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Abstract

Time series generation (TSG) is a type of generative modelling focusing on learning the distribution
of time series. A novel approach to TSG, called TimeVQVDM, is proposed by combining vector
quantization with diffusion models. It is motivated by recent success in image generation, where
improvement gains has been seen from switching to diffusion models. The proposed model uses
vector quantized variational autoencoders (VQ-VAEs) for finding efficient latent representations of
the time series, split into low and high frequencies. The latent distributions are then modelled using
diffusion models. Sampling from TimeVQVDM is performed by sampling the low frequencies first
and then sampling the high frequencies afterwards. This allows the model to capture the overall
structure of time series, as well as fine details. The proposed model is evaluated on the UCR time
series archive by reporting FID, IS and CAS metrics. For unconditional sampling, TimeVQVDM
achieves scores comparable with state-of-the-art alternatives, showing that diffusion models are
capable of improvement gains also for the task of generating time series.

Keywords: Vector Quantization, Diffusion Models, Time Series Generation
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Sammendrag

Tidsrekkegenerasjon (TSG) er en type generativ modellering som fokuserer p̊a å lære fordelingen av
tidsrekker. En ny tilnærming til TSG, kalt TimeVQVDM, er foresl̊att for å kombinere vektorkvan-
tisering med diffusjonsmodeller. Modellen er motivert av nyere suksess innen bildegenerering, hvor
man har sett forbedringsgevinster ved å bytte til diffusjonsmodeller. Den foresl̊atte modellen bruker
vektorkvantiserte variasjonsautokodere (VQ-VAEs) for å finne effektive latente representasjoner av
tidsrekker, delt inn i lave og høye frekvenser. De latente fordelingene blir deretter modellert ved
hjelp av diffusjonsmodeller. Generering fra TimeVQVDM utføres ved å generere de lave frekven-
sene først og deretter generere de høye frekvensene etterp̊a. Dette gjør at modellen kan fange opp
den generelle strukturen til tidsrekker, samt fine detaljer. Den foresl̊atte modellen er evaluert p̊a
UCR-tidsrekkearkivet ved å rapportere FID-, IS- og CAS-beregninger. For ubetinget generasjon
oppn̊ar TimeVQVDM resultateter som kan sammenlignes med toppmoderne alternativer, og viser
at diffusjonsmodeller er i stand til å gi forbedringer for tidsrekkegenerasjon.

Nøkkelord: Vektorkvantifisering, Diffusjonsmodeller, Tidsrekkegenerasjon
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1 Introduction

Time series are everywhere. A time series is a sequence of data points, usually taken at equally
spaced times. They are found in numerous fields, including quantitative finance, weather fore-
casting, control engineering, astronomy, and any applied science and engineering which involves
temporal measurements. Examples of time series are temperature readings, yearly counts of pop-
ulations, and the daily closing value of a stock. The unique characteristic of time series lies in its
temporal correlation, where the value at a particular time step is influenced by values at previous
time steps. This autocorrelation property makes analysis of time series distinct from other forms
of data analysis.

This thesis focuses on time series generation (TSG). It is a branch of generative modelling in AI
that focuses on creating synthetic time series that closely resembles some observed data. This data
collection can be viewed as arising from a probability distribution. The goal of TSG is to learn this
distribution, which enables us to be able to synthetically generate new time series. In general time
series have too complex temporal structures too model directly, thereby requiring highly flexible
probability distributions. For these tasks, machine learning offer promising methods. Generative
modelling have already been successful in several domains, including photorealistic image gener-
ation with text-to-image models (Ramesh et al., 2022), (Rombach et al., 2021), (Oppenlaender,
2022) and natural language processing with chat bots (Liu et al., 2023) showing deep understand-
ing and knowledge of languages. Since time series share some structural similarity with images and
natural language, many of the proposed methods in generative AI for these domains can be used
for time series. However research into generative models for time series have been less explored
than their counterparts. This thesis combines ideas from generative AI for images combined with
recent advances in the time series literature to tackle the TSG problem.

1.1 Why is it important to synthesize time series?

Overcome insufficient data. In many areas, analysing time series data could be hard due
to privacy regulations or difficulty with acquiring enough training data. For instance, consider
recordings of vital systems of patients in the medical sector. This data might be illegal to handle
directly. However, it could be possible to learn the underlying data distribution and generate
synthetic time series with similar statistical properties while preserving individual privacy. Another
example is when data collection is expensive or time-consuming. Having computational ways to
synthesise new data could overcome these limitations.

Creating robust algorithms. Synthetic time series could also aid other areas of time series
analysis. In fields such as quantitative finance and meteorology, the primary goal is forecasting.
An advantage of using machine learning for TSG lies in their ability to produce realistic-looking
samples. Classical time series models, such as ARIMA (Box et al., 1974) and GARCH (Engle,
1982), often only provide expected forecasts with accompanied confidence intervals, without ex-
plicit horizons. By leveraging the stochasticity in TSG, more realistic time series can enhance
quantifying uncertainties and the reliability of the forecasts. In signal processing and communica-
tion engineering, the goal is usually signal detection. Synthetic data could help in data imputation,
enabling the replacement of missing values in the signals. Additionally, synthetic data can help
creating more robust algorithms for data mining tasks such as time series clustering, anomaly
detection and classification by including synthetic data in the training procedure.

Synthetic audio. In the same way that generative modelling is used for visual data like images
and videos, time series can be used for auditory data, like speech and music (Dhariwal, Jun et al.,
2020, Zeghidour et al., 2021). Audio generation is an active research field. This is a difficult task
due to the high dimensionality of digital audio, usually having 44100 sampling points per second.
Machine learning algorithm are already being used for efficient audio compression and modelling
(Kumar et al., 2023), allowing artists to generate music and service industries for text-to-speech
generation.

1



1.2 Background for generative modelling of time series

Image generation

The last decade saw a huge breakthrough in machine learning with the invention of generative
adversarial networks (GANs) (I. J. Goodfellow et al., 2014). This class of methods was a major
steppingstone for generative modelling. Data analysts could now look beyond what was already
present in the data by synthesizing new data. GANs quickly became popular with their success
and dominance in image synthesis. However, they plateaued due to two main problems arising
from their adversarial formulation. The first issue is that they are not easy to train, as both a
generator and a discriminator has to be trained together. The second issue is mode collapse, where
the generator gets stuck in local modes thus having problems learning the full data distribution,
leading to lack of diversity in the generated samples.

Diffusion models where first introduced in (Sohl-Dickstein et al., 2015) with a motivation from
non-equilibrium thermodynamics. In recent years, they gained significant popularity due to their
impressive results on image synthesis. A handful of papers released in the 2020s alone have shown
what diffusion models are capable of, such as beating GANs on image synthesis (Dhariwal and
Nichol, 2021) and generating photo-realistic images from text prompts (Saharia et al., 2022).
Some of these models have been open-sourced, such as Stable Diffusion (Rombach et al., 2021),
which allows practitioners to create high-resolution images from text prompts and preform in-
and out-painting. Diffusion models have also yielded record-breaking performance across other
domains, such as video generation and molecule design, emerging as a powerful new family of deep
generative models (Yang et al., 2022).

Time series generation

TSG has previously been based on GANs combined with recurrent neural network (RNN) (Yoon
et al., 2019) and (Ni et al., 2020). However, due to the adversarial nature of GANs, the difficulty
with training and mode collapse remains. In addition, RNNs often lack the ability to capture
long temporal dependencies. The problem with temporal dependencies has been tried to be fixed
using transformer alternatives, such as TTS-CGAN (Transformer Time-Series Conditional GAN)
in (Li et al., 2022). The image generation literature have shown significant performance gains by
switching to diffusion models instead of GAN alternatives, as seen with Imagen (Saharia et al.,
2022), Stable diffusion (Rombach et al., 2021), and Midjourney (Oppenlaender, 2022). According
to (Lee et al., 2023), adapting diffusion models should expect a similar performance gain for TSG.
Diffusion models are both flexible and tractable, making them suitable also for modelling time
series. Their strength lies in being able to create high quality samples with good mode coverage
(Xiao et al., 2021).

Frameworks using vector quantization (VQ) allows for effective discrete representations of data
(Oord et al., 2017). Lee et al., 2023 proposes TimeVQVAE, as the first application of VQ tech-
niques for TSG. The authors uses a two stage modelling approach, where the first stage involves
creating latent representations of the time series using a vector-quantized variational autoencoder
(VQVAE) (Oord et al., 2017). One notable contribution of their work is the utilization of a bi-
directional transformer (Chang et al., 2022) to learn the priors of the latent space. The transformer
architecture (Vaswani et al., 2017), popularized by their successful in natural language processing,
allows for capturing the global temporal consistency more effectively than RNN alternatives. Lee
et al., 2023 further propose to model the time series in time-frequency domain, which creates
samples with sharp changes in modularity. For natural audio, Kumar et al., 2023 proposes Im-
proved RVQGAN, a universal audio compression model with 90x compression rate, capable of
handling speech, music and environmental sounds. This model also VQ for efficient encoding of
audio, and the prior is modelled using a GAN architecture. A natural direction of research into
TSG is to use recent advances of diffusion model in the image generation domain and combining
it with advances using VQ for time series.

2



1.3 Thesis overview

This thesis analyses time series generation using diffusion models and vector quantization. To the
best of our knowledge, this approach has not been done before. This work is mainly inspired by
the following four papers:

• Diederik P. Kingma et al., 2021: Variational Diffusion Models

• Lee et al., 2023: Vector Quantized Time Series Generation with a Bidirectional Prior Model

• Rombach et al., 2021: High-Resolution Image Synthesis with Latent Diffusion Models

• Ho, Saharia et al., 2021: Cascaded Diffusion Models for High Fidelity Image Generation

The proposed model is called TimeVQVDM. It is short for vector-quantized variational diffusion
models for time series. It is based on the two stage modelling approach in TimeVQVAE (Lee et al.,
2023). The first stage involves using vector quantized variational autoencoders for creating latent
representations of the time series data. Similar to TimeVQVAE, the time series are analysed in
the time-frequency domain which are further split into low frequencies (LF) and high frequencies
(HF). The second stage models the latent distribution with diffusion models. This is analogous
with Stable Diffusion (Rombach et al., 2021), where the diffusion model operates in a latent
space. For this thesis, the variational diffusion model (VDM) (Diederik P. Kingma et al., 2021)
is used, as it offers greater theoretical understanding of the log likelihood behind the diffusion
process. During the generation process, the low frequencies are generated first and then the high
frequencies are generated conditioned on the low frequencies. This cascading generating process
is inspired by (Ho, Saharia et al., 2021), whereby high-resolution images are sampled by first
generating a low-resolution image and generating the higher resolution afterwards by conditioning
on the low resolution image. The same conditioning mechanism used in (Ho, Saharia et al., 2021)
is adapted for TimeVQVDM, where generation of HF components is conditioned on generated LF
components.

Section 2 is Theory. This section covers the necessary theory for the proposed method. The first
part states the assumptions for the data set and introduces how variational inference is used for
optimizing the models parameters using a loss function. The section then proceeds with presenting
the variational autoencoder and how this is combined with vector quantization for creating the
latent representations. Diffusion models are then covered, including the sampling procedure. The
next part of the theory covers modelling of time series in the time-frequency domain and introduces
relevant neural network modules. These include stage one of TimeVQVAE, the U-Net (Ronneber-
ger et al., 2015), and the fully convolutional network (FCN) (Z. Wang et al., 2016). The last part
of the theory covers evaluation metrics, along with their interpretations. Three evaluation metrics
are introduced; the Fréchet inception distance (FID), inception score (IS) and classification accur-
acy score (CAS). The reader is expected to have a moderate knowledge of statistics and machine
learning, as the basics is not covered.

Section 3 is Experimental Setup. Details regarding TimeVQVDM, the training data and the
loss function is provided here. In addition, the algorithms for training and sampling are given.
Several implementation tricks has been made for TimeVQVDM for combining diffusion models
with VQ for modelling of time series. These include conditioning mechanisms for the low and
high frequency diffusion models and making them work with the stage one of TimeVQVAE. The
experimental setup also covers how the model is configured and trained. Next the UCR time series
archive (Dau et al., 2018) is covered. It containing a wide range of different real world as well as
generated time series from various domains.

Section 4 and 5 is Results and Discussion. The Results section analyses the model by eval-
uating the performance of TimeVQVDM for both unconditional and conditional sampling. Both
qualitative assessment, using visual inspections, and quantitative, using the evaluation metrics, are
given. Finally, the Discussion section discusses the relative performances of TimeVQVDM on dif-
ferent UCR data sets and compares it with TimeVQVAE, identifying the strength and weaknesses
of the proposed model.
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2 Theory

2.1 Inference for Time Series Generation

Inference in probabilistic models for time series is often challenging due to their complex temporal
structure. It is generally impossible to find the marginal distribution of time series exactly, forcing
us to search for approximations. The problem of approximating the distribution of some time
series data is referred to as the inference problem.

For some data sets the inference problem can be approximated using sampling-based methods,
where the generation process involves sampling of random variables as subroutines. A popular
type isMarkov Chain Monte Carlo (MCMC), with instances like the Metropolis-Hastings algorithm
(Nicholas et al., 1953; Hastings, 1970) and the Gibbs sampler (S. Geman and D. Geman, 1984).
Sampling-based methods can be utilized whenever the dependencies among the components of the
random variables are known, such that the inference problem can be formulated as an integral
over a known distribution. In practice, the resulting integral is often approximated with numerical
methods. MCMC can be difficult to implement efficiently, as it could be hard to pick good proposal
distributions and to tell if the Markov chain has converged properly before it can be used for
inference.

Variational inference is today a more widely used inference technique for complex data distributions
(Blei et al., 2016). It is more applicable for time series since it can be used for the general inference
problem, without any explicit assumptions for the dependencies in the time series.

2.1.1 Data set assumptions

The data sets contain time series with corresponding classified labels. Formally, assume that X
and Y are observable random variables on the spaces X and Y and let q denote the underlying true
probability distributions of these variables. For instance, q(x) is the marginal distribution of X
and q(x, y) is the joint distribution of X and Y . Assume that we have observed n independently
and identically distributed data points from the true distribution. This data is referred to as the
training data and will also be denoted the ground truth. The training data can be written as a set
of data points

{(xi, yi)}ni=1 = {(x1, y1), (x2, y2), . . . , (xn, yn)}, (1)

where each time series x ∈ X ⊆ Rl is univariate with fixed length l and the corresponding class
label y ∈ Y = {1, . . . , C}, where C is the total number of classes. We assume that the range of X
is not bounded, meaning that x can take any value in Rl. In reality, the space X can be limited.
For instance, real time series from counts can be restricted to only having non-negative values or
the time series can only take discrete values since measurements of them are rounded. Each time
series x can be represented by a sequence of observations as x = (xi : i ∈ I), where I = {1, 2, . . . , l}
is the index set.

The simplest way to approximate q(x) is to use the empirical distribution, defined by placing
mass 1/n on each observation in the training data. Mathematically, it is a discrete probability
distribution given by

q∗(x) =
1

n

n∑
i=1

δxi
, (2)

where δxi is the Dirac mass centered at observation xi. The empirical distribution is useful for
many purposes, e.g. it is used in bootstrapping for estimating statistical properties of the data.
One shortcoming is that this distribution lacks the ability to generate new samples, as it can only
output samples seen in the training data. A more sophisticated approach is needed to be able to
generate novel content.
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2.1.2 Variational inference

The main idea in variational inference is to cast the inference problem as an optimization problem
over a family of tractable probability distributions. For this we define a sufficiently large parametric
family {pθ}θ∈Θ of distributions, where θ denotes the model parameters. The letter p is used to
denote the estimated model probabilities and to distinguish them from the true probabilities, where
the letter q is used. Finding the best model then amounts to choosing the parameters

θ̂ = argmin
θ∈Θ

L(pθ(x), q(x)), (3)

for some loss function L. The distribution pθ is good if pθ(x) ≈ q(x), i.e. if it approximates
the underlying distribution of time series well. There are two main challenges with variational
inference, choosing the loss function L which to minimize and choosing the model architecture for
pθ. The model architecture is presented in Section 3.

The loss function is commonly chosen to be the inclusive Kullback-Leibler (KL) divergence, a
measure for how one probability distribution differs from a reference distribution. It is defined as

DKL(q(x) ∥ pθ(x)) := Ex∼q(x)

[
log

q(x)

pθ(x)

]
, (4)

and can be interpreted as the expected excess surprise of using pθ(x) as a model when the true
model is q(x). A basic result in variational inference is that minimizing the KL divergence is
equivalent to maximizing the log-likelihood of the data, as seen by the relationship

Ex∼q(x) [log pθ(x)] = −H(q)−DKL(q(x) ∥ pθ(x)), (5)

where H(q) := −Ex∼q(x) [log q(x)] is the Shannon entropy of q(x), which measures the average
level of information inherent in the true data. This term is constant can be omitted. In practice,
the true distribution q(x) is not available, so we optimize with respect to the empirical distribution
q∗(x), thereby finding the parameters which maximizes the log-likelihood of the observed data,

θ̂ = argmax
θ∈Θ

log pθ(x). (6)

2.1.3 Evidence lower bound

Explicitly parameterized distribution families, such as the exponential family, are too simplistic
to model time series data, so we instead consider implicitly parameterized distributions. Let the
parameterized distribution pθ contain a latent random variable Z with prior distribution pθ(z).
The prior distribution is assumed to be easy to sample from. Also, define a way to convert any
z ∼ pθ(z) into a simple distribution over the observable random variable X. Then pθ defines a
family of joint distributions over (X,Z). Using Bayesian terminology, X is the observed evidence,
pθ(x | z) is the likelihood function and pθ(z | x) is the posterior distribution over Z.

The evidence lower bound (ELBO) is used to maximize Equation (6). The standard formulation
of the ELBO is

log pθ(x) ≥ Ez∼qϕ(z|x)

[
log

pθ(x, z)

qϕ(z | x)

]
, (7)

where pθ(x, z) denotes the generative model and qϕ(z | x) denotes the inference model. Likewise
with the true distribution q(x), the inference model is written with the letter q to symbolize that
it is the true distribution of the latent z conditioned on the time series x. The subscript ϕ denotes
the parameters in the inference model. Combining Equation (6) with (7), the loss function is
chosen as

LELBO(θ, ϕ | x) := Ez∼qϕ(z|x)

[
− log

pθ(z,x)

qϕ(z | x)

]
. (8)

After optimizing the loss in Equation (8), pθ can be used for generation in two steps. The first
step is to sample the latent variable from the prior distribution, z ∼ pθ(z). The second step is to
sample conditionally x ∼ pθ(x | z).
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2.2 Vector Quantized Variational Autoencoder

TimeVQVDM uses vector quantized variational autoencoders (VQ-VAEs) to create efficient latent
representations of time series. VQ-VAE consists of two parts, a variational autoencoder and a
vector-quantization model. These are introduced in the following two sections, before presenting
the VQ-VAE model.

2.2.1 Variational autoencoder

Variational autoencoders (VAEs) was first introduced in (Diederik P Kingma and Welling, 2013).
VAEs are variational Bayesian methods belonging to the family of probabilistic graphical models.
The model has a structural similarity with autoencoders, but with a different goal. While auto-
encoders learns efficient codings of data using a latent space encoding, the variational autoencoder
learns to encode data to a variational distribution, which can be used to generate new samples
from.

An autoencoder consists of two neural networks, an encoder network E and decoder network D.
The encoder maps the input sample x from the sample space to a latent variable z = E(x) in
latent space. The decoder then maps from latent space back to sample space, x̂ = D(z). Usually,
there is a dimensionality reduction when encoding the input, such that z has lower dimension than
x. This forces the autoencoder to find an efficient representation of the signal, often leading to
lossy compression, i.e. x̂ = D(E(x)) ̸= x.

