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Abstract
Physics-Informed Neural Networks (PINNs) are Neural Networks (NNs) with the
ability to incorporate known governing physical equations into their training pro-
cess, enabling them to efficiently model physical systems, even with limited access
to data. The numerous benefits of PINNs render them an attractive choice for
control applications. The Physics-Informed Neural Net for Control (PINC) is a
modification of the original PINN that can be used for this. This thesis attempts
to leverage the inherent ability of physics-informed machine learning to integrate
known physical principles, to model the behavior of an Electric Submersible Pump
(ESP). This is done by creating a PINN model and a PINC model for the sys-
tem. The experimental results of the PINN model demonstrate comparability with
solutions derived from RK4. This is further affirming its capacity to efficiently
solve complex problems while adhering to the underlying physics of the system, in
line with observations from previous research. However, the implemented PINC
model exhibits more varied outcomes and a general increase in the deviation be-
tween the model output and the solution from RK4 over the course of simulation
time. Although the PINC model demonstrates potential, its performance requires
further investigation. The challenges encountered in effectively training the PINC
and ensuring reliability when applied to the ESP system, suggest the necessity of
continued investigation and optimization efforts before the practical application of
such models.

Keywords: Physics-Informed Neural Networks; Physics-Informed Neural Net for
Control; Electric Submersible Pump; Modeling Complex Systems
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Sammendrag
Physics-Informed Neural Networks (PINN) er nevrale nettverk som inkluderer
kjente fysiske sammenhenger inn i treningsprosessen sin, slik at de kan modellere
fysiske systemer effektivt, selv med begrenset tilgang til systemdata. PINNs har
mange fordeler som gjør dem egnet til bruk i reguleringssystemer. Physics-Informed
Neural Nets for Control (PINC) er en modifikasjon av den opprinnelige PINN for-
muleringen som muliggjør denne typen bruk. Denne oppgaven forsøker å utnytte
den naturlige evnen fysikkbasert maskinlæring har til å integrere fysiske sammen-
henger, for å modellere oppførselen til en Electric Submersible Pump (ESP). Dette
gjøres ved å lage en PINN-modell og en PINC-modell for systemet. De eksperi-
mentelle resultatene fra forsøkene gjort med PINN-modellen viser at de oppn̊adde
resultatene i stor grad kan sammenlignes med løsningene funnet ved bruk av RK4.
Dette kan ses som en bekreftelse p̊a evnen PINN har til å effektivt løse kom-
plekse problemer, samtidig som de underliggende fysiske lovene respekteres, i tr̊ad
med obserasjoner gjort i tidligere forskning. Imidlertid viser den implementerte
PINC-modellen mer varierte resultater, og det kan observeres en generell økning
i avviket mellom modellutgangen og løsningen fra RK4 gjennom simuleringstiden.
Derfor, selv om PINC-modellen viser potensiale, er det nødvendig med videre un-
dersøkelser ang̊aende kapasiteten til modellen. Utfordringene som oppst̊ar i forsøket
p̊a å trene og sikre p̊aliteligheten til PINC-modellen for ESP-systemet, understreker
nødvendigheten av videre undersøkelser og forsøk p̊a optimalisering før slike mod-
eller kan anvendes i praksis.

Nøkkelord: Physics-Informed Neural Networks; Physics-Informed Neural Net for
Control; Electric Submersible Pump; Modellering av komplekse systemer
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Chapter 1
Introduction

Artificial Intelligence (AI) has a rich history, despite the field only being formally
established in 1956 [16]. The idea of being able to create intelligence in machines
has intrigued many scientists throughout the years, due to the enormous potential
such technology brings along [17]. Machine Learning (ML) is the subfield of AI that
focuses on enabling computers to learn and make predictions or decisions without
being explicitly programmed. Major changes are occurring in a variety of sectors
including healthcare, banking, manufacturing, and entertainment as a result of
AI-powered applications that streamline processes and improve decision-making
[36]. This manifests in a variety of applications. Financial institutions may use
ML algorithms for risk management [23] and fraud detection [42], while healthcare
providers use AI to help with disease diagnosis [19], prognosis [15], and treatment
planning [21].

In our daily lives, we surround ourselves with systems rooted in AI-based tech-
nologies as well [28]. Applications such as smart devices, virtual assistants, and
recommendation systems showcase the impact AI already has in today’s society.
Yet, this promising field within technology has a transformational potential that
is still far from being realized. As AI evolves, its ability to change a wide range of
fields such as healthcare and transportation holds the possibility of tackling several
major global concerns, as well as altering numerous current businesses.

However, the remarkable growth of AI and machine learning is accompanied by
a serious challenge: the availability and quality of data [31]. The current devel-
opments are driven by algorithms and models, but their effectiveness depends on
access to grand volumes of data for training and tuning. A lack of data, or data of
poor quality, might cause models to miss intricate patterns or to reinforce biases.
The issue of limited data is prominent within a span of sectors. In the healthcare
industry, access to thorough patient records may be prohibited due to data privacy
[35], while other sectors such as emerging markets or specialized industries might
face problems due to not having the huge datasets required for effective AI inte-
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gration [40]. The lack of data creates a bottleneck that prevents AI and ML from
reaching their full potential.

Industrial systems might often be prone to a shortage of data, due to a number
of factors [29]. Limited sensor coverage, outdated equipment without the ability
to generate data, worries about data security and confidential information, and
difficulties combining and integrating data from a variety of different sources can
all be contributors to a lack of data for such systems. One consequence of the
lack of complete and current data is that it can cause difficulties in establishing
and implementing data-driven models of the system at hand. This can lead to
a reduction in the effectiveness of decision-making, preventive maintenance, and
overall operations. It also causes difficulties in the event that a controller is to be
implemented for the system. However, recent advances within ML might propose
a solution to this problem.

The Physics-Informed Neural Network (PINN), after being proposed in 2017 by
Raissi et al. [24], has gained significant attention due to its inherent capability
of integrating domain-specific knowledge and data-driven modeling [44]. PINNs
leverage neural networks to learn the underlying physical laws governing a system.
By incorporating physics-based constraints into the loss function used during the
training process, PINNs can accurately predict the behavior of complex systems,
even in the presence of limited or noisy data.

Due to their capacity for precise and rapid prediction of intricate system dynamics,
PINNs show great promise for utilization in control applications. However, the
original PINN formulation is unsuitable for such usage, as the input does not
include the initial condition of the system and the control input. The Physics-
Informed Neural nets-based Control (PINC) architecture, introduced by Antonelo
et al. in [43], presents a novel PINN approach, specifically designed to tackle control
problems with the added advantage of simulating longer-range time horizons that
are not predetermined.

The Electric Submersible Pump (ESP) has a foothold in various industries, with
applications ranging from oil and gas production [8], to wastewater treatment [10],
and the dewatering of mines [4]. Efficient and reliable control of ESPs is crucial to
ensure that they have optimal performance and smooth operation. However, these
systems tend to have complex dynamics, and may also be subject to uncertainties.
Further complicating the matter, access to process data for modeling tends to be
limited. This may result in less-than-optimal performance using traditional control
methods, as they may fail to capture the nuances of the system, especially in the
case of limited data. However, in order to effectively control such systems, a model
that properly describes the dynamics of the system is needed.

This thesis aims to explore the development, training, and application of PINNs
and PINCs for the modeling of ESPs, leveraging the inherent physics knowledge
and the capacity of neural networks to learn complex relationships from data. By
integrating physics-based constraints into the neural network architecture, PINNs,
and PINCs can provide accurate and robust models even when data is limited,
enabling advanced control strategies such as Model Predictive Control (MPC) to
enhance the performance and efficiency of ESP systems.
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1.1 Research Objectives and Contributions

This thesis aims to study how a PINN can be used to predict the behavior of an
ESP, and furthermore how it can be extended into a PINC to be used in a control
setting.

Through the development of these models, this thesis intends to advance the un-
derstanding of the PINN and PINC model, their benefits and limitations. Fur-
thermore, these models are to be trained and applied to an ESP system, thus
contributing to the development of more efficient and reliable systems in a wide
range of industrial domains.

Another objective of this thesis is to apply the PINC model together with an MPC
for the ESP system. However, this is not achieved due to the developed PINC
model not achieving sufficient accuracy for such applications.

1.2 Thesis Outline

This thesis is divided into 8 chapters:

• Chapter 2 introduces relevant theoretical concepts for this thesis. It includes
a brief introduction to differential equations and numerical solvers, as well
as background on neural networks. It further elaborates on the concepts of
PINN and PINC.

