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ABSTRACT

In the global energy market, there is an increasing pressure on industries to digi-
tise and develop efficient methods of simulating and controlling plants and com-
ponents, one of the many reasons being the prediction that energy consumption
will increase by 50% by 2050.
To this end, one of the most cutting-edge technologies to emerge in recent years
is the Digital Twin. This thesis describes the modelling and development project
of a digital twin for gas turbines owned by Equinor, used to produce the energy
required to operate offshore plants.
The aim of the project is therefore to create a digital twin in Python to simulate
and predict the behaviour of two gas turbines for offshore power generation, with
the aim of implementing this model for predictive maintenance purposes. In the
first phase of the project, the code for the computational model of the compo-
nents of a gas turbine is developed using object-oriented programming in Python,
designing specific methods and functions for the detailed description of the ther-
modynamic behaviour of the compressor, combustion chamber, turbine and air
and fuel flows, using the NeqSim library for the determination of fluid properties.
Subsequently, the computational model is validated through a comparative anal-
ysis with the Aspen HYSYS® software, developing a single-shaft gas turbine case
study, under different operating conditions.
Following the validation of the prediction and calculation methods for a generic
gas turbine, the digital twin modeling is carried out under design conditions for
the two real turbines under study: GE LM2500 and GE LM6000, through the use
of Thermoflow©, which provides the main inputs to build the model in Python and
the outputs to validate the digital twin itself, and GasTurb© to determine the poly-
tropic and isoentropic efficiencies of the components in design conditions. Next,
a model for the off-design behaviour at varying ambient temperature of the GE
LM2500 turbine is developed, using the off-design model outlined in Thermoflow©

as a reference.
Finally, since one of the most important and significant applications of digital
twins is predictive maintenance, a brief analysis of the indicator for detecting the
degradation of gas turbine components is presented, with an initial and illustrative
comparison of the results with field data, provided by Equinor.
The results show that the digital twin developed in Python under design con-
ditions for both turbines, and under off-design conditions for the GE LM2500
turbine, produce outputs that deviate from Thermoflow© by less than 1%, while
also providing detailed data for individual components, such as temperatures and
power required and generated at each turbine stage, fluid composition, etc.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

There is an increasing pressure on global energy industries to develop efficient op-
erating and plant control methods to reduce the impact of fluctuating conditions
such as variable weather, fuel changes or component degradation [1].
The need for digitisation of the energy and capital intensive sector can be found in
several reasons, including the increasing energy consumption, which is projected
to increment by 50% before 2050 [2]. For these purposes, one of the most cutting-
edge technologies that has been developing more and more in recent years, is the
Digital Twin.

Digital twin is defined by the CIRP Encyclopedia of Production Engineering [3]
as a "digital representation of a machine, device, service, object, asset or prod-
uct–service system that tracks the characteristics, properties, conditions, and be-
haviors of the system by means of models, information, and data". In particular, a
Digital Twin for power plants in the energy industry can be defined as a combined
physics based and analytical methods used to model the individual components
and the plant as a whole: these models can be applied to new and existing plants
to simulate and predict component and system behaviour under different operat-
ing conditions. The output of Digital Twin, combined with other prediction and
control tools, can thus improve the power plant performance, reliability, availabil-
ity, maintainability and flexible operation, and be an important tool to support
real time decisions [1].

In particular, one of the most significant uses of the digital twin is in relation
to maintenance and particularly predictive maintenance with the advent of In-
dustry 4.0. Predictive maintenance can maximise the reliability and the machine
in-service time by monitoring the actual condition, and predicting the future be-
haviour; in this sense, condition monitoring (CM) has played an increasingly sig-
nificant role in supporting predictive maintenance by estimating the current and
future condition of the monitored machine [4].

Gas turbines are an element in the energy sector, as they are essential for power
generation in various sectors, including industry; however, long-term service can

1



2 CHAPTER 1. INTRODUCTION

easily result in performance faults, such as fouling, erosion, corrosion, abrasion
and damage, leading to economic losses and potential safety hazard [5]. The
implementation of a digital twin for the purpose of predictive maintenance and
condition monitoring for gas turbines would therefore lead to an improvement in
operating conditions as well as a reduction in safety and economic risk, reasons
that paved the way for the development of the project described in this work.

1.2 Project description

In this section, we delve into the core of this research endeavor, offering a detailed
narrative that encompasses the research question, methodology and the overarch-
ing relevance of this study. The first part of this paper deals with an overview
of the theoretical background, which is fundamental for the development of the
model: an initial overview of the thermodynamics of gas turbines is followed by
a detailed description of the two real turbines under study and a general analysis
of the state of the art in the application of Condition Monitoring in the energy
sector and, in particular, in the implementation of Digital Twin models for gas
turbines.

Next, an explanation of the methods and models implemented for the design of
the Digital Twin follows, starting with a detailed description of the class-based
code in Python for defining the calculation functions for the main components of
the turbine: compressor, turbine, combustion chamber and streams. In order to
evaluate the quality of the code designed in Python, a case study of a single-shaft
gas turbine is implemented, and the results in terms of temperature, power, effi-
ciency, and mole fractions of components are compared with the same case study
developed in Aspen HYSYS®, a process simulation software known in the energy
industry, and used for optimization in design and operations.

After designing and validating the source code for thermodynamic modelling of
a generic gas turbine, the digital twin for the two real turbines under study is
carried out: the GE (General Electric) LM2500 and the GE LM6000, through
the use of Thermoflow© and GasTurb© software. For the digital twin at design
conditions, some data from GT PRO, software included in Thermoflow© which
provides design points calculations for combined plants and gas turbines, are used
as input values, while others are used to check the output from the Python code.
In particular, the data taken as input are: inlet air flow rate, pressure drops at the
intake and at the exhaust, fuel flow rate, air losses, nominal compressor pressure
ratio and ambient temperature; on the other hand, the data taken as reference
values for comparison are: exhaust gas temperature, power, heat rate and gas
turbine efficiency.

To complete the modelling of the design point, it is furthermore necessary to use
GasTurb© for the identification of the isentropic and polytropic efficiencies of the
gas turbine components (compressor and turbine), as these are crucial elements
not only for the design of the model itself, but also for the evaluation of the degra-
dation for condition monitoring and predictive maintenance purposes: to do this,



CHAPTER 1. INTRODUCTION 3

an iterative procedure is implemented which, by identifying the values of exhaust
gas temperature, power, etc. as targets, finds out the values of polytropic and
isentropic efficiencies as variables. These values are used as inputs in the Python
model together with the inputs from Thermoflow©.

Through the simulation of the off-design model by changing the ambient tempera-
tures in GT MASTER, a further extension of the Thermoflow© software, a digital
off-design model is engineered for the gas turbine GE LM2500, since predicting
the behaviour of the gas turbine under operating conditions different than design
conditions is important for the design of a digital twin as close to reality as possi-
ble. As it is done for the design model, the off-design model of the GE LM2500 gas
turbine takes as inputs some values from Thermoflow©, including air flow rate, fuel
flow rate, pressure losses at the intake and at the exhaust, air losses through the
compressor, while some others are used to compare the results with Python, such
as power, gas turbine efficiency, heat rate and exhaust gas temperature. Finally, a
brief and illustrative analysis of the field data provided by Equinor is presented in
order to sketch an initial predictive maintenance test by using indices to identify
component degradation.
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CHAPTER

TWO

THEORETICAL BACKGROUND

The main objective of this chapter is to illustrate the thermodynamic models
and theoretical principles underlying the construction of the Digital Twin. The
first part of the chapter will discuss the thermodynamic (and partly mechanical)
models describing the behaviour of gas turbines. The second part of the chapter
will provide a description of the reference turbines under study: General Electric
LM6000 and General Electric LM2500. Finally, a discussion will be given on
condition monitoring in the context of gas turbines and how it could be applied
in the specific case study, the main use for which the Digital Twin is designed.

2.1 Gas turbine thermodynamics
Before getting to the heart of the modeling of the Digital Twin, it is important
to discuss the thermodynamic principles underlying a gas turbine, which can be a
very complex system. The thermodynamic cycle describing a gas turbine in ideal
conditions is the ideal Brayton cycle, depicted in Figure 2.1.1. The four operations
describing the Brayton cycle are:

• Operation 1-2: isentropic compression of air from a lower pressure P1 to an
upper pressure P2, with a rise of the temperature from T1 to T2.

• Operation 2-3: heat flowing into the system, leading to an increase of the
volume from V2 to V3 and an increase of the temperature from T2 to T3,
whilst the pressure remains constant.

• Operation 3-4: isentropic expansion of air from P3 to P4, leading to a de-
crease of the temperature from T3 to T4.

• Operation 4-1 heat flowing out of the system, leading to a reduction in
temperature and volume, from V4 to V1 and from T4 to T1.

5



6 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1.1: Ideal Brayton cycle: p-V diagram (left) and T-s diagram (right)

Compression and expansion processes are reversible and adiabatic, i.e. isentropic
[6], which means that:

• Reversible: it does not leave traces of energy in the surroundings, so that
it can be carried out with infinitesimally small changes and restored to the
original states.

• Adiabatic: there is no heat transfer between the system and the surround-
ings.

• Isentropic: there is no change in entropy, which implies that is reversible
and adiabatic.

The equations used for describing the isentropic process are [7]:

T2

T1

=

(
p2
p1

) γ−1
γ

(2.1)

and similarly:

T3

T4

=

(
p3
p4

) γ−1
γ

(2.2)

where γ is equal to:

γ =
Cp

Cv

(2.3)

Referring to the steady flow energy equation [6]:

Q = (h2 − h1) +
1

2

(
C2

2 − C2
1

)
+W (2.4)

neglecting the change in kinetic energy and assuming constant specific heat ca-
pacity, the heat and work transfer for unit mass flow can be calculated as follows:

W12 = − (h2 − h1) = −cp (T2 − T1) (2.5)
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Q23 = (h3 − h2) = cp (T3 − T2) (2.6)

W34 = (h3 − h4) = cp (T3 − T4) (2.7)

A real gas turbine, however, is an open cycle system composed of a rotatory com-
pressor and a turbine mounted on the same shaft. Air flows into the compressor,
through which is compressed to the combustion chamber, to be combined with the
fuel leading to a combustion process. The hot gases at high temperature and high
pressure (which means high enthalpy and high kinetic energy due to the velocity
of the particles) then get into the turbine, in order to expand and transform the
thermal energy into mechanical energy that drives the shaft. The exhaust is then
released to the atmosphere. A representation of the simple cycle gas turbine is
Figure 2.1.2

Figure 2.1.2: Simple cycle gas turbine representation: the four states are labeled
1-4 where the prime over states 2 and 4 indicates real rather than ideal conditions
as also displayed in Figure 2.1.3

In particular, the real Brayton cycle is the one represented in Figure 2.1.3, and
as it can be seen the compression and expansion processes can not be considered
reversible and adiabatic due to a multiple reasons, one of which the leakage into
the surroundings of heat, friction losses, or pressure drops, that lead to the irre-
versibility of the system.
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Figure 2.1.3: Brayton real cycle T-s diagram, states numbered in accordance
with Figure 2.1.2

In real compression and expansion processes, an important factor to be noted is
the increase of system entropy: the entropy is a measure of the degree of disorder
in a system, and according to the second law of thermodynamics the total entropy
of a system tend to increase or at least to remain constant over time. The real
values for the temperatures are so T ′

2 and T ′
4.

Since the isentropic efficiency can be defined as the ratio of the ideal work to the
actual work for the compressor and the ratio of the real work to the actual work
for the turbine, and referring to 2.5 and to 2.7, the efficiency for the compressor
can be formulated as follows:

ηis,C =
(T2 − T1)

(T ′
2 − T1)

(2.8)

and for the turbine:

ηis,T =
(T3 − T ′

4)

(T3 − T4)
(2.9)

Furthermore, in order to calculate the real temperatures in the model, having the
isentropic efficiency, the followed equations are used:

T ′
2 =

(T2 − T1)

ηise,C
+ T1 (2.10)

T ′
4 = −ηise,T (T3 − T4) + T3 (2.11)

The real work for compressor and turbine, thus, can be calculated based on the
equation 2.5 and the equation 2.7:

Wreal,C = −cpṁair (T
′
2 − T1) (2.12)

Wreal,T = cp (ṁair + ṁfuel) (T3 − T ′
4) (2.13)



CHAPTER 2. THEORETICAL BACKGROUND 9

It is crucial to note that in real gas compression and expansion, the specific heat
cp varies with the change of the temperature, and also in an open cycle the specific
heat of the gases in the combustion chamber and in the turbine is different from
that in the compressor, because of the fuel and because a chemical reaction takes
place [7]. In order to design a model that is as close to reality as possible, that
simulates the behaviour of a real gas rather than an ideal gas, the variation of
specific heat as temperature changes id taken into account in the modeling phase
in Python, and reference is made to sections 3.1.2 and 3.1.4.

Regarding the calculation for the heat of combustion, since a chemical reaction
between air and fuel is involved, the difference in enthalpy is decided to be used, as
shown in the equation 2.6: the change of the specific heat according to the change
of temperature, in fact, is more hard to detect due to the combustion process, and
furthermore the difference in enthalpy involves the change in enthalpy between the
reactants and the products, taking into account the energy released or absorbed,
providing an overall energy change of the system, way more precise than the change
in temperature with a constant cp.

2.1.1 Relation between polytropic and isentropic efficiency

Polytropic efficiency is a measure of how a process is efficient compared to an ideal
polytropic process, and it is an important concept of efficiency often used when
modeling a gas turbine. In particular, it is referred as small or infinitesimal stage
of efficiency, and it is exclusive of the pressure-ratio effect [8]. The polytropic
efficiency for a compressor can be expressed as it follows [8]:

ηp,C =

[
1 + dP2

dP1

] γ−1
γ − 1[

1 + dP2

dP1

]n−1
n − 1

(2.14)

and expanding numerator and denominator using a Taylor expansion series, con-
sidering dP2/dP1 << 1:

[
1 +

dP2

dP1

] γ−1
γ

=

[
1 +

γ − 1

γ

](
dP2

dP1

)
+

[
1 +

γ − 1

γ

](
dP2

dP1

)2

+ ... (2.15)

[
1 +

dP2

dP1

]n−1
n

=

[
1 +

n− 1

n

](
dP2

dP1

)
+

[
1 +

n− 1

n

](
dP2

dP1

)2

+ ... (2.16)

the polytropic efficiency for the compressor results as:

ηp,C =

γ−1
γ

n−1
n

(2.17)

As it can be seen, the polytropic efficiency for a compressor is the limiting value
for the isentropic efficiency, as the increase of pressure approaches to zero [8].
The relation between polytropic and isentropic efficiency in the compressor and
in the turbine is defined in the equations 2.18 and 2.19 [9]:
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ηis,C =

(
P2

P1

)( γ−1
γ )

− 1(
P2

P1

)(
γ−1

γηp,C

)
− 1

(2.18)

ηis,T =

(
1− P4

P3

)( γ−1
γ

ηp,T )

(
1− P4

P3

)( γ−1
γ )

(2.19)

In particular, the Figure 2.1.4 represents what is explained above: varying the
pressure ratio of the compressor from a value of 2 to a value of 20 and keep-
ing constant the polytropic efficiency, applying the equation 2.18 it can be seen
how the isentropic efficiency decreases: for a compressor, thus, the polytropic ef-
ficiency is the upper value for the isentropic efficiency, as the pressure ratio is
reduced, q.e.d.

Figure 2.1.4: Relation between isentropic and polytropic efficiency in a com-
pressor by changing the pressure ratio

Similar considerations can be done for the relation between isentropic and poly-
tropic efficiency in a turbine: the polytropic efficiency, in this case, is the lower
limit for the isentropic efficiency. Therefore, from the 2.18 and 2.19 equations relat-
ing isentropic and polytropic efficiencies for compressor and turbine, the equations
for calculating the temperature out of the compressor and out of the turbine are
[9]:

T2

T1

=

(
P2

P1

) γ−1
γηp,C

(2.20)
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T4

T3

=

(
P4

P3

)( γ−1
γ

ηp,T )
(2.21)

2.1.2 Off-design model

The design point for a gas turbine is the operating point for which the pressure
ratio, air and fuel mass flow, and component efficiencies are modeled in order to
achieve the desired power and maximum efficiency. When the operating condi-
tions change, however, the performance of the turbine also changes, such as the
efficiency of the components, or the power generated: therefore, the off-design
model for a single shaft gas turbine has to be modeled. For example, the part-load
performance refers to the fuel flow rate decrease in order to decrease the change of
the power generated. Important changes in gas turbine performance, furthermore,
can be detected with the change of the ambient conditions, especially the ambient
temperature.

In general, the changes in pressure ratio, efficiency and flow rate are to be studied
while building an off-design model, and these variations can be detected in com-
pressor and turbine maps[6]. First of all, a brief digression about compressor and
turbine characteristic maps must be done. In order to fully understand the mean-
ing of the compressor map components, it is needed to first refer to the Figure
2.1.5, from [6].

Figure 2.1.5: Constant speed line in a compressor map

In the x-axis there is the flow rate of air, while in the y-axis there is the pressure
ratio across the compressor. The curve is a curve of constant speed of the shaft,
and the different points marked show different operating points achievable by as-
suming that the compressor valve is opened slowly (and thus varying the flow rate
of air that can be blown into the compressor).
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At A the valve is completely closed, and consequently the air flow rate is zero: the
pressure ratio obtained is given by the compression of some amount of air being
trapped inside the vanes. Slowly opening the vanes, point B is reached, which
represents the maximum efficiency achievable as well as the maximum pressure
ratio. By going to increase the input air flow rate, this will have a negative effect
on the compression ratio and efficiency, which will suddenly drop: at point C, in
fact, the valve is fully opened, and the loss of efficiency indicates the loss of power
that is spent to overcome the frictional forces with the air.

Another consideration may be done regarding the phenomena of the surging, that
may happen between A and B, so that operating between these two points, even if
it brings an high value of efficiency, it is not possible. At point D, a small decrease
in the air flow rate of air can cause a drop in the pressure, leading to a violent
aerodynamic pulsation through the all engine. In fact, when a pressure drop oc-
curs, the air inside the compressor will tend to reverse the flowing direction, due
to the pressure gradient, causing the effect mentioned above.

There is another important point that must be considered as well as the surging
point: the chocking point. By going from B to C, the mass flow increases while
the pressure ratio decreases; the density thus decrease, bringing an increase of the
radial component of velocity. This leads to an increase of the resultant velocity
hence, of the incidence angle, until the point E is reached, at which no mass flow
rate can occur.

After this digression, the more complete compressor map can be shown, for an
axial compressor in figure 2.1.6. Joining the surge lines of the several constant
rotational speed curves, leads to the draw of the compressor surge line; the several
point at the edge of the constant rotational speed curves represent the chocking
condition.
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Figure 2.1.6: Compressor characteristic map for an high pressure compressor
[10]

The curves of constant rotational speed represent the performance boundaries of
the compressor at different rotational speeds, while the efficiency contours repre-
sent constant efficiency zone. The turbine characteristic map is shown in Figure
2.1.7, but it is not as essential as the compressor map, since no significant variation
in the corrected flow rate will occur.

Figure 2.1.7: Turbine characteristic map [6]

Coming back to the analysis of the off-design model for a single shaft gas turbine,
some simplifications can be done: in particular, no pressure losses at the intake and
at the exhaust are considered, and the pressure losses at the combustion chamber
are considered as a fixed percentage value of the pressure [6]. Furthermore, some
assumption are made [9]:

• The analysis is made considering a curve of constant rotational speed;
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• The curve of constant rotational speed is supposed to be vertical (which is
very likely for an axial compressor): this can lead to the decouple of the
relation between pressure ratio and flow rate of air. In fact, as it can be seen
in the compressor map, if the constant speed curve is vertical, no matter the
pressure ratio, the corrected flow rate remains constant, at that speed.

• The turbine is supposed to act as a choked noozle.

• Compressor and turbine polytropic efficiencies are constant.

If it is considered that the turbine is chocked and there is no dimensional change
in the corrected flow rate of the turbine, so the compressor as well operates in
choked conditions. This, together with the assumption of vertical constant ro-
tational speed, leads to the formulation of the adimensional corrected or reduced
flow rate[9]:

ṁ1

√
T1

P1

= constant (2.22)

Due to this constant relation, in order to find the new parameters in off-design
condition, a comparison with known conditions (such as design condition) is just
to be done. The equation for the turbine is:

ṁ3

√
T3

P3

= constant (2.23)

However, this equation is used when the working fluid is air and there is no sig-
nificative change in the molecular weight. In cases where the fluid compositions
change quite a lot, it is better to include the molecular weight, as follows [9]:

ṁ3

P3

√
T3

MW3

= constant (2.24)

Pressure drops across the air filter, the combustor and at the exhaust can be
considered. The general equation for pressure drop for turbolent flow in tubes is
as follows[6]:

∆p = f

(
ρC2

2

)
(2.25)

where f is the frictional factor, equal to:

f =
0.0791

Re0.25
(2.26)

Assuming that the frictional losses are constant, the pressure drop across the
intake, the combustion chamber or the exhaust can be generally written as[9]:

∆p = ṁ2T

P
MW (2.27)

An iterative procedure to calculate the off-design condition based on these equa-
tions is explained as follows.
First of all, from equation 2.22, relating the design condition and the off-design
condition based on the new ambient temperature and/or new ambient pressure,
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the new mass flow rate of air is equal to (where ref is for reference, which is the
design condition):

ṁ1 = ṁ1,ref

√
T1,ref

T1

P1

P1,ref

(2.28)

The air filter pressure drop is calculated as [9]:

∆paf
∆paf,ref

=

(
ṁ1

ṁ1,ref

)1.8(
T1P1,ref

T1,refP1

)0.8

(2.29)

The pressure at the intake becomes thus:

P1 = P0 −∆p (2.30)

where P0 is the ambient pressure of air before entering the system. Next, a pres-
sure value P2 is guessed to initialize the iterative calculation: generally this value
corresponds to the pressure P2 in the design conditions. The value for T2 can be
calculated from equation 2.20. As it is done for the air filter in equation 2.29 the
combustor pressure drop is calculated as:

∆pc
∆pc,ref

=

(
ṁ3

ṁ3,ref

)1.8(
T3P3,ref

T3,refP3

)0.8

(2.31)

From the equation established for the turbine in choked conditions 2.24, relating
reference and off-design condition, the new inlet for the turbine is:

P3

P3,ref

=
ṁ3

ṁ3,ref

√
T3

T3,ref

MW3,ref

MW3

(2.32)

Considering the pressure drop calculated in 2.31 and the P3 calculated in 2.32:

P3 = P2 −∆pc (2.33)

At this point, the value guessed for P2 has to be checked: if it satisfies the equation
2.33, the iteration is ended, if not, it is restarted with a new value of P2.

2.1.2.1 Variable inlet guide vanes (VIGV)

The off-design model that has just been studied is a highly simplified model, which
does not take into account the analysis and modeling of the mechanics of the vari-
able inlet guide vanes, important components for the compressor that have the
function of regulating the incoming air flow, constituting an important part of the
construction of a complete off-design model.

While changes in ambient conditions "naturally" influence the intake air flow rate,
the VIGV provide an active control mechanism to further optimize and stabilize
the flow rate in different operating conditions. In design conditions, the variable
inlet guide vanes can be considered 100% open, referring to a specific compressor
map. But when the VIGVs are at a lower than maximum opening percentage, op-
erating conditions change: all modern turbines, in particular, are equipped with
at least one stage of VIGV, resulting in up to a 70 percent reduction in air flow
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rate. [11].

The equations that describe the phenomenon must be explained, providing nu-
merical example from [11]. When VIGVs are fully closed, the corrected flow rate
can be expressed as follows, dependent on the rotation speed and related to the
corrected flow rate at 100% open VGIV:

µC

µO

= (1.55− 0.85v) (2.34)

where µ indicates the corrected flow rate, and the subscript O means the corrected
flow rate at 100% open VGIV. When the VGIV is between the 0 and the 100%
of the full opening, the corrected flow rate is expressed as function of the opening
angle:

µC

µO

= CIGV (2.35)

CIGV = 1 + (K − 1)

(
1− YIGV

100

)
(2.36)

Where YIGV is the fraction of opening setting in percentage, and K gives the frac-
tion of the 100% open VIGV flow at a given speed v.
In Figure 2.1.8 it can be seen, thus, how the corrected flow rate changes by chang-
ing the opening of the VIGV, and so the pressure ratio, defined as π∗.

Figure 2.1.8: Change of corrected flow rate in a compressor map, by changing
the opening of VGIV from [11]

Considering now v = 0.9 and the VGIV at 60% open:

• The full closed flow scaler K is obtained from equation 2.34, and it is equal
to 0.785.

• From equation 2.36, CIGV is equal to 0.914.
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• Lastly, the flow scaler at 60% open and at v = 0.9 from equation 2.35 is
0.914.

In conclusion, for an operating point µ = M from the performance map for 100
percent open VIGV, and µ = 0.914M when VGIV are 60 percent open.
Tracing back to the change in ambient temperature, therefore, when the ambient
temperature is reduced from the design conditions, the density increases, and
therefore the angle of the VGIVs increases to allow more airflow to pass through,
which leads to an increase in the compression ratio and a reduction in isentropic
efficiency.
In Figure 2.1.9 it can be seen that, at 100% v, an increase in angle change results
in an increase in air flow rate, and a coefficient CCIGV > 1, as the opening of
VGIVs is greater than the opening at 100% in design conditions.