A variational autoencoder is illustrated in Figure 1. In addition to the encoder and decoder,
a VAE also has a third component, a variational distribution in the latent space. The encoder
is repurposed to output a set of variables that corresponds to the parameters of the variational
distribution. The decoder has the opposite purpose, it inputs the parameters from the latent
space and generates data points in sample space. In this way, VAE could be used as a generative
model by sampling from the variational distribution and decoding to sample space. The variational
distribution is often chosen to be a multivariate Gaussian distribution. In this setting the encoder
predicts the mean vector and covariance matrix,

E(x) = {µ(x),Σ(x)}. (9)

The latent representation can then be calculated as

z ∼ N (µ(x),Σ(x)), (10)

which can be efficiently computed with z = µ(x) + L(x)ϵ, where ϵ ∼ N (0, I) and Σ(x) =
L(x)L(x)⊤ is the Choleksy decomposition of the covariance vector. The VAE is optimized using
the evidence lower bound from Equation (8). The inference model is the variational distribution
from the encoder, qϕ(z | x) = N (µ(x),Σ(x)), the prior distribution is chosen as a multivariate
isotropic Gaussian pθ(z) = N (0, I), and the likelihood function becomes pθ(x | z) = D(z).

x
µ

Σ

ϵ

x̂

E Dz

Figure 1: Variational autoencoder. An input signal x is encoded to a latent representation E(x) =
{µ, Σ}, consisting of the parameters of the variational distribution. Sampling from the VAE is
done by sampling a latent vector from the variational distribution. The latent vector can then be
decoded to the sample space, x̂ = D(z).
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2.2.2 Vector quantization

Vector Quantization (VQ) is a classical quantization technique in signal processing that involves
quantizing data into a finite set of codebook vectors, also called tokens (Gray, 1984). It is a lossy
data compression algorithm, and allows modeling of probability density functions using the vectors
in the codebook. VQ tries to minimize the distortion between the input signal and the quantized
output, thus achieving a compact representation of the data while keeping as much information as
possible. It works by dividing a set of training vectors into groups having approximately the same
number of vectors closets to them, thus working as a type of clustering algorithm.

The codebook is an essential component in VQ. It is defined as

Z = {e1, . . . , eK}, ek ∈ Rd, 1 ≤ k ≤ K, (11)

and contains K vectors with dimension d. Z can now be used to quantize an encoding of the
input signal x. Assume that x is encoded to z = E(x) ∈ RN×d, where N × d is the shape of the
encoding. In general, N could have more than one dimension, i.e. it can be represented as the
Cartesian product N = N1 × · · · × Ndim(N), where dim(N) is number of dimensions of N . The
corresponding quantization/tokenization process maps each index i ∈ N of z to

(zq)i = argmin
ek∈Z

∥(z)i − ek∥2, (12)

where zq represents the quantized version of z. The quantization process in Equation (12) compares
each continuous token in z with each discrete token ek in the codebook in terms of a similarity
measure and replaces them with the closest. The similarity measures used here is the Euclidean
distance. After the quantization, there is a finite number of representations for zq. Since each
index is mapped to one of K tokens, then the total number of unique representations is K |N |,
where |N | is the number of indices. This means that a generative model using VQ can in theory
not produce more than this unique number of samples. Figure 2 illustrates a learned codebook for
d = 2 and K = 4. The space R2 is partitioned into four Voroni cells, each cell consisting of the
points closets to the corresponding token inside.

Vector Quantization offer several benefits for data analysis. It often achieves significant data
compression with minimal loss of information, making it suitable for various signals, such as images
and time series. VQ effectively clusters similar data points together based on the similarity measure,
which could lead to smoother and more robust representations of the original data. This could
lead to learning patterns and structures useful for feature extraction and downstream tasks.

(z)i

e2

Data points
e1

e4

e3

Tokens

Figure 2: Vector-Quantization in R2 using 4 tokens and Euclidean distance measure. The space
is partitioned into a four regions represented using the tokens in the codebook. The quantization
process is illustrated by mapping the continuous vector (z)i to the closest token e4.
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2.2.3 Vector quantized variational autoencoder

Vector quantized variational autoencoders (VQ-VAE) was first introduced in (Oord et al., 2017).
It is an unsupervised technique for learning discrete representations of data. VQ-VAE differs
from VAEs in two ways, the encoder network outputs discrete latent representations, rather than
continuous, and the prior distribution is learned, rather than static. The latent representations
outputted by the encoder network is quantized using ideas from VQ. This allows the model to
learn useful discrete representations of the data and circumvent issues of posterior collapse seen
with standard VAEs. VQ-VAEs produces sharper reconstructions than AE and VAE (Bank et al.,
2020). An overview of the VQ-VAE model is shown in Figure 3. A VQ-VAE model has an encoder
and decoder similar to AEs. In addition, there is a codebook for doing vector quantization in latent
space. The input sample x is encoded to a latent space z = E(x). The continuous representation
is then quantized with the codebook, using the quantization process in Equation (12). Denoting
the quantized latent as zq, then the reconstructed sample is x̂ = D(zq).

Similar to VAEs, VQ-VAEs are optimized using the evidence lower bound, which in turn optimizes
for the likelihood of the data. Oord et al., 2017 suggests learning the latent distribution, often
called the prior distribution, after training the encoder, decoder and codebook. To do this, the
authors suggests a two-stage training approach, where training the neural networks is divided into
two stages. Stage one involves training the encoder and decoder together with the codebook.
In stage one, a uniform prior is assumed for the distribution of the codebook tokens. Since the
uniform distribution is the maximum entropy distribution over a categorical distribution such as
the codebook tokens, it is non-informative. The inference distribution is the quantized encoded
signal, qϕ(z | x) = E(x)q = zq, and the generative model is the joint of the latent variable and
the decoded latent variable, pθ(x, zq) = pθ(x | zq)pθ(zq), where pθ(x | zq) = D(zq) and pθ(zq)
is uniform over the tokens in the codebook. After stage one, the discrete prior distribution of the
tokens in the codebook is learned. During the training of the prior, the parameters in the encoder,
decoder and codebook are freezed.

Learning the prior distribution can be reduced to learning the indices of the tokens in the codebook.
Since the quantization process maps to discrete representations, the indices of the tokens in the
codebook can be modelled, rather than the tokens themselves. This could be for instance be
paired with autoregressive models or attention-based models, such as transformers (Vaswani et al.,
2017). Standard VAE often has good mode coverage, but they lack in sample quality of generated
samples (Xiao et al., 2021). Using VQ-VAE combined with a learned prior allows for more flexible
distributions, while minimizing the loss of information, which could lead to higher quality in the
generated samples. For instance, TimeVQVAE utilizes a bidirectional transformer (Chang et al.,
2022) for modelling the indices of the codebook.

z
Codebook Z

...
zq x̂x

E
argmin

e∈Z
∥(z)i − e∥

D

Figure 3: Overview of a vector-quantized variational autoencoder (VQ-VAE). The input x is
encoded to a latent representation z = E(x). The latent representation is then quantized, before
it is reconstructed back to the sample space using a decoder x̂ = D(zq). Paired with a prior model
of the latent representation, the VQ-VAE is capable of generative modelling.
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2.3 Diffusion Models

TimeVQVDM uses diffusion models to learn the latent distribution of time series. In machine
learning, a diffusion model is a latent variable model which maps to a latent space using a diffusion
process. Diffusion models was introduced in (Sohl-Dickstein et al., 2015) and based the diffusion
process on non-equilibrium thermodynamics. The idea is to destroy structure in the data through
a forward noising process. A neural network is then trained to reverse this process, essentially
denoising the diffused data, thus recovering structure from the noise.

This thesis adapts the Variational Diffusion Model (VDM), first described by Google research in
(Diederik P. Kingma et al., 2021). It is a continuous time-step diffusion model defined as a latent
variable model with latents z = {zt | t ∈ [0, 1]} that obey a forward process qϕ(z | z0) starting at
the data distribution encoded to latent space, z0 ∼ qϕ(z0 | x). This forward process is a Gaussian
noising process on [0, 1] that satisfies the continuous Markovian structure

qϕ(zt | z0) = N
(
zt; αtz0, σ2

t I
)
, qϕ(zt | zs) = N

(
zt; αt|szs, σ2

t|sI
)
, (13)

where 0 ≤ s < t ≤ 1 are time steps and the conditional mean and variance are defined as

αt|s :=
αt

αs
, σ2

t|s := σ2
t − α2

t|sσ
2
s . (14)

Note that αt and σt are non-negative scalar-valued smooth functions of t, such that the noising
schedule is differentiable. The forward process in Equation (13) can be formulated as a reversible
stochastic differential equation (SDE), as outlined in Appendix A. The reverse process is defined
as qϕ(zs | zt) and is the true distribution of the latent zs conditioned on a more noisy latent zt.
It can in general not be written in an analytical form and must be estimated. A useful property is
that the Markov property also holds for the reverse process, allowing sampling from the estimated
reverse process. The goal of diffusion models is to learn this process, thus being able to recover
structure from noise.

2.3.1 Signal-to-noise ratio

From Equation (13) we can write the latent at time t ∈ [0, 1] as

zt = αtz0 + σtϵ, ϵ ∼ N (0, I), (15)

using the reparameterization trick. It consists of two components, referred to as the signal com-
ponent and the noise component. They are given as αtz0 and σtϵ, respectively. The signal-to-noise
ratio (SNR) is the ratio of the power of the signal component to the power of the noise component,
and is a common measure in electrical and communication engineering. Since power is equal to
expected squared amplitude, the SNR can be written as

SNR(t) :=
E[(αtz0)

2]

E[(σtϵ)2]
=

α2
t

σ2
t

· E[z
2
0]

E[ϵ2]
. (16)

Because ϵ is standard Gaussian, then E[ϵ2] = V[ϵ] + E[ϵ]2 = 1. In fact, we can also assume that
E[z2

0] = 1 by making adjustments to the parameters ϕ of the encoder qϕ(z0 | x), such that the data
distribution encoded to latent space is standardized to have mean zero and unit variance. The SNR
is thus simply equal to SNR(t) = α2

t /σ
2
t . Furthermore, we define the logarithmic signal-to-noise

ratio as

λt := log SNR(t) = log
α2
t

σ2
t

. (17)

For the forward process to be a proper diffusion process, we must ensures that the latent becomes
noisier with time. This is done by assuming that the SNR(t), and likewise λt, is strictly mono-
tonically decreasing on [0, 1], i.e. that λt < λs whenever 0 ≤ s < t ≤ 1. Figure 4 illustrates
a diffusion process for images, where Gaussian noise is added to all three color channels. The
decreasing SNR makes the image gradually noiser with time.
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· · ·

· · ·

qϕ(zt | zs)

pθ(zt | zs)
t

10

· · ·

· · ·

Figure 4: Forward and backward diffusion processes applied to images. The forward process, given
by qϕ(zt | zs), adds Gaussian noise to the image following the definition in Equation (13). The
backwards process is estimated with pθ(zt | zs) by a neural network with parameters θ. The input
becomes gradually noisier through the diffusion process.

2.3.2 Noise schedule

The noising schedule for the diffusion process is fully determined by the two functions αt and
σt. We use a variance conserving noise schedule, meaning that the variance of the latent variable
at any time is constant. In fact, this is without lack of generality, as is shown in Appendix G
of (Diederik P. Kingma et al., 2021). We further use the cosine schedule, such that the noising
schedule is given by

αt := cos (βt) , σt := sin (βt) , (18)

where βt := πt
2 . Thus it is easy to verify that V[zt] = cos2 (βt) + sin2 (βt) = 1 for all t ∈ [0, 1],

so the variance conserving diffusion is satisfied. With the noising process defined by Equation
(18), the completely diffused latent has limiting distribution exactly equal to z1 ∼ N (0, I). The
distribution of the latent z1 is denoted as the prior distribution, and has a SNR of zero. In other
words, all information of the input z0 is lost, i.e. qϕ(z1 | z0) = qϕ(z1) = N (0, I).

2.3.3 Approximation of the reverse process

Learning the reverse diffusion process can be reduced to learning to denoise zt ∼ qϕ(zt | zs) into
an estimate pθ(zs | zt) ≈ qϕ(zs | zt). For this the auxiliary distribution qϕ(zs | zt, z0), where
0 ≤ s < t ≤ 1, is used. In Appendix B it is shown that qϕ(zs | zt, z0) is isotropic Gaussian,

qϕ(zs | zt, z0) = N (µs|t,0(zt, z0), σ2
s|t,0I), (19)

with mean and variance given by

µs|t,0(zt, z0) = eλt−λs
αs

αt
zt + (1− eλt−λs)αs z0, σ2

s|t,0 = (1− eλt−λs)σ2
s . (20)

If z0 is known, then there is an analytical form for the reverse process. A noisy latent zt arising
from diffusing z0 can then be used to find the true distribution of the less noisy latent zs. However,
z0 is not available. Instead the reverse process is approximated as

pθ(zs | zt) := qϕ(zs | zt, fθ(z0; zt)) ≈ qϕ(zs | zt), (21)

where fθ(z0; zt) ≈ z0 is the model prediction of z0 when the input is the diffused sample zt. The
notation fθ(·) is used to denote the model’s predictions, which differs from the model’s distributions
pθ(·). To be clear, pθ is used for the generative models probability distributions, while fθ is used
for any specific prediction made by the generative model.
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2.3.4 Alternative parameterizations

In practice, diffusion models are often parameterized to predict other quantities than z0. The
authors of (Ho, Jain et al., 2020) found that predicting the standardized noise component, ϵ,
produces higher sample quality. Using Equation (15), the predicted noise at time t is

fθ(ϵ) =
1

σt
(zt − αtfθ(z0)) ≈

1

σt
(zt − αtz0) = ϵ. (22)

In this way, the diffusion model is instead trained to predict ϵ and uses it to calculate the prediction
for z0. Substituting z0 = 1

αt
(zt − σtϵ) into Equation (20), the mean and variance of the reverse

process can be expressed as

µs|t,0(zt, ϵ) =
αs

αt
zt + (1− eλt−λs)

αs

αt
σt ϵ, σ2

s|t,0 = (1− eλt−λs)σ2
s . (23)

Another popular parameterization, which is designed for variance conserving diffusion, is the dif-
fusion velocity, defined by

vt :=
∂zt

∂βt
= αtϵ− σtz0, (24)

where βt = πt/2 is interpreted as the diffusion angle. Predicting the diffusion velocity was first
described in (Salimans and Ho, 2022) and has been successfully used in some diffusion models
such as (Saharia et al., 2022) and (Ho, Chan et al., 2022). The velocity has some interesting
properties, such as having unit variance, V[vt] = 1. Lin et al., 2023 recommends always picking
the v-parameterization for diffusion models. This is further discussed in section 5.

A geometric visualization of the different parameterizations is shown in Figure 5. The figure shows
how each point in latent space can be decomposed in a signal- and noise-component. Each point in
this space is in itself a probability distribution, weighted by the signal- and the noise-coordinates.
The latents in the forward diffusion process, zt, for a t ∈ [0, 1], can be plotted as points on the
form (αt, σt). From the definitions of αt and σt, this corresponds to locations on the unit sphere in
the first quadrant. z0 has only signal components, so it is located on (1, 0), while ϵ is a Gaussian
distribution, so it is located on (0, 1). In this space, the reason behind the diffusion velocity became
clear. It can be visualized as the direction of the diffusion process, similar to circular motion in
mechanics. Note that when t = 0, then the velocity is equal to the noise component. Also, when
t = 1, then the velocity is the signal multiplied by -1.

N (0, I)

vt

vs

ϵ (0, 1)

βs

βt

z0 (1, 0)

qϕ(z0 | x)

zs (αs, σs)

zt (αt, σt)

Figure 5: Geometric visualization of a continuous time-step diffusion process with variance-
conserving noise schedule. The signal amplitude is on the x-axis and noise amplitude is on the
y-axis. The forward diffusion process morphs the signal distribution into a noise distribution. The
latent zs contains more signal and less noise than the latent zt.
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2.3.5 Sampling

To be able to sample from a diffusion model, time must be discretized. Let T be a finite number of
denoising steps. Time is discretized uniformly on [0, 1] using the grid τ = {τi}Ti=0, where τi = i/T .
Since that the Markov property also holds for the reverse diffusion process, the joint distribution
for the reverse Markov process on the discretized space can be written as

qϕ(zτ ) = qϕ(z1)

T∏
i=1

qϕ(zτi−1 | zτi). (25)

Assuming a trained diffusion model with pθ(zs | zt) ≈ qϕ(zs | zt) for 0 ≤ s < t ≤ 1, we can
approximate the joint distribution of the reverse process as

pθ(zτ ) = p(z1)

T∏
i=1

pθ(zτi−1 | zτi), (26)

where the prior p(z1) = qϕ(z1) = N (0, I). Each term in the product in Equation (26) corresponds
to a single denoising step. In total there are T denoising steps.

A sample from the learned distribution pθ(x) ≈ q(x) is generated by starting with a sample from the
prior distribution, z̃1 ∼ N (0, I). Then T denoising steps of the form pθ(z̃τi−1

| z̃τi) for i = T, . . . , 1
are preformed to get successively less noisy estimates. The last prediction x̃ ∼ pθ(x | z̃0) is then a
sample generated by the diffusion model. The sampling process is preformed serially, i.e. one after
the other. It is sometimes referred to as the ancestral sampler. Inserting the approximate reverse
distribution given in Equation (21), the reverse process approximated by the diffusion model can
be written as

pθ(zτ ) = p(z1)

T∏
i=1

qϕ(zτi−1
| zτi , fθ(z0; zτi)), (27)

where fθ(z0; zτi) is the model prediction of z0 when inputting the latent zτi . Sampling from
qϕ(zτi−1

| zτi , fθ(z0; zτi)) is preformed by sampling

zτi−1
= µs|t,0(zτt , fθ(z0; zτi)) + σs|t,0 δ, δ ∼ N (0, I), (28)

where the mean and variance is given in Equation (20) and δ ∼ N (0, I) is the stochasticity of
the sampler. Since sampling from this model can be expensive, a lower number of denoising steps
can be chosen to get lower quality samples. If one instead wants higher quality samples, a larger
number of denoising steps can be used.

2.3.6 Classifier-free guidance

Similar to other types of generative models, such as GANs and transformers, diffusion models
are capable of modeling conditional distributions of the form p(x | c). This can be implemented
by either using a separate classifier to guide the generation process or directly with a conditional
diffusion model and paves the way to controlling the synthesis process through inputs c such as
labels, text, semantic maps or other conditions. Conditional generation has been successfully used
in many text-to-image generators, for instance in (Saharia et al., 2022), where the conditional
argument is a text prompt.

Dhariwal and Nichol, 2021 proposes classifier guidance, which uses a separate classifier to guide
the sampling process of the diffusion model. A drawback of this is that one also need to define and
train a classifier alongside the diffusion model. One could also define the diffusion model so that it
incorporates a conditional argument, so that there is no need for a separate classifier. This is called
classifier-free guidance, and the idea is to let the diffusion model be trained with the conditional
arguments. The forward noising process remains unchanged. This approach was first used by (Ho,
Saharia et al., 2021) for high quality fidelity image generation using cascaded diffusion models, and
was also found to work better than classifier guidance in (Nichol et al., 2021).

12



In this thesis, the class labels are an example of a conditional argument. The class labels y are
encoded using a label encoder mapping the class to the set {0, 1, · · · , C − 1}. To ensure that
the diffusion model still can be used for unconditional sampling, there is a dropout probability
punconditional = 0.1 of not conditioning on the class label during training, such that the uncondi-
tional class is used to update the parameters in the model in 10% of the training iterations. Let
fθ(ϵ; zt, t, y) be the model prediction of the noise when inputting the latent zt, the time t and the
corresponding class y. Similarly, let fθ(ϵ; zt, t,Ø) be the model prediction without conditioning on
y. Sampling can then be done using a guidance weight w, such that the updated noise estimate
instead is

fθ,cfg(ϵ; zt, t, y) = (1− w) fθ(ϵ; zt, t,Ø) + w fθ(ϵ; zt, t, y). (29)

After training, this empowers the model with progressive control over the degree of alignment
between the conditional arguments and the sample by varying the guidance weight. Setting w = 0
corresponds to unconditional sampling, while setting w = 1 results in conditional sampling.