• Chapter 3 gives a brief theoretical background on the ESP. It also describes
the ESP simulator development, and verification. This chapter is taken from
the pre-work for this thesis [51] and is presented here as well for completeness.

• Chapter 4 outlines the PINN structure and the development, training, and
verification of this model for the ESP.

• Chapter 5 describes the development of a PINC for the ESP, as well as the
training and verification of the model.

• Chapter 6 presents and evaluates the results acquired using the models de-
veloped in this work.

• Chapter 7 discusses the obtained results, as well as their implications for
practical applications.

• Chapter 8 summarizes and concludes the thesis. Here, a brief outlook on
future research directions is also presented.

3



Chapter 2
Theoretical Background

This chapter presents the theoretical foundation of this thesis. The focus of this
thesis is the application of a PINN and a PINC to an ESP, which is a system
with physics that can be described by a set of differential equations. A brief
introduction to differential equations and the initial value problem is therefore
given, with emphasis on the numerical methods that exist for solving such problems,
as these will be used as the ground truth against which the developed models will
be compared. Furthermore, an introduction to neural networks is given, before the
theoretical background of PINNs and PINCs is presented. While some parts of
the sections regarding neural networks, PINN and PINC are based upon the work
developed in the prework for this thesis [51], they are in large part rewritten and
reworked for this thesis and its objective.

2.1 Differential Equations

Differential equations play a crucial role in many engineering applications that
involve describing the evolution of processes over time. In order to define such ap-
plications accurately, two distinct pieces of information are required: the knowledge
of the process itself specified by differential equations, and the initial conditions,
which indicate the starting point or the conditions at a specific time or location. A
problem where both of these are defined is referred to as an Initial Value Problem
(IVP), and such problems provide a powerful framework for predicting the behavior
of dynamic systems.

2.1.1 The Initial Value Problem

Within differential equations and mathematical modeling, IVPs have a special sig-
nificance. The term IVP is used to describe a problem defined by differential
equations as well as one or more initial conditions of the unknown function. This
emphasis on defining both an initial condition and the derivative of the unknown
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function sets this type of problem apart from other differential equations. This
dual requirement of IVPs allows them to be used to represent dynamic processes,
evolution, and change across time. From the original condition, the system’s be-
havior both backward and forward in time can be predicted. IVPs are an essential
tool in a variety of fields, including physics, because of their predictive capability,
which is particularly important in situations when knowing a system’s past state
or future behavior is critical.

To formally define an IVP, a differential equation and an initial condition are
needed. First, let the differential equation be defined as:

d

dt
y(t) = N (t, y(t)) (2.1)

A solution to the initial value problem is a function that solves the differential
equation, while also satisfying the initial condition. That is, it satisfies:

y(t0) = y0 (2.2)

While some such problems have analytical solutions readily available, many of the
systems described by IVPs are complex with solutions that are difficult to obtain.
In such cases, numerical approximations are useful.

2.1.2 Numerical Methods

Solving initial value problems using numerical methods is a common approach in
cases where obtaining the analytical solution is challenging or impractical [3]. Nu-
merical methods find an approximation of the solution of the differential equation
by discretizing the domain and approximating the derivatives [11]. Several different
approaches exist, some of the more commonly known are Euler’s method and the
Runge-Kutta methods.

2.1.2.1 Euler’s Method

Euler’s method involves dividing the domain of the equation into small intervals
and approximating the function’s values at each interval using the derivative and
the initial condition. The formal formulation of this is given in Eq. 2.3.

yn+1 = yn + h ∗ N (tn, yn) (2.3)

Here yn and tn represent the function value and the corresponding time at time-step
n, h is the step-length used for calculation, N represents the differential equation,
and finally yn+1 is the function output at timestep n+1. Euler’s method provides a
straightforward way to compute an approximate solution of a differential equation.
However, due to its simplicity, it is prone to introducing some errors.

5



2.1.2.2 Runge-Kutta Methods

The Runge-Kutta methods are a family of methods for numerical approximation
that include Euler’s method. However, it also consists of methods utilizing higher-
order approximations to improve accuracy. These methods iteratively compute the
values of the function at successive points in time, updating the approximation
based on the derivative at each step.

Runge-Kutta 4 (RK4) is a fourth-order model within the Runge-Kutta family. It is
widely used in applications such as fluid mechanics [9] and heat transfer problems
[2], and it is defined by the following equations:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (2.4a)

tn+1 = tn + h (2.4b)

where k1, k2, k3, and k4 are defined as:

k1 = N (tn, yn) (2.5a)

k2 = N (tn +
h

2
, yn + h

k1
2
) (2.5b)

k3 = N (tn +
h

2
, yn + h

k2
2
) (2.5c)

k4 = N (tn + h, yn + hk3) (2.5d)

Here, h is the step size used, tn and yn are the time and function value at time
step n, and tn+1 and yn+1 are the time and function value at time step n+ 1.

By carefully selecting the method and appropriate step size, numerical methods
allow one to obtain reasonably accurate approximations for a wide range of initial
value problems, making them valuable tools in practical applications and numerical
simulations. This enables them to act as a trustworthy solution for a variety of
differential equations, thus creating a baseline against which other approximations
can be evaluated and verified.

2.2 Neural Networks

Neural networks form the base of deep learning, a subfield of machine learning
where such multi-layered networks are used to learn intricate patterns and features
from data. The algorithms used in neural networks are inspired by the workings
of the human brain. Neural networks are composed of a series of connected layers,
where each layer contains a collection of neurons. These networks take data as
input and are trained, using a training algorithm, to recognize patterns within the
data that will be used for future predictions. Figure 2.1 shows the structure of a
simple neural network.
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Input Layer Hidden Layers Output Layer

Figure 2.1: This figure is taken from [51]. It shows an illustration of the structure of a
neural network. The network has an input layer, colored yellow, that takes three inputs.
It then has three hidden layers, each comprising four neurons. The network output layer,
shown in red, gives one single output.

There is a wide range of applications for neural networks. This includes using neural
networks for solving differential equations. In fact, in recent years several different
methods have been proposed. According to Blechschmidt and Ernst in [32] three
common ways of doing this include methods based on the Feynman-Kac formula,
methods based on the solution of backward stochastic differential equations, and
physics-informed neural networks. Neural networks are particularly well-suited for
solving differential equations, as they have a large capability to learn and represent
intricate relationships from data, and thereby have the capacity to capture complex
dynamics and behaviors in a variety of different systems.

2.2.1 Universal approximators

An important characteristic inherent to neural networks is their ability to approx-
imate any measurable function with a desired level of precision, as established by
the universal approximation theorem [5]. This even applies to a feedforward neu-
ral network with just one single hidden layer. This capability implies that neural
networks have the potential to solve complex problems such as IVPs, in a similar
manner as conventional numerical solvers are capable of. Thus, neural networks
can be readily applied for the modeling of dynamical systems.
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2.2.2 Neural network architecture

Layers are the building blocks of the networks, and they shape the capacity of the
network to process and learn from data. There are three main types of layers in a
neural network: input layer, hidden layers, and output layer. The input layer is the
first layer, and it is the one that receives the initial data inputted to the network.
This layer transmits this data to the subsequent layers for processing. The hidden
layers are not accessible outside the neural network. These layers are the ones
enabling the networks to recognize patterns, extract features from the data, and
capture the relationships within the data. The final layer, or the output layer, is
the layer that produces the prediction or classification result of the neural network.
This is done based on the information processed through all of the preceding layers.

Each layer in a neural network is built up of neurons. Figure 2.2 shows the inner
workings of a neuron. Every neuron has one or more inputs from the previous
layer of the network, or in the case of the input layer, the inputs are the inputs of
the network. Each of the inputs to the neuron is multiplied by their own unique
weight. The weights are determined through the training process of the neural
network, where they are updated for each training step. The weights signify the
contribution, or importance, of the associated variable. The weighted inputs are
then summarized, together with the bias. The bias, is there to shift the output
of the activation function, similar to a constant term in a linear function. The
result of the summation between the weighted inputs and the bias is fed into the
activation function, which determines the output of the neuron.

Figure 2.2: This figure shows the structure of a single neuron in a neural network. For a
given neuron, there is a set of inputs, where each has an associated weight. The weighted
inputs are summed together, and the bias is added. Then, the sum is fed as input to the
activation function. The output of the activation function is the output of the neuron.
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The activation function determines whether or not a given neuron will be activated.
There are numerous possible activation functions to choose from. Figure 2.3 shows
three common choices, the sigmoid function, the hyperbolic tangent (tanh), and
the Rectified Linear Unit (ReLU). Which activation function to choose depends
on a variety of factors, including the problem at hand, the data, and the desired
behavior of the neural network. However, within the hidden layers, it is crucial
that the activation function used is non-linear. This way, the activation function
of the network introduces non-linearity, thus ensuring that the neural network’s
output isn’t a mere linear combination of its inputs. This non-linear transformation
enhances the network’s capacity to learn complex relationships within the data.