Figure 2.1.9: Change in conditions in a compressor map by changing the VGIV
angle [12]

In the Figure 2.1.10 [11] there is a representation of VGIVs, driven by hydraulic
actuators, and related to variable guide stator vanes (VGSVs), in this case in three
stages, placed on the stator of the compressor, which are in turn responsible for
modifying the air flow to maintain the direction of flow and speed as desired.
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Figure 2.1.10: Graphical representation of VGIV in an axial flow compressor

2.2 GE LM2500 and GE LM6000 gas turbines

The purpose of the project is to create a digital twin for electric power genera-
tion in the offshore field: in particular, two turbines are being considered: the
aeroderivatives GE (General Electric) LM2500 and GE LM6000. Before getting
into the details of the description of the two turbines, a few words must be spent
on the concept of ’aeroderivative’ gas turbine.

An aircraft gas turbine engine consists of a net thrust output, while a landbased gas
turbine consists of a mechanical shaft output. Specifically, the thrust is described
by Newton’s second and third laws: for the second law, the acceleration of a body
is directly proportional and in the same direction as the force applied on the body
itself, and inversely proportional to the mass; for the third law, when a body exerts
a force on a second body, the second body simultaneously exerts a force equal in
magnitude and opposite in direction to that of the first body. An aircraft thus
must produce thrust to overcome the drag of the aircraft, which results from the
interaction between the aircraft itself and the air molecules around it. The low
that describes the thrust in an aircraft is, from Newton’s law [13]:

F = ṁ (V2 − V1) (2.37)

where F is the thrust, ṁ the mass flow of air, V2 the outlet velocity while V1 the
inlet velocity. Therefore, if an aeroderivative turbine is placed on the ground, the
thrust it will produce in output is the static thrust, considering the aircraft speed
to be zero, from equation 2.37 [11]:

F = ṁVj (2.38)

where Vj is the velocity at the jet nozzle exit.
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After having understood the physical principle behind an aeroderivative, some
advantages are highlighted: first of all, aeroderivative gas turbines are designed to
have a small footprint and low weight, using special materials for high efficiency,
and with a very short start-up time, in fact they have the same characteristic
as turbojets of fast engine response, especially under changing conditions (and
higher pressure ratios as well). The higher efficiency leads to significative fuel
cost savings, and the capability to be shut down and switch up quickly allows fast
transient and short downtimes for maintenance [14].

Some modifications are made when changing from an aircraft turbine to a deriva-
tive one, such as removing the fan and then modifying the low-pressure compressor
and low-pressure turbine, as shown in Figure 2.2.1, in which the fan is removed,
a power turbine is added and the LP compressor is modified.

Figure 2.2.1: Modifications of an aircraft turbine for an industrial aeroderivative
turbine [11]

General Electric is one of the most important companies in the market for aeroderiva-
tive gas turbines, and the turbines object study, GE LM2500 and GE LM6000, are
manufactured by this company. A first picture of the two turbines from General
Electric website can be seen in pictures 2.2.2 and 2.2.3.
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Figure 2.2.2: Picture of GE LM2500 gas turbine from General Electric[15]

Figure 2.2.3: Picture of GE LM6000 gas turbine from General Electric[15]

A more detailed description of the two turbines will be given in the following
section.

2.2.1 Mechanical description

The GE LM2500 gas turbine consist of 16 stages compressor, a combustion cham-
ber and an aerodynamically coupled power turbine.
In particular, a 2-stages high pressure turbine and a 6-stages low pressure (or
power) turbine can be distinguished: the HPT drives the compression shaft, while
the LPT is coupled to another shaft together with the generator, and provides
power. The compression pressure ratio in nominal condition is set to be 18:1 [16].
A representation of GE LM2500 can be seen in Figure 2.2.4.
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Figure 2.2.4: Representation of the inner structure of GE LM2500 [11]

The GE LM6000 gas turbine was generated from the GE CF6 jet engine, and
has been manufactured by General Electric since 1991. The turbine configuration
is 2-shaft, made of 2 compressors (one low-pressure LPC and one high-pressure
HPC), a combustion chamber, and 2 turbines (one high-pressure HPT and one
low-pressure LPT). The nominal compression ratio is 29.1:1, and in particular the
LPC consists of 5 stages while the HPC consists of 14 stages [17].

The special feature of the LM6000 turbine is the fact that it is direct-driven, which
makes it similar to its parent aircraft. "Direct-driven" means that the low pres-
sure rotor directly drives the turbine without any intermediary components, like
a gearbox: in fact, the low pressure rotor it is directly connected to the load it
is driving, and in this way more power is provided, with an higher efficiency. In
other cases there is the need of a transmission, or a change-speed gearbox that
can modify the rotational speed of an input source to an output source shaft: this
leads to transmission losses, and it explains why in the peculiar configuration of
the LM6000 an higher efficiency can be achieved. In Figure 2.2.5 an illustration
of a gearbox is represented, showing how the change of speed works between two
different shafts.

Figure 2.2.5: Illustration of the operation of a gearbox in a gas turbine for
changing shaft speed from an input source to an output source.

In conclusion, the GE LM6000 turbine maintained a strong similarity with the
corresponding aircraft, resulting in a different design than a classic aeroderiva-
tive, which typically adds a power turbine coupled to the generator. Figure 2.2.6
shows the difference between the configuration of the GE LM6000 turbine and the
configuration of a normal aeroderivative turbine [16].
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Figure 2.2.6: Different configuration concept of GE LM6000 gas turbine com-
pared to other aeroderivatives

In Figure 2.2.7 there is a representation of GE LM6000 with LPC and HPC, and
LPT and HPT pointed out.

Figure 2.2.7: GE LM6000 representation, with compressor and turbine stages
shown

2.2.2 Optimum multistage compression ratio

As explained in the previous section, compressors (and also turbines) consist of
several stages, and it is important to understand what is meant by a stage and
what it implies computationally. A compressor stage consists of an impeller, also
known as rotor, which is the rotating component; the stationary inlet passages
(the inlet guide vanes) and the stationary discharge passages (diffuser); and the
seals [18].
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As explained in 2.1.2.1, the inlet guide vanes are located at the entrance of the
compressor stage, and they have the function of directing and guiding the incom-
ing air onto the rotating impeller at the correct angle. The diffuser, instead, is
located at the outlet of the compressor stage, and it is aimed to slow down the
high-speed air in order to convert its kinetic energy into pressure energy. Seals
are components in gas turbines that help to maintain proper airflow and prevent
leakage of gases between the different sections of the engine.

In a compressor, thus, the air enters the impeller and it achieves high-speed (kinetic
energy) as the impeller rotates, going onto the diffuser afterwards to convert kinetic
energy in pressure energy. A schematic representation of the sequence of IGVs,
impeller and stator for multiple stage axial compressor is shown in picture 2.2.8.

Figure 2.2.8: Sequence of IGVs, impeller and diffuser in a multistage axial
compressor

In a turbine, the sequence of rotor and stator is obviously inverted: the stator
is located first, acting as a nozzle to increase the velocity of a gas by converting
pressure energy in kinetic energy. The rotor, afterwards, converts the kinetic
energy to power by causing a rotation of the shaft [9]. A row of stator and rotor
is depicted in Figure 2.2.9.
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Figure 2.2.9: Rotor-stator configuration [19]

Analyzing the compressor stage, in particular, each stage, at a certain flow rate
and shaft speed, will produce a certain amount of energy (head) and have a certain
stage efficiency [18]. For the purpose of modeling the digital twin, a model cal-
culation of the compression ratio at each stage is presented, assuming a constant
isentropic efficiency for every stage [20].

The purpose of having stages made of rotors and stators lies in the principle of
cooling: for minimum power consumption, in fact, gases should ideally be cooled
while being compressed, since the power consumption increases as the compression
implies hotter gases, becoming economically not sustainable [21].
Since this is not possible, large compressions are divided in stages in the way
explained above: by reducing the air velocity through the diffuser at each stage,
the air loses heat, which is a saving benefit. Furthermore, the iso-pressure ratio is
defined as:

rt = Pout/Pin (2.39)

Thus, considering n stages and constant isentropic efficiency η, the optimal pres-
sure ratio for each stage is formulated as follows [20]:

r = r
1/n
t (2.40)

For example, the pressure ratio in a stage between pressure i and pressure i+1 is:

ri,i+1 =
Pi+1

Pi

(2.41)

which leads to:

n∏
i=1

ri,i+1 =
P2

P1

P3

P2

...
Pn+1

Pn

= rt (2.42)

In the Figure 2.2.10 is depicted in a T-s diagram the compression process divided
in stages [20].



CHAPTER 2. THEORETICAL BACKGROUND 25

Figure 2.2.10: Compression process divided in stages in a T-s diagram

2.3 Condition monitoring

The pursuit of high reliability, availability, and efficiency in gas turbines has gov-
erned the evolution of engine maintenance methods [22], and currently the main-
tenance cost of a gas turbine is expected to be one of the most impacting costs
during the life cycle of the engine. It is suggested that a more cost-efficient way of
operating gas turbines could be achieved by enhanced engine condition monitoring
and predictive maintenance, implemented together with a digital twin: digitising
control of gas turbine behaviour helps to detect, identify and assess components
degradation, which in turn affects the maintenance of gas turbine assets in a
positive way [23], in terms of performance from both a thermodynamic and an
economic perspective [24].

With the aim of presenting an initial implementation approach of digital twin for
predictive maintenance purposes, therefore, this section will present an overview
of Condition Monitoring methods applied to the energy field and more specifically,
to gas turbines, proposing analytical approaches to detect components degrada-
tion.

The condition-based maintenance (CBM ), which is a maintenance strategy that
monitors the actual condition of an asset, is an effective method for enhancing the
machinery maintenance strategy and shifting from classical "fail and fix" practices
to a "predict and prevent" methodology [22]. Generally, Condition Monitoring re-
lies on two different processes: diagnostic approach and prognostic approach [22].

Diagnostics is the process of determining the status of the equipment and compo-
nents, using information from a technology such as a digital twin, which compares
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the expected condition with the actual condition. The final purposes of a diag-
nostic approach are fault detection, fault isolation and fault identification. As
explained above, the most significant tool for implementing this process is the
digital twin, since, once connected with real-time field data, it can give a real-
time comparison between the expected and predicted condition and the actual
behaviour, leading to fault identification if a mismatch occurs.

Prognostics, instead, is the ability to forecast the evolution of the engine behaviour
and deterioration, with a long term purpose on forecasting the impending failures
and estimating the remaining useful life of the engine. In order to implement a
prognostic condition monitoring analysis not only a predictive tool for engine be-
haviour is required, such as a digital twin, but also a consistent data history that
reinforces and validates, together with analytical demonstration, the correlation
between thermodynamic component behaviour and physical component degrada-
tion.

Condition Monitoring related to gas turbines has several developments, depending
on the cause of the deterioration, which can fall into two main categories. First, a
case of a mechanical nature can occur, such as loose of components, lack of lubri-
cation, unbalance, etc. The second cause is aerodynamic or performance related,
which can include fouling, erosion, corrosion, improper combustion, etc. The most
known approach in the case of this kind of deterioration is a performance based
health monitoring, also known as gas path analysis (GPA): the development of the
digital twin in this project, in particular, is suitable for this type of analysis, as
it models the corresponding "health" status of the real turbine predicted, repre-
sented by the engine health parameters, such as compressor and turbine isentropic
or polytropic efficiencies [25].

The concept behind the GPA is that physical faults yield to deviation in one or
more of the engine health variables or independent parameters, called gas path
measurements; these variations, in turn cause deviation in the measured variables,
such as pressure and temperature. In a nutshell, component health parameters
are not directly measurable, but they are thermodynamically correlated with the
measurable parameters [22]; variation in the component health parameters are
identified in the literature as ∆x⃗, while deviation in the measurable variables as
∆z⃗.

In picture 2.3.1, a schematic representation of the implementation of GPA for
Condition Monitoring of gas turbines: values of measurable variables come from
the sensors, which, when compared with the output of the digital twin, lead to
deviations in the expected outputs; these deviations are converted into health de-
viations of components health parameters through the FDI, fault detection and
isolation.
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Figure 2.3.1: Condition Monitoring scheme for gas turbine Gas Path Analysis,
structure idea from [22]

Fault detection is the procedure for determining whether an abnormal situation
has occurred in the monitored system and fault identification is the procedure for
estimating information relevant to the fault upon its detection [26].
The point of the FDI is therefore to continuously process the performance of the
engine according to the set point of the controller u and the ambient conditions, in
order to assess the variation of component health variables zr (from the sensors)
from their clean and health condition zm (from the Digital Twin simulation), and
convert this measured deviation into a deviation in degradation parameters.

In particular, there are several methods to detect the component degradation,
and the method that could best suit the digital twin developed in this project is
a model-based method. Model-based (or physics-based) methods, in fact, estab-
lish mathematical models to describe the physics and the thermodynamics of the
components and the systems under study: they are limited to the cases where
failure mechanisms can be quantified, and they cannot be easily used for complex
systems whose internal parameters are inaccessible for direct measurements by
sensors [27], but at the same time they have a strong physical and analytical basis
of turbine behaviour, as opposed to data-driven models, which make use of deep
learning and other learning techniques that are often unclear to the user.

The following stage is the identification of physical faults: this phase is particu-
larly critical and tricky, as it is not trivial to identify the correlation between a
variation in a thermodynamic parameter and the actual physical cause. In the lit-
erature, there are several causes of component degradation that can be associated
with gas turbines, such as fouling, corrosion, erosion, etc., just as there are sev-
eral hypotheses of correlation between degradation in terms of efficiency or other
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variables and physical cause, but in order to advance hypotheses, it is necessary
to identify an analytical correlation and verify it with field data.



CHAPTER

THREE

MODELS AND METHODS

This chapter will explain in detail the methodology adopted for the design and
modeling of the digital twin, starting with the model in Python of the main classes
describing the gas turbine (stream, compressor, combustion chamber and tinder)
and continuing with the validation of the model through comparison with Aspen
HYSYS®.

Next, the model in Thermoflow© is implemented for the design and off-design
simulation of the GE LM2500 and GE LM6000 turbines, and the iterative model
in GasTurb© for the identification of the poltiropic and isentropic efficiencies of
the components; a simplified off-design model for the GE LM2500 turbine is also
presented. Finally, an initial approach to analyse component degradation is pre-
sented using a performance indicator that considers the deviation of the actual
temperature at the compressor outlet from the temperature calculated by the
model.

3.1 Object-oriented code in Python
The first approach to design a digital twin that simulates the behavior of a gas
turbine is to create a model that describes its main thermodynamic laws. To fulfill
this goal, object-oriented programming in Python is used.

Object-oriented programming allows the development of code that is suitable for
reuse and adaptable to multiple contexts, having the objects and methods within
the class as the main core; the classes that build the gas turbine model are: stream
class, compressor class, combustion chamber class, and expander class. In Figure
3.1.1 a schematic representation of the classes, showing the input values required
by each class and the calculated output values.

29
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Figure 3.1.1: Python classes scheme with the variable inputs required for each
class and the calculated outputs

3.1.1 Stream Class

In this class streams are modeled, whether they are of air, or fuel. To describe a
stream, in particular, it is necessary to specify the flow rate, the temperature, the
pressure, and the composition. Neqsim, a library for calculating fluid behavior
and properties, is used to model the fluid the stream is made of [28].

For a better usability, each method of set properties, has a corresponding get
method. For example, is it possible to specify the temperature in degrees Celsius,
but also to display it in degrees Kelvin. Below an example for the temperature is
shown:

1 def set_temperature(self, temperature, units):
2 if units == 'K':
3 self.temperature = temperature
4 if units == 'C':
5 self.temperature = temperature + 273.15

1 def get_temperature(self, units):
2 if units == 'K':
3 return (self.temperature)
4 elif units == 'C':
5 return (self.temperature - 273.15)

In the same way, also mass flow rate and pressure are initialised.
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Pressure:

1 def set_pressure(self, pressure):
2 self.pressure = pressure

1 def get_pressure(self, units):
2 if units == 'bara':
3 return (self.pressure)

Mass flow rate:

1 def set_flow_rate(self, flow_rate, units):
2 if units == 'kg/hr':
3 self.flow_rate = flow_rate
4 elif units == 'kg/sec':
5 self.flow_rate = flow_rate * 3600
6 else:
7 print("ERROR no units found")

1 def get_flow_rate(self, units):
2 if units == 'kg/hr':
3 return self.flow_rate
4 elif units == 'kg/sec':
5 return self.flow_rate / 3600
6 else:
7 print(f"ERROR no units found for flow rate units:

{units} in {self}")

Two important methods within the stream class, in particular, are the calculate()
and get_LCV() methods. The calculate() method, in particular, is used to ini-
tialise the fluid with the Neqsim library in order to calculate fluid properties (such
as enthalpy, cp, cv, density, etc.). As can be seen in the code shown below, the
method takes as input the already set values of pressure, temperature and flow
rate, and gives as output the fluid properties.

1 def calculate(self):
2 self.fluid.setTemperature(self.temperature, "K")
3 self.fluid.setPressure(self.pressure, 'bara')
4 self.fluid.setTotalFlowRate(self.flow_rate, 'kg/hr')
5 TPflash(self.fluid)
6 self.fluid.initProperties()

The get_LCV() method, on the other hand, is used to calculate the lower calorific
value (LCV ), as well as the amount of heat released for a unit of fuel completely
burnt, and whose combustion products can escape.
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1 def get_LCV(self):
2 iso6976 = ISO6976(self.fluid)
3 iso6976.setReferenceType('mass')
4 iso6976.setVolRefT(15.0)
5 iso6976.setEnergyRefT(25.0)
6 iso6976.calculate()
7 return iso6976.getValue("InferiorCalorificValue") * 1e3

This method is of crucial relevance in the modeling phase of the combustion pro-
cess, since it is needed to calculate the enthalpy of the fuel, but also in the final
calculation of the gas turbine, since it is a parameter in the gas turbine efficiency
equation and heat rate equation.

3.1.2 Compressor Class

In the compressor class, the inputs required by the model are: stream, output
pressure, isentropic or polytropic efficiency. The code returns as output the work
and temperature after the compression process. Specifically, the temperature is
calculated using two different methodologies. If the polytropic efficiency is not
given as input, first the ideal temperature is calculated, which would be if the
process were adiabatic and reversible, referring to the equation 2.1 in 2.1:

1 def calc_ideal_outlet_temp(self):
2 base = (self.get_p_out('bara') /

self.stream.get_pressure('bara'))
3 kappa = self.stream.fluid.getGamma2()
4 exp = ((1 - kappa) / kappa)
5 x = pow(base, exp)
6 self.t_ideal_out = self.stream.get_temperature('K') * x
7 return (self.t_ideal_out)

Next, the real temperature is calculated using the relationship between the ideal
work and the real work, through the isentropic efficiency, and referring to equation
2.10 in 2.1:

1 elif self.pol_efficiency == None:
2 self.calc_ideal_outlet_temp()
3 delta = self.t_ideal_out - self.stream.get_temperature('K')
4 self.t_out = delta / self.ise_efficiency +

self.stream.get_temperature('K')

If the polytropic efficiency is given as input, the output temperature is calculated
directly:

1 if self.pol_efficiency != None:
2 base = (self.get_p_out('bara') /

self.stream.get_pressure('bara'))
3 kappa = self.stream.fluid.getGamma2()
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4 exp = ((kappa - 1) / (kappa * self.pol_efficiency))
5 x = pow(base, exp)
6 self.t_out = self.stream.get_temperature('K') * x

To have a more compact and more usable code, a calculation function is introduced
that automatically returns the output temperature after the compression in case of
either isentropic or polytropic efficiency, without the need to call the temperature
calculation functions individually:

1 def calc(self):
2 if self.p_out is not None:
3 if self.pol_efficiency is not None:
4 self.calc_outlet_temperature()
5 elif self.ise_efficiency is not None:
6 self.calc_outlet_temperature()

Since the cp and the cv change by changing the temperature and the pressure, in
order to capture as accurately as possible the variation of these parameters, the
compression process has been divided into steps. In fact, the model divides the
compression process into n steps, a value defined as input by the user.
The total pressure P2 is thus divided in n pressure values, every of each is equal to
P2/n. At each iteration i, therefore, the output pressure is defined as the pressure
Pi−1 plus the pressure of the single iteration, equal to P2/n, and based on this
value, the temperature and work at iteration i are calculated.

As a result, the stream cp and cv values vary more significantly as pressure and
temperature change than the condition in which compression occurs in a single
step, and temperature and work values at the final iteration n are more accurate.
The method is shown below:

1 def compression_by_steps(self, steps):
2 total_p = self.p_out
3 iteration = 0
4 number_of_steps = steps
5 pressure_of_step = (self.p_out -

self.stream.get_pressure('bara')) / number_of_steps
6 self.p_out = self.stream.get_pressure('bara') # at the

beginning the self.p is set as the single step
7 temperature_step_before = self.ambient_temperature #

inizialize the temperature
8 # of the step before at the temperature of the stream
9 self.work = 0

10

11 while iteration < number_of_steps:
12 if self.p_out < total_p:
13 self.p_out = self.p_out + pressure_of_step
14 self.calc()
15 new_iteration_stream = self.get_outlet_stream()
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16 self.stream = new_iteration_stream
17 delta_T = self.get_outlet_temperature('K') -

temperature_step_before
18 temperature_step_before = self.t_out # the new

temperature will be used to calculate the work for
the step

19 flow_rate = self.stream.get_flow_rate('kg/sec') #
does not change

20 cp = self.stream.fluid.getPhase(0).getCp('kJ/kgK')
21 work_new_stage = (flow_rate * delta_T) * cp
22 self.work = self.work + work_new_stage
23 iteration = iteration + 1

Sensitivity analysis that relates the number of iterations and the temperature and
work values compared to the baseline defined by the value in Aspen Hysys will be
presented in Chapter 4.

Referring to the fact that the compression ratio is divided into compression stages,
as explained in 2.2.2, a method for calculating the single-stage compression ratio
is implemented for the compressor, used especially to develop the model in detail
for the digital twin of the two real turbines. This function takes as input the
total compression ratio for the gas turbine, and the stages of each compressor,
and returns as output the value of the compression ratio of the single stage and
the compression ratio of the single compressor.

1 def calculation_pressure_ratio(stages, pressure_input,
p_ratio_stage):

2 n = 0
3 p1 = pressure_input
4 list = []
5 while n < stages:
6 p2 = p_ratio_stage * p1
7 p_ratio = p2/p1
8 list.append(p_ratio)
9 p1 = p2

10 n = n + 1
11

12 pressure_ratio = 1
13 for i in list:
14 pressure_ratio *= i
15

16 pressure_ratio = pressure_ratio * pressure_input
17

18 return(pressure_ratio)

This is important because in gas turbine data sheets, the compression ratio is de-
scribed as the compression ratio for the turbine as a whole, while the compression
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ratios for each individual compressor are quite different, and it is important to
outline them as accurately as possible in order to analyse the behaviour of the
individual component.

3.1.3 Combustor Class

In the class describing the combustion chamber, the main core is the model of
the chemical reactions between different hydrocarbons and air, for calculating the
chemical compositions of the reaction products and the TIT. Specifically, the in-
put values of the class are the air stream and the fuel stream, while in output are
obtained the turbine inlet temperature and the heat of combustion.

The first step to get the TIT, is to calculate the enthalpy of the reactants, by
summing the enthalpy of the air and the enthalpy of the fuel.
In particular, the enthalpy of the air is obtained from the method get_Enthalpy()
from Neqsim, while the enthalpy of the fuel is given by the product between the
LCV value and the flow rate in kg/sec:

1 def calc_enthalpy(self):
2 enthalpy_air = self.air.fluid.getEnthalpy()
3 enthalpy_fuel = self.fuel.get_LCV() *

self.fuel.get_flow_rate('kg/sec') # joul / kg * kg / sec =
joul / sec = watt

4 self.enthalpy = enthalpy_air + enthalpy_fuel
5 return (self.enthalpy)

In order to calculate the reaction temperature, in fact, a function of Neqsim PH-
flash() is used, which requires as input an enthalpy (in this case, the enthalpy of
the reactants) and a fluid with a certain composition, and calculates the output
temperature: in this sense, the type of fluid given as input becomes critical to un-
derstand the importance of modeling chemical reaction as accurately as possible.
In fact, if only air (mainly composed of nitrogen and oxygen) were considered as
the fluid, the specific heat capacity cp would be quite different from the cp of the
fluid produced by the combustion reaction (consisting of nitrogen as inert gas,
water vapor, carbon dioxide, and a percentage of unreacted oxygen).

A chemical reaction calculation method is therefore implemented, so that the
chemical compositions of the combustion products could be obtained and entered
into the PHflash()function in order to obtain a more correct value for the TIT.
For validation of the results, refer to Chapter 4 where an analysis between the TIT
values with and without chemical reactions is conducted, comparing these values
with those of the simulation model in Aspen HYSYS®.