2.3.7 Overexposure problem and rescale classifier-free guidance

In Equation (29), one might think that w ∈ [0, 1]. In practice, researchers have found it beneficial
to use large guidance weights. Saharia et al., 2022 found that using large guidance weights produces
higher text-to-image alignment for image generation, but that it damages the fidelity by producing
highly saturated images. The overexposure problem can be fixed using a thresholding technique,
where the latents are scaled down or clipped to the proper intervals in-between each sampling step.
Saharia et al., 2022 introduces dynamic thresholding to fix the overexposure problem. The images
are scaled to the interval [−1, 1] prior to the diffusion process. During sampling, the dynamic
threshold technique first clips the images to [−s, s] for a s > 1 at a certain absolute percentile pixel
value and then divide by s. This pushes each pixel values outside of the range [−1, 1] inwards and
prevents over-saturation at each step, producing significantly higher photorealism.

The overexposure problem is different for time series data, as they generally have no bounded range.
E.g. some time series have outliers with amplitude much higher than the standard deviation of
the time series. Lin et al., 2023 finds that when the SNR approaches zero, classifier-free guidance
becomes very sensitive, causing overexposure and instabilities during sampling. Inspired by dy-
namic thresholding, which is only designed for image-space models, they introduce a thresholding
technique which rescales the estimates after applying classifier-free guidance. This method is ap-
plicable in both sample- and latent-space models. A modification of this procedure is used in this
thesis. The rescaling procedure is to calculate a standardized version of the classifier-free guidance
estimate. A standardized estimate of the denoised latent using classifier-free guidance is given as

fθ,rescaled(zs; zt, t, y) =
fθ,cfg(zs; zt, t, y)

std(fθ,cfg(zs; zt, t, y))
. (30)

Note that Equation (30) rescales the latent zs, not the noise ϵ. Similar to (Lin et al., 2023), a
rescaling parameter γ ∈ [0, 1] is used for the adjusting the estimate. The final estimate is

fθ,final(zs; zt, t, y) = (1− γ) fθ,cfg(zs; zt, t, y) + γ fθ,rescaled(zs; zt, t, y). (31)

Note that the rescaling parameter γ decides how much the model enforces the latents to have
unit variance. Choosing γ = 0 means there are no rescaling, while γ = 1 means that the latents
are scaled to have unit variance in-between each denoising step. Using the rescaling procedure in
Equation (31) can avoid the latents from being deviating far away from having unit variance.
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2.4 Time-Frequency Modelling

2.4.1 Discrete short-time Fourier transform

Instead of working with time series in the time domain, the signals are converted to time-frequency
domain, which offers a richer representation of the signals. To do this, the short-time Fourier
transform (STFT) is used. STFT is a Fourier-related invertible transformation used to access
local frequency and phase content of a signal as it changes over time. The discrete STFT is defined
as

STFT(x)ω,m :=

nfft−1∑
k=0

wkxm·h+k exp

(
−i2π · ωk

nfft

)
, (32)

where x is the input signal, wk is the window function, nfft is the window length and h is the
hop length. The indices (ω,m) are the height and width of the spectrogram, corresponding to the
frequency and time dimensions. For each time-index m, Equation (32) is the fast Fourier transform
(FFT) applied to a section of the signal x over a window length nfft weighted by the window
function. The time resolution depends on the length l of the time series and the hop length h.
The STFT offers a trade-off between the frequency and time resolutions of the spectrogram. If the
window length is wide, the spectrogram has a high frequency resolution but low time resolution.
If the window length is narrow, the spectrogram has a low frequency resolution but high time
resolution.

The inverse short-time Fourier transform (ISTFT) is defined as the inverse of Equation (32). It
is performed using the overlap-add method, where overlapping regions, corresponding to the same
time step after applying the inverse FFT for each time index in the spectrogram, are added. The
ISTFT can be calculated as

ISTFT(u)n =
∑
k,m

m·h+k=n

Uk,m, Uk,m =
1

nfft

nfft−1∑
ω=0

w−1
k uω,m exp

(
i
2π · ωk
nfft

)
. (33)

Figure 6 illustrates the STFT for a time series using a bell shaped window function. The spectro-
gram produced has nfft = 8 and h = 1. Since h < nfft, the windows for where the FFT is applied
are overlapping. This means that the frequencies over the overlapping section of the signal con-
tributes to multiple indices of the time domain in the spectrogram. Because the Fourier transform
produces complex numbers, the spectrogram is visualized as having two channels, corresponding
to the has real and imaginary values.

FFT

nfft

· · ·

· · ·

h

Figure 6: Short-time Fourier transform. The fast Fourier transform is applied at regions of the
signal of length nfft every h time step, creating a time-frequency representation with local frequency
and phase content through time. The produced spectrogram has nfft = 8 and h = 1.
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2.4.2 Splitting signals into low and high-frequencies

For an input signal x, let u = STFT(x) denote the spectrogram, where the definition of the STFT
is given in Equation (32). Following the work of (Lee et al., 2023), we split the spectrogram into
low and high frequencies using the two zero-padding operations defined as

PLF(u)ω,m :=

{
uω,m if |ω| ≤ ω0

0 else
, PHF(u)ω,m :=

{
0 if |ω| ≤ ω0

uω,m else
, (34)

where ω0 is the cutoff frequency. PLF removes high frequency components, while PHF removes the
low frequency components. A spectrogram can now be split into u = uLF + uHF, where

uLF = PLF(u), uHF = PHF(u). (35)

Using the ISTFT, we can convert back the low and high frequency spectrograms into the low and
high frequency signals. The input signal can now be written as x = xLF + xHF, where

xLF = ISTFT(uLF), xHF = ISTFT(uHF). (36)

The reason for splitting the signals is that the low frequencies corresponds to overall structure of the
time series, while the high frequencies correspond to finer details and noise. The idea is to generate
the lower frequencies first, and then generate the higher frequencies afterwards conditioned on the
lower frequencies. Figure 7 illustrates how a signal is split into low and high frequencies.

zero padding
ISTFT

STFT

PLF

PHF ISTFT

xLF

x

xHF

uLF

u

uHF

Figure 7: Splitting a time series into low and high frequencies. Using the short-time Fourier
transform, an input signal x is converted to time-frequency domain which is further separated
into low and high frequencies. Applying the inverse transform results in a low and high frequency
signal.
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2.5 Neural Network Architectures

Different neural architectures are used for stage one and two. The VQ-VAE models in stage
one is similar to stage one of TimeVQVAE. Therefore, the neural architecture for stage one of
TimeVQVAE is presented. Specifics of the implementation are presented in Section 3. For the
diffusion models, the neural architecture for the denoising module is implemented using U-Nets
(Ronneberger et al., 2015). In addition to these two architectures, the architecture for the fully
convolutional network (Z. Wang et al., 2016) is presented. This is a classifier network which is
useful for evaluating the performance of TimeVQVDM.

2.5.1 Stage 1 of TimeVQVAE

The model architecture for stage one of TimeVQVAE is illustrated in Figure 8. An input signal
x is split into LF and HF spectrograms uLF and uHF using Equation (35). The spectrograms are
then fed through two separate VQ-VAEs, producing latents zLF and zHF and tokenized latents
zLF
q and zHF

q . The quantized latents are then reconstructed to time domain. The reconstructed

LF and HF time series are denoted as x̂LF and x̂HF, respectively.

Encoder and decoder

The architecture for the encoder and decoder is the same as in (Oord et al., 2017). The encoder
consists of n downsampling convolutional blocks with 2D convolutions, batch normalization and
leaky ReLU activation. The downsampling convolutional layers are implemented with kernel size
(3,4), stride (1,2) and padding (1,1). Note that this only downsamples the temporal axis of the
spectrograms. It is followed by a residual network (ResNet) (He et al., 2015) with m blocks. A
residual network is a network containing a skip connection that perform the identity mapping.
The input is then added to the output of the blocks inside the network. The ResNet blocks are
implemented with 2D convolutions, batch normalization and leaky ReLU activation. After the
encoder, the latent is downsampled with a rate of 2n. The decoder is similar to the encoder. It
has first m ResNet blocks, followed by n up-sampling convolutional layers. The up-sampling layers
is implemented with transposed 2D convolutions with kernel size, stride and padding identical to
the encoder.

VQ

The implementation of the VQ follows (P. Wang et al., 2022). It contains the K tokens with
dimension d for doing vector-quantization. If the latent dimension from the encoder has dimension
dE and it does not match the dimension of the tokens, the VQ includes an input and output
projection layer. The projections are implemented using a linear layer. The input projection has
dE incoming channels and d outgoing channels, while the output projection has the number of
input and output channels reversed.

STFT

uLF

uHF

zLF

zHF

Codebook ZLF

...

...

Codebook ZHF

zLF
q

zHF
q

zero padding zero padding
ISTFT

ISTFT

x̂LF
x

x̂HF

ûLF

ûHF

EHF

ELF
argmin
e∈ZLF

∥∥∥(zLF)i − e
∥∥∥

argmin
e∈ZHF

∥∥∥(zHF)i − e
∥∥∥ DHF

DLF

Figure 8: Neural architecture for stage 1. An input signal is split into low and high frequencies
using the short-time Fourier transform and zero-padding operations. Two VQ-VAEs are used to
learn efficient representations of the low and high frequency latents.
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2.5.2 U-Net

U-Net is a popular type of convolutional neural network (CNN) first introduced in (Ronneberger
et al., 2015) for image segmentation. The name comes from its unique U-shaped architecture,
where the input signal is first contracted and then expanded. This enables it to capture contextual
information effectively while maintaining fine-grained details. The U-Net preforms several down-
sampling steps to compress the input signal, which increases the receptive field at downstream
layers. At each successive down layer the number of feature channels is increased. After the down
layers in the contracting part, the network preforms the same number of upsampling steps to ar-
rive at the same dimension as the input signal. The U-Net has skip connections at each down and
up-layer. Skip connections allows gradients to propagate easier during training, but it also can
encourage reuse of features captured at different levels of abstraction. The U-Net is visualized in
Figure 9.

Down- and upsampler

Between each layer in the contracting part of the U-Net, the signal is downsampled. The down-
sampler is a 1D convolutional layer with kernel size 4, stride 2 and padding 1. This downsampling
is similar to the temporal downsampling in the VQ-VAE model. An input of length l will have
length ⌊l/2⌋ after the downsampling layer. Similarly, between each layer in the expanding part,
the signal is up-sampled. For the up-sampler, an up-sampling layer with scale factor 2 is used.
This means that an input of length l will have length 2 · l after the up-sampling layer. Applying a
downsampling layer together with an up-sampling layer can create a shape mismatch. A signal of
length l is downscaled to length ⌊l/2⌋ first and then upscaled to length 2⌊l/2⌋. Whenever l is odd,
this does not equal l, so there is a mismatch. The shape mismatch problem is resolved by changing
the upsampling procedure to include an extra up-scaling and interpolation layer whenever l is odd.

Residual network with linear attention

For the implementation used in this thesis, the U-Net processes the features at each layer using
a ResNet (He et al., 2015) with linear attention (Katharopoulos et al., 2020). The residual net-
work is composed of two ResNet blocks and linear attention. Each ResNet block contains two
weight-standardized 1D-convolutions with group normalization (Qiao et al., 2019). After the two
convolutional blocks, the signal is layer-normalized before inputting to the linear attention block.

Conditional arguments

There are two types of conditional arguments for the U-Net, scalar conditions and input conditions.
The U-Net is used to predict the noise using the diffused latent. This can be written as ϵ̂ =
fθ(ϵ; zt, c), where c are the conditional arguments. For the LF diffusion model, the conditions are
the time step and class label, c = (t, y). For the HF diffusion model, the conditions include the
denoised LF latent, c = (t, y,zLF

0 ). Of these conditions, the diffusion time step and class label
are scaler. Both of these are embedded to a vector and then concatenated to produce a single
embedding. The diffusion time t is embedded using a learned sinusoidal positional embedding
(Vaswani et al., 2017), while the classes have a learned embedding vector for each class. To guide
the prediction from the U-Net, the scaler conditions are provided at every ResNet block, where it
is used to compute a scale and shift vector for guiding the output after the group normalization
layers. The input conditions for the HF diffusion model is concatenated with the input to the
U-Net. This follows the work of (Ho, Saharia et al., 2021).
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Figure 9: Overview of the U-Net architecture. The input signal zt is first compressed using a series
of downsampling layers, before it is scaled up with an equal amount of up-sampling layers. Each
down and up-layer has two ResNet blocks and linear attention. Skip-connections are highlighted
using the green arrows. Conditional scaler arguments (csc) are provided at every level of the U-Net,
and input conditions (cin) are concatenated along with the input signal.

2.5.3 Fully Convolutional Network

The fully convolutional network (FCN) (Z. Wang et al., 2016) is one of the strongest baselines
for time series classification. It can effectively capture features and patterns of time series. The
basic block of the FCN is a convolutional block containing three 1D convolutional layers, batch
normalization, and ReLU activation. The final network is created by stacking three convolutional
blocks after one another with 128, 256 and 128 channels, respectively. After the convolution blocks,
the features are fed into a global average pooling (GAP) layer and a linear layer. The Softmax
function is then applied to produce the final class predictions. The FCN is illustrated in Figure
10.

In this thesis, the FCN network is used for classification and feature representation. It is represented
by pη, where η is the network parameters. As a classifier, the predicted class probabilities are given
as ŷ = pη(y | x). For evaluating generated time series, the FCN model is used for extracting useful
representations of the time series of which it was trained on. This is used for the evaluation metrics.
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Figure 10: Fully Convolutional Network. An input signal x is fed through three convolutional
blocks before predicting the class label. The convolutional blocks contain a 1D convolutions, batch
normalization and ReLU activation. The convolutional blocks follows by global average pooling
and a linear layer with Softmax activation. The Softmax function is represented using σ.
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2.6 Evaluation metrics

Having ways to evaluate generative models is essential for measuring their performances. There
have been many quantitative techniques suggested in the literature for analysing different machine
learning algorithms. Classification, regression and clustering tasks all have established metrics,
relying on measuring the models using the observed data. E.g. for classification it is common
to evaluate using the accuracy or confusion matrix and for regression the mean squared error or
coefficient of determination can be used. Generative modelling is a fundamentally different task. It
tries to learn the probability distribution of the observed data and then uses it to generate samples
looking similar to what it has learned. It is however hard to define good performance measures for
generative models because generation is fundamentally a qualitative task.

2.6.1 Visual inspection

According to (Lee et al., 2023) there has been a lack of proper evaluation protocols to meas-
ure quality of generated samples in the TSG literature. Traditionally, qualitative protocols have
involved visual inspection. One way is to plot the run charts of the synthetic time series and com-
paring them with real time series. This allows for a visual impression for assessing sample quality,
variability and other qualitative aspects. Another way to visually compare feature representations
is by using principal component analyses (PCA) or t-distributed stochastic neighbor embeddings
(t-SNE) created using synthetic and real samples (Brophy et al., 2021; Yoon et al., 2019; Li et al.,
2022). However, these methods cannot be reduced to scaler metrics. Lee et al., 2023 proposes to
use three established metrics from the image generation literature. These are the inception score
(IS), the Fréchet inception distance (FID) and classification accuracy score (CAS). For evaluating
TimeVQVDM, these tree metrics is used in combination with visual inspection of the generated
samples.

2.6.2 Inception Score (IS)

The IS measures how realistic the generative model outputs are by measuring the diversity and
sharpness of generated samples. It was proposed in (Salimans, I. Goodfellow et al., 2016) and is
motivated by two desiderata for generative models, good mode coverage and high quality. Diversity
is the variability of the samples while sharpness is the clarity. The inception score is defined as

dIS(η) := exp
{
Ex∼pθ

[DKL(pη(y | x) ∥ pη(y))]
}
, (37)

where pη(y | x) is the distribution from a classifier with parameters η and pη(y) is the marginal
distribution of the classes from the classifier. The probability of each class from of the classifier is
continuous, rather than discrete. The KL divergence in Equation (37) can be calculated as

DKL(pη(y | x) ∥ pη(y)) =
n∑

i=1

pη(y | xi) (log pη(y | xi)− pη(y)) ,

where n is the number of generated samples.

A high IS indicates that the generative model has high performance. It is achieved if the entropy
of the distribution of classes given the generated samples is minimized and predictions of the
classifier are evenly distributed according to the ground truth. In other words, the classifier should
confidently predict a single class for each time series and the distribution of classes should be
representative. Unlike the computer vision field, there are no clearly established classification
models for time series. To calculate the representation vector pη(y | x) for IS, the FCN classifiers
(Z. Wang et al., 2016) can be used. This method was first introduced in (K. E. Smith and A. O.
Smith, 2020), but their FCN models are not available. Instead, the pre-trained classifiers from
(Lee et al., 2023) are used.
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IS has some limitations, such as inability to capture feature relevance present in the samples and
intra-class diversity. Additionally, if the classifier is overfitted to the true data, then there could be
a bias towards it. Memorising and replicating the training data could then lead to high IS, while
generating something not present in the training data could lead to low IS. According to (Borji,
2021), the IS has to some degree been superseded by the FID measure.

2.6.3 Fréchet Inception Distance (FID)

The Fréchet inception distance is a common measure for assessing the quality of samples created by
generative models. While the inception score only evaluates the distribution of generated samples,
FID compares the distribution of generates samples with a set of samples from the ground truth.
It was introduced in (Heusel et al., 2017) and is the current standard for assessing the quality of
generative models (Borji, 2021). For any two probability distributions q1, q2 over Rl having finite
mean and variance, the Fréchet inception distance is defined as the Wasserstein-2 metric between
q1 and q2,

dFID(q1, q2) :=

(
inf

γ∈Γ(q1,q2)

∫
Rl×Rl

∥x− y∥2 dγ(x, y)

)1/2

,

where Γ(q1, q2) is the set of all couplings on Rl × Rl with marginals q1 and q2 on the first and
second factors. According to Dowson and Landau, 1982, it is explicitly solvable for two multivariate
Gaussian distributions, q1 = N (µ1,Σ1) and q2 = N (µ2,Σ2), as

d2FID(q1, q2) = ∥µ1 − µ2∥2 + tr
(
Σ1 +Σ2 − 2 (Σ1Σ2)

1/2
)
, (38)

where tr(·) is the trace.

Rather than directly comparing each part of the samples, such as every pixel for images or each
time step in a time series, the FID compares the mean and standard deviations of the distribution
of samples compared with the ground truth. The intuition behind FID comes from the optimal
transport problem, where we wish to morph one of the probability distributions into the other by
moving the probability masses around. The cost of movement is equal to the Euclidean distance
between the two points. As a result, this metric mimics human perception of similarity.

The feature representation for calculating FID follows (Lee et al., 2023). Instead of fitting two
Gaussian distributions to a generated distribution of time series and real time series, the two
distributions are fitted to the feature representation from the FCN classifiers. The representation
vector is extracted right after the GAP layer.

2.6.4 Classification Accuracy Score (CAS)

A separate classifier can be used to evaluate the quality of synthetic data generated using class-
conditional sampling. Assume that the synthetic data is given as a set of data points {(x̃i, ỹi)}ni=1,
similarly to the ground truth {(xi, yi)}ni=1. A classification network pη(y | x) can then be trained
on the synthetic data, and validated on test data. Then it can be compared with a reference
classification network trained on the real training data. The classification accuracy is used for the
measure of relative performance of each network. If the synthetic data resembles the training data,
then the classification accuracy on the test set will be similar to the classification accuracy when
training the classifier on real data. This procedure allows us to test if class-conditional generation
works properly and indicate that the synthetic data has proper alignment of samples/class pairs.