𝒈 𝒙 =  
𝟏

𝟏 + 𝒆 𝒙 𝒈 𝒙 =  
𝒆𝒙 − 𝒆 𝒙

𝒆𝒙 + 𝒆 𝒙
𝒈 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙)

Figure 2.3: This figure illustrates three commonly used activation functions, that is
sigmoid, tanh, and ReLU.

2.2.3 Training Neural Networks

The training of a neural network is a process that consists of iterative optimizations
aimed at minimizing a predefined loss function. This loss function serves an im-
portant role in the training process of the network, as it is what is used to quantify
the deviation between the predictions of the network and the actual target values.
This error measure is fundamental in ensuring the network’s performance improves
because, during the training process, the weights of the network are adjusted to
minimize this loss. For each iteration of the training process, an optimization algo-
rithm is used to find a direction in which the parameters can be refined to reduce
the value of the loss function. As the optimization process continues, the network’s
predictions tend to align better and better with the target outputs. This ultimately
leads the network to become capable of making accurate predictions or classifica-

9



tions, even for new and previously unseen data. Figure 2.4 illustrates the training
process of a neural network.

𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝒅𝒂𝒕𝒂
𝑵𝒆𝒖𝒓𝒂𝒍 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 

𝒎𝒐𝒅𝒆𝒍

𝑻𝒂𝒓𝒈𝒆𝒕 𝒐𝒖𝒕𝒑𝒖𝒕

𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈/𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 
𝒎𝒐𝒅𝒆𝒍

𝑪𝒐𝒎𝒑𝒂𝒓𝒆

𝑵𝑵 𝒘𝒆𝒊𝒈𝒉𝒕𝒔
 𝒎𝒐𝒅𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏

Figure 2.4: This schema shows the training process of a neural network. The training
data is inputted into the neural network to get out a prediction. The prediction is then
compared to the target output, and the result of this is used for the training algorithm
to determine how the weights of the network will be updated.

As the updates applied at each training step are determined by the optimizer of the
network, the choice of optimizer directly impacts the accuracy of a neural network
[25]. Several different optimizers exist and are commonly used for neural networks,
including Stochastic Gradient Descent (SGD) [1], ADAM [12] and Limited-Memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [6]. Which optimizer is best suited
depends on several factors, including the task at hand and the available resources.
This is a complex topic with many nuances that falls beyond the scope of this
thesis, however, further details can be found in papers such as [7], and [26], as well
as in the papers presenting the optimizers ([1], [12], [6]).

2.3 PINN

PINN, as introduced by Raissi et al. in [24], is a novel technique for combining
physics-based modeling and machine learning. It is referred to by various names:
Scientific Machine Learning [22], universal differential equations [41], physics-informed
machine learning [37], theory-guided data science [18], and physics-based deep
learning [48]. PINNs present an important change in the approach to complex
systems, with their ability to utilize both the intrinsic knowledge from the physics
of a system and machine learning’s data-driven capabilities.
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These neural networks can be used to find the solution to a wide range of dynamic
systems, utilizing the underlying physical principles of these systems. This knowl-
edge is incorporated directly into the training process, by integrating the governing
equations or constraints that define the behavior of the system into the loss func-
tion of the neural network. This ensures that the trained PINN is adapted to the
physics of the system, which in turn guarantees that its predictions not only align
with the given data but also with the established laws that govern the physical pro-
cess. This not only enables the PINN to make informed predictions even when the
data is sparse or noisy, it also helps ensure the network is capable of generalizing
well beyond the training data.

Similar to conventional neural networks, PINNs are universal approximators capa-
ble of accurately modeling a wide array of complex problems. As shown already
in the original publication [24], the architecture of these networks makes them ca-
pable of solving both problems involving forward approximation of functions and
problems related to inverse discovery. When used for forward approximation, the
PINN accurately predicts outputs given a system, making it a useful predictive
tool. In the context of inverse problems, the PINN is able to quickly deduce the
input parameters or conditions that correspond to a desired output. This enables
the usage of these networks for parameter estimation and system identification as
well. This demonstrates the PINN’s versatility and utility for a variety of problems.

In many problems involving forward approximation, the functions one wants to
approximate are extremely complex. As a result of this, a large number of mea-
surements are frequently required for a neural network to properly be able to re-
construct the function. However, in practice, and particularly when dealing with
real-world industrial systems, the access to data is often limited. Furthermore,
the data available may consist of incomplete or noisy measurements. The PINN
incorporates the governing physical equations of the system into the loss, and as a
result, the network is able to train well and deliver accurate predictions for complex
systems, even in circumstances with sparse and noisy data.

2.3.1 Mathematical formulation

Define the dynamical process the PINN is intended to solve as y(t). Then the
output of the network will be on the following form:

y(t) = fθ(t) (2.6)

where t ∈ [0, T ] is a temporal input. The function fθ is the mapping obtained by
the neural network, where θ denotes the weights of the network.

Consider a nonlinear ODE on the form, where N [·] represents a general differential
operator:

δty(t) +N [y(t)] = 0, t ∈ [0, T ] (2.7)

Then the residual of the differential equation, F , can be defined as:
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F(y) := δty +N [y] = 0 (2.8)

Furthermore, define the boundary conditions and the initial conditions, respec-
tively, as:

B[y(t)] = g(t), t ∈ [0, T ] (2.9a)

y(0) = y0 (2.9b)

Here, B[·] is the boundary operator, g represents the boundary of the system, and
y0 represents the initial value of y.

A generic formulation of the loss function for a PINN is given below in Eq. 2.10.
The loss function of a PINN is in fact a combination of several loss functions. In
general, it consists of at least two terms, LData representing the data of the system,
and LPhysics which is the loss derived from the known physical dynamics of the
system. Figure 2.5 illustrates the workings of a PINN. The loss function in Eq. 2.10
also includes two weighting factors, λData and λPhysics that allow for adjusting the
relative importance, or contribution, to the overall result, from the loss originating
from the data, and the loss related to the physical dynamics respectfully.

optimize

Neural Network Physical Information

Figure 2.5: This figure illustrates the workings of a simple physics-informed neural
network, with t as input, and y as output. It is a modified version of a figure from the
prework for this thesis, [51].

L = λData ∗ LData + λPhysics ∗ LPhysics (2.10)
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The losses, LData and LPhysics are defined as below in Eq. 2.11.

LData =
1

ND

ND∑
j=1

∣∣∣y(tjd)− ŷj
∣∣∣2 (2.11a)

LPhysics =
1

NF

NF∑
k=1

∣∣F(y(tkf ))
∣∣2 (2.11b)

Here, ND represents the number of data points, where the data value of the system
is known. These points are denoted as (tjd), with y(tjd) being the output of the
neural network at such a given data point and ŷj is the corresponding known data
value. NF is the number of collocation points, where the residual will be evaluated.

This basic formulation can be extended to include other known physical conditions,
like the boundary condition and initial condition. The associated losses can be
defined as follows:

LBC =
1

NB

NB∑
l=1

∣∣B[y(tlb)]− g(tlb)
∣∣2 (2.12a)

LIC =
1

NI

NI∑
m=1

∣∣y(0)− yi0
∣∣2 (2.12b)

where LBC represents the loss associated with the boundary condition, and LIC

that of the initial condition.

The complete loss function might then look like given below in Eq. 2.13, where the
terms λBC and λIC represent the weighting factor of the boundary condition and
the initial condition respectfully.

L = λData ∗ LData + λPDE ∗ LPDE + λBC ∗ LBC + λIC ∗ LIC (2.13)

2.3.2 Training PINNs

In practice, the training of a PINN can be seen as working in a number of passes,
one pass for each term of the loss function. The minimum formulation of the PINN
consists of two terms, the data term and the physics term. For this network, the
training works in two passes. The first pass is related to the data available for the
system. Assume there is access to measurements from the system at ND distinct
spatial locations in the input domain. These coordinates are then passed as input
to the neural network, with the goal of minimizing the error between the obtained
predictions and the data available at the points. This is similar to the training
process of a regular neural network, which is explained in further detail in Section
2.2.3.
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The second part of the training process for the PINN, is the pass for the physics
term of the loss function. For this, a point cloud is generated for the NF points
at which the physics of the system will be evaluated. Typically, NF will be sig-
nificantly larger than ND, that is NF >> ND. For each of these NF points, the
gradients are calculated using automatic differentiation, and the loss is calculated
based on how well the results aligns with the governing equations. From here, the
gradients are backpropagated, similar to what happens for the data loss.