To simplify the reading of the fluids implemented in the code, two dictionaries are
created, one for air and one for fuel, which as keys have the component names,
and as values the mole fraction of each component.
Below, the development of the dictionary for air and for the fuel:
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1 number_of_components_air =
self.air.fluid.getNumberOfComponents()

2 names_air = [self.air.fluid.getComponent(i).getName()
3 for i in range(number_of_components_air)]
4 molar_fractions_air = [self.air.fluid.getComponent(i).getx()
5 for i in range(number_of_components_air)]
6 air_dictionary = {}
7

8 for i in range(number_of_components_air):
9 air_dictionary[names_air[i]] = molar_fractions_air[i]

1 number_of_components_fuel =
self.fuel.fluid.getNumberOfComponents()

2 names_fuel = [self.fuel.fluid.getComponent(i).getName()
3 for i in range(number_of_components_fuel)]
4 molar_fractions_fuel = [self.fuel.fluid.getComponent(i).getx()
5 for i in

range(number_of_components_fuel)]
6

7 fuel_dictionary = {}
8

9 for i in range(number_of_components_fuel):
10 fuel_dictionary[names_fuel[i]] = molar_fractions_fuel[i]

After that, the number of moles of oxygen and nitrogen in the air is calculated,
based on the mass flow rate of the stream (since the mass fraction is calcu-
lated based on the flow rate in kg/sec, the number of moles will be defined in
moles/sec):

1 molar_mass_mix = air_dictionary['oxygen'] * 31.998 +
air_dictionary[

2 'nitrogen'] * 28.013
3 weight_fractionO2 = (air_dictionary['oxygen'] * 31.9989) /

molar_mass_mix
4 weight_fractionN2 = (air_dictionary['nitrogen'] * 28.013) /

molar_mass_mix
5 massO2 = weight_fractionO2 * self.air.get_flow_rate('kg/sec')
6 massN2 = weight_fractionN2 * self.air.get_flow_rate('kg/sec')
7 molN2 = (massN2) * (1 / (28.013 / 1000))
8 molO2 = (massO2) * (1 / (31.998 / 1000))

Then, for each hydrocarbon in the fuel, the number of moles is calculated follow-
ing the same procedure implemented for the calculation of the number of moles
of oxygen and nitrogen in the air. The number of moles produced of CO2 and
H20 is then calculated for the moles of hydrocarbon burnt, as well as the moles of
unreacted oxygen (for simplification the fuel is always considered as the limitant



CHAPTER 3. MODELS AND METHODS 37

reactant, due to the fact that in gas turbines the mass flow rate of air is always
greater than the mass flow rate of fuel, and so is the amount of oxygen, that always
allows the total combustion of the fuel).

Nitrogen, being an inert gas that does not participate in combustion, is considered
to be totally present in the value of total moles participating in the reaction for each
hydrocarbon, while oxygen, participates for each reaction with an amount equal
to the value of total oxygen from which is subtracted the oxygen that has already
reacted with the previous hydrocarbons: at every iteration, in fact, the total
amount of oxygen available for the combustion is reduced based on the amount
of oxygen reacted to burnt the moles of the hydrocarbon considered before. The
code for methane is given as an example.

1 methane =
(self.fuel.fluid.getPhase(0).getComponent('methane').getMolarMass())
* 1000

2 weight_fraction_methane = (fuel_dictionary['methane'] * methane)
/ molar_mass_mix_ng

3 mass_methane = weight_fraction_methane *
self.fuel.get_flow_rate('kg/sec')

4 mol_methane = mass_methane * (
5 1 / self.fuel.fluid.getPhase(0).getComponent('methane')
6 .getMolarMass())
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1 molCO2 = mol_methane * (1 / 1)
2 molH20 = mol_methane * (2 / 1)
3 molO2_not_reacted_methane = molO2 - mol_methane * 2
4 total_moles = molCO2 + molH20 + molO2_not_reacted_methane +

molN2
5 O2_methane = (molO2_not_reacted_methane / total_moles) *

fuel_dictionary['methane']
6 CO2_methane = (molCO2 / total_moles)
7 H20_methane = (molH20 / total_moles)
8 molO2 = molO2 - mol_methane * 2

In the model, however, the majority of hydrocarbons the natural gas is made of,
such as, in addition to methane, ethane, propane, n-butane, i-butane, i-pentane, n-
pentane and n-hexane, are considered. After the moles of water vapour and carbon
dioxide are calculated for every component of the fuel, the new composition can
be determined, by summing all the the molar fraction of every products together,
so that the combustion fluid is created:

1 to_turbine = fluid('srk')
2 to_turbine.addComponent('oxygen', mfO2)
3 to_turbine.addComponent('nitrogen', mfN2)
4 to_turbine.addComponent('CO2', mfCO2)
5 to_turbine.addComponent('H2O', mfH20)

3.1.4 Expander Class

The expander class is modeled in a similar way to the compressor class.
The stream, a polytropic or isentropic efficiency, and the pressure at which the gas
has to be expanded are required as inputs. As it is done for the compressor, also in
the case of the turbine the expansion process is divided in steps, in order to detect
the smallest changes of the cp and cv as temperature and pressure changes:

1 def expansion_by_steps(self, steps):
2 starting_p = self.P3
3 p_end = self.p_out
4 total_p = starting_p - p_end
5 iteration = 0
6 number_of_steps = steps
7 pressure_of_step = total_p / number_of_steps
8 self.p_out = starting_p
9 self.work = 0

10 temperature_step_before = self.TIT
11

12 while iteration < number_of_steps:
13 if self.p_out >= p_end:
14 self.p_out = self.p_out - pressure_of_step
15 self.calc()
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16 new_iteration_stream = self.get_outlet_stream()
17 self.stream = new_iteration_stream
18 delta_T = temperature_step_before -

self.get_outlet_temperature('K')
19 temperature_step_before = self.t_out
20 flow_rate = self.stream.get_flow_rate('kg/sec')
21 cp = self.stream.fluid.getPhase(0).getCp('kJ/kgK')
22 work_iteration = (flow_rate * delta_T) * cp
23 self.work = self.work + work_iteration
24 iteration = iteration + 1

Since the model is designed to be used as a basis for building a Digital Twin for
systems more complex than a simple single-shaft gas turbine with a compressor, a
combustion chamber and a turbine, a function has been included to calculate the
expansion pressure of a turbine not directly coupled to the generator, but coupled
to one or more compressors.

In particular, this function allows the turbine output pressure to be calculated
based on the work required to run the compressor(s) to which it is coupled. As will
be seen later in the design and modeling of the turbines under study (GE LM6000
and GE LM2500) for example, the high-pressure turbine is not connected to the
generator, but has the only function of producing mechanical work to rotate the
compressor shafts. This makes the turbine to not expand up to ambient pressure,
but up to a pressure value lower enough to produce a work equal to the work
required by the compressor; and since expansion stages are not often available,
the function shown below allows this unknown pressure value to be calculated,
having the work of compression as input:

1 def calc_p_out_iterations(self, work, units):
2 resetting_stream = self.stream
3 self.T4 = self.TIT - (work /

(self.stream.get_flow_rate('kg/sec') *
4

self.stream.fluid.getCp('kJ/kgK')))
5 self.defined_work = work
6 temperature_ratio = self.T4 / self.TIT
7 k = self.stream.fluid.getGamma2()
8 exponent = (k / (k - 1)) * (1 / self.pol_efficiency)
9

10 self.p_out = self.P3 * ((temperature_ratio) ** exponent)
11 self.expansion_by_steps(100)

As in the case of expansion and compression processes, however, the value of cp
and cv vary as pressure and temperature change, and with the application of the
formula alone, the pressure value obtained corresponds to a work value that does
not perfectly coincide with the work of the compressor. Therefore, an iterative
algorithm is implemented, which reduces the pressure by a minimum value close
to zero at each iteration, until the resulting work is greater by a maximum of 10
kW (tolerance value set) than the value of work of the compressor:
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1 # iterating on the pressure:
2 iteration = 100
3 i = 0
4 pressure_list = []
5 work_list = []
6 tolerance = 10 # kw
7 while i < iteration:
8 self.work = 0
9 self.stream = resetting_stream

10 self.p_out = self.p_out - 0.001
11 pressure_list.append(self.p_out)
12 self.expansion_by_steps(100)
13 work_list.append(self.work)
14 i = i + 1
15

16 closest_value = None
17 min_difference = float('inf')
18 corresponding_pressure = None
19

20 for i in range(len(work_list)):
21 difference = abs(work_list[i]- work)
22 if abs(work_list[i]- work) < tolerance:
23 if work_list[i] > work:
24 if difference < min_difference:
25 min_difference = difference
26 corresponding_pressure = pressure_list[i]
27

28 print('The work that can satisy ',work,' is
',work_list[i])

29 print('The pressure that corresponds to that
work is ',corresponding_pressure)

30

31 self.p_out = corresponding_pressure
32 self.work = 0
33 self.stream = resetting_stream
34 self.expansion_by_steps(100)

A numerical analysis will be shown in the Chapter 4.
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3.2 Single shaft gas turbine

To analyse the calculation methods developed in Python, a case study of a single-
shaft gas turbine (consisting of a compressor, a combustion chamber and a turbine)
is developed in design conditions (a single operating point referred to a single
ambient temperature) and in off-design conditions (more operating points referred
to different ambient temperatures), also considering different type of fuels. The
same model is designed in Aspen HYSYS®, in order to compare the results, and
validate the model in Python.

Figure 3.2.1: Simplified illustration of the single-shaft case study turbine

In particular, the data assumed for the stream of air are:

• mass flow rate: 50 kg/sec

• temperature: 20°C,considered as design temperature

• pressure: 1 bara

• composition in molar fraction: 0.8 for N2 and 0.2 for 02

The data assumed for the compressor and the turbine are:

• compressor outlet pressure: 10 bara

• compressor polytropic efficiency: 87%

• turbine outlet pressure: 1 bara

• turbine polytropic efficiency: 90%

For simplification, in this case study no pressure losses at the intake or at the
exhaust are considered, since the main objective of the example is to estimate the
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accuracy of the thermodynamic model.

In the first case study, only methane at 20°C and at 10 bara is considered.
Then analysis on the TIT value considering different fuels but the same gas turbine
design are done, and below a table with the compositions (expressed in molar
fraction) of the case study fuels is shown:

Fuel CH4 C2H6 C3H8 C4H10 C5H12* C5H12**

Methane 1.0 0.0 0.0 0.0 0.0 0.0

Ethane 0.0 1.0 0.0 0.0 0.0 0.0

Propane 0.0 0.0 1.0 0.0 0.0 0.0

I-butane 0.0 0.0 0.0 1.0 0.0 0.0

Fuel1 0.8 0.2 0.0 0.0 0.0 0.0

Fuel2 0.0 0.8 0.2 0.0 0.0 0.0

Fuel3 0.5 0.5 0.0 0.0 0.0 0.0

Fuel4 0.8 0.0 0.2 0.0 0.0 0.0

Fuel5 0.6 0.2 0.2 0.1 0.0 0.0

Fuel6 0.5 0.2 0.1 0.1 0.1 0.0

Fuel7 0.4 0.2 0.1 0.1 0.1 0.1

Table 3.2.1: Case study fuel compositions in molar fractions; *C5H12 refers to
iso-pentane; **C5H12 instead, refers to normal-pentane

Below, it is shown as an example, how the code for modelling the turbine compo-
nents is developed, starting from the air fluid:

1 component_names = ["oxygen", "nitrogen", "methane", "ethane",
"propane",

2 "i-butane", "n-butane", "i-pentane",
"n-pentane", "n-hexane", "H2O", "CO2"]

3 air_composition = [0.2, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0]

1 air = fluid("srk")
2 for component in component_names:
3 air.addComponent(component,

air_composition[component_names.index(component)])

The air stream is therefore designed by entering the values for fluid, pressure,
temperature and flow rate:
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1 air_stream = Stream()
2 air_stream.set_fluid(air)
3 air_stream.set_temperature(20, 'C')
4 air_stream.set_pressure(1)
5 air_stream.set_flow_rate(50, 'kg/sec')
6 air_stream.calculate()

Compressor, combustion chamber and turbine are built the with a similar proce-
dure. For the compressor:

1 compressor = Compressor()
2 compressor.set_losses(0)
3 compressor.set_stream(air_stream)
4 compressor.set_p_out(10)
5 compressor.set_pol_efficiency(0.87)
6 compressor.calc_isentropic_efficiency()
7 compressor.compression_by_steps(100)

For the combustion chamber:

1 combustor1 = Combustor()
2 combustor1.set_stream_air(compressor.outlet_stream)
3 combustor1.set_stream_fuel(methane_stream)
4 combustor1.calc_enthalpy()
5 combustor1.calc_TIT_reaction()
6 combustor1.calc_enthalpy()
7 combustor1.calc_TIT()

As it can be seen, the stream inserted in every component is the outlet stream
from the component before. Another consideration for the combustion chamber
is that the temperature is calculated both considering the chemical reaction, im-
plementing the calc_TIT_reaction/(), and not considering the chemical reaction,
impelemnting the calc_TIT().
For the turbine:

1 turbine = Expander()
2 turbine.set_losses(0)
3 turbine.set_stream(combustor1.outlet_stream)
4 turbine.set_p_out(1)
5 turbine.set_pol_efficiency(0.9)
6 turbine.calc_isentropic_efficiency()
7 turbine.expansion_by_steps(100)
8 turbine.get_outlet_stream()

3.2.0.1 Off design model

The off-design model developed calculates the change of the operating conditions
as the ambient temperature changes, the explanation for which is described in
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2.1.2. As the ambient temperature changes, the new air flow rate is first calculated,
relative to the corrected mass flow rate; the model then implements a while cycle
that iterates the calculation of the compressor outlet pressure that can satisfy the
equation 2.33, through equations 2.31 and 2.32. Once the new P2 and P3, net of
the compressor pressure loss, have been found, the new turbine parameters are
calculated. For the code, refer to Appendix, in .2.

3.2.1 Aspen HYSYS® model

As mentioned in the previous section, the same case study is built in Aspen
HYSYS®, whose values are taken as a baseline to validate the results of the model
in Python [29]. For the design conditions described, in particular, the model looks
like this:

Figure 3.2.2: Illustration of the design model in Aspen HYSYS®

The procedure for modelling the gas turbine in Aspen HYSYS® will be briefly
explained below. Firstly, in the Properties section, the components and the fluid
type are selected. As shown in the pictures below, the list of components includes
all the various hydrocarbons typical of natural gas in addition to nitrogen and
oxygen.
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Figure 3.2.3: Selection of components

The last step to complete the implementation of the properties includes the setting
of the chemical reactions for modeling the combustion chamber.
In the picture below is shown as example what the reaction between methane and
oxygen looks like:

Figure 3.2.4: Example of setting a chemical reaction: methane

Afterwards, the modelling phase of the gas turbine components is performed in
the section Simulation, by entering the same values as assumed when designing
the model in Python. In particular, some considerations may be made regarding
the Gibbs reactor, used to model the combustion chamber.
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The Gibbs reactor calculates the outlet composition, and it is based on the prin-
ciple that the free Gibbs energy is at a minimum equilibrium [30].
Gibbs free energy is a thermodynamic value, representing the chemical potential
that is minimised when a system reaches equilibrium at constant pressure and tem-
perature. In particular, it is based on the principle that every natural system tends
to reach the lowest possible energy level: the quantitative measure representing
this phenomenon is indeed the change in Gibbs free energy, which, when negative,
indicates a favoured process, which releases energy. On the other side, when the
change of Gibbs free energy is positive, it indicates a state of non-equilibrium of
the system, which requires work and energy to favour the reaction, and reach the
minimum possible energy level [31].

Another consideration can be made regarding the SET function, which is a func-
tion that adjusts the pressure of the methane to the pressure of the air leaving the
compressor: without this function, the fuel would reduce the air pressure if it were
at ambient temperature (for simplification, any fuel compressor is neglected).

3.2.1.1 Off design model in Aspen HYSYS®

The off-design model in Aspen HYSYS® is constructed following the procedure
described in 2.1.2; as the model built for the design, the off-design simulation in
HYSYS® is used for checking the behaviour of the Python code by getting further
away from the design operating point. In particular, two simulation schemes are
implemented, one referring to design conditions and one referring to off-design
conditions. In Figure 3.2.5 the design simulation is shown, which is similar to the
one used for developing the design point; in Figure 3.2.6 the off-design simulation
is shown, together with the calculation spreadsheet.

Figure 3.2.5: Design simulation model in Aspen HYSYS®, built as a baseline
for the off-design calculations.
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Figure 3.2.6: Off-design simulation model in Aspen HYSYS®, connected through
the calculation spreadsheet to the design simulation model

By linking a spreadsheet to the model and implementing ’case study’ calculations,
the ambient temperature changes, affecting the calculations of the new pressure
values, and consequently the calculations of the new parameters of the gas turbine.
Figure 3.2.7 shows as an example the variables exported from the calculation
spreadsheet to the new off-design model: as can be seen, the new air flow rate,
dependent on the ambient temperature, is calculated according to the corrected
flow rate formula; the pressure values P2 and P3 are calculated and exported as
well.

Figure 3.2.7: Exported variables from the spreadsheet to the off-design simula-
tion model

3.3 Model for GE LM6000 and GE LM2500
The design of the class-based code describing the behaviour of a generic gas turbine
is functional to the design of digital models for real plants, in order to simulate
the behaviour under design and off-design conditions of reference turbines in as
much detail as possible.

In the specific case study, the digital twin design concerns the GE LM2500 and
GE LM600 turbines, described in 2.2.1. The modelling procedure of the turbines
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is carried out in the following way: firstly, the corresponding design and off-
design model is built in Thermoflow©, in order to obtain significant parameters
and values, such as exhaust gas temperature, or power output.
Next, an iterative procedure is implemented in GasTurb© to identify the polytropic
and isentropic efficiencies under design conditions of the different components, a
fundamental step to have an optimal baseline parameter for condition monitoring
purposes. Finally, the model is designed in Python, and validated through a
comparison with Thermoflow©.

3.3.1 Thermoflow© model

Thermoflow© is the leading developer of thermal engineering software for the power
and co-generation industries [32]. It is a software aimed to create a plant config-
uration and technical parameters that suit the criteria inserted as input. The
software is structured in several programs, and the one in particular used for de-
sign modelling is GT PRO.

First of all, the gas turbine model must be selected, as shown in Figures 3.3.1 and
3.3.2: as it can be seen, the selection of the specific gas turbine implies certain
standard input parameters: heat rate, exhaust flow rate, gross power output, gas
turbine efficiency, pressure ratio, etc. Those parameters will be adjusted based on
the given input.

Figure 3.3.1: Selection of GE LM2500 gas turbine model in GT PRO
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Figure 3.3.2: Selection of GE LM6000 gas turbine model in GT PRO

Afterwards, the plant criteria are defined; the most important parameter to choose
are the design ambient temperature, the ambient pressure and the type of plant:
since no co-generation is considered, the plant is gas turbine only. For the purpose
of example, in Figure 3.3.3 is the representation of the choice of the plant criteria
for GE LM2500.

Figure 3.3.3: Selection of plant criteria for GE LM2500 in GT PRO

Then inputs must be defined, such as pressure losses at intake and exhaust, and
fuel conditions (composition and pressure). In Figure 3.3.4 is shown as example
the input definition interface for the GE LM2500 turbine.
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Figure 3.3.4: Definition of input parameters(losses and fuel) for GE LM2500 in
GT PRO

For the choice of fuel composition, in particular, a generic natural gas fuel is
created for the two turbines, since, for the purposes of model design, reference
is made to the fact that part of the extracted natural gas is used at Equinor to
operate the turbines. In table 3.3.1 compositions expressed in volume percentage
are shown, the same for the two turbines.

Fuel Chemical Formula Volume %

Nitrogen N2 0.83

Carbon Dioxide CO2 0.41

Methane CH4 93.74

Ethane C2H6 3.73

Propane C3H8 0.57

n-Butane C4H10 0.16

n-Pentane C5H12 0.23

Isobutane C4H10 0.33

Total 100

Table 3.3.1: Fuel composition in volume percentage in Thermoflow©

In tables 3.3.2 and 3.3.3 values taken as input for the model in Python are shown,
respectively for the gas turbine GE LM2500 and gas turbine GE LM6000.
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ṁintake lossesintake lossesexhaust ṁfuel leakage ηmech ηgen
kg/s mbar mbar kg/s kg/s % %

66 10 15 1.26 0.58 98.95 97.53

Table 3.3.2: Model input data taken from Thermoflow© for GE LM2500 gas
turbine

ṁintake lossesintake lossesexhaust ṁfuel leakage ηmech ηgen
kg/s mbar mbar kg/s kg/s % %

129 10 12.45 2.23 1.52 99.22 98.21

Table 3.3.3: Model input data taken from Thermoflow© for GE LM6000 gas
turbine

The composition of the air is also taken as input to the model by Thermoflow©,
and is considered the same for the two turbines. The values are shown in the table
3.3.4.

N2 O2 CO2 H2O Ar
% % % % %

74.54 13.51 3.33 7.7 0.897

Table 3.3.4: Air composition data in volume percentage taken from Thermoflow©

Data from Thermoflow© are also taken to verify the quality of calculation of the
model in Python, which are listed for the two turbines in the tables 3.3.5 and
3.3.6.

TET Power HeatRate ηmech

°C kW kJ/kWh %

543 21958 10033 35.88

Table 3.3.5: Model output data taken from Thermoflow© for GE LM2500 gas
turbine to be compared with the Python model
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TET Power HeatRate ηmech

°C kW kJ/kWh %

453 45199 8610 41.8

Table 3.3.6: Model output data taken from Thermoflow© for GE LM6000 gas
turbine to be compared with the Python model

However, in order to be able to proceed with the design of the model in Python,
important and fundamental parameters must be defined: the polytropic and/or
isentropic efficiencies of the components. These parameters are unknown outside
the manufacturer, and cannot even be defined using Thermoflow©, as compressor
maps are required.

These parameters are not negligible, indeed, they must be identified as correctly
and reliably as possible not only because the design modeling is impossible without
the definition of the efficiencies, but also because, for the purpose of condition
monitoring and predictive maintenance, they constitute the baseline of the non-
degraded condition with which to compare the actual field data. In the following
section, an iterative procedure in GasTurb© for identifying efficiencies is presented.

3.3.2 GasTurb© model for efficiency

GasTurb© is a gas turbine performance calculation and optimization program. It
simulates most of the gas turbine configurations in use for propulsion or for power
generation [33]. It is made of different software configurations, and for the pur-
poses of the finding of components efficiency, a cycle design is implemented: in
the gas turbine design process, in fact, many alternative thermodynamic cycles
are evaluated, whose the cycle reference point (or design point) is chosen.

First, the correct geometric and mechanical configuration is selected for the tur-
bines, shown in the figures below. In Figure 3.3.5 the white shaft is the one the
two compressors and the high pressure turbine are coupled to, while the black
shaft is the power shaft, to which the power turbine, and so the generator, are
coupled.
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Figure 3.3.5: GE LM2500 turbine selected configuration in GasTurb©

In Figure 3.3.6 instead, is the inner-shaft configuration of the gas turbine GE
LM6000, with the black shaft being the power shaft (to which LPC and LPT are
coupled) and the white shaft being the HP inner shaft.

Figure 3.3.6: GE LM6000 turbine selected configuration in GasTurb©

In order to define the cycle design point, the model in GasTurb© requires the
following data as input, taken from Thermoflow©:

• compression ratio;

• pressure losses at the intake;
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• pressure losses at the exhaust;

• LHV of the fuel;

• ambient temperature and pressure

Therefore, the application has to be selected: since the purpose of the turbines
is the power generation, the application is turboshaft instead of turbopropeller.
The last step to do is the initialisation of the efficiency values for turbines and
compressors: following the values for efficiencies given in [11], compressors are
initialised with a polytropic efficiency of 0.9 and turbines with a polytropic effi-
ciency of 0.85: these values are only used to start the calculation iterations. As
an example, Figure 3.3.7 shows the GasTurb© interface for the modeling of the
GE LM6000 turbine.

Figure 3.3.7: Input parameter interface for GE LM6000

In order to identify the design point, and thus the values of the component effi-
ciencies, once the main input data have been modelled, an iterative procedure is
implemented, which relates target values (such as the power output) to variable
values (the values of the efficiencies, which are, in fact, variable, as they are to
be identified). In GasTurb©, in particular, the correlation between target and
variable must be one-to-one, so the procedure of assigning to a given target the
corresponding variable efficiency is not trivial, and is done iteratively.

The target values are taken from Thermoflow©, and are the parameters and are
the parameters describing the turbine, and are listed below:
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• power output;

• exhaust gas temperature;

• heat rate;

• gas turbine efficiency

Variables, on the other hand:

• LP efficiency;

• HP efficiency;

• LP turbine;

• HP turbine

The first correlation identified is the correlation between exhaust gas temperature
and low-pressure turbine efficiency, as these are directly and thermodynamically
related parameters. It is then seen that the power correlated with the efficiency of
the high-pressure compressor completes the iterations positively. As for the other
two efficiencies, they are identified by GasTurb© without a specific correlation, as
none is found to lead the iteration to be completed correctly.

In Figures 3.3.8 is brought as example the iteration procedure for the gas turbine
GE LM6000, that shows the relation between target and variables. As it can be
seen, also fuel flow rate (correlated with the temperature at the outlet of the com-
bustion chamber) and the exhaust flow rate are considered in the iterations, since
they are parameters to be defined.