The pre-trained FCN models in (Lee et al., 2023) are used for the reference classifiers trained on
the real data. An identical network with the same hyperparameters is then used to fit a new
FCN model on the synthetic conditionally sampled data and to compare with the reference model.
The two CAS are reported as train on real; test on real (TRTR) and train on synthetic; test on
real (TSTR), respectively. A high TSTR accuracy indicates that the model was able to learn the
conditional distribution of the data.
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3 Experimental Setup

3.1 Proposed model

The proposed model is called TimeVQVDM. It is illustrated in Figure 11. It is a generative model
for time series which splits the signals into low and high frequencies, and models them in the time-
frequency domain using vector quantization. TimeVQVDM uses the two-stage modelling approach
in TimeVQVAE (Lee et al., 2023). Stage one involves finding efficient latent representations for the
low and high frequencies using VQ-VAEs (Oord et al., 2017). Stage two is modelling of the latent
distributions using a prior model. In contrast to TimeVQVAE, which uses transformer models
for the prior, TimeVQVDM uses diffusion models. The code is provided in https://github.com/
martintufte/TimeVQ-VDM.

Instead of learning the marginal distribution of the time series, q(x), it learns the joint distri-
bution of low and high frequencies, q(xLF,xHF). Sampling from TimeVQVDM is preformed by
sampling from the learned distribution pθ(x

LF,xHF) and adding the generated low and high fre-
quencies together. The prior diffusion models are trained using classifier-free guidance, allowing
TimeVQVDM for conditional sampling of the form pθ(x | c), where c is a conditional argument.

Stage 1: VQ-VAE modelling

The input time series x is split into low and high frequency spectrograms using the STFT and
zero-padding operations. The spectrograms are then modelled using VQ-VAEs, similar to (Lee
et al., 2023). The encoder, decoder and codebook of the VQ-VAEs are denoted as ELF, DLF and
ZLF for low frequencies and EHF, DHF and ZHF for high frequencies. The two VQ-VAE models
are independently parameterized, such that the learned latent representation for LF can capture
other features than the latent representation for HF. Low frequencies captures overall structure of
the time series, while high frequencies corresponds to finer details and noise. From Equation (35),
the low and high frequency spectrograms in time-frequency domain are given as

uLF = PLF(STFT(x)), uHF = PHF(STFT(x), (39)

where the zero-padding operations are defined in Equation (34). Using the encoders in the VQ-VAE
models, the continuous latent representations for LF and HF are given as

zLF = ELF(u
LF), zHF = EHF(u

HF), (40)

and their quantized latent representations are found with Equation (12),

(zLF
q )i = argmin

ek∈ZLF

∥∥(zLF)i − ek
∥∥
2
, (zHF

q )i = argmin
ek∈ZHF

∥∥(zHF)i − ek
∥∥
2
. (41)

The reconstructed low and high frequency spectrograms follows from decoding the quantized latents
using the decoders in the VQ-VAE models,

ûLF = PLF(DLF(z
LF
q )), ûHF = PHF(DHF(z

HF
q )). (42)

Note that the reconstructed spectrograms from the decoders are zero-padded, which prevents
the reconstructed low frequency spectrogram to contain high frequencies and vice versa. The
reconstructed low and high frequency signals are then given by using the inverse STFT in Equation
(33), such that

x̂LF = ISTFT(ûLF), x̂HF = ISTFT(ûHF). (43)

Finally, the reconstructed time series is the reconstructed low and high frequency time series added
together, x̂ = x̂LF + x̂HF.
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Figure 11: TimeVQVDM architecture. Time series are split into low and high frequency spectro-
grams, which are encoded to latent space using VQ-VAEs. The latent representations are then
modelled using variational diffusion models. Sampling from TimeVQVDM is done by sampling
from the low frequency diffusion model and then sampling from the high frequency diffusion model
conditioned on the low frequencies.

Stage 2: Diffusion prior

Variational diffusion models (VDM) (Diederik P. Kingma et al., 2021) are used to model the
continuous latent representations after encoding to latent space. There are two diffusion processes,
one for the low frequency latent and the other for high frequency latent. For the low frequencies,
the forward diffusion process is given as

qϕ(z
LF
t | zLF

0 ) = N
(
zLF
t ; αtz

LF
0 , σ2

t I
)
,

which continuously destroys structure in the latent. The diffusion starts at t = 0 and ends at t = 1.
Here zLF

0 is the non-diffused low frequency latent, equal to zLF = ELF(u
LF). In practice, zLF

0 is
implemented as a reshaped and scaled version of zLF. The noise schedule is variance conserving
and given by the two function αt = cos(π/2 · t) and σt = sin(π/2 · t) in Equation (18). The fully
diffused latent has limiting distribution zLF

1 ∼ N (0, I). A similar diffusion process is defined for
the high frequency latent representation.

The latents of the diffusion model are denoted as zLF
τ for LF and zHF

τ for HF, where τ = [0, 1]
is the continuous time where the diffusion process is defined. The diffusion models are trained to
reverse the noising processes with 1D denoising U-Nets (Ronneberger et al., 2015). The U-Nets
are trained with conditional arguments, which allows a cascading sampling from TimeVQVDM by
first sampling the low frequencies, and then sampling the high frequencies later. The sampling
procedure follows from discretizing τ as {τi}Ti=0 with τi = i/T . Sampling the low frequencies are
then performed by starting with noise zLF

τT ∼ N (0, I) and performing T denoising steps. Each
denoising step is given in Equation (19) as

zLF
τi−1
∼ qϕ(z

LF
τi−1
| zLF

τi , fθ(z
LF
0 ; zLF

τi , c)),

where fθ(z
LF
0 ; zLF

τi , c) is the diffusion model’s prediction of zLF
0 when inputting the noisy latent

and a conditional argument c. After sampling the low frequency latent, a similar procedure is used
to sample the high frequencies. For the high frequency diffusion model, the conditional arguments
includes the low frequencies. This makes the sampling process align the generated low and high
frequency components.
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3.2 Loss function

TimeVQVDM is trained by finding the parameters that maximize the likelihood of the training
data. In practice, the likelihood is maximized by using the evidence lower bound in Equation
(8). Before deriving the loss function, two assumptions for the inference model and the generative
model are made:

1. The inference models for low and high frequencies are independent.

2. The generative model for high frequencies is conditioned on the low frequencies.

The first assumption states that the learned latent representations for the time series is split into
finding separate representations for low and high frequencies. The second assumption involves the
generation process, where sampling is from the joint distribution pθ(x

LF,xHF) by first sampling
pθ(x

LF) and then sampling from pθ(x
HF | xLF). The generated time series x ∼ pθ(x) is found

from adding the low and high frequencies,

x = xLF + xHF, xLF,xHF ∼ pθ(x
LF,xHF).

From the definition of the ELBO in Equation (8), recall that the loss function is given by

LELBO(θ, ϕ | x) = Ez∼qϕ(z|x)

[
− log

pθ(z,x)

qϕ(z | x)

]
,

where pθ(z,x) is the generative model of the signal and the latents and qϕ(z | x) is the inference
model over the latents. The signal consists of low and high frequencies, and we assume that the
latents consist of four components corresponding to the latents over the low and high frequency
diffusion processes and the vector-quantized representations. This is written as

x = (xLF,xHF), z =
(
zLF
q , zLF

τ , zHF
q , zHF

τ

)
,

where zLF
τ and zHF

τ are the latents in the diffusion models and zLF
q and zHF

q are the latent rep-
resentation in the vector-quantization models. From assumption one, it follows that the joint
distribution in the inference model for TimeVQVDM can be split up as

qϕ(z | x) = qϕ(z
LF
q , zLF

τ , zHF
q , zHF

τ | xLF,xHF)

= qϕ(z
LF
q , zLF

τ | xLF,xHF) qϕ(z
HF
q , zHF

τ | xLF,xHF)

= qϕ(z
LF
q , zLF

τ | xLF) qϕ(z
HF
q , zHF

τ | xHF).

(44)

Similarly, from assumption two, it follows that the generative model for TimeVQVDM can be split
up as a generative model over the low frequencies and a conditional distribution over the high
frequencies,

pθ(z,x) = pθ(z
LF
q , zLF

τ , zHF
q , zHF

τ ,xLF,xHF)

= pθ(z
LF
q , zLF

τ ,xLF), pθ(z
HF
q , zHF

τ xHF | zLF
q , zLF

τ ,xLF).
(45)

Inserting Equation (44) and (45) into (8), the loss function can be formulated as

LELBO(θ, ϕ | x)

= Eqϕ

[
− log

pθ(z
LF
q , zLF

τ ,xLF)

qϕ(zLF
q , zLF

τ | xLF)

]
︸ ︷︷ ︸

=:LLF
ELBO(θ,ϕ|x)

+Eqϕ

[
− log

pθ(z
HF
q , zHF

τ ,xHF | zLF
q , zLF

τ ,xLF)

qϕ(zHF
q , zHF

τ | xHF)

]
︸ ︷︷ ︸

=:LHF
ELBO(θ,ϕ|x)

. (46)

The loss in Equation (46) is a sum over a loss term for low frequencies and a loss term over high
frequencies. The only difference between the low and high frequencies terms are the additional
conditional arguments passed to the high frequency generative model.
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Low frequency terms

The loss is derived assuming that the diffusion process is discretized as τ = {τi}Tt=0, where τi = i/T .
The inference model for low frequencies can then be written as

qϕ(z
LF
q , zLF

τ | xLF) = qϕ(z
LF
q | zLF

0 ) qϕ(z
LF
0 | xLF)

T∏
i=1

qϕ(z
LF
τi | z

LF
τi−1

), (47)

where qϕ(z
LF
0 | x) is the inference model of the encoding of low frequencies to latent space and

qϕ(z
LF
q | zLF

0 ) is the inference model for the quantization process of low frequencies. The product
in Equation (47) is from the discretized diffusion process for low frequencies. The generative model
for the low frequencies can be written as

pθ(z
LF
q , zLF

τ ,xLF) = pθ(x
LF | zLF

q ) pθ(z
LF
q | zLF

0 ) p(zLF
1 )

T∏
i=1

pθ(z
LF
τi−1
| zLF

τi ), (48)

where pθ(x
LF | zLF

q ) is the reconstruction in sample space from the quantized low frequency latent

using the LF decoder and pθ(z
LF
q | zLF

0 ) is the quantization process. The product in Equation (48)
is from the denoising process of the diffusion model. A detailed derivation of the ELBO for low
frequencies is derived in appendix C. Taking the limit as T →∞ for the discretization of time in
the diffusion process, it is shown that the low frequency terms consists of four parts,

LLF
ELBO(θ, ϕ | x) = LLF

prior + LLF
diffusion + LLF

codebook + LLF
reconstruct, (49)

corresponding to the steps needed to sample from the model. The first is to draw a diffused latent
from the prior distribution. The next is to denoise the latent using the diffusion model. Then, the
latent is quantized using the codebook and reconstructed to sample space. Appendix C further
derives the four components as

LLF
prior = DKL(q(z

LF
1 | xLF) ∥ p(zLF

1 )),

LLF
diffusion = −1

2
Eϵ∼N (0,I), t∼U(0,1)

[
d

dt

(
λt

) ∥∥∥ϵ− ϵ̂LF
∥∥∥2
2

]
,

LLF
codebook =

∥∥∥sg [zLF
0

]
− ẑLF

q

∥∥∥2
2
+ β

∥∥∥zLF
0 − sg

[
ẑLF
q

]∥∥∥2
2
,

LLF
reconstruct =

∥∥∥uLF − ûLF
∥∥∥2
2
+
∥∥∥xLF − x̂LF

∥∥∥2
2
,

where ϵ̂LF = fθ(ϵ; z
LF
t ) is the predicted noise added to the LF latent using the diffusion model.

In the codebook loss ẑLF
q is the quantized version of zLF

0 using the LF codebook ZLF. For the

reconstruction loss, uLF = PLF(STFT(x)) and ûLF = PLF(DLF(z
LF
q )) are in the time-frequency

domain, and x̂LF = ISTFT(ûLF) and xLF = ISTFT(uLF) are in the time domain.

The first term of Equation (49) is the prior loss, equaling to the KL divergence between the
completely diffused low frequency latent and the diffusion prior. Since the diffusion prior does not
contain any trainable parameters, this term is constant and can be omitted during training. The
second term is a Monte Carlo estimate of the diffusion loss, equaling to a weighted mean squared
error of predicting the noise added to the low frequency latent. The diffusion loss is similar to the
one presented in (Diederik P. Kingma et al., 2021). The third term is the codebook loss, which is
equal to the sum of two loss terms. The codebook loss is equal to the original codebook loss given
in (Oord et al., 2017). Here sg[·] denotes the stop-gradient operator, which stops the gradients
from accumulating further backwards during backpropagation. The second term of LLF

codebook is the
commitment loss, weighted by a parameter β. This term ensures that the variance of the tokens
in the codebook don’t explode. The forth term is the reconstruction loss, which reconstructs
the low frequency sample from the latent space. The reconstruction loss is calculated in both
time-frequency and time domain, following the work of (Défossez et al., 2022) and (Lee et al.,
2023).
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High frequency terms

The derivation for the high frequencies is similar to the derivation for low frequencies. The inference
and generative model for HF are

qϕ(z
HF
q , zHF

τ | xHF) = qϕ(z
HF
q | zHF

0 ) qϕ(z
HF
0 | xHF)

T∏
i=1

qϕ(z
HF
τi | z

HF
τi−1

), (50)

pθ(z
HF
q , zHF

τ ,xHF | zLF
q , zLF

τ ,xLF) = pθ(x
HF | zHF

q ) pθ(z
HF
q | zHF

0 ) p(zHF
1 )

T∏
i=1

pθ(z
HF
τi−1
| zHF

τi , zLF
0 ),

(51)
The only difference to the low frequencies is that the diffusion model for HF is conditioned on the
low frequency latent. A similar derivation for the high frequency components shows that

LHF
ELBO(θ, ϕ | x) = LHF

prior + LHF
diffusion + LHF

codebook + LHF
reconstruct, (52)

with

LHF
prior = DKL(q(z

HF
1 | xHF) ∥ p(zHF

1 )),

LHF
diffusion = −1

2
Eϵ∼N (0,I), t∼U(0,1)

[
d

dt

(
λt

) ∥∥∥ϵ− ϵ̂HF
∥∥∥2
2

]
,

LHF
codebook =

∥∥∥sg [zHF
0

]
− ẑHF

q

∥∥∥2
2
+ β

∥∥∥zHF
0 − sg

[
ẑHF
q

]∥∥∥2
2
,

LHF
reconstruct =

∥∥∥uHF − ûHF
∥∥∥2
2
+
∥∥∥xHF − x̂HF

∥∥∥2
2
.

As with the low frequencies, the prior loss is omitted during training. The reconstructed noise for
the diffused high frequency latent is conditioned on the low frequency latent, ϵ̂HF = fθ(ϵ; z

HF
t , zLF

0 ).

Combining low and high frequency terms

Combining Equation (49) and (52) gives the ELBO for TimeVQVDM. Minimizing the ELBO with
respect to θ then is the same as minimizing the combined diffusion, quantization and reconstruction
loss with respect to θ. Using the two-stage modelling approach, the loss can be written as

argmin
θ

LELBO(θ, ϕ | x) = argmin
θ

(Ldiffusion + LVQ) , (53)

where the training loss in stage one is given as

LVQ = LLF
codebook + LHF

codebook + LLF
reconstruct + LHF

reconstruct,

and the training loss in stage two is given as

Ldiffusion = LLF
diffusion + LHF

diffusion.

Optimizing the neural networks in two steps does not necessary lead to the joint optimum for
θ. However, training the encoder, decoder and vector-quantizer first is practical as it allows
for creating efficient representations for the latent space. Then the distribution of the latent
representations are learned using the diffusion models.
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3.3 Architecture and implementation details

The model is implemented with Pytorch in Python. In the following section, some of the variables
are referred to with the shape of their tensors. E.g. an input batch x has shape (B,C,L), where
B is the batch dimension, C is the channel dimension and L is the length dimension. For the
spectrograms, such as u = STFT (x), the shape is (B,H,W,C), where H is the height of the
spectrogram and W is the width.

Time-frequency modelling

The implementation of the STFT and ISTFT is using torch.stft and torch.istft with a window
length of n fft = 8, which has been experimentally found to lead to good performance (Lee et al.,
2023). This is associated with the compression amount of the data. A lower nfft leads to a shorter
frequency axis and longer temporal axis of u. In addition, the window function is constant with
wk = 1 for 1 ≤ k ≤ nfft and the hop length is set to h = 1. This differs from TimeVQVAE, which
used h = 2. Reducing the hop length creates smoother representations in the time-frequency
domain since the Fourier transform is applied at double the amount of time steps. The STFT
is implemented with onesided = True, which makes the frequency components be in the range
1 ≤ ω < ⌊nfft⌋/2 + 1 = 5. The shape of the spectrogram u = STFT(x) is (B,H,W,C), where
H = 5 is the height, equal to the number of frequency components, W = L+1 is the width of the
spectrogram and C = 2 is the real and imaginary channels. When zero-padding the spectrogram
using PLF and PHF, the cutoff frequency is sat to ω0 = 1. This means that the low frequency
spectrogram only includes the bottom frequency component, ω = 1, while the high frequency
spectrogram includes the rest of the frequency band, ω > 1. The LF and HF spectrograms are
then given as uLF = PLF(u) and uHF = PHF(u).

Encoder and decoder

The implementation of the encoders and decoders are from (Huang et al., 2021). The compression
rate for the LF encoder is chosen such that the temporal axis of uLF is compressed to a down-
sampled length between 16 and 31. For instance, a time series of length l = 192 is compressed n = 3
times to have a down-sampled length W = ⌊⌊⌊193/2⌋/2⌋/2⌋ = 24. Similarly, the compression rate
for the HF encoder is chosen such that the temporal axis of uHF is compressed to a downsampled
length between 64 and 127. For the length l = 192, it is compressed n = 1 time to have length
WHF = ⌊193/2⌋/ = 84. If a dataset has temporal length shorter than the downsampled width, the
downsampling rate is set to 1, so no downsampling is performed. The number of ResNet blocks is
m = 4 for both the encoder and the decoder and the number of channels are set to 64, following
the implementation in (Lee et al., 2023). After encoding the LF and HF spectrograms, the en-
coded latents are zLF = ELF(u

LF) and zHF = EHF(u
HF). Their tensor representations has shapes

(B,H,WLF, C) and (B,H,WHF, C), where 16 ≤WLF < 32 and 64 ≤WHF < 128 and C = 64.

VQ

The implementation of VQ are from (P. Wang et al., 2022). The codebook for both low and
high frequencies are implemented with the same number of tokens and dimensions. At first, the
codebooks were implemented similar to (Lee et al., 2023) with the number of tokens in ZLF and
ZHF set to K = 32, where the dimension of each token was d = 64. In (Lee et al., 2023),
a transformer model is used to model the token indices of the quantized latents zLF

q and zHF
q .

However, for TimeVQVDM, the prior modelling are of the continuous latents themselves using
diffusion models. Before inputting the latents zLF and zHF to the models, they are reshaped by
stacking the frequency axis along the channel dimension. For instance, this means that zLF, with
shape (B,H,WLF, C), are reshaped to (B,H ·C,WLF). Since the H = 5, and C = 64, the number
of channels inputted to the diffusion model was initially H · C = 5 · 64 = 320. Even though the
encoders-decoder achieves a high compression rate along the temporal axis with this setup, the high
number of channels in the latent space don’t lead to significant dimensionality reduction overall.
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Initially, when trying to train the diffusion models using this setup, the models was not able to
learn the latent distributions. This issue was fixed by decreasing d significantly and increasing K
accordingly. When switching to d = 4 and K = 512, the diffusion models was able to learn the
latent distribution.