The originally proposed PINN was trained using the quasi-Newton method L-
BFGS, which is a Limited-Memory BFGS optimization algorithm. While the L-
BFGS works well in the sense that it provides high accuracy, it is also prone to
potentially getting stuck in local minima [39]. Several studies have been conducted
in order to determine the best approach for training physics-informed neural net-
works. The ADAM optimizer has become a popular alternative, either used alone
as in [33] or, perhaps more commonly, in combination with L-BFGS as done in
[39].

2.3.3 Proposed improvements to the original PINN

The original architecture of the PINN works well in simple issues, but it fails in
more complicated circumstances where the PDEs are more complex [52]. However,
these networks come with great potential, thus several propositions have been made
to remediate some of the limitations of the original architecture.

One way to improve the performance of the PINN, is to change the weighting of
the terms in the loss function. In the standard PINN formulation, the terms are
all weighted equally, which does not account for the possible differences in the
gradient contribution. One way to handle this would be to assign fixed weights
to each term beforehand. However, this provides little flexibility and also requires
tuning of these hyperparameters for every new problem. Another possible solution
is the use of dynamic weighting, where the weights of the loss terms are adapted
in each epoch such as done in [50].

Efforts have also been made to improve the activation function used in the network.
In the original architecture, the hyperbolic tangent is used. While this activation
function, in general, produces good results, it has been observed that when used
to solve differential equations, it might fail to pick up higher frequencies in the
solution, or these higher frequency components appear late in the training [49].
Some of the possible proposed solutions to this include an adaptive activation
function using a hyperparameter with a hyperbolic tangent or ReLU [27] and using
a siren activation [53].

Another way to improve the overall performance of the PINN, is to change the
way the choice of collocation points are generated. In the original formulation of
the PINN, these points were chosen randomly or uniformly. This might cause the
network to train inefficiently, as some parts of the function might be less complex
and thus require less density of collocation points than others. To improve on
this, residual-based adaptive refinement has been proposed in [38]. This technique
evaluates the distribution of the physics-based loss and increases the density of
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collocation points in the regions where this loss is high.

2.4 PINC

PINC were introduced by Antonelo et al., in [43]. These physics-informed neural
networks are an extension of the original PINN formulation that leverages the
power of neural networks to not only predict system behavior but also to be able
to seamlessly integrate with real-time controllers for dynamic processes. While the
original PINN formulation is very versatile, it has two key issues that need to be
addressed for it to be usable in a control application. The first problem is that the
network needs to be adapted to include the control action and the initial condition
of the modeled system. Secondly, it has to be possible to use the network for
long-range simulations.

In order to be able to model the behavior of a dynamical system in a variety of
states, it is crucial for the PINC to include the initial condition of the system and
the control action as parts of the input. By doing so, the network can be trained for
a variety of starting states, and thus predict the behavior of the system for a broad
range of control settings. A simple schema illustrating the PINC with extended
input is shown in Figure 2.6. It should be noted that the control action needs to
remain constant during the time horizon simulated by the network.

The PINC suffers from an increased deviation between the predicted and actual
solutions as more time elapses from the initial starting time. However, as the
PINC can be trained for a variety of different initial conditions, this problem can
be mitigated by chaining a PINC trained for a shorter time horizon. The concept
of long-range simulations for the PINC is further detailed in Section 2.4.3

2.4.1 Mathematical formulation

The mathematical formulation of the PINC is similar to that of the original PINN,
however, as previously mentioned, the input is extended to include the initial con-
dition of the system and the applied control input, in order for the network to be
capable of being used in correlation with a controller. This leads to the output of
the network being in the following form:

y(t) = fθ(t, y(0), u), t ∈ [0, T ] (2.14)

where t ∈ [0, T ] is a temporal input, y(0) is the initial condition of the system, u is
the control input, and fθ represents the mapping obtained by the neural network,
with θ denoting the weights of this mapping.

The loss function remains the same as for the PINN, given by Eq. 2.10. However,
the losses need to be adjusted to take into account the added inputs of the network.
The expressions for the terms of the loss functions, therefore, have to be updated,
and LData and LPhysics are given as the following.
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𝑦(0) 𝑷𝑰𝑵𝑪 𝒏𝒆𝒕

Figure 2.6: An illustration, taken from [51], of a PINC net, showing the input consisting
of time, initial condition and control input.

LData =
1

ND

ND∑
j=1

∣∣∣y(tjd, y(0)jd, uj
d)− ŷj

∣∣∣2 (2.15a)

LPhysics =
1

NF

NF∑
k=1

∣∣F(y(tkf , y(0)
k
f , u

k
f ))

∣∣2 (2.15b)

where (tjd, y(0)
j
d, u

j
d) are the data points, ND is the number of such points, and ŷj

represents the known data values. The number of collocation points is NF , with
these points being denoted as (tkf , y(0)

k
f , u

k
f ).

2.4.2 Training PINCs

The training of the PINC is in many ways similar to that of the PINN, the main
difference lies in the provided training data. In order to ensure good overall per-
formance for the PINC in a variety of conditions, it is necessary for the network to
train for a large set of possible combinations of initial conditions and control inputs
within the feasible region of the system. This region is the set of all possible values
of initial conditions and control inputs that the system can take without becoming
unstable. An important step in the training process of the PINC is to determine
the feasible region for which the network shall be trained.

As the PINC is trained for a number of possible initial conditions and control inputs,
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whereas these are embedded directly in the inner equations of the corresponding
PINC, it follows that the process of training the PINC can be more challenging.
In fact, while the PINN learns to predict a single function, the PINC on the other
hand learns an array of such functions. This leads to a need for more training to
achieve a PINC performing to the same level as a PINN.

2.4.3 Long-range simulations

The performance of the PINC, much like the PINN, degrades rapidly as the time
horizon of the network increases [43]. Yet, as the network can be trained to be
used for a variety of different initial conditions and control inputs, and the initial
condition is in fact part of the inputs to the network, it can still be used to obtain
simulations over longer time intervals. This can be achieved by having a chain of
networks, each predicting the solution for one single time horizon.

Due to the nature of the PINC and its ability to learn a variety of conditions, the
networks of the chain can in fact all be the same model. Thus, this can be described
as using the network in self-loop mode, where the output of the model at time step
k, y[k], will be used as the initial condition for the model at time step k + 1:

y[k + 1] = fθ(tk, y[k], u[k]) (2.16)

Outputs

Inputs

Figure 2.7: This figure illustrates the concept of using the PINC in long-range simula-
tions. For each time interval, a control action is decided. The initial condition is the final
state of the previous time interval.

Figure 2.7. illustrates the development of the inputs and outputs of a PINC in
self-loop mode over time. As the same network is used in a self-loop mode, for each
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iteration the time is reset to zero. The control input changes at each time interval,
and it is determined by a controller outside of the network, for instance using an
MPC controller. The initial condition of the network at each time step will be the
end state from the output of the previous network.
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Chapter 3
Electric Submersible Pump

An Electric Submersible Pump, or ESP for short, is a type of pump that can be
installed in oil wells. The purpose of the pump is to enable or boost production in
wells installed in reservoirs where, for some reason, the oil cannot be lifted up by
the reservoir pressure alone. This pump system was first proposed in the 1910s by
Armais Arutunoff [20]. With this long history, it has found many application areas,
such as waterflood operations and offshore production. In general, the system could
be applied in any case where large volumes need to be lifted and there is electricity
available.

As [20] states, the conventional installation of an ESP system depicted in Figure
3.1, remains a common setup to this day. It is characterized by a few key features.
The first is that there’s only liquid entering the centrifugal pump of the system.
The second is that the viscosity of the produced liquid is of low enough viscosity.
And finally, the third is that the motor of the ESP is supplied with an AC current
of constant frequency.

The electric submersible pump remains a popular choice party due to its many
advantages. The pump system is able to produce high liquid volumes, with rela-
tively high efficiency and low maintenance. Furthermore, it is well suited for use
in various locations, ranging from urban environments to offshore installations. It
is also suited for use in deviated wells.

However, the ESP also has a set of disadvantages to take into consideration. For
instance, the installation requires a reliable power source to operate. When using
an ESP one must also take into consideration the amount of gas and materials like
sand that are present. The first may require action to prevent it from reducing
efficiency, while the latter may wear on the equipment. Some of the other factors
are related to the flexibility of the system, the cost of repairs, and the operating
conditions.