Figure 3.3.8: GasTurb© iteration procedure interface for GE LM6000

The interfaces of the results obtained by GasTurb© are shown below for the GE
LM2500 turbine 3.3.9 and the GE LM6000 turbine 3.3.10: the values taken as input
for the model are the polytropic and isentropic efficiencies of the components.
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Figure 3.3.9: GasTurb© output interface for GE LM2500



CHAPTER 3. MODELS AND METHODS 57

Figure 3.3.10: GasTurb© output interface for GE LM6000

For a clearer view of the results, the efficiencies are shown in the tables 3.3.7 and
3.3.8.

LPC HPC HPT LPT

ηisentropic 88.38 86.17 87.03 87.1

ηpolytropic 89.99 89.05 85 84.86

Table 3.3.7: Efficiency for GE LM2500 gas turbine

LPC HPC HPT LPT

ηisentropic 86.43 89.73 87.56 88.6

ηpolytropic 88 92.5 85.68 85.68

Table 3.3.8: Efficiency for GE LM6000 gas turbine
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3.3.3 GE LM2500 turbine off-design

The simplifications adopted for the off-design model of the case study seems to
be approximate and not adoptable to describe a complex off-design model such
as that of the aeroderivative turbines under study, in particular the gas turbine
LM2500, the one taken into account in this section. In the simplified case, in fact,
the corrected flow rate is considered constant in varying operating conditions, as
described by the formula 2.22: in truth, as illustrated in the section 2.1.2.1, the
relationship between corrected flow rate in design conditions and in off-design con-
ditions may consider a quantity directly proportional to the variation of the IGVs
angle at the compressor intake.

In Figure 3.3.11 is it possible to precisely see how as the ambient temperature
decreases, there is an increasing difference between the air flow rate returned by
Thermoflow© and the air flow rate calculated considering a constant corrected flow
rate, according to the formula ṁ1 = ˙m1,ref

√
T1,ref

T1

P1

P1,ref
.

Figure 3.3.11: Comparison of the air flow rate between Thermoflow©w and
Python for the GE LM2500, not considering the effect of the IGVs

But the actual question that arises is whether there is an actual correlation be-
tween the variation in ambient temperature and the variation in the opening of
IGVs, especially in full-load. In the literature there some research that relates
the ambient temperature and the opening of the IGVs: for example, in [34] it
is explained how, when the IGV opening is constant and the inlet air tempera-
ture is lower than the optimal value, as the inlet air temperature decreases, the
GT efficiency decreases. In fact, the change in opening angle of the IGVs is an
important parameter for regulating and optimising the performance of the gas
turbine. However, the relationship between the variation of ambient temperature
and the variation of the angle of the IGVs is known and studied in the case of
part-load performance, and it is unclear whether the variation of the IGVs can
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find application sense in the case of full load, as the ambient temperature changes.
In addition, no specific information is available from the manufacturer (General
Electric) on how off-design tests are carried out for gas turbines.

Although there is no more precise information on how the off-design performance
actually occurs as the ambient temperature changes, in light of the relationship
between the air flow rate in Thermoflow© and the air flow rate calculated consid-
ering the constant corrected flow rate, it is assumed that, for the GE LM2500 gas
turbine, the off-design model takes into account a possible opening of the IGVs as
the ambient temperature decreases compared to the design temperature.

With this in mind, an initial simplified off-design model for the LM2500 turbine is
roughly developed, considering an off-design model of a turbine with similar me-
chanics, described in [12]. This model considers how air flow, compression ratio
and efficiency of the compressor/turbine component varies not only with varying
ambient conditions but also with varying vanes angle.

In 2.1.2.1 section, the coefficient CIGV, directly proportional to the opening of
the IGVs, is defined as the ratio between the corrected flow rate in off-design and
the corrected flow rate in design:

CIGV =
µOD

µD

(3.1)

where the subscrit OD stands for off-design, while the subscript D stands for de-
sign.

As it is demonstrated in [11], the coefficient CIGV that relates the value of the
corrected flow rate in off-design and the corrected flow rate in design is almost
the same as the coefficient CIGV implemented for the change of the compression
ratio: therefore, by deriving this coefficient from the ratio between the corrected
flow rate in off-design (obtained from the values in Thermoflow©) and the cor-
rected flow rate in design, the new values of the compression ratio are obtained as
the ambient temperature varies.

As ambient temperature decreases and air flow increases, also a reduction in com-
pressor and turbine efficiency occurs. The turbine, in fact, is built on the same
concept, except for the fact that instead of having IGVs, NGVs are modeled (noo-
zle guide vanes), whose opening is modified to allow more or less flow of hot gases
to pass through: since a full load case is considered, the fuel flow rate and air flow
rate increase as the ambient temperature decreases, so, for simplification, for the
NGVs is considered a similar behaviour and opening as the IGVs.

Therefore, the opening of the NGVs reduces the turbine stage efficiency, due to the
increasing aerodynamic losses in the turbine, as the opening of the IGVs reduces
the compressor stage efficiency.
In the Figures 3.3.12 and 3.3.13 is it possible to see, in fact, the reduction in
compressor and turbine efficiency as the opening angle of the IGVs changes.
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Figure 3.3.12: Change in compressor efficiency by changing the angle of the
IGVs [12]

Figure 3.3.13: Change in turbine efficiency by changing the angle of the IGVs
[12]

Following this logic, therefore, the first draft of the off-design model for the GE
LM2500 gas turbine is implemented, taking the following data as input from
Thermoflow©:
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Input Values from Thermoflow©

Air Flow Rate

Fuel Flow Rate

Intake Pressure Drops

Exhaust Pressure Drops

Air Leakage

Table 3.3.9: Values taken from Thermoflow© as inputs to the model in Python
for GE LM2500 gas turbine

3.4 Performance Indicators
As highlighted in the section 2.3, one of the most significant uses of the digital
twin lies in the implementation of predictive maintenance and condition moni-
toring strategies. In order to implement a mathematical and analytical model
for identifying component degradation according to the model-based, (or physics-
based) strategy, the approach outlined in [27] is followed, in which the authors
define performance indicators (or degradation indices), relating the gas turbine
current operating conditions, the design conditions and the expected operating
point according to the actual ambient parameters.

In this sense, the digital twin would provide the information related to the design
operating point and the expected operating point under specific ambient condi-
tions, while the sensors would provide information related to the actual operating
conditions. As can be guessed, developing such an index would require detailed
and specific information from both the sensors collecting the actual data and the
accurate predictions of the digital twin: regarding the field data, the most accurate
information provided refers to the GE LM6000 turbine, while the model developed
even in off-design conditions is of the GE LM2500 turbine, whose data from the
field is not adequately significant to be applied. For these reasons, a simplified
performance indicator model applicable to the GE LM6000 turbine low-pressure
compressor is proposed.

The idea behind the model is to identify a possible variation in the polytropic ef-
ficiency of the low-pressure compressor compared to the nominal conditions iden-
tified during the design of the model in design.
The equation 2.20 is the equation referred to in this simplified model, which re-
lates the temperature and pressure at the inlet and outlet of the compressor, also
shown below for ease of reading:

T2

T1

=

(
P2

P1

) γ−1
γηp,C

(3.2)

The ambient pressure and the ambient temperature are taken from the field data
to determine the real properties of the air at the compressor inlet.
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The compressor inlet temperature and the compressor outlet pressure are also
taken from the field, while the reference polytropic efficiency is the polytropic ef-
ficiency in design conditions: taking the design polytropic efficiency as a reference
and considering it constant as the ambient temperature changes, is obviously a
simplification, since, as also demonstrated for the GE LM2500 turbine, in operat-
ing conditions other than design, the efficiency may vary.

The aim is to calculate the difference between the calculated temperature by the
digital twin at the compressor outlet and compare it with the temperature from
the field data, considering the outlet temperature at the compressor calculated by
the digital twin in hypothetical ’clean’ conditions.
The performance indicator is thus developed this way, it is shown in 3.5 and it
is normalised by the temperature calculated by the model. Since it is dependent
on the temperature scale, the temperature is converted as temperature difference
from a reference value, i.e. ambient temperature Tamb:

∆T2,field = T2,field − Tamb (3.3)

∆T2,model = T2,model − Tamb (3.4)

∆T2,field −∆T2,model

∆T2,model

(3.5)

Taking the principles of thermodynamics into account, if this index has a positive
value, then it means an higher temperature than the nominal one calculated by
the model at the same compression ratio, which consequently points out a reduc-
tion of the compressor polytripic efficiency.

A first hypothesis, which would go back to the component degradation topic, could
be that the compressor is using more power to compress air at the predefined
pressure than it would if the polytropic efficiency were equal to the nominal one.
Naturally, as also mentioned above, this is only a hypothesis, as the change in
efficiency could also be traced back to a change in ambient conditions.
The results will be discussed in chapter 4.
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FOUR

RESULTS AND DISCUSSION

In the first part of this section, the results of the Python and Aspen HYSYS®

model comparison for the single-shaft gas turbine case study in design and off-
design conditions will be shown. The purpose of the comparison is to validate the
computational quality of the code methods in Python, and the results are analysed
in terms of temperature, power, efficiency, fluid molar composition, etc. Next, the
results of the Python model in design for the GE LM2500 and GE LM6000 turbines
will be shown, compared to the output in Thermoflow©. The off-design results
for the GE LM2500 turbine model will also be highlighted. Finally, the results of
the analysis of real data from the field for the implementation of the performance
indicator for condition monitoring in predictive maintenance will be presented.

4.1 Comparison with Aspen HYSYS®

As illustrated in section 3.2.1, two comparative models are designed and built in
Python and Aspen HYSYS®, in order to validate the methods of the class-based
model in Python and the accuracy of the calculation of thermodynamic functions.

4.1.1 Sensitivity analysis for power and temperature

Paragraph 3.1.2 illustrates the calculating method for the temperature and the
other thermodynamic properties of the stream after the compression and expan-
sion processes, using a step iterative procedure, which takes into account the
smallest variations of the specific heat.

A sensitivity analysis is performed to show how the temperature and power of
compressor and turbine change by changing the number of iterations, keeping the
temperature and power values from the simulation in Aspen HYSYS® as the ideal
baseline. For the temperatures, the T is referred to the difference between the
temperature considered and the ambient temperature. In Figures 4.1.1 and 4.1.2
is shown the sensitivity analysis for the temperature out of the compressor and
the compressor duty.

63
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Figure 4.1.1: Sensitivity Analysis of the T2 by changing the number of iterations
compared to the baseline simulation

Figure 4.1.2: Sensitivity Analysis of the W2 by changing the number of iterations
compared to the baseline simulation

In order to better show the improvement of the results, a histogram of the variation
in the error percentage is shown in Figure 4.1.3. The percentage error is calculated
as follows for temperature and duty, where W is for work in a generic way.

|(T2,Python − Tambient)− (T2,HY SY S − Tambient)|
(T2,Hysys − Tambient)

(4.1)
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|W2,Python −W2,HY SY S|
W2,Hysys

(4.2)

Even though the temperature in Python does not exactly converge to the temper-
ature in HYSYS®, the percentage error is under 1.5%, with difference of about 4
degrees, leading to the conclusion of a good result.

Figure 4.1.3: Percentage error of T2 by changing the number of iterations

The duty, on the other hand, is more is more positively affected by the number
of iterations, and therefore by the change of the specific heat, as can be seen by
the greater slope of the trend line in the percentage error histogram. Leading to
at almost 0% error, the work calculation also produces good results.
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Figure 4.1.4: Percentage error of W2 by changing the number of iterations

As it is done for the compressor, a similar sensitivity analysis is conducted for the
turbine. In Figures 4.1.5 and 4.1.6 the sensitivity analysis by changing the number
of iterations is shown, respectively for temperature and power.

Figure 4.1.5: Sensitivity Analysis of the T4 by changing the number of iterations
compared to the baseline simulation
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Figure 4.1.6: Sensitivity Analysis of W4 by changing the number of iterations
compared to the simulation

The trend of the turbine power compared to the baseline defined with Aspen
HYSYS® is perfectly consistent with what is expected: as the number of itera-
tions is reduced, the calculation of the temperature is more approximate, and the
resulting value of the temperature is higher than it should be, so the resulting
power is lower.

In Figures 4.1.7 and 4.1.8 the percentage error histograms, for temperature and
power, calculated in the same way as the compressor (refer to eq. 4.1 and 4.2.
As it is detected for the compressor, the power is more positively affected by the
change of the number of iterations, since the slope of the trend line is greater.
Overall, the percentage errors, less than 1.5% for the temperature and almost
0% for the power, lead to a validation of the iterative procedure for calculating
temperature and power for the turbine as well.
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Figure 4.1.7: Percentage error of T4 by changing the number of iterations

Figure 4.1.8: Percentage error of W4 by changing the number of iterations

4.1.2 Case study: design

Section 3.2 illustrates the reference case study for comparing the calculation results
between Python and Aspen HYSYS® of the single-shaft gas turbine. Below is the
table illustrating the results obtained, and the percentage error:
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Variable Unit HYSYS® Python Error % Error

Compressed Air T °C 337.4 341.4 4.0 1.21

Compressor Duty kW 16590 16641.5 51.5 0.31

Compressor ηis % 83 82.37 0.63

TIT (reactions) °C 1135 1136.1 1.18 0.10

TIT (no reactions) °C 1135 1221.4 86.4 7.08

Exhaust Gas T °C 583.8 590.5 6.77 1.15

Turbine Power kW 34540 34381.9 158.04 0.46

Turbine ηis % 92 92.18 0.18

LHV methane kJ/kg 50030 50028 1.95 0.0

GT Net Power kW 17950 17740.3 209.6 1.17

GT efficiency % 35.88 35.46 0.42

Table 4.1.1: Case study design model: results

The first consideration taken into account is that the temperature out of the com-
bustion chamber (TIT is for turbine inlet temperature) can be calculated in two
ways: either by considering the chemical reactions between the fuel and the air
and, consequently, considering the combustion fluid made of the products of the
reaction, which also affects the specific heat; or by not considering the chemical
reactions and simplifying the fluid out of the combustion chamber as just air, not
made of the products of the reaction (and, consequently, a reduced specific heat).

As it can be seen from the results in the table 4.1.1, the use of the chemical reac-
tions calculation method is justified by the improvement of the temperature inlet
turbine, in terms of reduction in the deviation from the value in the simulation
baseline. For a more detailed discussion about the TIT and the combustion pro-
cess, refers to the 4.1.3. Overall, with the exception of the TIT calculated without
considering chemical reactions, the results from the design analysis can be con-
sidered good, settling for each variable below 1.5%. For a more impactful insight
into the data, refer to the Figure 4.1.9, representing the percentage error for each
variable being studied.
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Figure 4.1.9: Percentage deviation of the variables being studied in the case
study design model

The mole fractions of the fluid made of combustion products, compared with the
HYSYS® mole fractions, are also shown in the table 4.1.2, proving the calculation
efficiency of the combustion chamber chemical reaction method.

N2 O2 CO2 H2O

HYSYS® 0.7723 0.1237 0.0347 0.0693

Python 0.7784 0.1204 0.0337 0.0675

Difference 0.0061 0.0033 0.0010 0.0018

%Error 0.79 2.68 2.78 2.64

Table 4.1.2: Combustion fluid compositions in mole fraction

4.1.3 Temperature inlet turbine analysis

This section is concerned with combustion analysis, giving examples of calculation
results with different fuels, and comparing temperature values calculated using the
chemical and non-chemical reaction methods.

For the development of this analysis, the compressor, turbine and stream are
modelled with the same values as defined for the design conditions (refer to 3.2),
while the different fuels entering the combustion chamber are tabled in 3.2.1,
with their respective compositions in molar fraction. In Figure 4.1.10 there is the
graph representing the TIT values for each different fuel used: the comparison is
made between the temperature in HYSYS®, taken as reference, the temperature
calculated using the chemical reactions method, and the temperature calculated
without implementing chemical reactions (and whose fluid therefore has the same
composition as the incoming air).
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Figure 4.1.10: TIT values for different fuels listed in 3.2.1: the comparison is
between the value in HYSYS®, in Python with the chemical reaction method and
in Python without the chemical reaction method

The values are also shown in terms of absolute temperature difference, in 4.1.11.
The absolute difference is calculated between the TIT in HYSYS® and the TIT
calculated with the chemical reaction method, and between the TIT in HYSYS®

and the TIT calculated without the chemical reaction method. In particular, it
is shown that the difference between the TIT in HYSYS® and the TIT obtained
without the chemical reactions is visually (and quantitatively) greater than the
difference between the TIT in HYSYS® and the TIT obtained by the use of the
chemical reactions method.

Figure 4.1.11: Comparison between the absolute difference of the TIT in
HYSYS® and the TIT with the chemical reactions and the absolute difference
of the TIT in HYSYS® and the TIT without the chemical reactions
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To give a better idea in terms of the percentage difference of the two tempera-
ture calculation methods, the percentage error of the absolute deviation between
the difference between the temperature out of the combustion chamber and the
ambient temperature is calculated, both for TIT in HYSYS®, for TIT calculated
without the chemical reactions, and for TIT calculated with the chemical reactions.

In the equations below, the difference between the TIT and the ambient temper-
ature. In particular, the subscript r stands for reactions, and the temperature
is referred to the TIT considering the chemical reactions, while the subscript nr
stands for no reactions, and the temperature is referred to the TIT that does not
consider the chemical reactions.

ϵHysys = TITHysys − Tambient (4.3)

ϵr = TITr − Tambient (4.4)

ϵnr = TITnr − Tambient (4.5)

The percentage error calculated for the two methods is therefore expressed as
follows in 4.6 for the TIT considering the chemical reactions and in 4.7 for the
TIT not considering the chemical reactions:

er =
|ϵHysys − ϵr|

ϵHysys

(4.6)

enr =
|ϵHysys − ϵnr|

ϵHysys

(4.7)

As can be seen from the Figure 4.1.12, the percentage error calculated with the
method described confirms in quantitative percentage terms the results analysed
above: the percentage error of the TIT calculated with the method of chemical
reactions settles at a value close to 0%, in comparison with the 6/7% error of the
TIT calculated without the chemical reactions.
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Figure 4.1.12: Percentage error of the absolute deviation between the difference
between the temperature out of the combustion chamber and the ambient tem-
perature: TIT with chemical reactions compared to the TIT without the chemical
reactions

As can be seen from the trend in fuel type number 7 (and referring to the mole
fraction compositions in 3.2.1, it consists of methane, ethane, propane, i-butane,
i-pentane and n-pentane), increasing the number of components in the fuel, the
convergence of the chemical reaction method to the values in HYSYS® is slightly
reduced, while is still significantly better than the method without chemical reac-
tions.

Another analysis takes into account the change of the mass flow rate of the air
and it evaluates how the TIT is affected.

Figure 4.1.13: Change of TIT by changing the mass flow rate of air
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As it can be seen in the picture 4.1.13, the trend is as might be expected. The
temperature calculated with the chemical reaction methods is always comparable
to the temperature calculated by HYSYS®, since the specific heat cp of the com-
bustion fluid is quite similar to the cp calculated in HYSYS®, displayed in Figure
4.1.14.

Figure 4.1.14: Change of cp of combustion fluid by changing the mass flow rate
of air

The temperature calculated without considering the chemical reactions - and so
considering the specific heat of the combustion fluid as the specific heat of air - is
instead improving as the mass flow rate of air increases: not changing the mass
flow of the fuel, in fact, as the mass flow rate of the air increases, the cp tends
to be closer to the cp of air, leading to a smaller error in calculating the reaction
temperature.

Furthermore, an aspect to consider is the always higher value of the TIT calcu-
lated without considering the chemical reaction than the temperature that should
actually be. When considering the combustion process, in fact, a release of en-
ergy is considered, which leads to an increase of the heat capacity of the fluid:
this increase represents the increase of the energy that is required to raise the
temperature out of the combustion chamber.

4.1.4 Case study: off-design

In this section the results of the off-design model will be highlighted, referring to
the section 3.2.1.1, in which the model is described.
Firstly, a comparison of the compressed air temperature and the exhaust gas tem-
perature and between Python and HYSYS® is shown, by changing the operating
point with different ambient temperatures.
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The Python and HYSYS® temperature trends for the compressor outlet temper-
ature and exhaust gas temperature, respectively, are shown in the Figures 4.1.15
and 4.1.16; the percentage error (calculated on the absolute difference of the de-
viation between the temperature in HYSYS® and the ambient temperature and
the deviation between the temperature in Python and the ambient temperature)
is shown in the Figures 4.1.17 and 4.1.18.

Going into the details of the analysis, it seems that the model performs better
at lower ambient temperatures, as can be seen from the decreasing trend of the
percentage error as the ambient temperature decreases; in any case, the worst-case
percentage error is about 1.3%, leading to the conclusion that the model has a
very good calculation prediction compared to HYSYS®.

Figure 4.1.15: Trend of the T2 in off design condition by changing the ambient
temperature
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Figure 4.1.16: Trend of the T4 in off design condition by changing the ambient
temperature

Figure 4.1.17: Percentage error of the absolute difference of the deviation be-
tween the compressed temperature in HYSYS® and the ambient temperature and
the deviation between the compressed temperature in Python and the ambient
temperature
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Figure 4.1.18: Percentage error of the absolute difference of the deviation be-
tween the exhaust gas temperature in HYSYS® and the ambient temperature and
the deviation between the exhaust gas temperature in Python and the ambient
temperature

Figure 4.1.19 instead shows the trends of the temperature leaving the combustion
chamber: as can be seen, the temperature in HYSYS® and the temperature in
Python calculated using the chemical reactions method are comparable, while the
temperature calculated without the chemical reactions is significantly deviating
from the value taken as a reference in HYSYS®.

Figure 4.1.19: Trend of TIT in off design condition by changing the ambient
temperature
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To give a quantitative percentage idea about the comparison of the TIT calcula-
tion methods, the percentage error of the absolute deviation between the difference
between the temperature out of the combustion chamber and the ambient tem-
perature is calculated, as it is done for the design.

As can be seen from the picture 4.1.20, the results are consistent with what is
also shown for the design model: with the chemical reaction calculation method,
the TIT values deviate very little from the values obtained from HYSYS®, as the
ambient temperature changes.

Figure 4.1.20: Percentage error of the absolute deviation between the differ-
ence between the temperature out of the combustion chamber and the ambient
temperature for different operating points: TIT with chemical reactions compared
to the TIT without the chemical reactions

The same analysis is made for comparing the trend by changing the ambient tem-
perature of the compressor duty and the turbine power. Results are shown in
Figures 4.1.21 and 4.1.22. In particular, for both the compressor and the tur-
bine (although the trend is less linear), the percentage error between the value in
HYSYS® and the value in Python seems to decrease as the ambient temperature
decreases. In any case, the error always settles at about 0%, leading to a good
result for the power computational method in off-design.
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Figure 4.1.21: Trend of the compressor duty by changing the ambient temper-
ature

Figure 4.1.22: Trend of the turbine power by changing the ambient temperature

Finally, a comparison of the gas turbine net power trend (calculated as the power
generated by the turbine minus the work required by the compressor) is shown in
Figure 4.1.23, and the percentage error trend is shown in Figure 4.1.24: as can
be seen, the error also seems to decrease for power, as well as for temperature,
as the ambient temperature decreases. In any case, the maximum value of the
percentage error is below 0.2%, leading to the conclusion of a good calculation
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result in comparison with HYSYS®.

Figure 4.1.23: Comparison of the overall net gas turbine power generated
between HYSYS® and Python in off-design conditions, as the difference between
the turbine power and the compressor work

Figure 4.1.24: Percentage deviation of the net gas turbine power generated
calculated in Python, compared to HYSYS®
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4.2 Comparison with Thermoflow©

This section will show the results from the comparison between the model de-
signed in Python for the GE LM2500 and GE LM6000 turbines and the values
found in Thermoflow©. Firstly, the discussion will cover the analysis of the design
conditions.

4.2.1 Design model: results

Taking into account the turbine design procedure described in section , and the
efficiency values identified with GasTurb© described in section , tables 4.2.1 and
4.2.2 show the results in terms of absolute difference and percentage difference
between Python and Thermoflow© for the two turbines.

Variable Unit GT
PRO Python Dev. % Dev.

Gross Power Output kW 21958 22227.15 269.15 1.23

Exhaust Temperature K 816.15 816.67 0.52 0.06

Heat Rate kJ/kWh 1033 9958.86 74.14 0.74

GT efficiency % 35.88 36.15 0.27

Table 4.2.1: GE LM2500 turbine design conditions: comparative results with
GT PRO, Thermoflow©. dev is for deviation

Variable Unit GT
PRO Python Dev. % Dev.

Gross Power Output kW 45199 44908.34 290.66 0.64

Exhaust Temperature K 726.15 727.05 0.90 0.12

Heat Rate kJ/kWh 8610 8706.95 96.95 1.13

GT efficiency % 41.80 41.35 0.45

Table 4.2.2: GE LM6000 turbine design conditions: comparative results with
GT PRO, Thermoflow©. dev is for deviation

4.2.2 GE LM2500 off-design model: results

This section shows the results of the development of the off-design model for
the GE LM2500 turbine, as explained in 3.3.3. In order to model the off-design
conditions for the gas turbine GE LM2500, air flow rate values are taken from
Thermoflow©, as the change in the angle of the IGVs is not known.
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If the operating condition for temperature values different than those plotted in
Thermoflow© had to be identified, a linear regression function is furthermore im-
plemented to identify the mass flow rate value for all the other ambient temper-
ature values: this is, of course, a simplification, adopted because calculating the
corrected flow rate dependent on the opening of the vanes assumes parameters
that are not available, and a dedicated in-depth study.
In Figure 4.2.1, the linear regression plot can be seen.