When using the low dimension for the tokens, the encoder and decoders was changed accordingly
such that the number of channels was set to 4. This reduced the number of parameters in the
encoder and decoder and increased the reconstruction loss, impacting the quality of the generated
time series. To maintain a low reconstruction loss while keeping the dimensionality of the tokens
low, it was found beneficial to let the number of channels in the encoder and decoder be 64,
and projecting it to the low dimensional before inputting them to the VQ. The projection layers
was implemented using a linear layer with 64 input channels and 4 output channels. Similarly,
there are a linear layer before sending the quantized latents to the decoder. The linear layers are
implemented using torch.nn.Linear.

U-Net

The implementation of the U-Net is based on the implementation in (Phil Wang, 2022), which
includes a U-Net for discrete time-steps diffusion models applied to images. More specifically, it
is an implementation of the denoising diffusion probabilistic model (DDPM) model given in (Ho,
Jain et al., 2020) using Pytorch. This implementation was then adapted to be used for continuous
time-step diffusion models applied to time series. This involved changing the convolutional layers
from 2D to 1D, changing the implementation of the noising process, and fixing the attention mech-
anism. The DDPM implementation has discrete time-steps for the diffusion process, where time
has values 1, 2, . . . , 1000. When adapting it to use for continuous time-step diffusion, where time
has continuous values between 0 to 1, the linear attention mechanism stopped working properly.
After looking at the implementation of the VDM (Diederik P. Kingma et al., 2021) provided in
(Google, 2022), it became apparent that the authors had multiplied the time variable by a factor
of 1000. Implementing this trick resolved the problems with the attention mechanism. The linear
attention uses the default implementation provided by (Phil Wang, 2022), with 4 attention heads
of dimension 32.

Denote ULF and UHF the U-Nets for low and high frequency, respectively. ULF has 3 down layers,
while UHF has 4 down layers. The number of channels at the first layer of the U-Net is 64 for
LF and 32 for HF. At each successive down layer, the number of channels in the diffusion model
is doubled. ULF have (64, 128, 256) channels for the down-layers, and UHF have (32, 64, 128, 256)
channels for the down-layers. The width of the down-sampled latent at the lowest layer of the
U-Net is between 2 and 4, while the width of the lowest layer of the HF U-Net is between 4 and 8.
With this high level of compression, the models achieves a wide visual field at lower levels of the
U-Net. The number of groups in the group normalization is set to 4 in the ResNet blocks.

Conditional arguments for the diffusion models

The implementation for the conditional arguments follows the work of (Ho, Saharia et al., 2021),
where scaler conditions are provided at every ResNet block and input conditions are concatenated
with the input to the U-Net. The class y and time step t are both embedded to a dimension of
256. To allow for both conditional and unconditional generation, the number of embedding vectors
for the class is set to C + 1, where C is the number of classes. For unconditional sampling, the
extra embedding vector is then used instead of the class embedding. The embeddings for the class
condition is implemented using torch.nn.Embedding. The time is embedded using a sinusoidal
positional embedding layer, following the implementation in (Crowson and AI, 2021). The class
and time embeddings are concatenated to a vector of length 512. To produce the scale and shift
vectors for guiding the synthesize process at each ResNet block, the scale and shift is implemented
with a parameterized ReLU activation function and a linear layer. The resulting tensor is then
chunked into a scale and shift vector. Let the output after the group normalization layer in the
ResNet block be denoted by x. It is scaled and shifted by calculating xguided = x(scale+1)+shift.
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The input to the HF diffusion model, zHF
t , is conditioned on zLF

0 . Since these latents have different
dimensions, zLF

0 has shape (B,H,WLF, C) and zHF
t has shape (B,H,WHF, C), simply concaten-

ating them along the channel dimension is not possible. To make the LF have the same shape
as the HF latent, the LF latent is up-scaled and interpolated to the same dimension as the HF.
This makes the LF features align with the HF features and was found to be essential for aligning
the low and high frequencies during sampling. Without providing zLF

0 to the HF diffusion model,
then the generation process would not be able to sample jointly from q(xLF,xHF). As a result,
the generated low and high frequencies would not align.

Scaling of the latents before the diffusion process

In the theory section on diffusion models, the input to the diffusion models are assumed to be
standardized. This assumption is not necessarily satisfied after encoding uLF and uHF to the
latent space. To make sure that the latents zLF = E(uLF) and zHF = E(uHF) have unit variance,
a LF and HF standard-scaler are learned. Let these be denoted as SLF and SHF, respectively.
They contain only two parameters each, a mean and standard deviation parameter. After training
the VQ-VAEs in stage 1, SLF and SHF learns the standard deviation and mean of qϕ(z

LF | x) and
qϕ(z

HF | x) by encoding the whole training data set to latent space and calculating the standard
deviation and mean. Thus the input to the LF diffusion model is zLF

0 , a reshaped and scaled
version of zLF. Similarly, zHF

0 is a reshaped and scaled version of zHF.

3.4 Overview of variables and neural networks

TimeVQVDM has many variables and neural network modules operating at different parts of the
model. The shapes of the variables vary depending on the batch size (B) and the the length of the
input time series (L). The number of channels (C) is fixed for every variable, and the frequency axis,
equal to the height (H) of the spectrograms, are constant for all variables. The downsampled width
(W) is between 16 and 31 for the low frequencies and between 64 and 127 for high frequencies. Lets
look at the data set ’Wafer’ from the UCR data set (Dau et al., 2018), which has length l = 152
and contains 2 classes.

A summary of the variables and neural network modules are provided in Table 1 and Table 2. In
stage one, the VQ-VAE models are trained, which corresponds to training the encoders, decoders
and codebooks. Then in stage two, the low and high frequency diffusion models are trained. The
two scalers, SLF and SHF, are fitted before training the diffusion models by learning the standard
deviation and mean of the continuous latents.

Table 1: Summary of the variables in TimeVQVDM. (Data set: Wafer)

Variable Description Shape of tensor
x, xLF, xHF time series (B,C = 1, L = 152)
u, uLF, uHF spectrograms (B,H = 5,W = 153, C = 2)
zLF, zLF

q LF continuous and quantized latents (B,H = 5,W = 19, C = 4)
zHF, zHF

q HF continuous and quantized latents (B,H = 5,W = 76, C = 4)
zLF
0 , zLF

t , t ∈ [0, 1] LF diffusion latents (B,C = 20,W = 19)
zHF
0 , zHF

t , t ∈ [0, 1] HF diffusion latents (B,C = 20,W = 76)

Table 2: Summary of the modules in TimeVQVDM. (Data set: Wafer)

Module Description Stage Num. parameters
ELF, DLF, ZLF LF encoder, decoder and codebook 1 534 k
EHF, DHF, ZHF HF encoder, decoder and codebook 1 336 k
SLF, ULF LF scaler and diffusion model 2 4.12 mill
SHF, UHF HF scaler and diffusion model 2 3.97 mill
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3.5 The UCR Time Series Archive

The performance of TimeVQVDM is tested on all time series data from the UCR time series
archive (Dau et al., 2018). It is a collection of 128 different data sets provided by the university
of California, Riverside. Originally provided for the data mining community for benchmarking
different methods for time series classification, it has become a resource for other disciplines in
time series analysis, such as clustering, and time series generation. The UCR archive encompass a
diverse range of data sets, including:

• Image-derived data: This involves tracking the trajectory of objects in videos.

• Sensory data: This could be of natural phenomena like earthquakes and lightning, as well as
other sensory measurements such as chlorine concentration, power consumption, traffic data,
and readings from vehicles.

• Device data: This are from electrical devices, such as computers and kitchen applications.

• Health sector data: This includes electrocardiograms, hemodynamic data, and electrooculo-
graphy data.

• Spectro-analysis data: Spectroscopics of food items like ham, beef, wine, and coffee.

• Simulated data: Artificially generated through computer simulations.

Each of the data sets comes in a predefined training and test split. These data sets are standardized,
such that the means is zero-centered and the variance across each data set is one. The length of
the time series vary a lot, with the shortest being SmoothSubspace with a length of 15, and
the longest being Rock, having a length of 2844. The number of training samples also varies,
with some data sets having very few samples. For instance, DiatomSizeReduction only has 16
training samples. A summary of all 128 data sets is provided in Appendix E. Figure 12 displays four
of the data sets and their distribution by plotting the run chart of 256 training samples together.
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Figure 12: Examples from the UCR time series archive. 12a is an example of spectroscopic data,
12b is an example of electrocardiogram from the health sector, 12c is an example of device data
and 12d is an example of sensory data. The time series have different temporal structures.
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3.6 Experiments

Initial testing on ’Wafer’

Many of the implementation tricks for TimeVQVDM was discovered empirically by trial and error.
The model was initially tested using a couple of the data sets from the UCR time series archive,
allowing for quick testing of different designs. Most of the discoveries occurred while testing one
particular data set in particular, namely on the data set ’Wafer’. This data set, depicted in
Figure 12d, contains 1000 training samples, has length 152 and 2 classes. It contains recorded
measurements from various sensors during the processing of silicon wafers. The time series has
sharp changes in modularity, and in some places there are high frequency outliers. Results of the
initial testing is outlined in Section 4.1.

Training on all data sets in the UCR time series archive

After finding an architecture for TimeVQVDM that works reasonably well, some other data sets
was tested to make sure that the proposed model generalizes. TimeVQVDM was then trained and
evaluated on all 128 data sets in the UCR time series archive. The training of stage one and two
was conducted with a batch size was set to 128 using 2000 epochs for stage 1 and 1000 epochs
for stage 2. The optimizer used was AdamW (Loshchilov and Hutter, 2017) with cosine learning
rate scheduler and initial learning rate of 1.0 · 10−3. Additional training details are provided in
Appendix D. Each experiment, including training, sampling and evaluation, took around 1-2 hour
per data set using a NVIDIA GeForce RTX 3080 Laptop GPU. In total, the experiments were run
over a span of two weeks.

For evaluation the models, both unconditional and class-conditional sampling is preformed. Uncon-
ditional sampling is performed with 128 denoising steps for both low and high frequency diffusion
models and rescale parameter γ = 0.1. The FID and IS score for unconditional sampling are cal-
culated by generating 1024 samples, averaged over three runs. Conditional sampling is performed
with 32 denoising steps for both diffusion models, guidance weight w = 3.0 and the rescale para-
meter γ = 0.1. The FID and IS score for conditional sampling are calculated by generating 1024
samples from one run. For conditional sampling, the class labels are selected according to the class
proportions in the training data. This means that if a training set has 100 samples for class ’0’ and
300 samples for class ’1’, then the synthetic generated data contains 256 samples generated with
class ’0’ and 768 samples generated with class ’1’. This protocol is used for making the evaluated
FID and IS scores comparable with the reported scores of TimeVQVAE.

Classification accuracy scores are calculated from training a classifier on synthetic data and testing
it on real. The TSTR classification accuracy scores are reported on the real test data, not the real
training data. I.e. the classifiers are tested on unseen data. The TRTR classification accuracy
scores are from using the pre-trained classifiers provided by (Lee et al., 2023).
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3.7 Algorithms

Training

Algorithm 1 and 2 displays the algorithms used for training TimeVQVDM. Algorithm 1 is for
training stage one, while Algorithm 2 is for training stage two.

Algorithm 1 Stage 1 training

repeat
x ∼ q(x) ▷ sample time series
uLF, uHF ← PLF(STFT(x)), PHF(STFT(x)) ▷ split high/low frequencies, Eq. (39)
zLF, zHF ← ELF(u

LF), EHF(u
HF) ▷ encode to latent space, Eq. (40)

(zLF
q )i ← argmin

ek∈ZLF

∥∥(zLF)i − ek
∥∥ ▷ quantize, Eq. (41)

(zHF
q )i ← argmin

ek∈ZHF

∥∥(zHF)i − ek
∥∥

ûLF, ûHF ← PLF(DLF(z
LF
q )), PHF(DHF(z

HF
q )) ▷ decode to sample space, Eq. (42)

x̂LF, x̂HF ← ISTFT(ûLF), ISTFT(ûHF) ▷ transform to time domain, Eq. (33), (43)
xLF, xHF ← ISTFT(uLF), ISTFT(uHF)

Lcodebook ←
∥∥sg[zLF]− zLF

q

∥∥2
2
+
∥∥sg[zHF]− zHF

q

∥∥2
2
+β

∥∥zLF − sg[zLF
q ]
∥∥2
2
+β

∥∥zHF − sg[zLF
q ]
∥∥2
2

Lreconstruct ←
∥∥xLF − x̂LF

∥∥2
2
+
∥∥xHF − x̂HF

∥∥2
2
+
∥∥uLF − ûLF

∥∥2
2
+
∥∥uHF − ûHF

∥∥2
2

take gradient descent on ∇θ (Lcodebook + Lreconstruct)
until converged

Algorithm 2 Stage 2 training

repeat
x, y ∼ q(x, y) ▷ sample time series and class label
uLF, uHF ← PLF(STFT(x)), PHF(STFT(x)) ▷ split high/low frequencies, Eq. (39)
zLF
0 , zHF

0 ← ELF(u
LF), EHF(u

HF) ▷ encode to latent space, Eq. (40)

tLF, tHF ∼ U(0, 1) ▷ random diffusion times
ϵLF ∼ N (0, I) ▷ random noise
ϵHF ∼ N (0, I)

zLF
t ← αtLFzLF

0 + σtLFϵLF ▷ diffuse LF latent, Eq. (15)
zHF
t ← αtHFzHF

0 + σtHFϵHF ▷ diffuse HF latent, Eq. (15)

cLF ← y if U(0, 1) > punconditional else Ø ▷ class guidance signal
cHF ← y if U(0, 1) > punconditional else Ø

Ldiffusion ←
∥∥ϵLF − fθ

(
ϵLF; zLF

t , tLF, cLF
)∥∥2

2
+
∥∥ϵHF − fθ

(
ϵHF; zHF

t , zLF
0 , tHF, cHF

)∥∥2
2

take gradient descent on ∇θ (Ldiffusion)
until converged
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Sampling

Algorithm 3 and 4 displays how we can sample new time series from the TimeVQVDM. Algorithm
3 is the sample loop from one diffusion model. It performs T denoising steps using the class y and
input condition zin. Classifier-free guidance with rescaling is performed using the guidance weight
w and rescale-parameter γ.

Algorithm 4 is the sampling procedure of TimeVQVDM. It inputs the number of denoising steps
for LF and HF, along with optional class condition and guidance parameters.

Algorithm 3 Ancestral sampling from diffusion model

input T, zin, y, w, γ ▷ denoising steps, input condition, class, guidance parameters

sample z ∼ N (0, I) ▷ sample from prior
for i = T, . . . , 1 do ▷ sampling loop, Eq. (27)

s, t← (i− 1)/T, i/T

ϵ̂← (1− w)fθ(ϵ; z, zin, t,Ø) + wfθ(ϵ; z, zin, t, y) ▷ classifier-free guidance, Eq. (29)

δ ∼ N (0, I) ▷ denoising step, Eq. (28)
zcfg ← αs

αt

(
z + (1− eλt−λs)σtϵ̂

)
+ (1− eλt−λs)1/2σsδ

z ← (1− γ) zcfg + γ zcfg/std(zcfg) ▷ rescale latent, Eq. (31)
end for
return z

Algorithm 4 Sample from TimeVQVDM

input TLF, THF, y, w, γ ▷ denoising steps, class, guidance weight, rescale factor

zLF ∼ pθ(z
LF | y) ▷ sample LF using Algorithm 3 with T = TLF, zin = Ø

zHF ∼ pθ(z
HF | zLF, y) ▷ sample HF using Algorithm 3 with T = THF, zin = zLF

(zLF
q )i ← argmin

ek∈ZLF

∥∥(zLF)i − ek
∥∥ ▷ quantize, Eq. (41)

(zHF
q )i ← argmin

ek∈ZHF

∥∥(zHF)i − ek
∥∥

uLF,uHF ← PLF(DLF(z
LF
q )), PHF(DHF(z

HF
q )) ▷ decode to sample space, Eq. (42)

xLF, xHF ← ISTFT(uLF), ISTFT(uHF) ▷ transform to time domain, Eq. (33)

return xLF + xHF
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4 Results

4.1 Results on Wafer

The initial testing on Wafer yielded five important implementation tricks for TimeVQVDM:

• Low dimensionality tokens

• High temporal resolution in STFT

• Scaling the latents before the diffusion models

• Aligning LF and HF with input conditions

• Halting the diffusion process at t = 0.99

First trick: Low dimensionality tokens

As outlined under architecture and implementation details in Section 3, it was found necessary to
reduce the dimensionality of the tokens. The diffusion models were not able to learn the latent
distribution of Wafer with the number of tokens being K = 32 and dimensionality d = 64, as is
used in TimeVQVAE. This could be because the dimensionality of the tokens was stacked along
the channel dimension, which creates very many channels for the 1D denoising U-Nets. The first
major implementation trick was to decrease the dimensionality of the tokens drastically. We found
that choosing d = 4 worked great. To keep a similar compression rate, the number of tokens was
increased accordingly to 512. In this way the number of parameters in the codebooks, K · d are
kept constant.

(a) Reconstructions of real samples. (b) Reconstructions of generated samples.

Figure 13: Comparison of reconstructions of low and high frequencies of Wafer using 13a real time
series and 13b generated time series. Low frequencies are in green and high frequencies are in gray.
The STFT has a hop length h = 2. The input to the diffusion models are not scaled.

Second trick: High temporal resolution in STFT

Although decreasing the dimensionality of the tokens made the diffusion models happy, it damaged
the reconstruction loss of the VQ-VAE models. Figure 13 shows the reconstructed low and high
frequencies of Wafer when using the STFT defined in TimeVQVAE. It has parameters n fft

= 8 and hop length = 2. Using low dimensionality tokens and this setup for the STFT, the
reconstructions for both low and high frequencies becomes jagged. Changing hop length = 1

increases the temporal resolution in time-frequency domain and made the reconstructions much
better. Figure 14 shows the reconstructed low and high frequencies of Wafer when using the shorter
hop length for STFT. The LF was smoother and the high frequencies was able to capture finer
details such as the spikes at time steps 20 and 50 in the signals.
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(a) Reconstructions of real samples. (b) Reconstructions of generated samples.

Figure 14: Comparison of reconstructions of low and high frequencies of Wafer using 14a real time
series and 14b generated time series. Low frequencies are in green and high frequencies are in gray.
The STFT has a hop length h = 1. The input to the diffusion models are standardized.

Third trick: Scaling the latents before the diffusion models

The empirical distribution is standardized to having variance V[q∗(x)] = 1 and mean E[q∗(x)] = 0.
In the theory section on the diffusion models, it is assumed that the non-diffused latent distribution
for the diffusion process is also standardized. However zLF and zHF are not necessary standardized
after encoding x to time-frequency domain and encoding using ELF and EHF. which was a problem
for the sampling process. Initially, the rescaling parameter was set to 1, such that the latents in the
diffusion models always had unit variance in-between each sampling step. This produced synthetic
time series with different amplitudes than the training data. This effect is seen in Figure 13b,
where the y-axis has a slightly different scale than the y-axis in Figure 13a. The generated samples
in Figure 14 incorporates a learned standard-scalers for both LF and HF, making the generated
time series have the same amplitudes. After standardizing the inputs to the diffusion models, the
rescaling parameter γ was no longer necessary for unconditional sampling. It was however kept at
0.1 to prevent the variance of the latents from deviating to far from 1.