Due to their extensive use, it is essential to be able to operate ESPs in a manner
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that limits the failures of the system, while maintaining optimal production. Thus,
the manual operation of these wells for optimal production is a challenging task.
Therefore, automation solutions for the control of ESPs are essential, and several
have already been proposed and tested. These include conventional safety systems,
PID controllers for control of the intake pressure or current, and more recently, an
MPC approach for more advanced automatic control [13]. For the development of
such control solutions, a dynamic model of the system is needed. The following
section will introduce the model of an ESP in more detail.

3.1 Modeling of wells with ESP

𝒒𝒓

ESP

𝒑𝒓

𝒑𝒃𝒉

𝒑𝒑.𝒊𝒏

𝒑𝒑.𝒅𝒊𝒔

𝒒𝒑 , 𝒇

𝒑𝒎

𝒑𝒘𝒉

𝒒𝒄 , 𝒛

𝒒

𝒒

𝒉𝟐

𝒉𝟏

𝑽𝟐

𝑽𝟏

Figure 3.1: Model of an ESP lifted well, recreated based on [13] and [14].

3.1.1 Model equations and parameters

This model is based on the model of an ESP-lifted well presented in [13], and
details of the model derivation and limitations can be found there. The equations
and parameters of the model will be presented.
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The system can be described by the following ordinary differential equations (ODEs):

ṗbh =
β

V1
(qr − q) (3.1a)

ṗwh =
β

V2
(q − qc) (3.1b)

q̇ =
1

M
(pbh − pwh − ρghw −∆pf +∆pp) (3.1c)

The parameters of these ODEs are defined by the following algebraic equations:

Flow:

qr = PI(pr − pbh) (3.2a)

qc = Cc

√
pwh − pmz (3.2b)

Friction:

∆pf = F1 + F2 (3.3a)

Fi = 0.158 · ρLiq
2

DA2
·
(

µ

ρDq

) 1
4

(3.3b)

ESP:

∆pp = ρgH (3.4a)

H = CH(µ)H0(q0)

(
f

f0

)2

(3.4b)

q0 =
q

Cq(µ)

(
f0
f

)
(3.4c)

Table 3.1 gives an overview of the different model variables used in the model.
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Table 3.1: ESP model variables and characteristics

Control inputs
f ESP frequency
z Choke valve opening

Pressures
pm Manifold pressure
phh Wellhead pressure
pbh Bottomhole pressure
pp,in ESP intake pressure
pp,dis ESP discharge pressure
pr Reservoir pressure

Flow rates
q Average well flow rate
qr Reservoir-to-well flow rate
qc Flow rate of production choke

ESP characteristics
H0 ESP head characteristics
q0 Theoretical flow rate at reference frequency
CH VCF for head
Cq VCF for ESP flow rate

The parameters of the model are defined as given in Table 3.3, while different
constants of the model are given in Table 3.2. The values used here are based upon
those given in [14]. The variables H0, CH and Cq are polynomial, with coefficients
defined as given in Table 3.4.

Table 3.2: Well dimensions, ESP characteristics, and other constants

Symbol Meaning Value Unit
g Gravitational acceleration constant 9.81 m/s2

Cc Choke valve constant 2 · 10−5 *
A Cross-section area of pipe 0.008107 m2

D Pipe diameter 0.1016 m
h1 Height from reservoir to ESP 200 m
hw Total vertical distance in well 1000 m
L1 Length from reservoir to ESP 500 m
L2 Length from ESP to choke 1200 m
V1 Pipe volume below ESP 4.054 m3

V2 Pipe volume above ESP 9.729 m3

f0 ESP characteristics reference freq. 60 Hz

* Appropriate SI unit
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Table 3.3: Parameters from fluid analysis and well tests, and parameters assumed to be
constants

Symbol Meaning Value Unit
β Bulk modulus 1.5 · 109 Pa
M Fluid inertia parameter 1.992 · 108 kg/m4

ρ Density of produced fluid 950 kg/m3

Pr Reservoir pressure 1.26 · 107 Pa
PI Well productivity index 2.32 · 10−9 m3/s/Pa
µ Viscosity of produced fluid 0.025 Pa · s
Pm Manifold pressure 20 Pa

Table 3.4: Polynomial coefficients

c0 c1 c2 c3 c4
H0 9.5970e2 7.4959e3 -1.2454e6 0 0
CH 1 -0.03 0 0 0
Cq 1 -2.6266 6.0032 -6.8104 2.7944

3.2 Implementation

The implementation of the simulator was done using Python version 3.8 and
CasADI (Computer algebra system for Automatic Differentiation) version 3.5.5.
CasADI was used as a tool to solve the Differential-Algebraic Equation (DAE).
The integrator provided in CasADI was used for this purpose. Plots of the simu-
lation results were created using matplotlib. Complete code for the simulator can
be found at https://github.com/auroraslb/Prosjektoppgave.

3.3 Verification

The verification of the simulator is necessary before it can be used as an approx-
imation for a real ESP. In order to verify the simulator results, the output of the
simulator for different scenarios is compared with the system equations and the
expected behavior. The simulator can be considered verified if the resulting output
matches these. Four scenarios are considered to see how the simulator responds to
constant input, a square pulse in the valve opening, a square pulse in the frequency
input, and random changes in the valve opening respectively.

3.3.1 Scenario 1: f = 60Hz and z = 100%

In the first scenario tested, both the frequency and valve opening is held constant
throughout the simulation. According to the model outlined in the previous section,
such input should lead to the stabilization of all three response signals (q, pwh, and
pbh). And indeed, as can be seen from Figure 3.2 this is what is happening with
the output from the simulator.
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Figure 3.2: The simulation output with constant input of f = 60 Hz and z = 100%.

3.3.2 Scenario 2: f = 60Hz and z steps from 60% to 100%
and back

In Figure 3.3, one can see that the outputs initially are stabilizing themselves.
Then, as the valve opening z is increased, so is the liquid flow q. The pressures
both decrease. This matches the intuitive behavior of the system well, as a larger
valve opening gives opens up for a larger flow, while an increased flow leads to
lower pressure. It also fits well with the theoretical model. From equation 3.2b
there is a negative relationship between z and ˙pwh, so an increase in z leads to a
decrease in pwh. Furthermore, from 3.1c it follows that as pwh decreases, q̇ and q
increases. Finally, from 3.1a, as q increases, ˙pbh and pbh decreases. When the valve
opening is decreased again, the opposite applies.

3.3.3 Scenario 3: z = 60% and f steps from 60Hz to 70Hz
and back

In this scenario, the response of the system when the valve opening is held constant,
but the frequency is increased and then decreased is simulated. Figure 3.4 shows the
response of the system in this scenario. As can be seen from the figure, increasing
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Figure 3.3: The simulation output when the valve opening is switched from 60% to
100% after one-third of the time, and back again after two-thirds.

the frequency leads to a decrease in the bottomhole pressure, and an increase in the
wellhead pressure and the liquid flow. This matches the expected behavior of the
system, as an increase in the frequency increases the speed of the ESP. Thus liquid
is lifted faster upwards, resulting in less pressure on the bottom, but an increased
flow and increased pressure on the top. It also matches the theoretical model well.
Equations 3.4 give a positive relationship between f and q̇, and therefore also q.
Furthermore, from equation 3.1a we see that an increase in q leads to a decrease
in pbh, and from equation 3.1b it leads to an increase in pwh. When the frequency
is lowered again, the opposite applies.

3.3.4 Scenario 4: f = 60Hz and z steps randomly between
50% to 100%

In the final verification scenario, the response of the system to random changes
in the choke valve opening is examined. Figure 3.5 shows the input and the cor-
responding response signals. As in the previous scenario, one can observe that
increasing the choke valve opening increases the flow while decreasing the opening
also decreases the flow. Furthermore, the previously mentioned inverse relation
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Figure 3.4: The simulation output when the frequency is switched from 60 Hz to 70 Hz
after one-third of the time, and back again after two-thirds.

between the flow and the pressures of the system is apparent here as well. The
wellhead pressure exhibits a more rapid and pronounced response to changes in the
flow rate compared to the bottomhole pressure. This can be due to the fact that
the wellhead pressure is directly connected with the choke valve opening.

3.3.5 Results of verification

As the four scenarios treated above all show that the simulation results correspond
well with the expected behavior and the theoretical model of the ESP system, thus
the simulator can be considered verified.
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Figure 3.5: The simulation output when the valve opening is randomly changing within
the limits of 60% and 100%.
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Chapter 4
Physics-Informed Neural Network
for the Electric Submersible Pump

This chapter presents the practical aspects of implementing a PINN model for
the ESP. This includes detailing the model used and how it was constructed, the
training of the model, as well as the process of validating the constructed network.