Figure 4.2.1: Air flow rate linear regression plot by changing the ambient tem-
perature for GE LM2500, RMSE = 0.2

To evaluate the quality of the approximation by linear regression, the RMSE (root
mean squared error) is calculated, as the square root of the mean of the sum of
the squared deviations between the values predicted with the linear regression
model and the Thermoflow© values, for ambient temperature from 0 to 20 degrees
Celsius:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2

n
(4.8)

The value of RMSE close to zero, leads to the conclusion that the calculation of
the flow rate as a linear regression is acceptable.

As explained in the 3.3.3 section, the off-design model for the GE LM2500 tur-
bine is constructed in a simplified way according to the identified procedure. In
particular, the Figure 4.2.2 shows the multiplicative coefficient CIGV given in
the equation 3.1: as can be guessed, this coefficient, being the ratio between the
corrected flow rate in off-design conditions and the corrected flow rate in design
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conditions, is greater than one for all values below the design temperature of 20
°C: this is consistent with the development of the compressor map as the ambient
temperature changes (and thus as the angle of the IGVs,) as explained in Figure
2.1.9.

Figure 4.2.2: Ratio between corrected flow rate in off-design and corrected flow
rate in design, by changing the ambient temperature, with 20°C being the design
temperature for GE LM2500

Considering a constant shaft speed, it is also possible, from the values of the air
flow rate in Thermoflow©, to approximately identify the value of the opening an-
gle of the IGVs in relation to the angle in design condition (considered as 100%
opened), by referring to the equations 2.34 and 2.36.

In Figure 4.2.3, the trend of the angle opening (delta gamma) as the ambient
temperature changes is shown: the angle opening even at ambient temperatures
much lower than the design temperature is not significantly great, but this still
seems to have an impact on the performance of the turbine, especially on the
efficiency of the components.
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Figure 4.2.3: Opening angle of the IGVs as the ambient temperature changes,
taking the opening angle in design conditions as a reference

Thus, according to the identified methodology, the off-design model is implemented
for the GE LM2500 turbine at different ambient temperatures, and the values are
compared with those in Thermoflow©. In Figure 4.2.4 the comparison between
the net power trend in Python and the net power trend in Thermoflow© is shown,
and in Figure 4.2.5 the comparison between the exhaust gas temperature trend in
Thermoflow© and the exhaust gas temperature trend in Python.

Figure 4.2.4: GT power calculated with Python for GE LM2500 gas turbine in
off-design conditions, compared with Thermoflow© results
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Figure 4.2.5: Exhaust gas temperature calculated with Python for GE LM2500
gas turbine in off-design conditions, compared with Thermoflow© results

Percentage deviation trend are also shown: the power net percentage in Figure
4.2.6 trend shows that the deviation seems to increase as the ambient tempera-
ture increases, and stabilise at 19°C ambient temperature. The error is, however,
minimal and settles at a maximum percentage deviation of 1.2%.

Figure 4.2.6: GT net power percentage error between Python and Thermoflow©

The percentage deviation for the exhaust gas temperature in Figure 4.2.7 is cal-
culated with the same principle explained also in the analysis of the case study:
first is calculated the difference between the exhaust gas temperature (for both
Python and Thermoflow©) and the ambient temperature, and with these values
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the percentage deviation is calculated.

Figure 4.2.7: Exhaust gas temperature percentage error between Python and
ThermoflowT©

The trend in percentage error seems more jagged and less linear than that of
power, but in any case settles at very low values below 0.3%. There could be lots
of possible explanations of the deviations of the Python model from the results
in Thermoflow©, and one of them could be that the method for calculating the
turbine efficiency reduction takes into account the fact that the opening of NGVs
is comparable with the opening of IGVs, a simplification that should be discussed
and analyzed in detail in future work.

The table 4.2.3 also shows the percentage MAPE values calculated for exhaust
gas temperature and GT net power, to give an overall view of the goodness of the
model. In addition to the MAPE for temperature and power, the MAPE values
of the heat rate are also shown, even though this is a power-dependent value.

Variable MAPE%

GT net Power 0.71

Exhaust Temperature 0.14

Heat Rate 0.23

Table 4.2.3: MAPE percentage values for exhaust gas temperature, GT net
power and heat rate
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4.3 Performance Indicator
This section will present the results obtained from the analysis of the field data
the field in relation to the performance index identified in the section 3.4, as a
first example analysis of the behaviour of the components with regard to condi-
tion monitoring and degradation.

As already highlighted in the method explanation, for modelling the turbine in
the digital twin, ambient condition data data (ambient pressure and ambient tem-
perature), and the pressure out of the compressor are taken from the field.
The output temperature at the compressor, on the other hand, is calculated and
compared with the actual data to identify any deviation from the prediction.

In order to use the data, it is necessary to first clean the data of values that are
extremely far from the average, which could be due to a sensor error or a turbine
shutdown. In Figures 4.3.1 and 4.3.2, by way of example, the compressor raw data
before the ’cleaning’ are shown.

Figure 4.3.1: LP compressor outlet temperature raw data from the field
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Figure 4.3.2: LP compressor outlet pressure raw data from the field

Values that differ by more than a certain threshold are first removed, and then
a moving average with a window of 10 values is applied to remove sensor noise,
a choice also applied by [27]. In Figures 4.3.3 and 4.3.4 compressor temperature
and pressure data after the removal of the distant values are shown.
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Figure 4.3.3: LP compressor outlet temperature data from the field, after the
removal of the outliers

Figure 4.3.4: LP compressor outlet pressure data from the field, after the removal
of the outliers

The choice of a moving average with a window of 10 does not reduce the number
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of values drastically, and at the same time provides a trend whose development
is more easily detectable. In Figures 4.3.5 and 4.3.6 compressor temperature and
pressure data after the moving average are shown.

Figure 4.3.5: LP compressor outlet temperature data from the field, after the
moving average with a window of 10 values to remove the sensor noise
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Figure 4.3.6: LP compressor outlet pressure data from the field, after the moving
average with a window of 10 values to remove the sensor noise

As an example, therefore, Figure 4.3.7 shows the trend of the compressor outlet
temperature data with a moving average of 3: as can be seen, the trend is less
clear and more jagged, with only 7 more values (in the case of a moving average
of 10, the number of data output is 2201, whereas with a moving average of 3 is
2208).
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Figure 4.3.7: LP compressor outlet temperature data from the field, after the
moving average with a window of 3 values

After the generation of usable data for the analysis, therefore, the model predict-
ing the compressor behaviour is implemented, and the trend of the performance
indicator is shown in Figure 4.3.8. This index is compared with a baseline of
0, which indicates the equality of the calculated temperature with the measured
temperature.

When the performance indicator gets a positive value, it means an increase in the
compressor outlet temperature compared to the temperature calculated by the
model: this trend indicates a reduction in the compressor polytropic efficiency in
comparison with the nominal polytropic efficiency in design conditions, identified
in the iterative procedure in GasTurb©. A comparison between the temperature
trend calculated by the model and the actual temperature trend is also shown in
Figure 4.3.9.
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Figure 4.3.8: Performance Indicator for the LP compressor: it represents the
normalised difference between the LP outlet temperature calculated by the Python
model and the real outlet temperature taken from the field

Figure 4.3.9: Comparison between the LP outlet temperature calculated by the
model and the LP outlet temperature from the field data
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As can be seen from the comparison from the Figure 4.3.8 showing the trend of
the performance indicator and the Figure 4.3.9 showing the comparison between
the calculated and actual temperature trends, the indicator assumes a positive
value when the actual temperature assumes an higher value than the calculated
temperature; when the actual temperature is lower than the calculated tempera-
ture, on the other hand, the index assumes a negative value.

The results show an ability of the model to capture the compressor outlet temper-
ature trend, but attributing this variation from the model to actual component
degradation is not trivial. In particular, the indicator is created in order to be
implemented in a condition monitoring strategy applied to predictive maintenance
for component degradation, but there are several considerations and limitations
to be noted at this stage of the project.

Firstly, the data analysis is performed on the GE LM6000 turbine, for which,
however, an ad-hoc off-design model is not designed, which is reflected in the lack
of accurate prediction of the variation of the compressor polytropic/isentropic ef-
ficiency as operating conditions change.

The first question that occurs is whether the deviation in efficiency (reflected in
the deviation of the temperature at the compressor outlet) is due to an actual
degradation of the component, or whether it is instead linked to the change of the
ambient operating conditions.
It is highlighted how, in the case of the GE LM2500 gas turbine, when the ambi-
ent temperature changes in off-design, the efficiency undergoes a reduction or an
increase depending on the operating point.
If, on the other hand, the reduction in efficiency is not related to changes in oper-
ating conditions but instead to actual compressor degradation, it is not trivial to
quantify and analytically define the degradation.

Firstly, it would be necessary to analyse the data over a time span of years, as
also pointed out in [27], to identify an actual upward trend in the performance
indicator (which, as it increases, would indicate an increase in degradation): the
amount of data used for this analysis is limited to only 5 months, hence there are
not enough information to detect an effective long-term trend. Furthermore, an
analytically correlation between the thermodynamic cause, the reduction in effi-
ciency, and an observable physical consequence should be found and demonstrated.

In the literature there are several faults that can occur in a gas turbine, and
a common one related to the compressor is the fouling, which is caused by the
dust, insects and pollen that, mixed with engine exhaust and oil vapors from both
internal and external leaks, form a sticky mass that adheres to the blading and
annulus areas of the compressor [35]. The fouling has been demonstrated to be
often the cause of drop in airflow, pressure ratio, power, thermal efficiency and
also compressor efficiency [36], but at the same time being able to attribute the
reduction in efficiency to compressor fouling requires a more detailed analysis of
the specific case, to be validated with field data: for example, the behaviour of
the performance indicator could be analysed over time and check whether, at any
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drops, a compressor washing happened.

4.4 Model error
In the view of the results obtained, it is appropriate to make a brief overview
and recap on the accuracy of the model and the deviations it might encounter
from reality. The digital twin for the two gas turbines is developed in Python
using a code that has itself been validated by comparison with simulation models
developed in other software, which also have a certain deviation from the real data.

First of all, the source code for the development of the calculation methods is
validated through a comparative analysis with Aspen HYSYS®: the maximum
error detected, considering both the analysis under design and off-design condi-
tions, is for the compressed air temperature approximately 1.2%, for the exhaust
gas temperature 1.1% and for the combustion temperature in the implementation
of the chemical reactions close to 0%. The maximum deviation measured for the
net power generated by the gas turbine is instead about 1.2%.

It can therefore be said that the calculation model settles to a deviation from
the HYSYS® parameters of always less than 1.5% in worst-case conditions: those
listed, in fact, are the maximum error parameters detected, and as analysed by
the results, the model behaves better at low ambient temperatures, assuming de-
viations from HYSYS® of 0%. However, the accuracy of HYSYS® have also to be
considered. In this project, the deviations of this software results from reality are
not analysed, as this data is not directly accessible to the user when developing a
simulation, but it is important to bear in mind its existence.

The same applies to the validation of the digital twin for real turbines with
Thermoflow©: the final model will therefore acquire a deviation equal to the devia-
tion from HYSYS® for the calculation method and the deviation from Thermoflow©

for the results of real turbines, with a maximum value of 1.2%.

Furthermore, it is important to consider the fact that the value of the polytropic
and isentropic efficiencies are found through an iterative process in GasTurb©:
although the model in Python is not directly validated through a comparison with
GasTurb©, but only acquires the values of isentropic and polytropic efficiency,
there is still the possibility of a deviation from reality.
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CHAPTER

FIVE

CONCLUSIONS

The project presented in this work deals with the modeling and development of
a digital twin for two gas turbines for energy production in the off-shore field,
that finds its justification in the increasing pressure on global energy industries
to develop efficient operating and plant control methods, through the digitisation
of components, machinery and the industry as a whole. The project planned
a development of the digital twin from the scratch, starting with the modeling
of thermodynamic calculation methods for turbine components, through object-
oriented programming in Python.

Through the development of the same case study in Python and in Aspen HYSYS®,
a validation of the calculation efficiency of the classes in Python is carried out by
comparing it with the results obtained from the simulation in HYSYS®, both for
the development of the turbine in design operating conditions and for the analysis
of the accuracy of the model in off-design operating conditions by changing the
ambient temperature. The results show a good behaviour of the model in com-
parison with the parameters in HYSYS®, with a percentage deviation always less
than 1.2%, found to be the maximum error value.

Next, the actual digital twin model for the two gas turbines GE LM2500 and GE
LM6000 is developed in design conditions. As a reference, a Thermoflow© simu-
lation model is built, whose results are in part taken as an input to the Python
model, and in part used as a baseline reference values to validate the Python model
itself; the values taken as an input are: compression ratio, air flow rate, fuel flow
rate, intake and exhaust pressure losses and air leakage at the compressor. The
values taken as reference for validating the Python model, instead, are: gas tur-
bine net power, exhaust gas temperature, heat rate and gas turbine efficiency.

For the complete development of the digital twin, an iterative process is imple-
mented in GasTurb© for the determination of the polytropic and isentropic ef-
ficiencies of the turbine components, as these values are not known outside the
manufacturer: for the construction of the model in GasTurb©, the values result-
ing from the simulation in Thermoflow© were used. The model thus developed
in design conditions in Python is shows for both the gas turbines a percentage
deviation from Thermoflow©, of less than 1.2%.
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Subsequently, a simplified approach for the off-design model is also developed for
the GE LM2500 turbine by changing the ambient temperature, advancing the hy-
pothesis that as the ambient temperature changes, a change in the opening angle
of the IGVs occurs, justified by the deviation between the trend of the inlet air
flow rate calculated considering the corrected flow rate constant and the air flow
generated by Thermoflow©: this hypothesis considers also a change in the efficien-
cies of compressors and turbine.

As was done for the design model, the same inputs are taken from Thermoflow©

to build the off-design model in Python, as well as the same outputs to validate
the results, which settle at a percentage deviation close to 0%: in any case, the
hypothesis of the variation of the angle of the IGVs is to be verified in future
developments, considering a possible influence of the shaft speed.

Finally, a first simplified approach of development of a compressor performance
indicator is presented, in order to show an example of implementation of condi-
tion monitoring for predictive maintenance purposes, using the GE LM6000 gas
turbine field data: this indicator considers the variation of the compressor outlet
temperature in comparison with temperature calculated by the model, in order to
detect an eventual reduction in the efficiency of the component. This approach
has to be further studied in deep, to understand if there could be an actual degra-
dation or just a change in the operating conditions.

The digital twin, both in its ability to predict the thermodynamic behaviour of
the components and in its ability to simulate the GE LM2500 and GE LM6000
gas turbines in design conditions and the GE LM2500 turbine in off-design con-
ditions, produced results that differed from the reference simulation models by
a very small percentage, less than 1% overall. However, it is important to note
that this model is therefore sensitive to the errors and deviations of the simula-
tion models on which it was validated, the quantitative determination of which in
terms of deviation from reality could be the starting point for future work. Fur-
thermore, for the construction of the digital twin for real turbines, the results of
the model in Thermoflow© were not only used as a reference for validation, but
also partly as input for the parameterisation of the model in Python: in the design
and development of digital twins, it is common practice to use reference models
as input for data definition and as a baseline for validation of results, as there is
often a lack of reliable and consistent historical data on which to base the design
of the model itself.

The digital twin developed, even if its design limitations make it somewhat depen-
dent on the other models in Thermoflow©, HYSYS® and GasTurb©, nevertheless
offers the possibility of being adapted and shaped to the needs of each reference
turbine, making it possible not only to simulate the behaviour in specific condi-
tions, but also to provide possible answers on the state of the components and
their degradation, and, with the appropriate future developments, to predict pos-
sible interventions ad hoc, through real data and on time connection, as outlined
in the final project objectives at the beginning of this work.



CHAPTER

SIX

FUTURE WORK

The work done in this project has opened up a number of possible future devel-
opments, to the point of dedicating a section to it. The two real turbines GE
LM2500 and GE LM6000 are modelled through the development of simulations
in Thermoflow© and GasTurb©, but the core of a gas turbine are the compressor
and turbine maps. Therefore, in the first instance, the model can be thought of
as being developed through a derivation of the compressor and turbine maps for
the two turbines.

As outlined in the introduction to this work only the manufacturer is in posses-
sion of the compressor and turbine maps, as they are the result of considerably
expensive experiments and simulations: there are thus several methods in the en-
gineering literature that would allow the estimation of such maps, in particular
of the compressor, such as a CFD model simulation. In [37] a 3D CDF analysis
simulation method for compressor map is presented.

Building maps not only allows accurate identification of polytropic and isentropic
efficiency values of components, but also allows verification of turbine behaviour in
off-design conditions: another important input for a future work, in fact, considers
an in-depth development of the off-design model for the GE LM6000 turbine and
a possible validation or otherwise of the considerations made for the off-design of
the GE LM2500 turbine.

The hypothesis put forward in this project of the variation of IGVs opening angle
as the ambient temperature changes in off-design conditions in full-load could be
investigated further, and it could be verified whether this is actually an imple-
mented operating condition or whether the deviation between the air flow rate
calculated according to the hypothesis of a constant corrected flow rate and the
air flow rate in Thermoflow© can be justified by other hypotheses, such as the
variation of the shaft rotation speed.

Further future work to be implemented also relates to the implementation of con-
dition monitoring for predictive maintenance: firstly, it could be analysed on a
time scale of years whether the identified compressor performance indicator shows
an increasing trend, and if so, whether this is due to an actual degradation of the
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component or a change in operating conditions. To analyse the presence or ab-
sence of degradation a comparison between the indicator trend and maintenance
actions implemented on the compressor and the gas turbine as a whole can be done.

Through further analysis of the field data, other performance indicators could also
be identified, with the aim of analysing and identifying further variations in the
behaviour of the turbine components: for example, performance indicators for
generated power and exhaust gas temperature.
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APPENDICES

.1 Classes

1 import math
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from neqsim.thermo.thermoTools import fluid, TPflash, PHflash
5 from neqsim.standards import ISO6976
6 import copy
7

8 class Stream():
9 def __init__(self):

10 self.fluid = None
11 self.flow_rate = None
12 self.temperature = None
13 self.pressure = None
14

15 def set_fluid(self, fluid):
16 self.fluid = fluid
17

18 def set_flow_rate(self, flow_rate, units):
19 if units == 'kg/hr':
20 self.flow_rate = flow_rate
21 elif units == 'kg/sec':
22 self.flow_rate = flow_rate * 3600
23 else:
24 print("ERROR no units found")
25

26 def set_temperature(self, temperature, units):
27 if units == 'K':
28 self.temperature = temperature
29 if units == 'C':
30 self.temperature = temperature + 273.15
31

32 def set_pressure(self, pressure):
33 self.pressure = pressure
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34

35 def get_flow_rate(self, units):
36 if units == 'kg/hr':
37 return self.flow_rate
38 elif units == 'kg/sec':
39 return self.flow_rate / 3600
40 else:
41 print(f"ERROR no units found for flow rate units:

{units} in {self}")
42

43 def get_temperature(self, units):
44 if units == 'K':
45 return (self.temperature)
46 elif units == 'C':
47 return (self.temperature - 273.15)
48

49 def get_pressure(self, units):
50 if units == 'bara':
51 return (self.pressure)
52

53 def calculate(self):
54 self.fluid.setTemperature(self.temperature, "K")
55 self.fluid.setPressure(self.pressure, 'bara')
56 self.fluid.setTotalFlowRate(self.flow_rate, 'kg/hr')
57 TPflash(self.fluid)
58 self.fluid.initProperties()
59

60 def get_LCV(self):
61 iso6976 = ISO6976(self.fluid)
62 iso6976.setReferenceType('mass')
63 iso6976.setVolRefT(15.0)
64 iso6976.setEnergyRefT(25.0)
65 iso6976.calculate()
66 return iso6976.getValue("InferiorCalorificValue") * 1e3
67

68 class Compressor():
69 def __init__(self):
70 self.t_out = None
71 self.t_ideal_out = None
72 self.p_out = None
73 self.work = None
74 self.stream = None
75 self.pol_efficiency = None
76 self.ise_efficiency = None
77 self.polytropic_head = None
78 self.pressure_ratio = None
79 self.ambient_temperature = None
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80 self.ambient_pressure = None
81 self.k_ambient = None
82 self.losses = None
83

84 def set_stream(self, stream):
85 self.stream = stream
86 self.ambient_temperature =

self.stream.get_temperature('K')
87 self.k_ambient = self.stream.fluid.getGamma2()
88 self.ambient_pressure = self.stream.get_pressure('bara')
89 flow_rate = self.stream.get_flow_rate('kg/sec')
90 self.stream.set_flow_rate(flow_rate -

self.losses,'kg/sec')
91

92 def set_losses(self,losses):
93 self.losses = losses
94

95 def set_pol_efficiency(self, pol_efficiency):
96 self.pol_efficiency = pol_efficiency
97

98 def set_isentropic_efficiency(self, ise_efficiency):
99 self.ise_efficiency = ise_efficiency

100

101 def calc_isentropic_efficiency(self):
102 kappa = self.stream.fluid.getGamma2()
103 num_exp = ((kappa - 1) / kappa)
104 den_exp = ((kappa - 1) / (kappa * self.pol_efficiency))
105 pressure_ratio = self.get_p_out('bara') /

self.ambient_pressure
106 self.ise_efficiency = (pow(pressure_ratio, num_exp) - 1)

\
107 / (pow(pressure_ratio, den_exp) -

1)
108

109 def get_isentropic_efficiency(self):
110 return (self.ise_efficiency)
111

112 def calc_polytropyc_efficiency(self):
113 P2 = self.get_p_out('bara')
114 P1 = self.ambient_pressure
115 k = self.stream.fluid.getGamma2()
116 i_p = self.ise_efficiency
117 self.pol_efficiency = ((k - 1) * np.log(P2 / P1)) / (
118 k * np.log((1 / i_p) * ((P2 / P1) ** ((k - 1) /

k) - 1) + 1))
119

120 def get_polytripic_efficiency(self):
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121 return (self.pol_efficiency)
122

123 def set_p_out(self, p_out):
124 self.p_out = p_out
125

126 def get_p_out(self, units):
127 if units == 'bara':
128 return (self.p_out)
129

130 def set_t_out(self, t_out, units):
131 if units == 'C':
132 self.t_out = t_out
133 elif units == 'K':
134 self.t_out = t_out + 273.15
135

136 def calc_ideal_outlet_temp(self):
137 base = (self.get_p_out('bara') /

self.stream.get_pressure('bara'))
138 kappa = self.stream.fluid.getGamma2()
139 exp = ((1 - kappa) / kappa)
140 x = pow(base, exp)
141 self.t_ideal_out = self.stream.get_temperature('K') * x
142 return (self.t_ideal_out)
143

144 def calc_outlet_temperature(self):
145 if self.pol_efficiency != None:
146 base = (self.get_p_out('bara') /

self.stream.get_pressure('bara'))
147 kappa = self.stream.fluid.getGamma2()
148 exp = ((kappa - 1) / (kappa * self.pol_efficiency))
149 x = pow(base, exp)
150 self.t_out = self.stream.get_temperature('K') * x
151 elif self.pol_efficiency == None:
152 self.calc_ideal_outlet_temp()
153 delta = self.t_ideal_out -

self.stream.get_temperature('K')
154 self.t_out = delta / self.ise_efficiency \
155 + self.stream.get_temperature('K')
156

157 def get_outlet_temperature(self, units):
158 if units == 'K':
159 return (self.t_out)
160 if units == 'C':
161 return (self.t_out - 273.15)
162

163 def get_work(self, units):
164 flow_rate = self.stream.get_flow_rate('kg/sec')
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165 delta_T = self.get_outlet_temperature('K') -
self.ambient_temperature

166 cp = self.stream.fluid.getPhase(0).getCp('kJ/kgK')
167 self.work = (flow_rate * delta_T) * cp
168 if units == 'W':
169 return (self.work * 1e3)
170 elif units == 'kW':
171 return (self.work)
172 elif units == 'MW':
173 return (self.work / 1e3)
174

175 def get_outlet_stream(self):
176 self.outlet_stream = copy.copy(self.stream)
177 self.outlet_stream.set_fluid(self.stream.fluid.clone())
178 self.outlet_stream.set_pressure(self.p_out)
179 self.outlet_stream.set_temperature(self.t_out, 'K')
180 self.outlet_stream.calculate()
181 return (self.outlet_stream)
182

183 def calc(self):
184 if self.p_out is not None:
185 if self.pol_efficiency is not None:
186 self.calc_outlet_temperature()
187 elif self.ise_efficiency is not None:
188 self.calc_outlet_temperature()
189

190 def visualize_work(self, units):
191 if units == 'kW':
192 return(self.work)
193

194 def compression_by_steps(self, steps):
195 total_p = self.p_out
196 iteration = 0
197 number_of_steps = steps
198 pressure_of_step = (self.p_out -

self.stream.get_pressure('bara')) / number_of_steps
199 self.p_out = self.stream.get_pressure('bara')
200 temperature_step_before = self.ambient_temperature
201 self.work = 0
202

