 0.513 0.476
400 0.594 0.493
450 0.575 0.538
495 0.65 0.589

Table A.1: Statistical Profile - For Loop v.s While Loop

Input Buffer Size While Loop (Cycles) For Loop (Cycles)
100 824 1105
150 1237 1677
200 1632 2225
250 2019 2768
275 2757 2262
300 3026 2460
350 3523 2861
400 4023 3240
450 4498 3644
495 4985 4003

Table A.2: Deterministic Profile - For Loop v.s While Loop

39

40 C. Badr: Towards Time-Proportional Profiling of Low-Power System-on-Chips

Input Buffer Size While Loop (Cycles) For Loop (Cycles)
100 844 1124
150 1233 1692
200 1656 2256
250 2031 2792
275 2778 2294
300 3023 2464
350 3512 2900
400 4024 3259
450 4502 3686
495 4990 4010

Table A.3: Linear Profile - For Loop v.s While Loop

	Assignment Text
	Abstract
	Acknowledgments
	Contents
	Figures
	Tables
	Listings
	Acronyms
	Introduction
	Assignment Interpretation
	Contributions
	Thesis Organization

	Background Information
	Performance Analysis Approaches
	Statistical Sampling
	Binary Instrumentation
	Tracing

	Time Proportionality in Profiling
	Bluetooth Host and Controller
	nRF52840 SoC

	Implementation
	Tracing nRF52840 with JTrace
	Debug and Trace Block
	JLink SDK
	Instruction Pipelining and Hazards

	Building the Code Profilers
	Statistical Profiler
	Deterministic Profiler
	Linear Profiler
	Instruction to Function Mapping
	Code Profile Formatting

	Experimental Setup
	MachSuite
	FFT Strided
	GEMM Blocked

	Throughput Sample

	Results
	MachSuite Algorithms Profile
	The Bluetooth Stack Profile

	Conclusion
	Conclusion
	Limitations
	Future Work

	Bibliography
	Appendix