4.1 Technical Specifications

The PINN model is implemented using Python 3.9 and Pytorch. The training
is performed in Google Colaboratory using NVIDIA’s T4 GPU and high-RAM
setting.

4.2 Construction of the PINN Model

Constructing the PINN for the ESP involves two fundamental components. Firstly,
it entails creating the neural network architecture, which serves as the backbone for
learning the system’s behavior. This involves defining the number and structure
of the layers of the network, the activation functions used, and the connectivity
patterns between neurons.

For this, a neural network comprising one input layer, one output layer, and eight
hidden layers is created. All of the layers are fully-connected, also known as linear,
which means that all input neurons are connected to every output neuron. Each
hidden layer consists of 50 neurons, and the activation function is the hyperbolic
tangent. The inputs of the network are normalized to values between -1 and 1.

The second component of constructing the PINN model, is finding an appropriate
loss function that captures the physical dynamics inherent in the system. Such a
loss function incorporates the known governing equations of the ESP, presented in

28



Chapter 3. By minimizing this loss function during the training process, the PINN
can effectively learn to model and predict the ESP’s behavior while adhering to
the underlying physical principles.

The loss function of the PINN for the ESP is based upon the basic formulation given
in Eq. 2.10 of the PINN loss function, that is, only two terms are included. One
is accounting for the deviation between the solution given by the neural network
and the differential equations governing the system, and the other is the known
data points. The two terms of the loss function are weighted equally, meaning that
λData and λPhysics in Eq. 2.10 are both set to 1.

4.3 Training the PINN Model

In order to train the neural network, training data has to be gathered. For the PINN
for ESP, two sets of training data are necessary. The first is that corresponding to
the known data points. The second is the collocation points, where the residual is
evaluated to ensure the solution matches the governing physical equations.

The training data corresponding to the data points consists both of the input and
the corresponding output value of the system. For the PINN for ESP, the input to
the network only consists of time. The output is the bottom hole pressure, wellhead
pressure, and the flow through the system. Furthermore, in the case of the ESP,
only one data point is known, that is, the initial condition of the system.

The collocation points do not have a corresponding output value, they only consist
of the input values. Thus, the collocation points for the PINN for ESP will simply
be a set of time values. In order to generate this training data, the number of
collocation points was chosen to be Nf = 10000, and these were sampled randomly.

The network is trained using 2000 steps, and the ADAM optimizer. Further details
on how the training process of the PINN works can be found in Section 2.3.2.

4.4 Validation of the PINN Model

The PINN model of the ESP acts as a solver of the system, finding the solution to
the set of differential equations defining it. In order to validate the results of the
neural network, the output can be compared to the true solution of the differential
equations. For this purpose, the solution obtained using the numerical solver RK4
is considered to be the true solution of the system.

In this section, the neural network is validated using four combinations of control
actions. For each scenario, a new network is trained. In all scenarios, the initial
condition is the same, x = [75bar, 35bar, 35m3/h], and the time horizon is set to
T = 5min. The first scenario is when both control inputs are held high, a high
frequency and a large valve opening. The second scenario is when the frequency is
held high, but the valve opening is low. The third is when the frequency is low, but
the valve opening is large. The final scenario is when both inputs are low. In all
scenarios, the solution obtained using PINN is plotted against the RK4 solution.
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4.4.1 Scenario 1: f = 65 Hz and z = 80%

In this scenario, both the control frequency and the valve opening are set to high
values. A PINN model was then trained using the procedure described above in
Section 4.3. The performance of the resulting model is shown in blue in Figure 4.1,
where it is compared to the true solution of the system, obtained using RK4 and
plotted in red.

(a)

(b)

(c)

Figure 4.1: This figure shows a PINN (blue) trained with a high value for both the
control frequency (65 Hz) and the valve opening (80%). The result is compared to the
solution obtained using RK4 (red). (a) shows the solution for the bottomhole pressure.
(b) shows the wellhead pressure. (c) is the flow.
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4.4.2 Scenario 2: f = 65 Hz and z = 20%

In this scenario, the control frequency is still held high, but the valve opening is
set low. Figure 4.2 shows the results of the PINN trained for such a setting (in
blue), compared to the solution given by RK4 (in red).

(a)

(b)

(c)

Figure 4.2: This figure shows a PINN (blue) trained with a high value for the control
frequency (65 Hz) and a low value for the valve opening (20%). The result is compared
to the solution obtained using RK4 (red). (a) shows the solution for the bottomhole
pressure. (b) shows the wellhead pressure. (c) is the flow.
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4.4.3 Scenario 3: f = 40 Hz and z = 80%

For the third scenario, the control frequency is set low, while the valve opening
is set high. The outcomes of the PINN trained with this setting are depicted in
Figure 4.3 in blue, along with the solution obtained from RK4, depicted in red.

(a)

(b)

(c)

Figure 4.3: This figure shows a PINN (blue) trained with a low value for the control
frequency (40 Hz) and a high value for the valve opening (80%). The result is compared
to the solution obtained using RK4 (red). (a) shows the solution for the bottomhole
pressure. (b) shows the wellhead pressure. (c) is the flow.
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4.4.4 Scenario 4: f = 40 Hz and z = 20%

The final scenario explored is that when both the control frequency and the valve
opening are set low. The outputs from a PINC model trained for such conditions
are shown in blue in Figure 4.4, and the true solutions of the system obtained using
RK4 are shown in red.

(a)

(b)

(c)

Figure 4.4: This figure shows a PINN (blue) trained with a low value for both the
control frequency (40 Hz) and the valve opening (20%). The result is compared to the
solution obtained using RK4 (red). (a) shows the solution for the bottomhole pressure.
(b) shows the wellhead pressure. (c) is the flow.
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4.4.5 Results of validation

The above scenarios show great overlap between the solution obtained using a
PINN and using a traditional numerical solver, the RK4. The scenarios tested
different combinations of the control input settings, and the model performed well
throughout them all. As the PINN was able to accurately give solutions in the
cases of both high and low control frequency, and with high and low valve opening,
this implies its capability to provide accurate predictions within the range of tested
values as well. Thus, the model can be considered validated.

34



Chapter 5
Physics-Informed Neural Network
for Control of the Electric
Submersible Pump

This chapter describes the steps required for implementing the PINC for the ESP,
including the practical details on the implemented model, the training of the model,
and the method for validating the resulting neural network.

5.1 Technical Specifications

The technical specifications here are the same as for the PINN. The PINC model is
implemented using Python 3.9 and Pytorch. The training of the model is performed
in Google Colaboratory using NVIDIA’s T4 GPU and high-RAM setting.

5.2 Construction of the PINC Model

The PINC model for the ESP is based on the previously developed PINN model
for the system. However, in making the transition from a regular PINN into one
that is able to work in a control system, some key aspects are changed. The input
of the model is extended from just consisting of the time, to also include control
inputs and the initial condition of the ESP system. In the case of the ESP, this
results in the input comprising the time, the valve opening, and control frequency,
as well as the initial condition of the three state variables: the wellhead pressure,
the bottomhole pressure, and the flow. Thus, the input of the network is now on
the form given below in Eq. 5.1.

X = [t, z, f, x1, x2, x3] (5.1)
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Here, t is the time, z and f are constants representing the control input, and x1,
x2 and x3 are the initial conditions of the system.

The network structure comprises one input layer, one output layer, and ten hidden
layers. Each layer consists of 50 neurons, and they are all fully-connected. The
activation function used is the hyperbolic tangent. The loss function is based upon
the basic formulation of the loss function for a PINN given in Eq. 2.10.

5.3 Training the PINC Model

As the PINC needs to be trained for a variety of initial conditions and possible
control inputs, training efficiency is of greater importance here than in a given
PINN. As with the PINN, the ADAM optimizer is used to train the PINC as
well. The number of training steps used to create the different PINC models varies
depending on the use case, and is specified for each model.

5.3.1 Training data

In order to properly utilize the PINC in a control setting, it is necessary to train it
with a range of feasible initial conditions, and a set of possible control inputs. As
with the PINN, two sets of data are necessary to gather to train the PINC. The
first corresponds to the known data points, in this case, the initial conditions. The
second is the set of collocation points.

In order to sample points for training the PINC model, three parameters need to be
defined. That is, firstly, how many points in time the equations will be evaluated.
Secondly, the number of possible control inputs, or combinations of z and f , that
the network will be trained for. And finally, the different possible initial conditions,
consisting of x1, x2, and x3, the network will learn. Let these numbers be defined
as Nt, Nc and Ni respectively.