203 while iteration < number_of_steps:
204 if self.p_out < total_p:
205 self.p_out = self.p_out + pressure_of_step
206 self.calc()
207 new_iteration_stream = self.get_outlet_stream()
208 self.stream = new_iteration_stream
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209 delta_T = self.get_outlet_temperature('K') -
temperature_step_before

210 temperature_step_before = self.t_out
211 flow_rate = self.stream.get_flow_rate('kg/sec')
212 cp =

self.stream.fluid.getPhase(0).getCp('kJ/kgK')
213 work_new_stage = (flow_rate * delta_T) * cp
214 self.work = self.work + work_new_stage
215 iteration = iteration + 1
216

217 def solve_polytropic_efficiency(self):
218 k = self.k_ambient
219 P_out = self.p_out
220 T_in = self.ambient_temperature
221 P_in = self.ambient_pressure
222 T_out = self.t_out
223 a = 1/(math.log((T_out/T_in),(P_out/P_in)))
224 x = (a*(k-1))/k
225 return(x)
226

227 class Combustor():
228 def __init__(self):
229 self.air = None
230 self.TIT = None
231 self.fuel = None
232 self.enthalpy = None
233 self.cp = None
234 self.Q = None
235 self.outlet_stream = None
236 self.reaction_fluid = None
237 self.TIT_reaction = None
238 self.p3 = None
239 self.TIT_noPHflash = None
240 self.T2 = None
241

242 def set_stream_air(self, air):
243 self.air = air
244 self.T2 = self.air.get_temperature('K')
245

246 def set_stream_fuel(self, fuel):
247 self.fuel = fuel
248

249 def calc_enthalpy(self):
250 enthalpy_air = self.air.fluid.getEnthalpy()
251 enthalpy_fuel = self.fuel.get_LCV() *

self.fuel.get_flow_rate('kg/sec')
252 self.enthalpy = enthalpy_air + enthalpy_fuel
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253 return (self.enthalpy)
254

255 def set_enthalpy(self, enthalpy):
256 enthalpy_fuel = self.fuel.get_LCV() *

self.fuel.get_flow_rate('kg/sec')
257 self.enthalpy = enthalpy + enthalpy_fuel
258

259 def chemical_reaction(self):
260 # AIR:
261 number_of_components_air =

self.air.fluid.getNumberOfComponents()
262 names_air = [self.air.fluid.getComponent(i).getName()
263 for i in range(number_of_components_air)]
264 molar_fractions_air =

[self.air.fluid.getComponent(i).getx()
265 for i in

range(number_of_components_air)]
266 air_dictionary = {}
267

268 for i in range(number_of_components_air):
269 air_dictionary[names_air[i]] =

molar_fractions_air[i]
270

271 molar_mass_mix = air_dictionary['oxygen'] * 31.998 +
air_dictionary[

272 'nitrogen'] * 28.013
273 weight_fractionO2 = (air_dictionary['oxygen'] * 31.9989)

/ molar_mass_mix
274 weight_fractionN2 = (air_dictionary['nitrogen'] *

28.013) / molar_mass_mix
275 massO2 = weight_fractionO2 *

self.air.get_flow_rate('kg/sec')
276 massN2 = weight_fractionN2 *

self.air.get_flow_rate('kg/sec')
277 molN2 = (massN2) * (1 / (28.013 / 1000))
278 molO2 = (massO2) * (1 / (31.998 / 1000))
279

280 # FUEL:
281 number_of_components_fuel =

self.fuel.fluid.getNumberOfComponents()
282 names_fuel = [self.fuel.fluid.getComponent(i).getName()
283 for i in range(number_of_components_fuel)]
284 molar_fractions_fuel =

[self.fuel.fluid.getComponent(i).getx()
285 for i in

range(number_of_components_fuel)]
286
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287 fuel_dictionary = {}
288

289 for i in range(number_of_components_fuel):
290 fuel_dictionary[names_fuel[i]] =

molar_fractions_fuel[i]
291

292 molar_mass_mix_ng = self.fuel.fluid.getMolarMass() *
1000

293

294 nitrogen = (self.fuel.fluid.getPhase(0).getComponent(
295 'nitrogen').getMolarMass()) * 1000
296 weight_fraction_nitrogen = (fuel_dictionary['nitrogen']

* nitrogen) / molar_mass_mix_ng
297 mass_nitrogen = weight_fraction_nitrogen *

self.fuel.get_flow_rate('kg/sec')
298 mol_nitrogen = mass_nitrogen * (
299 1 /

self.fuel.fluid.getPhase(0).getComponent('nitrogen').getMolarMass())
300 N2_nitrogen = mol_nitrogen * fuel_dictionary['nitrogen']
301

302 co2 =
(self.fuel.fluid.getPhase(0).getComponent('CO2').getMolarMass())
* 1000

303 weight_fraction_co2 = (fuel_dictionary['CO2'] * co2) /
molar_mass_mix_ng

304 mass_co2 = weight_fraction_co2 *
self.fuel.get_flow_rate('kg/sec')

305 mol_co2 = mass_co2 * (1 /
self.fuel.fluid.getPhase(0).getComponent('CO2')

306 .getMolarMass())
307 CO2_co2 = mol_co2 * fuel_dictionary['CO2']
308

309 ########################### METHANE
#############################

310

311 methane =
(self.fuel.fluid.getPhase(0).getComponent('methane').getMolarMass())
* 1000

312 weight_fraction_methane = (fuel_dictionary['methane'] *
methane) / molar_mass_mix_ng

313 mass_methane = weight_fraction_methane *
self.fuel.get_flow_rate('kg/sec')

314 mol_methane = mass_methane * (
315 1 /

self.fuel.fluid.getPhase(0).getComponent('methane')
316 .getMolarMass())
317 limCH4 = mol_methane * (2 / 1)
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318 limO2 = molO2 * (2 / 2)
319

320 molCO2 = mol_methane * (1 / 1)
321 molH20 = mol_methane * (2 / 1)
322 molO2_not_reacted_methane = molO2 - mol_methane * 2
323 total_moles = molCO2 + molH20 +

molO2_not_reacted_methane + molN2
324 O2_methane = (molO2_not_reacted_methane / total_moles) *

fuel_dictionary['methane']
325 CO2_methane = (molCO2 / total_moles)
326 H20_methane = (molH20 / total_moles)
327 molO2 = molO2 - mol_methane * 2
328

329 ########################### ETHANE
#############################

330

331 ethane =
(self.fuel.fluid.getPhase(0).getComponent('ethane').getMolarMass())
* 1000

332 weight_fraction_ethane = (fuel_dictionary['ethane'] *
ethane) / molar_mass_mix_ng

333 mass_ethane = weight_fraction_ethane *
self.fuel.get_flow_rate('kg/sec')

334 mol_ethane = mass_ethane * (
335 1 /

self.fuel.fluid.getPhase(0).getComponent('ethane')
336 .getMolarMass())
337 limC2H6 = mol_ethane * (3 / 1)
338 limO2 = molO2 * (3 / 5 / 2)
339

340 molCO2 = mol_ethane * (2 / 1)
341 molH20 = mol_ethane * (3 / 1)
342 molO2_not_reacted = molO2 - mol_ethane * (7 / 2)
343 total_moles = molCO2 + molH20 + molO2_not_reacted +

molN2
344 O2_ethane = (molO2_not_reacted / total_moles) *

fuel_dictionary['ethane']
345 CO2_ethane = (molCO2 / total_moles)
346 H20_ethane = (molH20 / total_moles)
347 molO2 = molO2 - mol_ethane * (7 / 2)
348

349 ########################### PROPANE
#############################

350

351 propane =
(self.fuel.fluid.getPhase(0).getComponent('propane').getMolarMass())
* 1000
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352 weight_fraction_propane = (fuel_dictionary['propane'] *
propane) / molar_mass_mix_ng

353 mass_propane = weight_fraction_propane *
self.fuel.get_flow_rate('kg/sec')

354 mol_propane = mass_propane * (
355 1 /

self.fuel.fluid.getPhase(0).getComponent('propane')
356 .getMolarMass())
357 limC3H8 = mol_propane * (4 / 1)
358 limO2 = molO2 * (4 / 5)
359

360 molCO2 = mol_propane * (3 / 1)
361 molH20 = mol_propane * (4 / 1)
362 molO2_not_reacted = molO2 - 5 * mol_propane
363 total_moles = molCO2 + molH20 + molO2_not_reacted +

molN2
364 O2_propane = (molO2_not_reacted / total_moles) *

fuel_dictionary['propane']
365 CO2_propane = (molCO2 / total_moles)
366 H20_propane = (molH20 / total_moles)
367 molO2 = molO2 - mol_propane * 5
368

369 ########################### N - BUTANE
#############################

370

371 n_butane =
(self.fuel.fluid.getPhase(0).getComponent('n-butane').getMolarMass())
* 1000

372 weight_fraction_nbutane = (fuel_dictionary['n-butane'] *
n_butane) / molar_mass_mix_ng

373 mass_nbutane = weight_fraction_nbutane *
self.fuel.get_flow_rate('kg/sec')

374 mol_nbutane = mass_nbutane * (
375 1 /

self.fuel.fluid.getPhase(0).getComponent('n-butane')
376 .getMolarMass())
377 limC4H10 = mol_nbutane * (5 / 1)
378 limO2 = molO2 * (5 / 13 / 2)
379

380 if fuel_dictionary['n-butane'] is not None and all(
381 v is None for k, v in fuel_dictionary.items() if

k != "n-butane"):
382 molCO2 = mol_nbutane * (4.819 / 1)
383 molH20 = mol_nbutane * (3 / 1)
384 molO2_not_reacted = molO2 - mol_nbutane * 6.5
385 total_moles = molCO2 + molH20 + molN2 *

fuel_dictionary['n-butane'] \
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386 + molO2_not_reacted
387 O2_nbutane = (molO2_not_reacted / total_moles) *

fuel_dictionary['n-butane']
388 N2_nbutane = (molN2 / total_moles) *

fuel_dictionary['n-butane']
389 CO2_nbutane = (molCO2 / total_moles)
390 H20_nbutane = (molH20 / total_moles)
391 molO2 = molO2 - mol_nbutane * 6.5
392 else:
393 molCO2 = mol_nbutane * (4.819 / 1)
394 molH20 = mol_nbutane * (3 / 1)
395 molO2_not_reacted = molO2 - mol_nbutane * 6.5
396 total_moles = molCO2 + molH20 + molN2 *

fuel_dictionary['n-butane'] \
397 + molO2_not_reacted
398 O2_nbutane = (molO2_not_reacted / total_moles) *

fuel_dictionary['n-butane']
399 N2_nbutane = (molN2 / total_moles) *

fuel_dictionary['n-butane']
400 CO2_nbutane = (molCO2 / total_moles)
401 H20_nbutane = (molH20 / total_moles)
402 molO2 = molO2 - mol_nbutane * 6.5
403

404 ########################### I - BUTANE
#############################

405

406 i_butane =
(self.fuel.fluid.getPhase(0).getComponent('i-butane').getMolarMass())
* 1000

407 weight_fraction_ibutane = (fuel_dictionary['i-butane'] *
i_butane) / molar_mass_mix_ng

408 mass_ibutane = weight_fraction_ibutane *
self.fuel.get_flow_rate('kg/sec')

409 mol_ibutane = mass_ibutane * (
410 1 /

self.fuel.fluid.getPhase(0).getComponent('i-butane')
411 .getMolarMass())
412 limC4H10 = mol_ibutane * (5 / 1)
413 limO2 = molO2 * (5 / 13 / 2)
414

415 molCO2 = mol_ibutane * (4 / 1)
416 molH20 = mol_ibutane * (5 / 1)
417 molO2_not_reacted = molO2 - mol_ibutane * 6.5
418 total_moles = molCO2 + molH20 + molN2 +

molO2_not_reacted
419 O2_ibutane = (molO2_not_reacted / total_moles) *

fuel_dictionary['i-butane']
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420 CO2_ibutane = (molCO2 / total_moles)
421 H20_ibutane = (molH20 / total_moles)
422 molO2 = molO2 - mol_ibutane * 6.5
423

424 ########################### I - PENTANE
#############################

425

426 i_pentane =
(self.fuel.fluid.getPhase(0).getComponent('i-pentane').getMolarMass())
* 1000

427 weight_fraction_ipentane = (fuel_dictionary['i-pentane']
* i_pentane) \

428 / molar_mass_mix_ng
429 mass_ipentane = weight_fraction_ipentane *

self.fuel.get_flow_rate('kg/sec')
430 mol_ipentane = mass_ipentane * (
431 1 /

self.fuel.fluid.getPhase(0).getComponent('i-pentane')
432 .getMolarMass())
433 limC5H12 = mol_ipentane * (6 / 1)
434 limO2 = molO2 * (6 / 8)
435

436 molCO2 = mol_ipentane * (5 / 1)
437 molH20 = mol_ipentane * (6 / 1)
438 molO2_not_reacted = molO2 - mol_ipentane * 8
439 total_moles = molCO2 + molH20 + molN2 +

molO2_not_reacted
440 O2_ipentane = (molO2_not_reacted / total_moles) *

fuel_dictionary['i-pentane']
441 CO2_ipentane = (molCO2 / total_moles)
442 H20_ipentane = (molH20 / total_moles)
443 molO2 = molO2 - mol_ipentane * 8
444

445 ########################### N - PENTANE
#############################

446

447 n_pentane =
(self.fuel.fluid.getPhase(0).getComponent('n-pentane').getMolarMass())
* 1000

448 weight_fraction_npentane = (fuel_dictionary['n-pentane']
* n_pentane) / molar_mass_mix_ng

449 mass_npentane = weight_fraction_npentane *
self.fuel.get_flow_rate('kg/sec')

450 mol_npentane = mass_npentane * (
451 1 /

self.fuel.fluid.getPhase(0).getComponent('n-pentane')
452 .getMolarMass())
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453 limC5H12 = mol_npentane * (6 / 1)
454 limO2 = molO2 * (6 / 8)
455

456 molCO2 = mol_npentane * (5 / 1)
457 molH20 = mol_npentane * (6 / 1)
458 molO2_not_reacted = molO2 - mol_npentane * 8
459 total_moles = molCO2 + molH20 + molN2 +

molO2_not_reacted
460 O2_npentane = (molO2_not_reacted / total_moles) *

fuel_dictionary['n-pentane']
461 CO2_npentane = (molCO2 / total_moles)
462 H20_npentane = (molH20 / total_moles)
463 molO2 = molO2 - mol_npentane * 8
464

465 ########################### N - HEXANE
#############################

466

467 n_hexane =
(self.fuel.fluid.getPhase(0).getComponent('n-hexane').getMolarMass())
* 1000

468 weight_fraction_nhexane = (fuel_dictionary['n-hexane'] *
n_hexane) / molar_mass_mix_ng

469 mass_nhexane = weight_fraction_nhexane *
self.fuel.get_flow_rate('kg/sec')

470 mol_nhexane = mass_nhexane * (
471 1 /

self.fuel.fluid.getPhase(0).getComponent('n-hexane')
472 .getMolarMass())
473 limC6H14 = mol_nhexane * (7 / 1)
474 limO2 = molO2 * (7 / 19 / 2)
475

476 molCO2 = mol_nhexane * (6 / 1)
477 molH20 = mol_nhexane * (7 / 1)
478 molO2_not_reacted = molO2 - mol_nhexane
479 total_moles = molCO2 + molH20 + molN2 +

molO2_not_reacted
480 O2_nhexane = (molO2_not_reacted / total_moles) *

fuel_dictionary['n-hexane']
481 CO2_nhexane = (molCO2 / total_moles)
482 H20_nhexane = (molH20 / total_moles)
483 molO2 = molO2 - (19 / 2) * mol_nhexane
484

485 mfO2 = O2_methane + O2_ethane + O2_propane + O2_ibutane
+ \

486 O2_nbutane + O2_ipentane + O2_npentane +
O2_nhexane

487
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488 mfN2 = air_dictionary['nitrogen'] +
fuel_dictionary['nitrogen']

489

490 mfCO2 = CO2_methane + CO2_ethane + CO2_propane +
CO2_ibutane + \

491 CO2_nbutane + CO2_ipentane + CO2_npentane +
CO2_nhexane + \

492 fuel_dictionary['CO2']
493

494 mfH20 = H20_methane + H20_ethane + H20_propane + \
495 H20_ibutane + H20_nbutane + H20_ipentane +

H20_npentane + H20_nhexane
496

497 to_turbine = fluid('srk')
498 to_turbine.addComponent('oxygen', mfO2)
499 to_turbine.addComponent('nitrogen', mfN2)
500 to_turbine.addComponent('CO2', mfCO2)
501 to_turbine.addComponent('H2O', mfH20)
502 self.reaction_fluid = Stream()
503 self.reaction_fluid.set_fluid(to_turbine)
504

self.reaction_fluid.set_pressure(self.air.get_pressure('bara'))
505

self.reaction_fluid.set_temperature(self.air.get_temperature('K'),
'K')

506

self.reaction_fluid.set_flow_rate(self.air.get_flow_rate('kg/sec')
+

507

self.fuel.get_flow_rate('kg/sec'),
508 'kg/sec')
509 self.reaction_fluid.calculate()
510

511 def calc_TIT_reaction(self):
512 self.chemical_reaction()
513 combustion_fluid = self.reaction_fluid.fluid.clone()
514 PHflash(combustion_fluid, self.enthalpy)
515 self.TIT_reaction = combustion_fluid.getTemperature('k')
516

517 def get_TIT_reaction(self, units):
518 if units == 'K':
519 return (self.TIT_reaction)
520 elif units == 'C':
521 return (self.TIT_reaction - 273.15)
522

523 def calc_TIT(self):
524 combustion_fluid = self.air.fluid.clone()
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525 PHflash(combustion_fluid, self.enthalpy)
526 self.TIT = combustion_fluid.getTemperature('K')
527

528 def get_TIT(self, units):
529 if units == 'K':
530 return (self.TIT)
531 elif units == 'C':
532 return (self.TIT - 273.15)
533

534 def set_pressure(self, p3):
535 self.p3 = p3
536

537 def get_pressure(self):
538 pressure_drop = 0.015
539 self.p3 = self.air.get_pressure('bara') -

self.air.get_pressure('bara') * pressure_drop
540 return (self.p3)
541

542 def cp_mix(self):
543 total_flow = self.air.get_flow_rate('kg/sec') +

self.fuel.get_flow_rate('kg/sec')
544 w_air = self.air.get_flow_rate('kg/sec') / total_flow
545 w_fuel = self.fuel.get_flow_rate('kg/sec') / total_flow
546 cp_air = w_air *

(self.air.fluid.getPhase(0).getCp('kJ/kgK'))
547 cp_fuel = w_fuel *

(self.fuel.fluid.getPhase(0).getCp('kJ/kgK'))
548 self.cp = cp_air + cp_fuel
549

550 def get_Q(self, units):
551 self.cp_mix()
552 total_flow = self.air.get_flow_rate('kg/sec') +

self.fuel.get_flow_rate('kg/sec')
553 delta_T = self.get_TIT_reaction('K') -

self.air.get_temperature('K')
554 self.Q = (self.enthalpy -

self.reaction_fluid.fluid.getEnthalpy())/1000
555 if units == 'W':
556 return (self.Q * 1e3)
557 elif units == 'kW':
558 return (self.Q)
559 elif units == 'MW':
560 return (self.Q / 1e3)
561

562 def get_outlet_stream(self):
563 self.outlet_stream = copy.copy(self.reaction_fluid)
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564

self.outlet_stream.set_fluid(self.reaction_fluid.fluid.clone())
565

self.outlet_stream.set_pressure(self.air.get_pressure('bara')
- (self.air.get_pressure('bara') * 0.015))

566 self.outlet_stream.set_temperature(self.TIT_reaction,
'K')

567

self.outlet_stream.set_flow_rate(self.air.get_flow_rate('kg/sec')
+

568

self.fuel.get_flow_rate('kg/sec'),
'kg/sec')

569 self.outlet_stream.calculate()
570 return (self.outlet_stream)
571

572 class Expander():
573 def __init__(self):
574 self.t_out = None
575 self.t_ideal_out = None
576 self.p_out = None
577 self.work = None
578 self.stream = None
579 self.pol_efficiency = None
580 self.ise_efficiency = None
581 self.outlet_stream = None
582 self.TIT = None
583 self.P3 = None
584 self.T4 = None
585 self.k_3 = None
586 self.defined_work = None
587 self.losses = None
588

589 def set_losses(self,losses):
590 self.losses = losses
591

592 def set_stream(self, stream):
593 self.stream = stream
594 self.TIT = self.stream.get_temperature('K')
595 self.P3 = self.stream.get_pressure('bara')
596 self.k_3 = self.stream.fluid.getGamma2()
597 flow_rate = self.stream.get_flow_rate('kg/sec')
598 self.stream.set_flow_rate(flow_rate -

self.losses,'kg/sec')
599

600 def set_p_out(self, p_out):
601 self.p_out = p_out
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602

603 def get_p_out(self, units):
604 if units == 'bara':
605 return (self.p_out)
606

607 def set_pol_efficiency(self, pol_efficiency):
608 self.pol_efficiency = pol_efficiency
609

610 def set_isentropic_efficiency(self, ise_efficiency):
611 self.ise_efficiency = ise_efficiency
612

613 def calc_isentropic_efficiency(self):
614 kappa = self.stream.fluid.getGamma2()
615 num_exp = ((kappa - 1) / kappa) * self.pol_efficiency
616 den_exp = (kappa - 1) / kappa
617 pressure_ratio = self.get_p_out('bara') / self.P3
618 self.ise_efficiency = (1 - pow(pressure_ratio, num_exp))

/ \
619 (1 - pow(pressure_ratio, den_exp))
620

621 def calc_polytropyc_efficiency(self):
622 P4 = self.get_p_out('bara')
623 P3 = self.P3
624 k = self.stream.fluid.getGamma2()
625 i_p = self.ise_efficiency
626 self.pol_efficiency = ((k - 1) * np.log(P4 / P3)) / (
627 k * np.log((1 / i_p) * ((P4 / P3) ** ((k - 1) /

k) - 1) + 1))
628

629 def get_isentropic_efficiency(self):
630 return (self.ise_efficiency)
631

632 def get_pol_efficiency(self):
633 return (self.pol_efficiency)
634

635 def calc_ideal_outlet_temp(self):
636 base = (self.get_p_out('bara') /

self.stream.get_pressure('bara'))
637 kappa = self.stream.fluid.getPhase(0).getCp() /

self.stream.fluid.getPhase(0).getCv()
638 exp = ((1 - kappa) / kappa)
639 x = pow(base, exp)
640 self.t_ideal_out = self.stream.get_temperature('K') * x
641 return (self.t_ideal_out)
642

643 def calc_outlet_temperature(self):
644 if self.pol_efficiency != None:
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645 base = (self.get_p_out('bara') /
self.stream.get_pressure('bara'))

646 kappa = self.stream.fluid.getGamma2()
647 exp = ((kappa - 1) / kappa) * self.pol_efficiency
648 x = pow(base, exp)
649 self.t_out = self.stream.get_temperature('K') * x
650 elif self.pol_efficiency == None:
651 delta = self.stream.get_temperature('K') -

self.t_ideal_out
652 self.t_out = -self.ise_efficiency * (delta) +

self.stream.get_temperature('K')
653

654 def get_outlet_temperature(self, units):
655 if units == 'K':
656 return (self.t_out)
657 if units == 'C':
658 return (self.t_out - 273.15)
659

660 def get_work(self, units):
661 flow_rate = self.stream.get_flow_rate('kg/sec')
662 delta_T = self.TIT - self.get_outlet_temperature('K')
663 cp = self.stream.fluid.getPhase(0).getCp('kJ/kgK')
664 self.work = (flow_rate * delta_T) * cp
665 if units == 'W':
666 return (self.work * 1e3)
667 elif units == 'kW':
668 return (self.work)
669 elif units == 'MW':
670 return (self.work / 1e3)
671

672 def get_outlet_stream(self):
673 self.outlet_stream = copy.copy(self.stream)
674 self.outlet_stream.set_fluid(self.stream.fluid.clone())
675 self.outlet_stream.set_pressure(self.p_out)
676 self.outlet_stream.set_temperature(self.t_out, 'K')
677 self.outlet_stream.calculate()
678 return (self.outlet_stream)
679

680 def calc(self):
681 if self.p_out is not None:
682 if self.pol_efficiency is not None:
683 self.calc_outlet_temperature()
684 elif self.ise_efficiency is not None:
685 self.calc_ideal_outlet_temp()
686 self.calc_outlet_temperature()
687

688 def calc_p_out_iterations(self, work, units):
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689 resetting_stream = self.stream
690 self.T4 = self.TIT - (work /

(self.stream.get_flow_rate('kg/sec') *
691

self.stream.fluid.getCp('kJ/kgK')))
692 self.defined_work = work
693 temperature_ratio = self.T4 / self.TIT
694 k = self.stream.fluid.getGamma2()
695 exponent = (k / (k - 1)) * (1 / self.pol_efficiency)
696

697 self.p_out = self.P3 * ((temperature_ratio) ** exponent)
698 self.expansion_by_steps(100)
699

700 iteration = 100
701 i = 0
702 pressure_list = []
703 work_list = []
704 tolerance = 10
705 while i < iteration:
706 self.work = 0
707 self.stream = resetting_stream
708 self.p_out = self.p_out - 0.001
709 pressure_list.append(self.p_out)
710 self.expansion_by_steps(100)
711 work_list.append(self.work)
712 i = i + 1
713