Forth trick: Aligning LF and HF with input conditions

Until now, the low and high frequencies had been generated separately. To align the generated
frequencies, it was ultimately found that the best approach was using the conditioning method in
(Ho, Saharia et al., 2021) by concatenating the input signal along with the input to the denoising U-
Nets. For TimeVQVDM, this is to letting zLF

0 be concatenated along the channel dimension of the
input to the high frequency diffusion model. But since zHF

t has a lower compression rate than zLF
0 ,

zLF
0 needs to be up-scaled to the same dimensionality as zHF

t . As outlined in the implementation
details, this was performed by up-scaling zLF

0 and use an interpolation layer to match the correct
shape of zHF

t . Figure 15 shows generated samples after implementing the conditioning mechanism
for generating HF based on LF. The generated time series resembles the data set, but the mode
coverage is not great.

Fifth trick: Halting the diffusion process at t = 0.99

After investigating the equations used for sampling from the diffusion models, it became apparent
that the sampling process was very sensitive for low signal-to-noise ratios. From Equation (15),
the predicted non-diffused LF latent is ẑLF

0 = (zLF
t − σtϵ̂

LF)/αt, where ϵ̂LF is the predicted noise.
Since αt → 0 as t→ 1, this creates a division by zero problem. It should make sense that we cannot
make an informed prediction of zLF

0 from zLF
1 alone, as zLF

1 contain no information about zLF
0 .

In testing on Wafer and other data sets, this problem caused the generated samples to have poor
mode coverage. Halting the diffusion process at a time tmax resolved this issue. More specifically,
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the generation process starts denoising from t = tmax and ends at t = 0. The value of tmax was
empirically determined by letting it take the values in {1.0, 0.999, 0.99, 0.98, 0.95} and evaluating
the FID score on Wafer using 32 denoising steps for LF and HF, while holding the rescale parameter
fixed at 0.1. The results are shown in Table 3 and found that choosing tmax = 0.99 worked best.
The FID score was then evaluated using 128 and 512 denoising steps, of which 128 denoising steps
yielded the lowest FID score. This indicates that halting the diffusion at 0.99 would give higher
mode coverage for the generated samples. Indeed, plotting the generated samples from Wafer after
halting the diffusion process at 0.99 shows a huge visual improvement in the mode coverage. The
generated samples in Figure 16b resembles the real training data better than the generated samples
in Figure 15b, even though it has fewer denoising steps.

Table 3: FID scores for unconditional sampling of Wafer by halting the diffusion process at different
time steps. The number of generated samples is 1024 and γ = 0.1.

tmax SNRmin FID (32 steps) FID (128 steps) FID (512 steps)
1.0 0.0 1126.70 - -
0.999 2.47 · 10−6 8.73 - -
0.99 2.47 · 10−4 1.65 1.15 1.49
0.98 9.87 · 10−4 1.95 - -
0.95 6.12 · 10−3 4.98 - -

(a) Samples from dataset. (b) Generated samples.

Figure 15: Comparison of real time series 15a and unconditionally sampled time series 15b of
Wafer. The samples are generated using a 1024 sampling steps starting from t = 1.

(a) Sampes from dataset. (b) Generated samples.

Figure 16: Comparison of real time series 16a and unconditionally sampled time series 16b of
Wafer. The samples are generated using a 128 sampling steps starting from t = 0.99.
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4.2 Results on all data sets in the UCR time series archive

The following pages contains full results on the UCR time series archive. Evaluation results from
unconditional and conditional sampling are provided in Table 4 and Table 5 respectively. The
reported metrics for unconditional sampling are FID and IS. For conditional sampling, the re-
ported metrics are FID, IS and TSTR. After the two tables, the next eight pages contain visual
representations from unconditional sampling from all data sets in the UCR archive by plotting the
run charts of 256 generated samples next to 256 samples from the ground truth. Since the visual
representation from conditional sampling appeares very similar to the unconditional samples, those
are not provided.

Table 4: Full IS and FID results for unconditional sampling from the UCR archive with 1024
synthetic time series using 128 sampling steps and γ = 0.1. The results are averaged over 3 runs.

Name IS mean ↑ IS std FID mean ↓ FID std
Adiac 6.31 0.29 6.76 0.23
ArrowHead 2.13 0.08 3.74 0.05
Beef 2.47 0.06 2.31 0.05
BeetleFly 1.55 0.04 5.1 0.07
BirdChicken 1.57 0.04 6.73 0.03
Car 1.63 0.07 4.93 0.1
CBF 1.89 0.07 14.1 0.46
ChlorineConcentration 1.54 0.08 1.01 0.13
CinCECGTorso 2.02 0.06 4.15 0.03
Coffee 1.36 0.03 10.54 0.03
Computers 1.73 0.03 2.73 0.06
CricketX 2.46 0.08 4.07 0.03
CricketY 2.99 0.19 3.52 0.01
CricketZ 2.37 0.08 4.75 0.06
DiatomSizeReduction 1.56 0.04 13.81 0.03
DistalPhalanxOutlineAgeGroup 1.91 0.07 0.93 0.11
DistalPhalanxOutlineCorrect 1.59 0.07 1.64 0.14
DistalPhalanxTW 2.75 0.18 1.87 0.13
Earthquakes 1.13 0.03 0.94 0.03
ECG200 1.51 0.07 3.47 0.08
ECG5000 2.17 0.12 0.82 0.14
ECGFiveDays 1.62 0.04 7.15 0.19
ElectricDevices 4.45 0.21 2.04 0.12
FaceAll 8.77 0.46 2.03 0.05
FaceFour 1.41 0.02 15.22 0.03
FacesUCR 4.1 0.29 5.34 0.07
FiftyWords 5.92 0.44 4.08 0.16
Fish 3.12 0.17 1.26 0.01
FordA 1.67 0.02 0.65 0.02
FordB 1.72 0.04 0.87 0.04
GunPoint 1.62 0.02 4.45 0.17
Ham 1.42 0.03 1.38 0.03
HandOutlines 1.23 0.04 0.18 0.06
Haptics 1.91 0.07 1.87 0.06
Herring 1.15 0.04 1.26 0.01
InlineSkate 2.31 0.12 11.32 0.25
InsectWingbeatSound 3.72 0.18 1.77 0.04
ItalyPowerDemand 1.84 0.03 2.77 0.17
LargeKitchenAppliances 1.89 0.06 2.07 0.09
Lightning2 1.48 0.04 1.2 0.03
Lightning7 2.57 0.12 5.73 0.1
Mallat 2.98 0.16 2.39 0.1
Meat 1.68 0.06 2.61 0.04
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MedicalImages 2.87 0.23 1.26 0.04
MiddlePhalanxOutlineAgeGroup 2.05 0.08 0.7 0.03
MiddlePhalanxOutlineCorrect 1.55 0.09 1.01 0.11
MiddlePhalanxTW 2.8 0.14 1.31 0.03
MoteStrain 1.7 0.02 6.9 0.33
NonInvasiveFetalECGThorax1 10.12 0.45 5.24 0.16
NonInvasiveFetalECGThorax2 13.71 0.47 3.24 0.07
OliveOil 1.04 0.01 1.37 0.02
OSULeaf 1.41 0.03 17.28 0.22
PhalangesOutlinesCorrect 1.46 0.04 0.47 0.04
Phoneme 2.31 0.08 9.85 0.05
Plane 5.49 0.17 3.6 0.14
ProximalPhalanxOutlineAgeGroup 2.43 0.08 0.66 0.05
ProximalPhalanxOutlineCorrect 1.57 0.07 0.45 0.08
ProximalPhalanxTW 2.91 0.1 1.66 0.09
RefrigerationDevices 1.59 0.05 34.1 0.37
ScreenType 1.9 0.08 4.9 0.24
ShapeletSim 1.08 0.01 26.1 0.07
ShapesAll 8.32 0.56 8.58 0.27
SmallKitchenAppliances 1.48 0.06 5.7 0.24
SonyAIBORobotSurface1 1.18 0.04 16.14 0.2
SonyAIBORobotSurface2 1.78 0.03 4.88 0.12
StarLightCurves 2.42 0.11 0.35 0.03
Strawberry 1.7 0.05 0.11 0.02
SwedishLeaf 9.33 0.56 2.84 0.04
Symbols 3.91 0.1 8 0.25
SyntheticControl 4.81 0.2 3.64 0.09
ToeSegmentation1 1.4 0.03 7.24 0.13
ToeSegmentation2 1.43 0.04 6.85 0.15
Trace 2.65 0.07 4.75 0.16
TwoLeadECG 1.52 0.02 7.94 0.17
TwoPatterns 3.23 0.12 1.36 0.04
UWaveGestureLibraryAll 4.1 0.17 1.95 0.08
UWaveGestureLibraryX 4.24 0.2 3.99 0.12
UWaveGestureLibraryY 3.87 0.12 1.73 0.07
UWaveGestureLibraryZ 4.01 0.1 4.74 0.03
Wafer 1.31 0.07 1.03 0.19
Wine 1.39 0.03 0.99 0.02
WordSynonyms 1.74 0.05 4.11 0.02
Worms 2.01 0.13 3.28 0.03
WormsTwoClass 1.5 0.03 0.36 0.05
Yoga 1.35 0.03 0.6 0.02
ACSF1 1.28 0.08 214.2 0.79
AllGestureWiimoteX 2.17 0.13 0.84 0.07
AllGestureWiimoteY 2.0 0.11 1.03 0.05
AllGestureWiimoteZ 1.04 0.02 0.62 0.07
BME 1.92 0.09 17.58 0.58
Chinatown 1.69 0.02 6.36 0.39
Crop 16.44 0.64 1.4 0.18
DodgerLoopDay 1.61 0.05 10.14 0.04
DodgerLoopGame 1.2 0.02 15.78 0.18
DodgerLoopWeekend 1.73 0.04 5.73 0.36
EOGHorizontalSignal 4.98 0.11 1.22 0.02
EOGVerticalSignal 3.75 0.26 1.84 0.35
EthanolLevel 1.19 0.01 0.34 0
FreezerRegularTrain 1.72 0.04 1.75 0.1
FreezerSmallTrain 1.69 0.06 6.63 0.13
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Fungi 3.03 0.19 7.23 0.12
GestureMidAirD1 2.63 0.14 1.76 0.04
GestureMidAirD2 2.74 0.15 4.33 0.62
GestureMidAirD3 2.11 0.11 2.38 0.12
GesturePebbleZ1 1.03 0.01 13.17 0.25
GesturePebbleZ2 1.13 0.05 3.85 0.13
GunPointAgeSpan 1.51 0.03 3.69 0.07
GunPointMaleVersusFemale 1.81 0.04 1.31 0.08
GunPointOldVersusYoung 1.96 0.01 0.95 0.24
HouseTwenty 1.32 0.05 9.89 0.22
InsectEPGRegularTrain 2.85 0.05 20.95 1.79
InsectEPGSmallTrain 2.61 0.06 16.73 0.41
MelbournePedestrian 8.49 0.29 21.19 0.86
MixedShapesRegularTrain 3.4 0.11 3.35 0.04
MixedShapesSmallTrain 2.05 0.06 6.02 0.12
PickupGestureWiimoteZ 1.1 0.04 11.41 1.02
PigAirwayPressure 5.4 0.23 13.44 0.06
PigArtPressure 3.68 0.15 12.45 0.16
PigCVP 4.08 0.16 9.65 0.47
PLAID 1.88 0.09 109.08 47.94
PowerCons 1.79 0.03 0.59 0.11
Rock 2.58 0.09 2.76 0.11
SemgHandGenderCh2 1.32 0.03 1.88 0.05
SemgHandMovementCh2 2.32 0.1 9.75 1.49
SemgHandSubjectCh2 2.19 0.09 6.3 0.21
ShakeGestureWiimoteZ 1.47 0.04 1.65 0.05
SmoothSubspace 2.4 0.05 8.39 0.16
UMD 1.8 0.11 7.64 0.41

Table 5: Full IS, FID, TSTR and TRTR results for conditional sampling from the UCR archive
with 1024 synthetic time series using 32 sampling steps, w = 3.0 and γ = 0.1.

Name IS mean ↑ FID mean ↓ TSTR (%) TRTR (%)
Adiac 20.68 7.77 67.41 85.42
ArrowHead 2.77 1.41 77.71 80
Beef 4.55 0.62 53.33 73.33
BeetleFly 1.99 0.03 80 80
BirdChicken 1.99 0.03 100 90
Car 2.99 3.7 68.33 91.67
CBF 2.54 7.16 88.64 99
ChlorineConcentration 2.64 1.1 62.89 79.71
CinCECGTorso 2.5 3.02 44 82.46
Coffee 2 5.28 92.86 100
Computers 1.71 1.82 87.2 87.6
CricketX 6.36 1.48 57.46 78.97
CricketY 6.76 1.36 57.46 78.97
CricketZ 5.71 1.56 58.21 77.69
DiatomSizeReduction 3.42 0.42 76 94.12
DistalPhalanxOutlineAgeGroup 2.25 1.24 74.1 71.94
DistalPhalanxOutlineCorrect 1.89 0.98 65 77.54
DistalPhalanxTW 3.66 1.2 66.19 68.35
Earthquakes 1.13 1.24 68.35 73.38
ECG200 1.78 0.54 79 89
ECG5000 2.41 0.48 84.46 94.07
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ECGFiveDays 1.8 9.45 52.69 99.19
ElectricDevices 5.33 2.18 48.39 72.56
FaceAll 12.85 0.18 62.34 91.24
FaceFour 2.33 8.8 71.59 90.91
FacesUCR 10.32 0.7 50 93.32
FiftyWords 18.78 1.2 62.81 66.15
Fish 5.55 0.23 93.14 94.86
FordA 1.89 0.18 90 94.47
FordB 1.9 0.38 71.43 79.01
GunPoint 1.79 4.41 86.67 100
Ham 1.86 0.19 67.62 70.48
HandOutlines 1.43 0.12 64.04 90.54
Haptics 2.63 0.72 34.62 49.03
Herring 1.21 1.11 64.06 64.06
InlineSkate 2.33 12.49 31.58 46.18
InsectWingbeatSound 6.04 0.41 30.32 38.94
ItalyPowerDemand 1.99 0.52 80 94.75
LargeKitchenAppliances 2.11 3.52 67.23 90.4
Lightning2 1.65 0.78 67.21 72.13
Lightning7 3.85 3.22 61.64 65.75
Mallat 6.47 0.38 95.12 96.72
Meat 2.74 4.61 76.67 90
MedicalImages 4.56 0.57 63.31 77.24
MiddlePhalanxOutlineAgeGroup 2.46 1 61.04 54.55
MiddlePhalanxOutlineCorrect 1.88 0.93 74.29 82.47
MiddlePhalanxTW 4.26 1.25 52.6 48.7
MoteStrain 1.99 0.04 85.96 91.93
NonInvasiveFetalECGThorax1 24.15 25.4 77.46 93.99
NonInvasiveFetalECGThorax2 22.64 16.17 72.25 93.74
OliveOil 1.07 1.2 43.33 73.33
OSULeaf 4.3 9.07 81.4 96.69
PhalangesOutlinesCorrect 1.85 0.59 82.22 82.4
Phoneme 6.54 3.78 4.81 35.65
Plane 6.5 0.63 100 100
ProximalPhalanxOutlineAgeGroup 2.73 0.97 85.85 82.44
ProximalPhalanxOutlineCorrect 1.85 1.59 80 90.38
ProximalPhalanxTW 3.85 3.25 80.49 79.02
RefrigerationDevices 1.5 32.6 52.94 50.13
ScreenType 2.33 2.06 52.94 64.27
ShapeletSim 1.99 0.73 56.67 85.56
ShapesAll 36.16 0.78 72.73 87.83
SmallKitchenAppliances 1.4 8.26 88.24 78.67
SonyAIBORobotSurface1 1.83 0.04 98.88 95.01
SonyAIBORobotSurface2 1.94 1.37 85.41 97.48
StarLightCurves 2.45 0.34 97.73 96.32
Strawberry 1.91 0.07 92.11 97.84
SwedishLeaf 13.06 0.93 93.81 96.32
Symbols 5.02 1.15 92.51 97.29
SyntheticControl 5.83 2.51 95.45 98.33
ToeSegmentation1 1.7 2.95 67.54 96.05
ToeSegmentation2 1.83 1.72 90 90
Trace 3.69 1.76 90 100
TwoLeadECG 1.97 2.4 100 100
TwoPatterns 3.49 0.52 86.88 86.72
UWaveGestureLibraryAll 5.13 1.29 74.8 83.31
UWaveGestureLibraryX 5.47 2.89 67.72 75.63
UWaveGestureLibraryY 5.27 1.3 56.69 65.91
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UWaveGestureLibraryZ 5.42 3.1 70.47 73.7
Wafer 1.37 0.34 100 99.66
Wine 1.49 1.55 77.78 74.07
WordSynonyms 3.06 3.03 35.71 49.53
Worms 2.77 1.48 68.83 80.52
WormsTwoClass 1.58 0.16 72.73 79.22
Yoga 1.55 0.39 77.72 87.43
ACSF1 1.33 250.06 49 90
AllGestureWiimoteX 2.84 0.35 37.23 46.71
AllGestureWiimoteY 2.68 0.28 51.06 43.29
AllGestureWiimoteZ 1.06 0.34 24.47 10.71
BME 2.57 18.12 46.67 73.33
Chinatown 1.99 0.16 0 97.96
Crop 22.77 1.58 0 75.39
DodgerLoopDay 1.8 8.86 13.75 43.75
DodgerLoopGame 1.99 0.03 47.83 70.29
DodgerLoopWeekend 1.99 0.03 73.91 96.38
EOGHorizontalSignal 6.57 0.98 8.49 58.29
EOGVerticalSignal 4.85 1.42 16.04 43.92
EthanolLevel 2.11 0.46 51.23 73.6
FreezerRegularTrain 1.96 3.63 79.41 99.12
FreezerSmallTrain 1.79 6.65 76.47 81.68
Fungi 15.87 0.06 12.37 98.39
GestureMidAirD1 3.23 1.05 8.46 20.77
GestureMidAirD2 2.34 11.9 3.85 7.69
GestureMidAirD3 2.22 2.95 6.15 6.15
GesturePebbleZ1 1.54 2.45 17.44 30.81
GesturePebbleZ2 1.87 0.66 15.82 36.71
GunPointAgeSpan 1.65 8.97 0 100
GunPointMaleVersusFemale 1.94 5.29 0 99.68
GunPointOldVersusYoung 1.99 2.23 0 100
HouseTwenty 1.56 6.9 57.98 94.96
InsectEPGRegularTrain 2.88 17.38 47.39 100
InsectEPGSmallTrain 2.61 11.91 35.74 100
MelbournePedestrian 9.29 11.29 14.81 95.74
MixedShapesRegularTrain 4.35 1.67 100 96.74
MixedShapesSmallTrain 4.01 1.62 93.39 92.37
PickupGestureWiimoteZ 1.24 10.56 24 12
PigAirwayPressure 14.68 7.08 2.4 77.88
PigArtPressure 9.72 6.37 1.92 98.08
PigCVP 10.12 15.34 1.92 90.87
PLAID 2.07 316.52 16 12.1
PowerCons 1.92 0.83 50 89.44
Rock 3.47 1.06 18 60
SemgHandGenderCh2 1.56 2.62 19.32 84.17
SemgHandMovementCh2 2.66 11.92 38.66 54.67
SemgHandSubjectCh2 2.49 9.74 14.43 66
ShakeGestureWiimoteZ 1.49 0.42 26 14
SmoothSubspace 2.81 2.58 34.67 98
UMD 2.35 4.58 66.67 96.53