The training data corresponding to the data points will consist of all the possible
initial conditions the PINC will be trained with. In this case, the time is held
constant, as the initial condition is evaluated at time zero. However, as the input
of the neural network consists of both the control input and the initial condition as
well, the total number of training points will be the combination of each possible
initial condition and each possible control input. This results in a total of ND =
Nc ∗Ni data points.

The data used for evaluating the physics of the system, the collocation points, need
to cover the range of initial conditions as well as the control inputs. This means
that for each sampled time point, this has to be combined with each sampled
initial condition as well as each sampled control input. This results in a total of
NF = Nt ∗Nc ∗Ni collocation points.

5.3.2 Defining a feasible region

For the network to properly train, it is necessary for the points gathered to be
within the feasible region of the differential equation. This can be achieved by
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finding ranges of values for the different states between which the equation produces
valid results. Then, this can be used to set minimum and maximum values that
the points can be sampled between. In order to define a feasible region for this
network, RK4 was used. A variety of different settings for initial condition and
control inputs were tested to see whether or not they were valid combinations for
the equations.

After conducting these experiments, the feasible region for the initial values was
chosen as follows. The bottom-hole pressure, or x1, was defined to be within 70 to
85 bar. The wellhead pressure, x2, was set to be in the interval 25 to 40 bar. The
flow, x3 was held between 25 and 50 m3/h . For the feasible region for the control
input, the valve opening was set between 10 and 90%, and the frequency between
40 and 65 Hz.

5.4 Validation of the PINC Model

The process of validating the PINC model is somewhat similar to that of the PINN
model. That is, in both cases the resulting output is compared to the output of a
numerical method, in this case RK4. However, in the case of PINN, there is only
one initial condition and one fixed control input to validate. The PINC, on the
other hand, will be trained in order to be used in a control model with multiple
possible control signals and initial conditions.

Long-range simulations of the PINC are obtained by chaining the network in a
self-loop mode. Thus, in order to validate the neural network, one can choose a set
of values for the control input as well as a range of initial conditions. Each of these
settings can then be validated, in the same way the PINN was validated. If the
network is able to accurately predict short-range simulations, it can thus provide
accurate long-range simulations.

The PINC model is validated in two steps. The first step consists of validating the
network’s ability to predict the solution of the system given a single initial condition
and control input, that is whether it works when used in a similar manner as the
PINN. The second step of the validation is training a single network for three sets
of initial conditions and control inputs, in order to validate the capability of the
PINC to predict the solution of the system given a variety of initial conditions and
control inputs.

5.4.1 Scenario 1: Fixed initial condition and control input

In this scenario, the PINC model was trained using 1000 epochs. The initial con-
dition was fixed and set to [75bar, 35bar, 35m3/h], and the control input was fixed
as well, at [60Hz, 80%]. Figure 5.1 shows the performance of the model. The red
line represents the true solution obtained by RK4, while the dotted blue line is the
solution obtained using the PINC.
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(a)

(b)

(c)

Figure 5.1: This figure shows a PINC (blue) trained with a fixed initial condition and
fixed control input. It is compared against the true solution obtained using RK4 (red).
(a) shows the solution for the bottomhole pressure. (b) shows the wellhead pressure. (c)
is the flow.

5.4.2 Scenario 2: Long-range simulation with PINC

Here, the network is trained for three sets of initial conditions and control inputs.
These are [75bar, 35bar, 35m3/h] as initial condition with [60Hz, 80%] as control
input, [73bar, 28.5bar, 48.5m3/h] with [55Hz, 30%], and [75.5bar, 35.7bar, 37m3/h]
with [65Hz, 50%].

For each condition, there are 15,000 collocation points. The network is trained
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using batches with similar initial conditions and control inputs. Each condition was
trained for a total of 2,000 training steps. Figure 5.2 illustrates the performance of
the PINC model (the dotted blue line), compared with the true solution obtained
using RK4 (red line).

(a)

(b)

(c)

Figure 5.2: This figure shows a PINC (blue) trained for long-range simulation. It is
compared against the true solution obtained using RK4 (red). (a) shows the solution for
the bottomhole pressure. (b) shows the wellhead pressure. (c) is the flow.
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5.4.3 Results of verification

As can be seen from the scenarios tested above, the PINC is able to accurately
predict the solution to a problem given a single initial condition and control input.
It is also able to predict the solution in the case where the network is trained for
multiple initial conditions and control inputs, however with a small discrepancy.
The model can be considered verified for use for a single case, however, the results
of the verification for multiple inputs indicate the need for further experiments on
the topic.
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Chapter 6
Results and Findings

When evaluating the performance of the PINN and PINC models, several factors
can be taken into account. The first is the overall accuracy of the solution. Is it
correct? How well does it compare with the solution gained from numerical solvers
such as the RK4? Another important aspect is the time component. What amount
of time does it take to train the models, and how long does it take to use them
for inference? And how does this compare to the time it takes to use a numerical
solver?

6.1 Performance Evaluation of the PINN Model

In order to evaluate the performance of the PINN, several scenarios were examined.
In the following scenarios, the initial condition was [x1, x2, x3] = [75bar, 35bar, 36m3/h]
and the control input was set to [z, f ] = [90%, 65Hz]. Three different time horizons
were then examined, 0.1 minute, 1 minute, and 5 minutes. For each time horizon,
a new PINN model was trained, and RK4 was used to find a solution as well.
Furthermore, the time taken to train the PINN model, use the trained model for
obtaining the solution, and the time taken to solve the problem using RK4 was
noted. These details are listen in Table 6.1

Table 6.1: This table presents the results of the experiments performed to evaluate
the performance of the PINN. It shows three scenarios where the PINN was trained for
different simulation times, and with a different number of epochs. The resulting training
time, inference time, time to perform RK4 and the training error of the model are listed.

# Epochs Sim.
time

Training
time

Inference
time

RK4 time Training
error

1 1000 0.1 min 26.4032 s 0.00265241 s 0.324058 s 2.2461e-06
2 2000 1.0 min 44.7757 s 0.00255489 s 0.268201 s 2.2285e-07
3 5000 5.0 min 108.674 s 0.00189567 s 0.275140 s 6.5441e-08
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6.1.1 Scenario 1: 0.5 minute

The solutions obtained from PINN and RK4 using a time horizon of 0.5 minute is
shown in Figure 6.1. The dashed blue line representing the solution gained from the
PINN mostly overlaps the red line representing the solution obtained from RK4.

(a)

(b)

(c)

Figure 6.1: This figure shows the PINN (blue) trained for a simulation time of 0.1
minute, compared with the solution obtained using RK4 (red). (a) shows the solution for
the bottomhole pressure. (b) shows the wellhead pressure. (c) is the flow.
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6.1.2 Scenario 2: 1 minute

The plot of the different states during one minute is shown in Figure 6.2. As before,
the red lines are the state outputs obtained using RK4, while the blue dotted lines
are the results of the trained PINN model.

(a)

(b)

(c)

Figure 6.2: This figure shows the PINN (blue) trained for a simulation time of 1 minute,
compared with the solution obtained using RK4 (red). (a) shows the solution for the
bottomhole pressure. (b) shows the wellhead pressure. (c) is the flow.
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6.1.3 Scenario 3: 5 minutes

The final figure, Fig 6.3 shows the solutions obtained by PINN, the dotted blue
lines, and RK4, the red line, when the PINN model is trained for a time interval
of 5 minutes.

(a)

(b)

(c)

Figure 6.3: This figure shows the PINN (blue) trained for a simulation time of 5 minutes,
compared with the solution obtained using RK4 (red). (a) shows the solution for the
bottomhole pressure. (b) shows the wellhead pressure. (c) is the flow.
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6.2 Performance Evaluation of the PINC Model

In order to evaluate the performance of the PINC model, four scenarios are being
tested. The first is that where the PINC is trained for a single initial condition
and control input. In the second, the control input is still fixed, while the PINC
is trained on an interval of initial conditions. The third and fourth scenarios,
respectively, are where one and two of the control inputs are trained on an interval
as well. In each of these scenarios, the time horizon used for the PINC is one
minute. A summary of the obtained results is listed in Table 6.2.

For each of the four scenarios, plots of the three states modeled by the neural
network are shown. In addition, the deviation between the solution presented by
the neural network and the solution obtained by the numerical solver has been
recorded. Plots showing the development of this deviation during the time horizon
modeled by the PINC are included as well. The deviation is measured using the
Euclidean distance between the two points at each time step. This deviation is
shown in two plots. One is showing the deviation for each time step, while the
other is showing the average of the deviations up until that time step.