714 closest_value = None
715 min_difference = float('inf')
716 corresponding_pressure = None
717

718 for i in range(len(work_list)):
719 difference = abs(work_list[i]- work)
720 if abs(work_list[i]- work) < tolerance:
721 if work_list[i] > work:
722 if difference < min_difference:
723 min_difference = difference
724 corresponding_pressure =

pressure_list[i]
725

726 print('The work that can satisy ',work,'
is ',work_list[i])

727 print('The pressure that corresponds to
that work is ',corresponding_pressure)

728

729 self.p_out = corresponding_pressure
730 self.work = 0
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731 self.stream = resetting_stream
732 self.expansion_by_steps(100)
733

734 def expansion_by_steps(self, steps):
735 starting_p = self.P3
736 p_end = self.p_out
737 total_p = starting_p - p_end
738 iteration = 0
739 number_of_steps = steps
740 pressure_of_step = total_p / number_of_steps
741 self.p_out = starting_p
742 self.work = 0
743 temperature_step_before = self.TIT
744

745 while iteration < number_of_steps:
746 if self.p_out >= p_end:
747 self.p_out = self.p_out - pressure_of_step
748 self.calc()
749 new_iteration_stream = self.get_outlet_stream()
750 self.stream = new_iteration_stream
751 delta_T = temperature_step_before -

self.get_outlet_temperature('K')
752 temperature_step_before = self.t_out
753 flow_rate = self.stream.get_flow_rate('kg/sec')
754 cp =

self.stream.fluid.getPhase(0).getCp('kJ/kgK')
755 work_iteration = (flow_rate * delta_T) * cp
756 self.work = self.work + work_iteration
757 iteration = iteration + 1
758

759 def visualize_work(self,units):
760 if units == 'kW':
761 return(self.work)
762

763 def solve_polytropic_efficiency(self):
764 k = self.k_3
765 P_out = self.p_out
766 T_in = self.TIT
767 P_in = self.P3
768 T_out = self.t_out
769

770 a = math.log((T_out/T_in),(P_out/P_in))
771 x = a*(k/(k-1))
772 return(x)
773

774 def set_t_out(self, t_out, units):
775 if units == 'C':
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776 self.t_out = t_out
777 elif units == 'K':
778 self.t_out = t_out + 273.15

.2 Case study

1 import numpy as np
2 from matplotlib import pyplot as plt
3

4 from Classes_overleaf import Stream, Compressor, Combustor,
Expander

5 from neqsim.thermo.thermoTools import fluid, TPflash, PHflash
6 from neqsim.standards import ISO6976
7

8 # Design Model:
9

10 # List of components:
11 component_names = ["oxygen", "nitrogen", "methane", "ethane",

"propane",
12 "i-butane", "n-butane", "i-pentane",

"n-pentane", "n-hexane", "H2O", "CO2"]
13 air_composition = [0.2, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0]
14 methane_composition = [0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0]
15

16 # Creating the fluid air:
17 air = fluid("srk")
18 for component in component_names:
19 air.addComponent(component,

air_composition[component_names.index(component)])
20

21 # Creating the fluid fuel (methane):
22 methane = air.clone()
23 methane.setMolarComposition(methane_composition)
24

25 # Creating the stream of air:
26 air_stream = Stream()
27 air_stream.set_fluid(air)
28 air_stream.set_temperature(20, 'C')
29 air_stream.set_pressure(1)
30 air_stream.set_flow_rate(50, 'kg/sec')
31 air_stream.calculate()
32

33 # Setting the compressor using pol_efficiency
34 compressor = Compressor()
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35 compressor.set_losses(0)
36 compressor.set_stream(air_stream)
37 compressor.set_p_out(10)
38 compressor.set_pol_efficiency(0.87)
39 compressor.calc_isentropic_efficiency()
40 compressor.compression_by_steps(100)
41

42 # Re-setting the stream after the compressor:
43 compressor.get_outlet_stream()
44 enthalpy_air = compressor.outlet_stream.fluid.getEnthalpy()
45

46 # Creating the fuel methane:
47 methane_stream = Stream()
48 methane_stream.set_fluid(methane)
49 methane_stream.set_temperature(20, 'C')
50 methane_stream.set_pressure(1)
51 methane_stream.set_flow_rate(1, 'kg/sec')
52 methane_stream.calculate()
53

54 # Defining the combustor:
55 combustor1 = Combustor()
56 combustor1.set_stream_air(compressor.outlet_stream)
57 combustor1.set_stream_fuel(methane_stream)
58 combustor1.calc_enthalpy()
59 combustor1.calc_TIT_reaction()
60 combustor1.calc_enthalpy()
61 combustor1.calc_TIT()
62

63 # Re-setting the stream after the combustor
64 combustor1.get_outlet_stream()
65

66 # TO TURBINE FLUID:
67 number_of_components =

combustor1.get_outlet_stream().fluid.getNumberOfComponents()
68 names =

[combustor1.get_outlet_stream().fluid.getComponent(i).getName()
69 for i in range(number_of_components)]
70 molar_fractions =

[combustor1.get_outlet_stream().fluid.getComponent(i).getx()
71 for i in range(number_of_components)]
72 print(names)
73 print(molar_fractions)
74

75 # Turbine:
76 turbine = Expander()
77 turbine.set_losses(0)
78 turbine.set_stream(combustor1.outlet_stream)
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79 turbine.set_p_out(1)
80 turbine.set_pol_efficiency(0.9)
81 turbine.calc_isentropic_efficiency()
82 turbine.expansion_by_steps(100)
83 turbine.get_outlet_stream()
84

85 # Gas Turbine
86 GT_work = turbine.get_work('kW') - compressor.get_work('kW')
87 GT_eff = GT_work / combustor1.get_Q('kW')
88

89 # Off-Design model:
90 print('OFF DESIGN WITH WHILE CICLE:')
91 component_names = ["oxygen", "nitrogen", "methane", "ethane",

"propane",
92 "i-butane", "n-butane", "i-pentane",

"n-pentane", "n-hexane", "H2O", "CO2"]
93 air_composition = [0.2, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0]
94 methane_composition = [0.0, 0.0, 1, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0]
95

96 # Creating the fluid air:
97 air_off_design = fluid("srk")
98 for component in component_names:
99 air_off_design.addComponent(component,

air_composition[component_names.index(component)])
100

101 # Creating the fluid fuel (methane):
102 methane_off_design = air_off_design.clone()
103 methane_off_design.setMolarComposition(methane_composition)
104

105 # CALCULATION OF REFERENCES:
106 ambient_temperature = []
107 compressed_temperature = []
108 exhaust_temperature = []
109 TIT_temperature = []
110 TIT_no_reaction = []
111 net_power = []
112 compressor_duty = []
113 turbine_duty = []
114 compressor_ise_efficiency = []
115 P2_list = []
116 P3_list = []
117

118 temperature_off_design_K = 298.15
119 i = 0
120 iteration = 7
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121 while i < iteration:
122 temperature_off_design_K = temperature_off_design_K - 5
123 temperature_off_design_C = temperature_off_design_K - 273.15
124 # Collecting ambient temperatures:
125 ambient_temperature.append(temperature_off_design_C)
126 ref_mass_flow_kg_s = air_stream.get_flow_rate("kg/sec")
127 ref_temperature_K = air_stream.get_temperature("K")
128 mass_flow_rate_off_design_kg_s = ref_mass_flow_kg_s * \
129 ((ref_temperature_K /

temperature_off_design_K)**(1/2))
130 print("Mass flow of air bacome [kg/sec] :",

mass_flow_rate_off_design_kg_s)
131 T3_ref = combustor1.get_TIT_reaction('K')
132 P3_ref = compressor.get_p_out('bara') -

compressor.get_p_out('bara') * 0.015
133 MW3_ref = combustor1.outlet_stream.fluid.getMolarMass()*1000
134 k = air_stream.fluid.getGamma2()
135

136 # Creating the stream air:
137 air_stream_off_design = Stream()
138 air_stream_off_design.set_fluid(air_off_design)
139

air_stream_off_design.set_temperature(temperature_off_design_K,
'K')

140 air_stream_off_design.set_pressure(1)
141

air_stream_off_design.set_flow_rate(mass_flow_rate_off_design_kg_s,
'kg/sec')

142 air_stream_off_design.calculate()
143

144 compressor_off_design = Compressor()
145 compressor_off_design.set_stream(air_stream_off_design)
146 compressor_off_design.set_p_out(10)
147 compressor_off_design.set_pol_efficiency(0.87)
148 compressor_off_design.calc_isentropic_efficiency()
149 compressor_off_design.compression_by_steps(100)
150

151 # Creating the stream fuel(methane):
152 methane_stream_off_design = Stream()
153 methane_stream_off_design.set_fluid(methane_off_design)
154 methane_stream_off_design.set_temperature(20, 'C')
155 methane_stream_off_design.set_pressure(1)
156 methane_stream_off_design.set_flow_rate(1, 'kg/sec')
157 methane_stream_off_design.calculate()
158

159 combustor1_off_design = Combustor()
160 combustor1_off_design\
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161

.set_stream_air(compressor_off_design.get_outlet_stream())
162

combustor1_off_design.set_stream_fuel(methane_stream_off_design)
163 combustor1_off_design.calc_enthalpy()
164 combustor1_off_design.calc_TIT_reaction()
165 combustor1_off_design.get_outlet_stream()
166

167 # Turbine:
168 turbine_off_design = Expander()
169 turbine_off_design\
170 .set_stream(combustor1_off_design.get_outlet_stream())
171 turbine_off_design.set_p_out(1)
172 turbine_off_design.set_pol_efficiency(0.9)
173 turbine.expansion_by_steps(100)
174

175 P2 = compressor.get_p_out('bara') # initial guess for P2
176

177 n = 0
178 while True:
179 n = n + 1
180 P2_n = P2 # initial guess for P2
181 P1 = air_stream.get_pressure('bara')
182 i_p = compressor_off_design.get_isentropic_efficiency()
183 p_c = ((k - 1) * np.log(P2_n / P1)) / (k * np.log((1 /

i_p)
184 * ((P2_n / P1) ** ((k - 1) /

k) - 1) + 1))
185 compressor_off_design.set_stream(air_stream_off_design)
186 compressor_off_design.set_p_out(P2_n)
187 compressor_off_design.set_pol_efficiency(p_c)
188 compressor_off_design.compression_by_steps(100)
189

190 compressor_off_design.get_outlet_stream()
191

192 # RE-CALCULATION FOR COMBUSTOR 1:
193 combustor1_off_design\
194

.set_stream_air(compressor_off_design.get_outlet_stream())
195

combustor1_off_design.set_stream_fuel(methane_stream_off_design)
196 combustor1_off_design.calc_enthalpy()
197 combustor1_off_design.calc_TIT_reaction()
198 MW3_new =

combustor1_off_design.outlet_stream.fluid.getMolarMass()
* 1000

199
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200 m3 = mass_flow_rate_off_design_kg_s \
201 + methane_stream_off_design.get_flow_rate('kg/sec')
202 m3_ref = ref_mass_flow_kg_s \
203 +

methane_stream_off_design.get_flow_rate('kg/sec')
204 T3 = combustor1_off_design.get_TIT_reaction('K')
205 P3 = P3_ref * (m3 / m3_ref) * ((T3 /

T3_ref)*(MW3_ref/MW3_new))** 0.5
206 pressure_drop = (0.15 *
207 (m3 / m3_ref)**(1.8))* ((T3 / T3_ref) *

(P3_ref / P3)) ** 0.8
208

209 P2 = P3 + pressure_drop # new p2
210

211 if (P2_n == P2):
212 compressor_off_design.set_p_out(P2)
213

compressor_off_design.set_stream(air_stream_off_design)
214 compressor_off_design.set_pol_efficiency(p_c)
215 compressor_off_design.compression_by_steps(100)
216 to_combustor =

compressor_off_design.get_outlet_stream()
217

218 # RE-CALCULATION FOR COMBUSTOR 1:
219 combustor1_off_design.set_stream_air(to_combustor)
220

combustor1_off_design.set_stream_fuel(methane_stream_off_design)
221 combustor1_off_design.calc_enthalpy()
222 combustor1_off_design.calc_TIT_reaction()
223 combustor1_off_design.calc_enthalpy()
224 combustor1_off_design.calc_TIT()
225 combustor1_off_design.get_outlet_stream()
226 to_turbine =

combustor1_off_design.get_outlet_stream()
227

228 # CALCULATION FOR THE TURBINE:
229 turbine_off_design.set_stream(to_turbine)
230 turbine_off_design.set_p_out(1)
231 turbine_off_design.set_pol_efficiency(0.9)
232 turbine_off_design.expansion_by_steps(100)
233 break
234

235 compressed_temperature\
236

.append(compressor_off_design.get_outlet_temperature('C'))
237 TIT_temperature\
238 .append(combustor1_off_design.get_TIT_reaction('C'))
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239 TIT_no_reaction.append(combustor1_off_design.get_TIT('C'))
240 P2_list.append(compressor_off_design.get_p_out('bara'))
241

P3_list.append(combustor1_off_design.outlet_stream.get_pressure('bara'))
242

exhaust_temperature.append(turbine_off_design.get_outlet_temperature('C'))
243 compressor_ise_efficiency\
244

.append(compressor_off_design.get_isentropic_efficiency())
245

compressor_duty.append(compressor_off_design.visualize_work('kW'))
246 turbine_duty.append(turbine_off_design.visualize_work('kW'))
247 i = i + 1
248

249 # Exporting the temperatures from Hysys
250 t4_hysys = []
251 t2_hysys = []
252 TIT_hysys = []
253 with open('Tambient_T4.csv') as f:
254 next(f)
255 for line in f:
256 parts = line.split(';')
257 parts1 = parts[1].split('"')
258 t2_hysys.append(float(parts1[1]))
259 parts2 = parts[2].split('"')
260 t4_hysys.append(float(parts2[1]))
261 parts3 = parts[3].split('"')
262 TIT_hysys.append(float(parts3[1]))
263

264 # Data for T2 in Hysys
265 x1 = t2_hysys
266 y1 = ambient_temperature
267

268 # Data for T2 in Python
269 x2 = compressed_temperature
270 y2 = ambient_temperature
271

272 # Plot the Temperatures
273 plt.plot(x1, y1, label='T2 Hysys')
274 plt.plot(x2, y2, label='T2 Python')
275

276 # Add legend and axis labels
277 plt.legend()
278 plt.xlabel('Compressed Air Temperature')
279 plt.ylabel('Ambient Temperature')
280 plt.title('Comparison of T2 between Hysys and Python')
281
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282 # Display the plot
283 plt.show()
284

285 # Data for T4 in Hysys
286 x1 = t4_hysys
287 y1 = ambient_temperature
288

289 # Data for T4 in Python
290 x2 = exhaust_temperature
291 y2 = ambient_temperature
292

293 # Plot the Temperatures
294 plt.plot(x1, y1, label='T4_Hysys')
295 plt.plot(x2, y2, label='T4_Python')
296

297 # Add legend and axis labels
298 plt.legend()
299 plt.xlabel('Exhaust Gas Temperature')
300 plt.ylabel('Ambient Temperature')
301 plt.title('Comparison of T4 between Hysys and Python')
302

303 # Display the plot
304 plt.show()
305

306 # Data for TIT in Hysys
307 x1 = TIT_hysys
308 y1 = ambient_temperature
309

310 # Data for T2 in Python
311 x2 = TIT_temperature
312 y2 = ambient_temperature
313

314 # Plot the Temperatures
315 plt.plot(x1, y1, label='TIT_Hysys')
316 plt.plot(x2, y2, label='TIT_Python')
317

318 # Add legend and axis labels
319 plt.legend()
320 plt.xlabel('TIT')
321 plt.ylabel('Ambient Temperature')
322 plt.title('Comparison of TIT between Hysys and Python')
323

324 # Display the plot
325 plt.show()

.3 GE LM600: design
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1 from Classes_overleaf import Stream, Compressor, Combustor,
Expander

2 from neqsim.thermo.thermoTools import fluid, TPflash, PHflash
3 from neqsim.standards import ISO6976
4

5 def calculation_pressure_ratio(stages, pressure_input,
p_ratio_stage):

6 n = 0
7 p1 = pressure_input
8 list = []
9 while n < stages:

10 p2 = p_ratio_stage * p1
11 p_ratio = p2/p1
12 list.append(p_ratio)
13 p1 = p2
14 n = n + 1
15

16 pressure_ratio = 1
17 for i in list:
18 pressure_ratio *= i
19

20 pressure_ratio = pressure_ratio * pressure_input
21

22 return(pressure_ratio)
23

24 flow_rate_air = 128.9
25 flow_rate_fuel = 2.228
26 pressure_LP_compressor = 2.43581
27 pressure_HP_compressor = 29.19484
28 pressure_LP_turbine = 6.52188
29

30 polytropic_efficiency_gasturb = [0.88, 0.925, 0.8568, 0.8568]
31

32 iso_pressure_ratio = 29.1
33 stages_LP = 5
34 stages_HP = 14
35 total_stages = stages_LP + stages_HP
36 pressure_ratio_stage = (iso_pressure_ratio ** (1/total_stages))
37

38 pressure_LP =
calculation_pressure_ratio(5,1,pressure_ratio_stage)

39 pressure_HP =
calculation_pressure_ratio(14,pressure_LP,pressure_ratio_stage)

40

41 # List of components:
42 component_names = ["oxygen", "nitrogen", "argon","methane",

"ethane", "propane",
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43 "i-butane", "n-butane", "i-pentane",
"n-pentane", "n-hexane", "H2O", "CO2"]

44 air_composition = [0.20660, 0.77, 0.00927, 0.0, 0.0, 0.0,
45 0.0, 0.0, 0.0, 0.0, 0.0, 0.01384, 0.00030]
46 fuel_case22_composition = [0.0, 0.013, 0.0, 0.9516, 0.024,
47 0.0036, 0.0017, 0.0009, 0.0011,

0.000, 0.0,
48 0.0000, 0.0042]
49

50 # Creating the fluid air:
51 air = fluid("srk")
52 for component in component_names:
53 air.addComponent(component,

air_composition[component_names.index(component)])
54

55 # Creating the fluid fuel case 22 for design:
56 fuel_22 = air.clone()
57 fuel_22.setMolarComposition(fuel_case22_composition)
58

59 # Creating the stream of air:
60 air_stream = Stream()
61 air_stream.set_fluid(air)
62 air_stream.set_temperature(10, 'C')
63 air_stream.set_pressure(1.01325 - (10/1000))
64 air_stream.set_flow_rate(flow_rate_air, 'kg/sec')
65 air_stream.calculate()
66

67 # Setting the compressor using pol_efficiency
68 compressorLP = Compressor()
69 compressorLP.set_losses(1.528)
70 compressorLP.set_stream(air_stream)
71 compressorLP.set_p_out(pressure_LP)
72 compressorLP.set_pol_efficiency(polytropic_efficiency_gasturb[0])
73 compressorLP.compression_by_steps(100)
74

75 # Re-setting the stream after the compressor:
76 compressorLP.get_outlet_stream()
77

78 # Creating the HP compressor:
79 compressorHP = Compressor()
80 compressorHP.set_losses(0)
81 compressorHP.set_stream(compressorLP.outlet_stream)
82 compressorHP.set_p_out(pressure_HP)
83 compressorHP.set_pol_efficiency(polytropic_efficiency_gasturb[1])
84 compressorHP.compression_by_steps(100)
85 compressorHP.calc_isentropic_efficiency()
86 ise_compressor = compressorHP.get_isentropic_efficiency()
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87

88 # Re-setting the stream after the compressor:
89 compressorHP.get_outlet_stream()
90

91 # Creating the stream fuel_22:
92 fuel22_stream = Stream()
93 fuel22_stream.set_fluid(fuel_22)
94 fuel22_stream.set_temperature(10, 'C')
95 fuel22_stream.set_pressure(40)
96 fuel22_stream.set_flow_rate(flow_rate_fuel, 'kg/sec')
97 fuel22_stream.calculate()
98 LHV = fuel22_stream.get_LCV()
99

100 # Defining the combustor:
101 combustor1 = Combustor()
102 combustor1.set_stream_air(compressorHP.outlet_stream)
103 combustor1.set_stream_fuel(fuel22_stream)
104 combustor1.calc_enthalpy()
105 combustor1.calc_TIT_reaction()
106

107 # Re-setting the stream after the combustor
108 combustor1.get_outlet_stream()
109

110 # Turbine HP: the one that drives the compressors
111 turbineHP = Expander()
112 turbineHP.set_losses(0)
113 turbineHP.set_stream(combustor1.outlet_stream)
114 turbineHP.set_pol_efficiency(polytropic_efficiency_gasturb[2])
115 turbineHP.calc_p_out_iterations(compressorHP.visualize_work('kW'),'kW')
116 turbineHP.get_outlet_stream()
117

118 # Turbine LP:
119 turbineLP = Expander()
120 turbineLP.set_losses(0)
121 turbineLP.set_stream(turbineHP.outlet_stream)
122 turbineLP.set_pol_efficiency(polytropic_efficiency_gasturb[3])
123 turbineLP.set_p_out(1.01325 + (12.45/1000))
124 turbineLP.expansion_by_steps(100)
125 turbineLP.get_outlet_stream()
126

127 # Gas Turbine
128 GT_work = (turbineLP.visualize_work('kW')
129 -

compressorLP.visualize_work('kW'))*((0.9821)*(0.9922))
130 GT_eff_gasturb = GT_work / (flow_rate_fuel*((LHV)/1000))
131 heat_rate_calculated = (flow_rate_fuel*(LHV*3600)/GT_work)/1000
132
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133 abs_error_power = abs(GT_work - 45199)
134 abs_error_temperature =

abs(turbineLP.get_outlet_temperature('K') - 726.15)
135 abs_error_hr = abs(heat_rate_calculated - 8610)
136 abs_error_efficiency = abs(GT_eff_gasturb - 0.418)
137

138 print((abs_error_power/45199)*100)
139 print(abs_error_temperature)
140 print((abs_error_hr/8610)*100)
141 print(abs_error_efficiency*100)

.4 GE LM2500: design and off-design

1 import math
2

3 from Classes_overleaf import Stream, Compressor, Combustor,
Expander

4 from neqsim.thermo.thermoTools import fluid, TPflash, PHflash
5 from neqsim.standards import ISO6976
6 import matplotlib.pyplot as plt
7

8 iso_pressure_ratio = 18
9 stages_LP = 6

10 stages_HP = 10
11 total_stages = stages_LP + stages_HP
12 pressure_ratio_stage = (iso_pressure_ratio ** (1/total_stages))
13

14 def calculation_pressure_ratio(stages, pressure_input,
p_ratio_stage):

15 n = 0
16 p1 = pressure_input
17 list = []
18 while n < stages:
19 p2 = p_ratio_stage * p1
20 p_ratio = p2/p1
21 list.append(p_ratio)
22 p1 = p2
23 n = n + 1
24

25 pressure_ratio = 1
26 for i in list:
27 pressure_ratio *= i
28

29 pressure_ratio = pressure_ratio * pressure_input
30

31 return(pressure_ratio)
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32

33 # Values from GasTurb: #
34 pressure_LP =

calculation_pressure_ratio(6,1,pressure_ratio_stage)
35 pressure_HP =

calculation_pressure_ratio(10,pressure_LP,pressure_ratio_stage)
36 mass_flow_air = 66.08
37 mass_flow_fuel = 1.26132
38

39 pratio = pressure_HP/pressure_LP
40 pol1 = 0.93 - 0.0053*math.log(pressure_LP)
41 pol2 = 0.93 - 0.0053*math.log(pratio)
42 print('POLI 1',pol1)
43 print('POLI 2',pol2)
44

45 efficiency_gas_turb = [0.899, 0.8905, 0.85, 0.8486]
46 # List of components:
47 component_names = ["oxygen", "nitrogen", "argon","methane",

"ethane", "propane",
48 "i-butane", "n-butane", "i-pentane",

"n-pentane", "n-hexane", "H2O", "CO2"]
49 air_composition = [0.20660, 0.77, 0.00927, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.01384, 0.00030]
50 fuel_case22_composition = [0.0, 0.013, 0.0, 0.950290,
51 0.023989, 0.003547, 0.001715,

0.000878, 0.000744, 0.001093, 0.0,
52 0.000032, 0.004193]
53

54 # Creating the fluid air:
55 air = fluid("srk")
56 for component in component_names:
57 air.addComponent(component,

air_composition[component_names.index(component)])
58

59 # Creating the fluid fuel case 22 for design:
60 fuel_22 = air.clone()
61 fuel_22.setMolarComposition(fuel_case22_composition)
62

63 # Creating the stream of air:
64 air_stream = Stream()
65 air_stream.set_fluid(air)
66 air_stream.set_temperature(20, 'C')
67 air_stream.set_pressure(1.01325 - (10 / 1000))
68 air_stream.set_flow_rate(mass_flow_air, 'kg/sec')
69 air_stream.calculate()
70

71 # Setting the compressor using pol_efficiency
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72 compressorLP = Compressor()
73 compressorLP.set_losses(0.58)
74 compressorLP.set_stream(air_stream)
75 compressorLP.set_p_out(pressure_LP)
76 compressorLP.set_pol_efficiency(efficiency_gas_turb[0])
77 compressorLP.calc_isentropic_efficiency()
78 compressorLP.compression_by_steps(100)
79