40



0 25 50 75 100 125 150 175

3

2

1

0

1

2

3

0 25 50 75 100 125 150 175

3

2

1

0

1

2

3

(a) Adiac

0 50 100 150 200 250

3

2

1

0

1

2

3

0 50 100 150 200 250

3

2

1

0

1

2

3

(b) ArrowHead

0 100 200 300 400

3

2

1

0

1

2

3

0 100 200 300 400

3

2

1

0

1

2

3

(c) Beef

0 100 200 300 400 500

3

2

1

0

1

2

3

0 100 200 300 400 500

3

2

1

0

1

2

3

(d) BeetleFly

0 100 200 300 400 500

3

2

1

0

1

2

3

0 100 200 300 400 500

3

2

1

0

1

2

3

(e) BirdChicken

0 100 200 300 400 500 600

3

2

1

0

1

2

3

0 100 200 300 400 500 600

3

2

1

0

1

2

3

(f) Car

0 20 40 60 80 100 120

3

2

1

0

1

2

3

0 20 40 60 80 100 120

3

2

1

0

1

2

3

(g) CBF

0 25 50 75 100 125 150

3

2

1

0

1

2

3

0 25 50 75 100 125 150

3

2

1

0

1

2

3

(h) ChlorineConcentration

0 250 500 750 1000 1250 1500

3

2

1

0

1

2

3

0 250 500 750 1000 1250 1500

3

2

1

0

1

2

3

(i) CinCECGTorso

0 50 100 150 200 250

3

2

1

0

1

2

3

0 50 100 150 200 250

3

2

1

0

1

2

3

(j) Coffee

0 100 200 300 400 500 600 700

3

2

1

0

1

2

3

0 100 200 300 400 500 600 700

3

2

1

0

1

2

3

(k) Computers

0 50 100 150 200 250 300

3

2

1

0

1

2

3

0 50 100 150 200 250 300

3

2

1

0

1

2

3

(l) CricketX

0 50 100 150 200 250 300

3

2

1

0

1

2

3

0 50 100 150 200 250 300

3

2

1

0

1

2

3

(m) CricetY

0 50 100 150 200 250 300

3

2

1

0

1

2

3

0 50 100 150 200 250 300

3

2

1

0

1

2

3

(n) CricetZ

0 50 100 150 200 250 300 350

3

2

1

0

1

2

3

0 50 100 150 200 250 300 350

3

2

1

0

1

2

3

(o) DiatomSizeReduction

0 10 20 30 40 50 60 70 80

3

2

1

0

1

2

3

0 10 20 30 40 50 60 70 80

3

2

1

0

1

2

3

(p) DistalPhalanxOutlineAgeGroup

Figure 17: Real / synthetic samples from UCR data sets 1 to 16.
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Figure 18: Real / synthetic samples from UCR data sets 17 to 32.
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Figure 19: Real / synthetic samples from UCR data sets 33 to 48.
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Figure 20: Real / synthetic samples from UCR data sets 49 to 64.
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Figure 21: Real / synthetic samples from UCR data sets 65 to 80.
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Figure 22: Real / synthetic samples from UCR data sets 81 to 96.
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Figure 23: Real / synthetic samples from UCR data sets 97 to 112.
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Figure 24: Real / synthetic samples from UCR data sets 113 to 128.
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5 Discussion

5.1 Qualitative assessment of generated samples

Continuous signals vs. digital-like signals

A visual inspection of generated time series from the UCR archive with real samples is displayed
in Figure 17 to Figure 24. By comparing the run charts, TimeVQVDM seems to be able to learn
the marginal distribution to some degree for most data sets in the UCR time series archive. The
model seems to be good for learning the distribution of motion-derived data and continuously vary-
ing signals such as InsectWingBeatSiund, StarlightCurves, OSULeaf, WordSynonyms, InlineSkate,
MedicalImages and the UWaveGestureLibrary-datasets. The model seems worse at learning the
distribution of device-data and digital-like signals, such as EarthQuakes, ElectricalDevices, Com-
puters, LargeKitchenAppliances, SmallKitchenAppliances and ACSF1. This trend is also observed
for the generated samples in TimeVQVAE. One reason for this could be that the digital-like time
series have little to no noise and the range of the time series is not continuous. In the theory sec-
tion, it was assumed that the range of the latents for the diffusion models are continuous. However,
many of the displayed training data sets have clear bands. For instance, the data set UWaveGes-
tureLibraryAll have clear horizontal lines which are not so profound in the generated samples. The
most clear example is in SmallKitchenAppliances. The training data have clear lower and upper
bands for the time series which TimeVQVDM fails to capture.

Poor mode coverage for some data sets

For some data sets TimeVQVDM generates time series that doesn’t resemble the modes of the
distribution in the training data. For data sets such as Crop, Chinatown, EOGVerticalSignal and
PLAID, the generated samples resembles the training data, but the variability of the distribution
is higher. Other data sets such as GesturePebbleZ1 and GesturePebbleZ2, the variability of the
generated time series are lower. And lastly, some data sets such as MelbournePedestrian, InsectEP-
GRegularTrain and InsectEPGSmallTrain, the generated time series seem to lie in-between modes
in the training data. This is clearly visible in InsectEPGRegularTrain, as the training data has
clearly separated modes while the generated data have modes in the middle. One reason for the
poor mode coverage could be to a low number of training samples. For instance, Chinatown has
only 20 training samples.

Trouble with representing end points

Some of the generated samples have shows bad representation at the endpoints. For instance, gen-
erated samples from HouseTwenty have high variability on both end points, in contrast to the train-
ing data, which are mostly flat at the two end points. The right-most end points seems to be the
hardest, as some data sets only struggle with representing the it. For instance GestureMidAirD2,
GestureMidAirD3, Lightning2 and Lightning7 all have some variability at the right end points
that should not be there. The reason for this could be from how TimeVQVDM is implemented.
Because of the down-sampling procedure using convolutions with stride=2, the right-most time
step is removed if the time series has an odd length. Then, when up-sampling, this can lead to
higher difficulty reconstructing the right-most time steps of the signals.

Alignment of low and high frequencies

For many data sets, such as Wafer, TwoPatters and OSULeaf, the low and high frequencies seem
to align well. For other data sets, such as Trace, FreezerREgularTRain and FreezerSmallTrain, the
high-frequencies sometimes overshoots in sharp changes of modularity. This issue could potentially
be fixed by implementing ways to identify miss-aligned frequencies in LF and HF and fix them
accordingly.
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5.2 Quantitative assessment of generated samples

Table 4 and Table 5 gives the full results for both unconditional and conditional sampling on all
the data sets in the UCR time series archive. To get a better feel for the relative performance
of TimeVQVDM on the different data sets, the evaluation metrics are plotted together with the
number of classes, the length of time series and the number of training samples. Figure 25 compares
the scores for unconditional sampling on all data sets in the UCR time series archive. Similarly, 26
compares for conditional sampling while Figure 27 compares the classification accuracy for training
a FCN model on synthetic data and testing it on real data.
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Figure 25: Log-log plots comparing FID and IS metrics for unconditional sampling relative to
number of classes (25a), length of time series (25b) and number of training samples (25c). The
plots include the best-fit regression line.
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Figure 26: Log-log plots comparing FID and IS metrics for conditional sampling relative to number
of classes (26a), length of time series (26b) and number of training samples (26c). The plots include
the best-fit regression line.
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Figure 27: Log plots comparing TSTR relative to number of classes (27a), length of time series
(27b) and number of training samples (27c). The plots include the best-fit regression line.

Bad performance for few training samples

From Figure 25, it seems like data sets with few training samples has higher FID scores and lower
IS scores. This could be because the number of epochs is fixed at 1000, and the models don’t have
enough time to converge properly. We noticed that the TimeVQVAE model used 5000 maximum
epochs for learning the bidirectional transformer. In this thesis, training was stopped at 1000
epochs for the diffusion models. Increasing the number of epochs could allow for learning the
distributions better. However, increasing the number of training stages could lead to over-fitting
to the data. This, in turn, could make the model very likely to produces almost exact replicas
from the training data, creating a high bias towards it. Thus the generative models starts to
approximate the empirical distribution, and as a result memorizes all the training data within the
parameters of the model. To mitigate this, there should be an evaluation metric for measuring the
ability to generalize from the training data, which is lacking in current evaluation protocols. Using
the empirical distribution could be better is some regards when the number of training samples is
very low.

Effect of halting the diffusion process

We found that halting the diffusion process at t = 0.99 lead to improvements in FID scores. How-
ever, (Chen, 2023) outlines that stopping the diffusion process before the terminal SNR becomes
zero can lead to lower mode coverage. This is seen with a medium brightness problem in Stable
Diffusion (Rombach et al., 2021). Stable diffusion has a terminal SNR of SNRmin = 4.682 · 10−3,
which in terms of the variance conserving diffusion process corresponds to halting the diffusion
process at t = 0.956. Thus using the halting procedure in this thesis is not too unreasonable. How-
ever, (Chen, 2023) always recommends picking the velocity-parameterization. With the velocity
parameterization, the problem with low SNR vanishes. Future work could investigate using this
parameterization instead of the nosie-parameterization.
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6 Conclusion

Motivated by recent success in generative modelling using vector quantization and diffusion models,
we propose TimeVQVDM for time series generation. Similar to TimeVQVAE (Lee et al., 2023),
it uses VQ-VAEs to model time series in the time-frequency domain, which are further split into
low and high frequencies. The continuous latent representations are then modelled using two
variational diffusion models, one for low frequencies and one for high frequencies. TimeVQVDM
generates time series in by first generating the low frequency components and then generating the
higher frequencies. Trained using classifier-free guidance, it is capable of both unconditional as
well as conditional sampling. For combining diffusion models with vector quantization for time
series generation, five key implementation details were identified:

• Low dimensionality of tokens

• High temporal resolution in time-frequency domain

• Standardizing latents before the diffusion models

• Conditioning the HF diffusion model on LF latents

• Halting the diffusion process at t = 0.99 to avoid to low signal-to-noise ratio

By evaluating on all 128 data sets in the UCR time series archive, TimeVQVDM receives scores
comparable to current state-of-the-art TSGmodels using transformer networks, such as TimeVQVAE.
For unconditional sampling, TimeVQVDM achieves an average FID score of 7.76, beating the FID
average of 11.44 by TimeVQVAE. This goes to show that switching to diffusion models for time
series generation can lead to improvement gains. In particular, this the thesis identified that the
diffusion architecture was especially useful for continuously varying time series, where the signals
arise from continuous, rather than discrete, measurements. Additionally, it was able to generalize
better for data sets with a high number of training samples.

Future work into TSG with diffusion model could explore the codebook utilizations, and investigate
the number of tokens in the model. Additionally, the frequency bands for different data sets varies
a lot. Some data sets have very little LF, while other data sets have very much LF. In other data
sets, the HF dominates the LF. The implementation for the STFT uses a fixed-length window, so
resolutions of the frequency-time domain is fixed. This can perhaps be fixed using a the Wavelet
transform or multi-scale STFT, as in (Kumar et al., 2023).
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Appendix

A Diffusion process as a SDE

The diffusion process given in Equation (13) is equivalent to the following SDE,

dzt = f(t)dt+ g(t)dW t, (54)

where f(t) : Rl → Rl, g(t) ∈ R and W t ∈ Rl are the drift, diffusion and Brownian motion
represented using a standard Wiener process. Ho and Salimans, 2022 finds that the particular
functions are

f(t) =
d

dt
(logαt) , g2(t) =

d

dt

(
σ2
t

)
− 2

d

dt
(logαt)σ

2
t . (55)

As derived by Anderson, 1982, reversing Equation (54) gives another SDE traveling backwards in
time,

dzt =
[
f(t)− g2(t)∇zt

log qϕ(zt)
]
dt+ g(t)dW t. (56)

Here the Wiener process runs backwards through time and the infinitesimal time step dt is negative.
There also exists a deterministic process whose trajectories share the same marginal probability
qϕ(z) for all zt ∈ [0, 1]. This process is governed by the following ordinary differential equation
(ODE),

dzt =

[
f(t)− 1

2
g2(t)∇zt

log qϕ(zt)

]
dt. (57)
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B Derivation of qϕ(zs | zt, z0)

Using Bayes’ theorem, the conditional distribution qϕ(zs | zt, z0), where 0 ≤ s < t ≤ 1, can be
written as

qϕ(zs | zt, z0) =
qϕ(zt | zs, z0)

qϕ(zt | z0)
qϕ(zs | z0) =

qϕ(zt | zs)

qϕ(zt | z0)
qϕ(zs | z0), (58)

where the last equality follows from the Markov property. Using Equation (13), we can insert
Gaussian distributions for all of the three conditional distributions. It follows that

qϕ(zs | zt, z0) ∝ exp

{
−1

2

((
zt − αt|szs

σt|s

)2

+

(
zs − αsz0

σs

)2

−
(
zt − αtz0

σt

)2
)}

∝ exp

{
−1

2

(
z2
t − 2αt|sztzs + α2

t|sz
2
s

σ2
t|s

+
z2
s − 2αszsz0 + α2

sz
2
0

σ2
s

+ C1(z0, zt)

)}

∝ exp

−
1

2


(
α2
t|s

σ2
t|s

+
1

σ2
s

)
︸ ︷︷ ︸

:=a

z2
s − 2

(
αt|szt

σ2
t|s

+
αsz0

σ2
s

)
︸ ︷︷ ︸

:=b

zs + C2(z0, zt)


 ,

(59)

where C1 and C2 are constants with respect to zs. We recognize (59) as a core of an isotropic
Gaussian distribution. Define qϕ(zs | zt, z0) as a Gaussian distribution of the form

qϕ(zs | zt, z0) = N (zs;µs|t,0, σ2
s|t,0I) ∝ exp

{
−1

2

(
z2
s − 2µs|t,0zs

σ2
s|t,0

)}
, (60)

where the mean µs|t,0 and variance σ2
s|t,0 can be matched with the constants a and b given in

Equation (59). Solving for the variance gives

σ2
s|t,0 = a−1 =

(
α2
t|s

σ2
t|s

+
1

σ2
s

)−1

=

 α2
t

α2
s(

1− α2
tσ

2
s

σ2
tα

2
s

)
σ2
t

+
1

σ2
s

−1

=

 1(
α2

sσ
2
t

σ2
sα

2
t
− 1
)
σ2
s

+
1

σ2
s

−1

=

(
1− α2

tσ
2
s

σ2
tα

2
s

)
σ2
s =

σ2
s

σ2
t

σ2
t|s,

(61)

and solving for the mean gives

µs|t,0 = a−1b =
σ2
s

σ2
t

σ2
t|s

(
αt|szt

σ2
t|s

+
αsz0

σ2
s

)
=

σ2
s

σ2
t

αt|s zt +
αs

σ2
t

σ2
t|s z0. (62)

To simplify further, the log signal-to-noise ratio, λt = log
α2

t

σ2
t
, is used. Rewriting the mean and

variance found in (61) and (62) using the log signal to noise ratio then shows that the distribution
qϕ(zs | zt, z0) can be written as

qϕ(zs | zt, z0) = N
(
zs; µs|t,0, σ2

s|t,0I
)
, (63)

where
µs|t,0 = eλt−λs

αs

αt
zt +

(
1− eλt−λs

)
αs z0, σs|t,0 =

(
1− eλt−λs

)
σ2
s . (64)
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C Detailed derivation of the loss function

From section 2, the likelihood of TimeVQVDM is bounded by

Eq[− log pθ(x)] ≤ Eqϕ

[
− log

pθ(z
LF
q , zLF

τ ,xLF)

qϕ(zLF
q , zLF

τ | xLF)

]
︸ ︷︷ ︸

=:LLF
ELBO(θ,ϕ|xLF)

+Eqϕ

[
− log

pθ(z
HF
q , zHF

τ ,xHF | zLF
q , zLF

τ ,xLF)

qϕ(zHF
q , zHF

τ | xHF)

]
︸ ︷︷ ︸

=:LHF
ELBO(θ,ϕ|xHF)

.

The derivation for the LF and HF ELBO terms are almost identical, so the derivation is only
carried out for low frequencies.

ELBO for low frequencies

The loss function is derived assuming that the diffusion process is discretized as τ = {τi}Tt=0, where
τi = i/T . Afterwards, we let T →∞. The inference model for low frequencies can be written as

qϕ(z
LF
q , zLF

τ | xLF) = qϕ(z
LF
q | zLF

0 ) qϕ(z
LF
0 | xLF)

T∏
i=1

qϕ(z
LF
τi | z

LF
τi−1

), (65)

and the generative model can be written as

pθ(z
LF
q , zLF

τ ,xLF) = pθ(x
LF | zLF

q ) pθ(z
LF
q | zLF

0 ) p(zLF
1 )

T∏
i=1

pθ(z
LF
τi−1
| zLF

τi ). (66)

Using the inference model in (65) and the generative model in (66), the low frequency component
in the evidence lower bound can be expressed as

LLF
ELBO(θ, ϕ | x)

(i)
= Eqϕ

[
− log pθ(x

LF | zLF
q )− log p(zLF

1 ) pθ(z
LF
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0 )− log
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τi ) + log qϕ(z
LF
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τ | xLF)

]
(ii)
= Eqϕ
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− log
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q )
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− log
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)

]
(iii)
= Eqϕ
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− log
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q )

qϕ(zLF
0 | xLF)

− log
p(zLF

1 ) pθ(z
LF
q | zLF
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−
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log
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LF
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]
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= Eqϕ
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− log
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q )
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−

T∑
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log

(
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LF
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qϕ(zLF
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·
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qϕ(zLF
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)]
(v)
= Eqϕ

[
− log

pθ(x
LF | zLF

q )

qϕ(zLF
0 | xLF)

− log
p(zLF

1 )pθ(z
LF
q | zLF

0 )

qϕ(zLF
q | zLF

0 )
−

T∑
i=1

log
pθ(z

LF
τi−1
| zLF

τi )

qϕ(zLF
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| zLF

τi ,xLF)
− log

qϕ(z
LF
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qϕ(zLF
1 | xLF)

]
(vi)
= Eqϕ

[
− log

p(zLF
1 )

qϕ(zLF
1 | xLF)

−
T∑

i=1

log
pθ(z

LF
τi−1
| zLF

τi )

qϕ(zLF
τi−1
| zLF

τi ,xLF)
− log

pθ(z
LF
q | zLF

0 )

qϕ(zLF
q | zLF

0 )
− log pθ(x

LF | zLF
q )

]
,

where equality (i) follows after inserting pθ(z
LF
q , zLF

τ ,xLF) given in (66) and (ii) follows after

inserting qϕ(z
LF
q , zLF

τ | xLF) given in (65). (iii) switches the logarithm of a product with the sum

of logarithms. (iv) uses Bayes theorem on qϕ(z
LF
τi | z

LF
τi−1

) = qϕ(z
LF
τi | z

LF
τi−1

,xLF). (v) removes a

telescoping product
∏T

i=1

qϕ(z
LF
τi−1

|xLF)

qϕ(zLF
τi

|xLF) =
qϕ(z

LF
0 |xLF)

qϕ(zLF
1 |xLF)

. (vi) lastly rewrites the evidence lower bound.
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The low frequency terms of the evidence lower bound can therefore be decomposed into four parts

LLF
ELBO(θ, ϕ | x) = LLF

prior + LLF
diffusion + LLF

codebook + LLF
reconstruct,

consisting of the different steps needed in sampling from the generative model. The first is drawing
from a prior distribution, corresponding to the fully noisy latent distribution. The second is using
the denoising diffusion model to denoise the latent sample. The third term is to quantize the
denoised latent vector using the codebook. Finally, the forth is to reconstruct the sample from the
quantized latent vector.

Prior loss

Using the KL divergence, the prior loss is

LLF
prior = Eqϕ

[
− log

p(zLF
1 )

qϕ(zLF
1 | xLF)

]
= DKL(qϕ(z

LF
1 | xLF) ∥ p(zLF

1 )).

Since we have a fixed diffusion prior p(zLF
1 ) = N (0, I) with no trainable parameters, and the

inference model also has a fixed distribution for the fully diffused sample, qϕ(z
LF
1 | xLF) = N (0, I),

the prior loss is constant. In fact, since the two distributions are equal, the analytical KL divergence
is zero. This term can therefore be omitted during training.