80 # Re-setting the stream after the compressor:
81 compressorLP.get_outlet_stream()
82

83 # Setting the compressor using pol_efficiency
84 compressorHP = Compressor()
85 compressorHP.set_losses(0)
86 compressorHP.set_stream(compressorLP.outlet_stream)
87 compressorHP.set_p_out(pressure_HP)
88 compressorHP.set_pol_efficiency(efficiency_gas_turb[1])
89 compressorHP.compression_by_steps(100)
90 compressorHP.calc_isentropic_efficiency()
91 ise_compressor = compressorHP.get_isentropic_efficiency()
92

93 # Creating the stream fuel_22:
94 fuel22_stream = Stream()
95 fuel22_stream.set_fluid(fuel_22)
96 fuel22_stream.set_temperature(20, 'C')
97 fuel22_stream.set_pressure(30)
98 fuel22_stream.set_flow_rate(mass_flow_fuel, 'kg/sec')
99 fuel22_stream.calculate()

100 LHV = fuel22_stream.get_LCV()
101

102 # Defining the combustor:
103 combustor1 = Combustor()
104 combustor1.set_stream_air(compressorHP.outlet_stream)
105 combustor1.set_stream_fuel(fuel22_stream)
106 combustor1.calc_enthalpy()
107 combustor1.calc_TIT_reaction()
108

109 # Re-setting the stream after the combustor
110 combustor1.get_outlet_stream()
111

112 # Turbine HP:
113 turbineHP = Expander()
114 turbineHP.set_losses(0)
115 turbineHP.set_stream(combustor1.outlet_stream)
116 turbineHP.set_pol_efficiency(efficiency_gas_turb[2])
117 turbineHP.calc_p_out_iterations(compressorLP.visualize_work('kW')
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118

+compressorHP.visualize_work('kW'),'kW')
119 turbineHP.get_outlet_stream()
120

121 # Turbine LP:
122 turbineLP = Expander()
123 turbineLP.set_losses(0)
124 turbineLP.set_stream(turbineHP.outlet_stream)
125 turbineLP.set_pol_efficiency(efficiency_gas_turb[3])
126 turbineLP.set_p_out(1.01325 + (15 / 1000))
127 turbineLP.expansion_by_steps(100)
128 turbineLP.get_outlet_stream()
129 turbineLP.calc_isentropic_efficiency()
130

131 number_of_components =
turbineLP.get_outlet_stream().fluid.getNumberOfComponents()

132 names =
[turbineLP.get_outlet_stream().fluid.getComponent(i).getName()
for i in range(number_of_components)]

133 molar_fractions =
[turbineLP.get_outlet_stream().fluid.getComponent(i).getx() for
i in range(number_of_components)]

134

135 molar_thermoflow = [0.1352, 0.7454, 0.03337, 0.07705]
136

137 # Gas Turbine
138 GT_work = turbineLP.visualize_work('kW')*(0.9753*0.9895)
139

140 GT_eff_thermoflow = GT_work / (mass_flow_fuel *((LHV)/1000))
141 heat_rate_calculated = (mass_flow_fuel*(LHV*3600)/GT_work)/1000
142

143 abs_error_power = abs(GT_work - 21958)
144 abs_error_temperature =

abs(turbineLP.get_outlet_temperature('K') - 816.15)
145 abs_error_hr = abs(heat_rate_calculated - 10033)
146 abs_error_efficiency = abs(GT_eff_thermoflow - 0.3588)
147

148 print((abs_error_power/21958)*100)
149 print(abs_error_temperature)
150 print((abs_error_hr/10033)*100)
151 print(abs_error_efficiency*100)
152

153 # Off-Design:
154 air_thermo = []
155 fuel_thermo = []
156 intake = []
157 exhaust = []
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158 power = []
159 t_exhaust = []
160 heat_rate = []
161 efficiency = []
162 losses = []
163 ambient_temperature = []
164

165 # Result:
166 power_python = []
167 exhaust_python = []
168 heat_rate_python = []
169 efficiency_python = []
170 dp_intake_python = []
171

172 def data_extraction(index, namedata):
173 with open('off_design_LM2500.csv') as f:
174 lines = f.readlines()
175 line_index = [0,1,2]
176 if index == 'air':
177 line_index = 0
178 elif index == 'fuel':
179 line_index = 1
180 elif index == 'intake_drop':
181 line_index = 2
182 elif index == 'exhaust_drop':
183 line_index = 3
184 elif index == 'power':
185 line_index = 4
186 elif index == 't_exhaust':
187 line_index = 5
188 elif index == 'heat_rate':
189 line_index = 6
190 elif index == 'efficiency':
191 line_index = 7
192 elif index == 'losses':
193 line_index = 8
194 headers = lines[line_index].strip().split('\t')
195 i = 20
196 index = 0
197 while index <= i:
198 if index == 0:
199 headers0 = headers[0]
200 headers1 = headers0.split()
201 headers2 = headers1[1]
202 namedata.append(float(headers2))
203

204 elif index != 0:
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205 namedata.append(float(headers[index]))
206 index = index + 1
207

208 # Usage
209 data_extraction('air',air_thermo)
210 data_extraction('fuel',fuel_thermo)
211 data_extraction('intake_drop',intake)
212 data_extraction('exhaust_drop',exhaust)
213 data_extraction('power',power)
214 data_extraction('t_exhaust',t_exhaust)
215 data_extraction('heat_rate',heat_rate)
216 data_extraction('efficiency',efficiency)
217 data_extraction('losses',losses)
218 LHV_plot = []
219 # Design Input #
220 efficiency_gas_turb = [0.899, 0.8905, 0.85, 0.8486]
221 starting_temperature = 273.15
222 temperature_design = 293.15
223 mass_flow_design = 66.08
224 P2_design = 18
225

226 iteration = 20
227 i = 0
228 while i <= iteration:
229 print(i)
230

231 # Off-design Input
232 mass_flow_off_design = air_thermo[i]
233 fuel_rate_off_design = fuel_thermo[i]
234 temperature_off_design = i + 273.15
235 ambient_temperature.append(temperature_off_design)
236 mass_flow_no_IGV = mass_flow_design *

(temperature_design/temperature_off_design)**(1/2)
237 # Coefficients off-design #
238 c = mass_flow_off_design/mass_flow_no_IGV # 1 + c*delta/100
239 c_efficiency = c - 1
240

241 # New Pressure Off Design #
242 iso_pressure_ratio = P2_design * c
243 stages_LP = 6
244 stages_HP = 10
245 total_stages = stages_LP + stages_HP
246 pressure_ratio_stage = (iso_pressure_ratio **

(1/total_stages))
247 pressure_LP =

calculation_pressure_ratio(6,1,pressure_ratio_stage)
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248 pressure_HP =
calculation_pressure_ratio(10,pressure_LP,pressure_ratio_stage)

249

250 # New efficiency Off Design #
251 #efficiency_off_design = efficiency_gas_turb[1]*(1 -

c_efficiency)
252 efficiency_off_design = ise_compressor*(1 - c_efficiency)
253 efficiency_turbine_off_design = efficiency_gas_turb[3]*(1 -

c_efficiency)
254

255 # Setting the GT in Off-Desing conditions #
256 air_stream_off_design = Stream()
257 air_stream_off_design.set_fluid(air)
258 air_stream_off_design.set_temperature(i, 'C')
259 air_stream_off_design.set_pressure(1.01325 - (intake[i]/

1000))
260 air_stream_off_design.set_flow_rate(mass_flow_off_design,

'kg/sec')
261 air_stream_off_design.calculate()
262

263 air_dp = Stream()
264 air_dp.set_fluid(air)
265 air_dp.set_temperature(i, 'C')
266 air_dp.set_pressure(1.01325)
267 air_dp.set_flow_rate(mass_flow_off_design, 'kg/sec')
268 air_dp.calculate()
269

270 compressorLP_off_design = Compressor()
271 compressorLP_off_design.set_losses(losses[i])
272 compressorLP_off_design.set_stream(air_stream_off_design)
273 compressorLP_off_design.set_p_out(pressure_LP)
274

compressorLP_off_design.set_pol_efficiency(efficiency_gas_turb[0])
275 compressorLP_off_design.compression_by_steps(100)
276 compressorLP_off_design.get_outlet_stream()
277

278 compressorHP_off_design = Compressor()
279 compressorHP_off_design.set_losses(0)
280

compressorHP_off_design.set_stream(compressorLP_off_design.get_outlet_stream())
281 compressorHP_off_design.set_p_out(pressure_HP)
282

#compressorHP_off_design.set_pol_efficiency(efficiency_off_design)
283

compressorHP_off_design.set_isentropic_efficiency(efficiency_off_design)
284 compressorHP_off_design.calc_polytropyc_efficiency()
285 poly = compressorHP_off_design.get_polytripic_efficiency()
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286 compressorHP_off_design.set_pol_efficiency(poly)
287 compressorHP_off_design.compression_by_steps(100)
288 compressorHP_off_design.get_outlet_stream()
289

290 # Creating the stream fuel(methane):
291 fuel22_stream_off_design = Stream()
292 fuel22_stream_off_design.set_fluid(fuel_22)
293 fuel22_stream_off_design.set_temperature(293.15, 'K')
294 fuel22_stream_off_design.set_pressure(30)
295 fuel22_stream_off_design.set_flow_rate(fuel_rate_off_design,

'kg/sec')
296 fuel22_stream_off_design.calculate()
297 LHV = fuel22_stream_off_design.get_LCV()
298 LHV_plot.append(LHV)
299

300 combustor1_off_design = Combustor()
301

combustor1_off_design.set_stream_air(compressorHP_off_design.get_outlet_stream())
302

combustor1_off_design.set_stream_fuel(fuel22_stream_off_design)
303 combustor1_off_design.calc_enthalpy()
304 combustor1_off_design.calc_TIT_reaction()
305 combustor1_off_design.get_outlet_stream()
306

307 # Re-setting the stream after the combustor
308 combustor1_off_design.get_outlet_stream()
309

310 # Turbine HP:
311 turbineHP_off_design = Expander()
312 turbineHP_off_design.set_losses(0)
313

turbineHP_off_design.set_stream(combustor1_off_design.outlet_stream)
314

turbineHP_off_design.set_pol_efficiency(efficiency_gas_turb[2])
315

turbineHP_off_design.calc_p_out_iterations(compressorLP_off_design.visualize_work('kW')
316

+compressorHP_off_design.visualize_work('kW'),'kW')
317 turbineHP_off_design.get_outlet_stream()
318

319 # Turbine LP:
320 turbineLP_off_design = Expander()
321 turbineLP_off_design.set_losses(0)
322

turbineLP_off_design.set_stream(turbineHP_off_design.outlet_stream)
323

turbineLP_off_design.set_pol_efficiency(efficiency_turbine_off_design)
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324 turbineLP_off_design.set_p_out(1.01325 + (exhaust[i]/ 1000))
325 turbineLP_off_design.expansion_by_steps(100)
326 turbineLP_off_design.get_outlet_stream()
327

328 # Gas Turbine
329 GT_work =

turbineLP_off_design.visualize_work('kW')*(0.9753*0.9895)
330 power_python.append(GT_work)
331

332 GT_eff_thermoflow = GT_work / (fuel_rate_off_design
*((LHV)/1000))

333 efficiency_python.append(GT_eff_thermoflow)
334 heat_rate_calculated =

(fuel_rate_off_design*(LHV*3600)/GT_work)/1000
335 heat_rate_python.append(heat_rate_calculated)
336

exhaust_python.append(turbineLP_off_design.get_outlet_temperature('C'))
337

338 abs_error_power = abs(GT_work - power[i])
339 abs_error_temperature =

abs(turbineLP_off_design.get_outlet_temperature('K')
-(t_exhaust[i]+273.15))

340 abs_error_hr = abs(heat_rate_calculated - heat_rate[i])
341 abs_error_efficiency = abs(GT_eff_thermoflow -

(efficiency[i]/100))
342

343 print((abs_error_power/power[i])*100)
344 print(abs_error_temperature)
345 print((abs_error_hr/heat_rate[i])*100)
346 print(abs_error_efficiency*100)
347

348 i = i + 1
349

350 print(power_python)
351 print(exhaust_python)
352 print(efficiency_python)
353 print(heat_rate_python)

.5 Performance Indicator analysis

1 import csv
2 from ClassesFORCASESTUDY import Stream, Compressor, Combustor,

Expander
3 from neqsim.thermo.thermoTools import fluid, TPflash, PHflash
4 from neqsim.standards import ISO6976
5 import matplotlib.pyplot as plt
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6

7 # Plot function, 2 variables: #
8 def plot(x, ya, yb, label, y, v1, v2, x_tick_positions,

x_tick_labels):
9 # Real data:

10 x1 = x # date range
11 y1 = ya
12

13 # Calculated
14 x2 = x
15 y2 = yb
16

17 # Plot the Temperatures
18 plt.plot(x1, y1, label=v1)
19 plt.plot(x2, y2, label=v2)
20

21 plt.xticks(x_tick_positions, x_tick_labels)
22

23 # Add legend and axis labels
24 plt.legend()
25 plt.xlabel('Date [days]')
26 plt.ylabel(y)
27 plt.title(f"{label}")
28

29 plt.show()
30 # Plot function: 1 variable: #
31 def plot_1(x, y, label, v1, x_tick_positions, x_tick_labels):
32

33 x1 = x
34 y1 = y
35

36 plt.plot(x1, y1, label=v1)
37

38 plt.xticks(x_tick_positions, x_tick_labels)
39

40 # Add legend and axis labels
41 plt.legend()
42 plt.xlabel('Date [days]')
43 plt.ylabel(v1)
44 plt.title(f"{label}")
45

46 plt.show()
47

48 date_list = []
49 ambient_temperature = []
50 ambient_pressure = []
51 pressure_LP_6000 = []
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52 temperature_LP_6000 = []
53 pressure_HP_6000 = []
54 temperature_HP_6000 = []
55

56 def data_extraction(index, namedata):
57 with open('data_not_modified.csv') as f:
58 reader = csv.reader(f)
59

60 # Read the first line,
61 first_line = next(reader)
62

63 column_index = first_line.index(index)
64

65 for row in reader:
66 if index == 'time':
67 namedata.append(row[column_index])
68 else:
69 namedata.append(float((row[column_index])))
70

71 data_extraction('time', date_list)
72 data_extraction('1219-27PT1053A', pressure_LP_6000)
73 data_extraction('1219-27TE1054A', temperature_LP_6000)
74 data_extraction('1219-27PT1062A', pressure_HP_6000)
75 data_extraction('1219-27TE1061A', temperature_HP_6000)
76 data_extraction('1219-27TT1193', ambient_temperature)
77 data_extraction('1219-27PT1051', ambient_pressure)
78

79 y = 3000
80 x_tick_labels = []
81 for i in range(len(date_list)):
82 if i == 0 or i == 500 or i == 1000 or i == 1500 or i == 2000

or i == 2500 or i == 2999:
83 x_tick_labels.append(date_list[i].split()[0][5:10])
84 x_tick_positions = [0, 500, 1000, 1500, 2000, 2500, 2999] #

Tick positions
85

86 plot_1(date_list[:y], temperature_LP_6000[:y],
87 'LP outlet temperature, raw data','LP outlet temperature

[°C]',
88 x_tick_positions,x_tick_labels)
89 plot_1(date_list[:y], pressure_LP_6000[:y],
90 'LP outlet pressure, raw data','LP outlet pressure

[bar]',
91 x_tick_positions,x_tick_labels)
92

93 # Cleaning the data from bad numbers #
94 def remove_distant_values(data_list, threshold):
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95 cleaned_list = [data_list[0]] # Start with the first value
96 indices_to_remove = [] # Store indices of values to be

removed
97

98 for i in range(1, len(data_list)):
99 if abs(data_list[i] - cleaned_list[-1]) <= threshold:

100 cleaned_list.append(data_list[i])
101 else:
102 indices_to_remove.append(i)
103

104 return cleaned_list, indices_to_remove
105

106 def list_days(data_list, threshold, date):
107 cleaned_list = [data_list[0]] # Start with the first value
108 indices_to_remove = [] # Store indices of values to be

removed
109 x_tick_labesl_total = []
110 for i in range(1, len(data_list)):
111 if abs(data_list[i] - cleaned_list[-1]) <= threshold:
112 cleaned_list.append(data_list[i])
113 x_tick_labesl_total.append(date[i])
114 else:
115 indices_to_remove.append(i)
116

117 return x_tick_labesl_total
118

119 threshold = 5
120 temperature_LP_cleaned, indices_to_remove =

remove_distant_values(temperature_LP_6000[:y], threshold)
121 new_days = list_days(temperature_LP_6000[:y],threshold,

date_list[:y])
122

123 number_cleaned = len(temperature_LP_cleaned)
124

125 # Remove corresponding values from another list
126 pressure_LP_cleaned = [pressure_LP_6000[i] for i in

range(len(pressure_LP_6000[:y]))
127 if i not in indices_to_remove]
128 date_cleaned = [date_list[i] for i in range(len(date_list[:y]))
129 if i not in indices_to_remove]
130 ambient_t_cleaned = [ambient_temperature[i] for i in

range(len(ambient_temperature[:y]))
131 if i not in indices_to_remove]
132 ambient_p_cleaned = [ambient_pressure[i] for i in

range(len(ambient_pressure[:y]))
133 if i not in indices_to_remove]
134 # Resetting x_tick_labels:
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135 x_tick_labels = []
136

137 for i in range(len(date_cleaned)):
138 if i == 0 or i == 500 or i == 1000 or i == 1500 or i ==

2000:
139 x_tick_labels.append(new_days[i].split()[0][5:10])
140

141 x_tick_positions = [0, 500, 1000, 1500, 2000] # Tick positions
142 print(x_tick_labels)
143

144 plot_1(date_list[:number_cleaned], temperature_LP_cleaned, 'LP
outlet temperature, cleaned data',

145 'LP outlet temperature [°C]',
146 x_tick_positions, x_tick_labels)
147 plot_1(date_list[:number_cleaned], pressure_LP_cleaned, 'LM6000

LP pressure, cleaned data',
148 'LP outlet pressure [bara]',
149 x_tick_positions,x_tick_labels)
150

151 def moving_average(data, window_size):
152 moving_averages = []
153

154 for i in range(len(data) - window_size + 1):
155 window = data[i:i + window_size]
156 average = sum(window) / window_size
157 moving_averages.append(average)
158

159 return moving_averages
160 # Cleaning data: #
161 x = number_cleaned
162 window_size = 10
163 temperature_LP_cleaned =

moving_average(temperature_LP_cleaned[:x], window_size)
164 pressure_LP_cleaned = moving_average(pressure_LP_cleaned[:x],

window_size)
165 ambient_t_cleaned = moving_average(ambient_t_cleaned[:x],

window_size)
166 ambient_p_cleaned = moving_average(ambient_p_cleaned[:x],

window_size)
167

168 number = len(temperature_LP_cleaned)
169 print('Number with 3 = ',number)
170 plot_1(date_list[:number], temperature_LP_cleaned,
171 'LP outlet temperature, after moving average','LP outlet

temperature [°C]',
172 x_tick_positions,x_tick_labels)
173 plot_1(date_list[:number], pressure_LP_cleaned,
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174 'LP outlet pressure, after moving average','LP outlet
pressure [bar]',

175 x_tick_positions,x_tick_labels)
176

177 def calculation_pressure_ratio(stages, pressure_input,
p_ratio_stage):

178 n = 0
179 p1 = pressure_input # inizializiation of the variable
180 list = []
181 # for the first compressor:
182 while n < stages:
183 p2 = p_ratio_stage * p1
184 p_ratio = p2/p1
185 list.append(p_ratio)
186 p1 = p2
187 n = n + 1
188

189 pressure_ratio = 1
190 for i in list:
191 pressure_ratio *= i
192

193 pressure_ratio = pressure_ratio * pressure_input
194

195 return(pressure_ratio)
196

197 ############################## THERMOFLOW
#################################

198 flow_rate_air = 128.9
199 flow_rate_fuel = 2.228
200

201 polytropic_efficiency_gasturb = [0.88, 0.925, 0.8568, 0.8568]
202

203 iso_pressure_ratio = 29.1
204 stages_LP = 5
205 stages_HP = 14
206 total_stages = stages_LP + stages_HP
207 pressure_ratio_stage = (iso_pressure_ratio ** (1/total_stages))
208

209 pressure_LP =
calculation_pressure_ratio(5,1,pressure_ratio_stage)

210 pressure_HP =
calculation_pressure_ratio(14,pressure_LP,pressure_ratio_stage)

211

212 # List of components:
213 component_names = ["oxygen", "nitrogen", "argon","methane",

"ethane", "propane",
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214 "i-butane", "n-butane", "i-pentane",
"n-pentane", "n-hexane", "H2O", "CO2"]

215 air_composition = [0.20660, 0.77, 0.00927, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.01384, 0.00030]

216 fuel_case22_composition = [0.0, 0.013, 0.0, 0.9516, 0.024,
0.0036, 0.0017, 0.0009, 0.0011, 0.000, 0.0,

217 0.0000, 0.0042]
218

219 # Creating the fluid air:
220 air = fluid("srk")
221 for component in component_names:
222 air.addComponent(component,

air_composition[component_names.index(component)])
223 # Creating the fluid fuel case 22 for design:
224 fuel_22 = air.clone()
225 fuel_22.setMolarComposition(fuel_case22_composition)
226 # Iteration and plot #
227 date_range = date_list[:number]
228 t_calculated_LP = []
229 t_calculated_HP = []
230 index_LP_list = []
231 index_HP_list = []
232 baseline = []
233

234 x1 = date_list[:number]
235 y1 = ambient_t_cleaned[:number]
236

237 plt.plot(x1, y1, label='Ambient Temperature in [°C]')
238

239 # Add legend and axis labels
240 plt.legend()
241 plt.xlabel('Date [days]')
242 plt.ylabel('Ambient Temperature in [°C]')
243 plt.title('Ambient Temperature: plot')
244

245 plt.show()
246

247 for i in range(len(ambient_t_cleaned[:number])):
248 # Creating the stream of air:
249 air_stream = Stream()
250 air_stream.set_fluid(air)
251 air_stream.set_temperature(ambient_t_cleaned[i], 'C')
252 air_stream.set_pressure(ambient_p_cleaned[i])
253 air_stream.set_flow_rate(flow_rate_air, 'kg/sec')
254 air_stream.calculate()
255

256 # Setting the compressor using pol_efficiency
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257 compressorLP = Compressor()
258 compressorLP.set_losses(1.528)
259 compressorLP.set_stream(air_stream)
260 compressorLP.set_p_out(pressure_LP_cleaned[i])
261

compressorLP.set_pol_efficiency(polytropic_efficiency_gasturb[0])
262 compressorLP.compression_by_steps(100)
263 t1 = compressorLP.get_outlet_temperature('C')
264 t_calculated_LP.append(t1)
265 dt1 = temperature_LP_cleaned[i] - ambient_t_cleaned[i]
266 dt2 = t1 - ambient_t_cleaned[i]
267 index_LP = (dt1 - dt2)/dt1
268 index_LP_list.append(index_LP)
269 baseline.append(0)
270

271 plot(date_list[:number], index_LP_list[:number],
baseline[:number],

272 'LP compressor: performance indicator','Performance
Indicator', 'Performance Indicator',

273 'Baseline',x_tick_positions,x_tick_labels)
274 plot(date_list[:number], t_calculated_LP[:number],
275 temperature_LP_cleaned[:number], 'LP compressor outlet

temperature',
276 'LP outlet temperature [°C]','LP calculated outlet

temperature [°C]',
277 'LP real outlet temperature [°C]',
278 x_tick_positions,x_tick_labels)
279 moving_average_list = moving_average(index_LP_list[:number], 5)
280 number_x = len(moving_average_list)
281 plot_1(date_list[:number_x], moving_average_list[:number_x],
282 'MOVING AVERAGE INDEX','MOVING AVERAGE LP',
283 x_tick_positions,x_tick_labels)
284

285 # Export to CSV:
286

287 index = [index_LP_list[:number]]
288 ambient_t = [ambient_t_cleaned[:number]]
289 date = [date_list[:number]]
290

291 file_name = "index.csv"
292

293 # Scrivi i dati nel file CSV
294 with open(file_name, mode="w", newline="") as file:
295 writer = csv.writer(file)
296 writer.writerows(index)
297 writer.writerows(ambient_t)
298 writer.writerows(date)
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299

300 # Index and ambient T
301 x = date_list[:number]
302 y1 = ambient_t_cleaned[:number]
303 y2 = index_LP_list[:number]
304

305 # First y axis:
306 fig, ax1 = plt.subplots()
307

308 color = 'tab:blue'
309 ax1.set_xlabel('Date [days]')
310 ax1.set_ylabel('Ambient Temperature [°C]', color=color)
311 ax1.plot(x, y1, color=color)
312 ax1.tick_params(axis='y', labelcolor=color)
313

314 # Second y axis:
315 ax2 = ax1.twinx()
316

317 color = 'tab:red'
318 ax2.set_ylabel('Performance Indicator', color=color)
319 ax2.plot(x, y2, color=color)
320 ax2.tick_params(axis='y', labelcolor=color)
321

322 plt.title('Performance Indicator and Ambient Temperature')
323 plt.show()
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