Diffusion loss

This derivation of the diffusion loss is similar to the one given in Appendix E in Diederik P. Kingma
et al., 2021. Using the KL divergence, we can write the diffusion loss as

LLF
diffusion = Eqϕ

[
−

T∑
i=1

log
pθ(z

LF
τi−1
| zLF

τi )

qϕ(zLF
τi−1
| zLF

τi ,xLF)

]
=

T∑
i=1

DKL(qϕ(z
LF
τi−1
| zLF

τi ,xLF) ∥ pθ(zLF
τi−1
| zLF

τi ))︸ ︷︷ ︸
=:LLF

diffusion,τi

.

Both distributions in the KL divergence are Gaussian with the same variance. For two Gaussian
distributions p = N (µp,Σp) and q = N (µq,Σq) where the variances satisfy Σp = Σq = σ2I, the
analytical KL divergence is

DKL(p ∥ q) =
1

2

(
log
|Σp|
|Σq|

− d+ (µp − µq)
⊤Σ−1

p (µp − µq) + tr
(
Σ−1

q Σp

))
=

1

2σ2

∥∥µp − µq

∥∥2
2
,

where d is the dimensionality of the two distributions. The two distributions we are comparing
can be written as

qϕ(z
LF
τi−1
| zLF

τi ,xLF) ∼ N
(
µτi−1|τi,0, σ2

τi−1|τi,0I
)
,

pθ(z
LF
τi−1
| zLF

τi ) ∼ N
(
µθ(z

LF
τi ), σ2

τi−1|τi,0I
)
,

where the means and variances are

µτi−1|τi,0 =
σ2
τi−1

σ2
τi

ατi|τi−1
zLF
τi +

ατi−1

σ2
τi

σ2
τi|τi−1

zLF
0 ,

µθ(z
LF
τi ) =

σ2
τi−1

σ2
τi

ατi|τi−1
zLF
τi +

ατi−1

σ2
τi

σ2
τi|τi−1

fθ(z
LF
0 ; zLF

τi )

σ2
τi−1|τi,0 =

σ2
τi−1

σ2
τi

σ2
τi|τi−1

.
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Writing out the KL divergence, a single term in the diffusion loss then can be expressed as

LLF
diffusion,τi = DKL

(
q(zLF

τi−1
| zLF

τi ,xLF) ∥ pθ(zLF
τi−1
| zLF

τi )
)

=
1

2
· 1

σ2
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LF
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2

=
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2
·

σ2
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σ2
τi−1
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·
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σ4
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1
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·

(
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σ2
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−
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0 − fθ(z
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∥∥2
2

=
1

2
·
(
eλτi−1 − eλτi

)∥∥zLF
0 − fθ(z

LF
0 ; zLF
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∥∥2
2
,

where it was inserted that σ2
τi|τi−1

=

(
1−

α2
τi

σ2
τi−1

σ2
τi

α2
τi−1

)
σ2
τi and simplified. Adding all terms in the

discrete diffusion loss, the full diffusion loss is

LLF
diffusion =

1

2

T∑
i=1

(
eλτi−1 − eλτi

)∥∥zLF
0 − fθ(z

LF
0 ; zLF

τi )
∥∥2
2
. (67)

Equation (67) shows that the diffusion loss is only dependent on the log-SNR λt, not on the
magnitude of αt and σt.

In the limit as the number of denoising steps tend to infinity, a discrete time step diffusion model
approximates a continuous time step diffusion model. The resulting objective function becomes
very similar as for the discrete case. When T →∞ it holds that

lim
T→∞

T
(
eλt−1/T − eλt

)
= − d

dt

(
eλt
)
, (68)

by the definition of derivation. In the limit as the time dimension is discretized using an infinite
number of steps, the discrete diffusion loss contains a Riemann sum approximating an integral,
such that the continuous time step loss becomes

lim
T→∞

LLF
diffusion = lim

T→∞

1

2

T∑
i=1

(
eλτi−1 − eλτi

)∥∥zLF
0 − fθ(z

LF
0 ; zLF

τi )
∥∥2
2

= lim
T→∞

1

2T

T∑
i=1

T
(
eλτi−1 − eλτi

)∥∥zLF
0 − fθ(z

LF
0 ; zLF

τi )
∥∥2
2

= −1

2

∫ 1

0

d

dt

(
eλt
) ∥∥zLF

0 − fθ(z
LF
0 ; zLF

t )
∥∥2
2
dt.

(69)

Computing (69) is computationally demanding. To avoid having too massive computations, an
unbiased Monte Carlo estimator is constructed. An unbiased estimator of the continuous diffusion
loss is given by

L̂LF
diffusion = −1

2
Eϵ∼N (0,I), t∼U(0,1)

[
d

dt

(
eλt
) ∥∥zLF

0 − fθ(z
LF
0 ; zLF

t )
∥∥2
2

]
, (70)

where zLF
t = αtz

LF
0 + σtϵ. This loss function is a weighted mean squared error for reconstructing

the initial low frequency latent given a noisy latent zLF
t , evaluated with a random noise at a random

time t ∈ [0, 1]. It is worth noticing is that the weight − 1
2

d
dt

(
eλt
)
≥ 0 for all time steps, since it

is assumed that the SNR is monotonic and decreasing. The loss function can also be written in
terms of the ϵ-prediction model. Using Equation (22) to switch to the noise-parameterization, the
diffusion loss can be written as

L̂LF
diffusion = −1

2
Eϵ∼N (0,I), t∼U(0,1)

[
d

dt

(
eλt
)
e−λt

∥∥ϵ− fθ(ϵ; z
LF
t )
∥∥2
2

]
= −1

2
Eϵ∼N (0,I), t∼U(0,1)

[
d

dt

(
λt

) ∥∥ϵ− fθ(ϵ; z
LF
t )
∥∥2
2

]
.

(71)
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Codebook loss

The derivation for the codebook loss is similar to the one given in (Cohen et al., 2022). The
codebook loss is

LLF
codebook = Eqϕ

[
− log

pθ(z
LF
q | zLF

0 )

qϕ(zLF
q | zLF

0 )

]
.

The generative distribution over the quantized low frequency latent is assumed to be the discrete
distribution

pθ(z
LF
q | zLF

0 ) = Softmax
{
−∥zLF

0 − ek∥22
}
1≤k≤K

,

and the inference model is assumed as in (Oord et al., 2017) to be the Dirac mass distribution

qϕ(z
LF
q | zLF

0 ) = δẑLF
q
(zLF

q ), (ẑLF
q )i = argmin

ek∈ZLF

∥∥(zLF
0 )i − ek

∥∥
2
.

Then according to (Cohen et al., 2022), this yields the following Monte Carlo estimation of
LLF
codebook:

LLF
codebook =

∥∥∥zLF
0 − ẑLF

q

∥∥∥
2
+ log

(
K∑

k=1

exp
{
−
∥∥zLF

0 − ek
∥∥
2

})
. (72)

The codebook loss has two terms, where the second is a normalizing term of pθ(z
LF
q | zLF

0 ). The
first term is non-differentiable, so standard back-propagation cannot be applied. (Oord et al.,
2017) resolves this issue by copying gradients from the decoder to the encoder. The codebook loss
is split into two parts

LLF
codebook =

∥∥∥sg [zLF
0

]
− ẑLF

q

∥∥∥2
2
+ β

∥∥∥zLF
0 − sg

[
ẑLF
q

]∥∥∥2
2
, (73)

where sg[·] is the stop gradient-operator. The second term of (73) is the commitment loss, which
is weighted by a parameter β.

Reconstruction loss

The reconstruction loss is

LLF
reconstruct = Eqϕ

[
− log pθ(x

LF | zLF
q )
]
.

Following the work of (Lee et al., 2023) and (Défossez et al., 2022), the reconstruction loss is
calculated for both the time-frequency domain and the time domain. So the loss is given as the
sum of two mean squared error terms,

LLF
reconstruct =

∥∥∥uLF − ûLF
∥∥∥2
2
+
∥∥∥xLF − x̂LF

∥∥∥2
2
, (74)

where uLF = PLF(STFT(x)) and ûLF = PLF(DLF(z
LF
q )) are in the time-frequency domain, and

x̂LF = ISTFT(ûLF) and xLF = ISTFT(uLF) are in the time domain.
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D Training Details

Stage 1: VQ-VAE

• Trainable parameters: ∼ 550k for LF and ∼ 350k for HF, depending on data set

• Hyperparameters: Batch size: 128, max epochs: 2000

• Additional parameters: codebook dim: 4, codebook size: 512, encoder/decoder dim: 64,
STFT: {nfft = 4, h=1}, codebook weight decay: 0.8, downsampling width: 16 for LF and 64
for HF, perceptual loss weight: 0.0, commintment weight: β = 1, ResNet blocks: 4

• Optimizer: AdamW, cosine scheduler, initial learning rate: 10−3, weight decay: 10−6.

• Loss function: mean squared error of reconstructing LF and HF time representation and
time-frequency representation

Stage 2: Diffusion models

• Trainable parameters: ∼ 4 million per diffusion model, depending on data set

• Hyperparameters: Batch size: 128, max epochs: 1000

• Additional parameters: parameterization: noise, time embedding: 256, class embedding:
256, class-dropout probability: 0.1, down-sampling steps: 3 for LF, 4 for HF, channels: (64,
128, 256) for LF, (32, 64, 128, 256) for HF, ResNet block groups: 4

• Optimizer: AdamW, cosine scheduler, initial learning rate: 10−3, weight decay: 10−6.

• Loss function: Mean squared error

Fully Convolutional Network

• Trainable parameters: 265000

• Hyperparameters: Batch size: 256, max epochs: 1000

• Optimizer: AdamW, cosine scheduler, initial learning rate: 10−3, weight decay: 10−5.

• Loss function: Cross-entropy

EMA updates of codebooks

Similar to (Oord et al., 2017), the codebook tokens are updates using exponential moving average
(EMA). During training, let {zLF

k,1, z
LF
k,2, · · · , zLF

k,nk
} be the output from the passing a mini-batch

through the encoder that is closest to the token ek ∈ ZLF. The first term of Equation (73) can
then be written as ∥∥∥sg [zLF

0

]
− ẑLF

q

∥∥∥
2
=

nk∑
i=1

∥zLF
k,i − ek∥22

The optimal value of ek is the average of the elements in the set. Instead of setting it to the
average of the current mini-batch, an EMA update with decay parameter γ is used. Let Nk denote
the EMA of the number of outputs from the encoder closets to token ek and mk denote the EMA
mass center of the latents closets to ek. Then an update of the token is given as

Nnext
k := Nprev

k γ + nnext
k (1− γ),

mnext
k := mprev

k γ +
∑
i

znext
k,i (1− γ),

enextk =
mnext

k

Nnext
k

.
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Simplified diffusion loss

The diffusion loss in Equation (53) is given as

Ldiffusion =− 1

2
Eϵ∼N (0,I), t∼U(0,1)

[
d

dt

(
λt

) ∥∥ϵ− fθ(ϵ; z
LF
t )
∥∥2
2

]
− 1

2
Eϵ∼N (0,I), t∼U(0,1)

[
d

dt

(
λt

) ∥∥ϵ− fθ(ϵ; z
HF
t , zLF

0 )
∥∥2
2

]
.

It is a weighted mean squared error, and the weight function is equal to

− d

dt

(
λt

)
=

π

cosβt sinβt
,

which becomes infinite at the two endpoints, t = 0 and t = 1. This loss function could potentially
cause instabilities during training. Following the practice of (Ho, Jain et al., 2020), the loss function
is simplified such that the weighting term is removed completely. The simplified diffusion loss is

Ldiffusion =
1

2
Eϵ∼N (0,I), t∼U(0,1)

[∥∥ϵ− fθ(ϵ; z
LF
t )
∥∥2
2

]
1

2
Eϵ∼N (0,I), t∼U(0,1)

[∥∥ϵ− fθ(ϵ; z
HF
t , zLF

0 )
∥∥2
2

]
.

Quasi-uniform diffusion time steps

Similar to (Diederik P. Kingma et al., 2021) we utilize a quasi-random approach for training the
diffusion models. The authors showed that implementing a quasi-uniform time distribution lowers
the variance of the diffusion loss during training. For a mini-batch consisting of n samples, the
diffusion time steps are drawn from the quasi-uniform distribution

t =
[
t+ 0

n t+ 1
n · · · t+ n−1

n

]⊤
mod 1, t ∼ U(0, 1).
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E Data set summary

Table 6 summarises the different data sets in the UCR archive. The table shows the data sets
name, type, number of training and test samples, number of classes and the length of the time
series.

Table 6: Summary of the data sets in the UCR archive.

ID Name Type Train Test Class Length
1 Adiac Image 390 391 37 176
2 ArrowHead Image 36 175 3 251
3 Beef Spectro 30 30 5 470
4 BeetleFly Image 20 20 2 512
5 BirdChicken Image 20 20 2 512
6 Car Sensor 60 60 4 577
7 CBF Simulated 30 900 3 128
8 ChlorineConcentration Sensor 467 3840 3 166
9 CinCECGTorso Sensor 40 1380 4 1639
10 Coffee Spectro 28 28 2 286
11 Computers Device 250 250 2 720
12 CricketX Motion 390 390 12 300
13 CricketY Motion 390 390 12 300
14 CricketZ Motion 390 390 12 300
15 DiatomSizeReduction Image 16 306 4 345
16 DistalPhalanxOutlineAgeGroup Image 400 139 3 80
17 DistalPhalanxOutlineCorrect Image 600 276 2 80
18 DistalPhalanxTW Image 400 139 6 80
19 Earthquakes Sensor 322 139 2 512
20 ECG200 ECG 100 100 2 96
21 ECG5000 ECG 500 4500 5 140
22 ECGFiveDays ECG 23 861 2 136
23 ElectricDevices Device 8926 7711 7 96
24 FaceAll Image 560 1690 14 131
25 FaceFour Image 24 88 4 350
26 FacesUCR Image 200 2050 14 131
27 FiftyWords Image 450 455 50 270
28 Fish Image 175 175 7 463
29 FordA Sensor 3601 1320 2 500
30 FordB Sensor 3636 810 2 500
31 GunPoint Motion 50 150 2 150
32 Ham Spectro 109 105 2 431
33 HandOutlines Image 1000 370 2 2709
34 Haptics Motion 155 308 5 1092
35 Herring Image 64 64 2 512
36 InlineSkate Motion 100 550 7 1882
37 InsectWingbeatSound Sensor 220 1980 11 256
38 ItalyPowerDemand Sensor 67 1029 2 24
39 LargeKitchenAppliances Device 375 375 3 720
40 Lightning2 Sensor 60 61 2 637
41 Lightning7 Sensor 70 73 7 319
42 Mallat Simulated 55 2345 8 1024
43 Meat Spectro 60 60 3 448
44 MedicalImages Image 381 760 10 99
45 MiddlePhalanxOutlineAgeGroup Image 400 154 3 80
46 MiddlePhalanxOutlineCorrect Image 600 291 2 80
47 MiddlePhalanxTW Image 399 154 6 80
48 MoteStrain Sensor 20 1252 2 84
49 NonInvasiveFetalECGThorax1 ECG 1800 1965 42 750
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50 NonInvasiveFetalECGThorax2 ECG 1800 1965 42 750
51 OliveOil Spectro 30 30 4 570
52 OSULeaf Image 200 242 6 427
53 PhalangesOutlinesCorrect Image 1800 858 2 80
54 Phoneme Sensor 214 1896 39 1024
55 Plane Sensor 105 105 7 144
56 ProximalPhalanxOutlineAgeGroup Image 400 205 3 80
57 ProximalPhalanxOutlineCorrect Image 600 291 2 80
58 ProximalPhalanxTW Image 400 205 6 80
59 RefrigerationDevices Device 375 375 3 720
60 ScreenType Device 375 375 3 720
61 ShapeletSim Simulated 20 180 2 500
62 ShapesAll Image 600 600 60 512
63 SmallKitchenAppliances Device 375 375 3 720
64 SonyAIBORobotSurface1 Sensor 20 601 2 70
65 SonyAIBORobotSurface2 Sensor 27 953 2 65
66 StarLightCurves Sensor 1000 8236 3 1024
67 Strawberry Spectro 613 370 2 235
68 SwedishLeaf Image 500 625 15 128
69 Symbols Image 25 995 6 398
70 SyntheticControl Simulated 300 300 6 60
71 ToeSegmentation1 Motion 40 228 2 277
72 ToeSegmentation2 Motion 36 130 2 343
73 Trace Sensor 100 100 4 275
74 TwoLeadECG ECG 23 1139 2 82
75 TwoPatterns Simulated 1000 4000 4 128
76 UWaveGestureLibraryAll Motion 896 3582 8 945
77 UWaveGestureLibraryX Motion 896 3582 8 315
78 UWaveGestureLibraryY Motion 896 3582 8 315
79 UWaveGestureLibraryZ Motion 896 3582 8 315
80 Wafer Sensor 1000 6164 2 152
81 Wine Spectro 57 54 2 234
82 WordSynonyms Image 267 638 25 270
83 Worms Motion 181 77 5 900
84 WormsTwoClass Motion 181 77 2 900
85 Yoga Image 300 3000 2 426
86 ACSF1 Device 100 100 10 1460
87 AllGestureWiimoteX Sensor 300 700 10 Vary
88 AllGestureWiimoteY Sensor 300 700 10 Vary
89 AllGestureWiimoteZ Sensor 300 700 10 Vary
90 BME Simulated 30 150 3 128
91 Chinatown Traffic 20 343 2 24
92 Crop Image 7200 16800 24 46
93 DodgerLoopDay Sensor 78 80 7 288
94 DodgerLoopGame Sensor 20 138 2 288
95 DodgerLoopWeekend Sensor 20 138 2 288
96 EOGHorizontalSignal EOG 362 362 12 1250
97 EOGVerticalSignal EOG 362 362 12 1250
98 EthanolLevel Spectro 504 500 4 1751
99 FreezerRegularTrain Sensor 150 2850 2 301
100 FreezerSmallTrain Sensor 28 2850 2 301
101 Fungi HRM 18 186 18 201
102 GestureMidAirD1 Trajectory 208 130 26 Vary
103 GestureMidAirD2 Trajectory 208 130 26 Vary
104 GestureMidAirD3 Trajectory 208 130 26 Vary
105 GesturePebbleZ1 Sensor 132 172 6 Vary
106 GesturePebbleZ2 Sensor 146 158 6 Vary
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107 GunPointAgeSpan Motion 135 316 2 150
108 GunPointMaleVersusFemale Motion 135 316 2 150
109 GunPointOldVersusYoung Motion 136 315 2 150
110 HouseTwenty Device 40 119 2 2000
111 InsectEPGRegularTrain EPG 62 249 3 601
112 InsectEPGSmallTrain EPG 17 249 3 601
113 MelbournePedestrian Traffic 1194 2439 10 24
114 MixedShapesRegularTrain Image 500 2425 5 1024
115 MixedShapesSmallTrain Image 100 2425 5 1024
116 PickupGestureWiimoteZ Sensor 50 50 10 Vary
117 PigAirwayPressure Hemodynamics 104 208 52 2000
118 PigArtPressure Hemodynamics 104 208 52 2000
119 PigCVP Hemodynamics 104 208 52 2000
120 PLAID Device 537 537 11 Vary
121 PowerCons Power 180 180 2 144
122 Rock Spectrum 20 50 4 2844
123 SemgHandGenderCh2 Spectrum 300 600 2 1500
124 SemgHandMovementCh2 Spectrum 450 450 6 1500
125 SemgHandSubjectCh2 Spectrum 450 450 5 1500
126 ShakeGestureWiimoteZ Sensor 50 50 10 Vary
127 SmoothSubspace Simulated 150 150 3 15
128 UMD Simulated 36 144 3 150
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