Table 6.2: This table presents the results of the different experiments performed to
evaluate the performance of the PINC model. It shows four different scenarios where the
PINC was trained varying the intervals of the inputs to the model, and the number of
training epochs. In the first scenario, the model is trained for a fixed set of inputs. For
the second, the initial conditions vary. In the third scenario, the initial conditions and
one control input varies. In the fourth, and final, scenario, all inputs to the model vary.
The resulting training time, inference time, time to perform RK4 and the training error
of the obtained model are listed.

# Epochs Training time Inference time RK4 time Error
1 1000 18.37266 s 0.00330234 s 0.227689 s 2.4531e-07
2 3000 781.484 s 0.0114233 s 0.459043 s 7.6598e-06
3 5000 1224.08 s 0.0110455 s 0.517097 s 4.4435e-05
4 10000 2414.29 s 0.00353932 s 0.233735 s 5.5706e-05
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6.2.1 Scenario 1: Fixed initial condition and control input

Here the results of training the PINC using a fixed initial condition and a fixed
control input are presented. The network is trained with the initial condition
being [x1, x2, x3] = [75bar, 35bar, 35m3/h], and control input fixed to [z, f ] =
[80%, 60Hz]. The training data of the model consists of 1 data point and 1000
collocation points. The PINC model is trained using 1000 training epochs.

(a)

(b)

(c)

Figure 6.4: This figure shows the comparison between PINC (blue) trained with only
one initial condition and control input, and the solution obtained using RK4 (red). (a)
shows the solution for the bottomhole pressure. (b) shows the wellhead pressure. (c) is
the flow.
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The first, Figure 6.4, shows the comparison between the results obtained using the
PINC model and the true solution obtained using RK4. The second figure, Figure
6.5 shows the deviation between these two solutions, and the development of this
deviation during the time interval.

(a)

(b)

Figure 6.5: This figure shows the development of the deviation (measured in Euclidean
distance) during the simulated time interval. (a) Shows the deviation at any given time
point. (b) Shows the average deviation up until any given time point
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6.2.2 Scenario 2: Interval of initial conditions

(a)

(b)

(c)

Figure 6.6: This figure shows the comparison between PINC (blue) trained with the
initial condition within an interval and a constant control input, and the solution obtained
using RK4 (red). (a) shows the solution for the bottomhole pressure. (b) shows the
wellhead pressure. (c) is the flow.

The results presented here stem from keeping the control input fixed, while the
initial conditions are sampled from an interval. The control input is still being
fixed at [z, f ] = [80%, 60Hz]. The initial conditions of the system are now sampled
randomly between [xmin

1 , xmin
2 , xmin

3 ] = [70bar, 30bar, 30m3/h] and
[xmax

1 , xmax
2 , xmax

3 ] = [80bar, 40bar, 40m3/h]. A total of 100 data points for the
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initial condition are sampled, with a corresponding 1000 collocation points. The
network is trained using 3000 epochs.

Figure 6.6 compares the output of the PINC model, shown with a dashed blue
line, and the solution from RK4, shown with a red line. Figure 6.7 illustrates the
difference between the two.

(a)

(b)

Figure 6.7: This figure shows the development of the deviation (measured in Euclidean
distance) during the simulated time interval. (a) Shows the deviation at any given time
point. (b) Shows the average deviation up until any given time point
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6.2.3 Scenario 3: Interval of initial conditions and one con-
trol input

In this scenario, not only the initial condition but also one of the control inputs
are sampled at random intervals. The initial condition is still randomly picked
from the interval ranging from [xmin

1 , xmin
2 , xmin

3 ] = [70bar, 30bar, 30m3/h] and
[xmax

1 , xmax
2 , xmax

3 ] = [80bar, 40bar, 40m3/h].

(a)

(b)

(c)

Figure 6.8: This figure shows the comparison between PINC (blue) trained with the
initial condition and control frequency within an interval and a constant valve opening,
and the solution obtained using RK4 (red). (a) shows the solution for the bottomhole
pressure. (b) shows the wellhead pressure. (c) is the flow.
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The control frequency is sampled between the values 59.5 Hz and 60.5 Hz. The
valve opening is still held constant at 80%.

The network is trained using 100 data points covering different initial conditions
and control inputs, and a corresponding 1000 collocation points. The network is
trained using 5000 epochs.

The plots of the results obtained are shown in Figure 6.8. The output of the PINC
model is shown in dashed blue lines, while the solution of the system is shown in
red. The evolution of the deviation between these two is illustrated in Figure 6.2.3.

(a)

(b)

Figure 6.9: This figure shows the development of the deviation (measured in Euclidean
distance) during the simulated time interval. (a) Shows the deviation at any given time
point. (b) Shows the average deviation up until any given time point
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6.2.4 Scenario 4: Interval of initial conditions and two con-
trol inputs

In the final scenario, all of the inputs are sampled from intervals, that is, the initial
conditions and both control inputs. The initial conditions are still sampled from
the interval [xmin

1 , xmin
2 , xmin

3 ] = [70bar, 30bar, 30m3/h] and [xmax
1 , xmax

2 , xmax
3 ] =

[80bar, 40bar, 40m3/h]. The control inputs are sampled between [zmin, fmin] =
[75%, 59.5Hz] and [zmax, fmax] = [80%, 60.5Hz].

(a)

(b)

(c)

Figure 6.10: This figure shows the comparison between PINC (blue) trained with the
initial condition and control inputs trained on intervals, and the solution obtained using
RK4 (red). (a) shows the solution for the bottomhole pressure. (b) shows the wellhead
pressure. (c) is the flow.
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As before, the network is trained using 100 sampled points covering the range of
initial conditions and control inputs, with 1000 corresponding collocation points.
This time the network is trained using 10.000 epochs.

As with the previous scenarios, the solution obtained using the PINC (blue) is
shown in comparison with the true solution of the system (red) in Figure 6.10.
To illustrate the performance of the solution obtained using PINC with time, the
discrepancy between the two has been calculated, and Figure 6.11 illustrates this
evolution.

(a)

(b)

Figure 6.11: This figure shows the development of the deviation (measured in Euclidean
distance) during the simulated time interval. (a) Shows the deviation at any given time
point. (b) Shows the average deviation up until any given time point
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Chapter 7
Discussion

This chapter will elaborate on the interpretations of the results presented in Chap-
ter 6. The limitations and challenges of the PINN and PINC will be treated as
well. Finally the practical implications of the results will be detailed.

7.1 Interpretation of Results for PINN

As could be seen in Section 4.4, the PINN model is able to produce results very
similar to those obtained using traditional numerical methods such as RK4. Fur-
thermore, in Section 6.1 the performance of different PINN models for different time
horizons was examined. When evaluating the performance of the PINN model in
these scenarios, there are several metrics to be considered.

The first aspect is the ability of the PINN to provide the correct solution to a
given problem. For the purpose of evaluating the obtained model, the solution
was calculated using the numerical method RK4 as well. The results obtained
in Section 6.1 show that the PINN does indeed provide a similar solution to that
obtained using RK4. These results are in line with previous research on PINNs such
as [30],[33], and [34], that have shown that these networks are able to accurately
obtain solutions to a variety of problems, including power systems, fluid dynamics,
and heat transfer problems.

The performance of the PINN model in terms of computation time is an interesting
point of comparison to traditional numerical methods like the RK4 solver. The
duration of the training process for the PINN will vary based on the complexity
of the problem at hand, and in general, it requires significantly more time than
the straightforward numerical computations performed by the RK4. This is in line
with the results obtained in Section 6.1, where it can be seen from Table 6.1 that
the training time of the PINN models is far larger than the time taken for RK4 to
compute the solution for the problem.
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However, a significant advantage of the PINN approach is revealed once the network
is trained. Upon completion of the training phase, the PINN can rapidly deliver
the desired solution, as seen from the inference times found in Table 6.1. Even in
scenario 3, where the training of the network takes almost 400 times as long as the
RK4 solver, the inference time is less than one-hundredth of the time taken by RK4.
Thus, while predicting, the PINN is able to outpace the time-consuming nature of
RK4 calculations. This trade-off between extended training time and subsequent
fast inference time, allowing for a swift generation of the solution, positions PINN
as a strong contender in scenarios where repeated evaluations are crucial.

7.2 Interpretation of Results for PINC

As was shown in Section 5.4, when training the PINC for the ESP for just a single
initial condition and a single control input, it is able to obtain accurate results just
as the PINN. When the model is trained for only a few different initial conditions
and/or control inputs it performs with a declined accuracy, with an observable
deviation between the true solution of the system and the predictions provided by
the PINC model. Thus, it is evident that the model faces some challenges.

Just like the PINN model, the PINC framework encounters temporal constraints.
An issue that is still notable, and in fact even more pronounced for the PINC, is its
extended training time. In order to obtain the desired accuracy, the PINC requires
a far higher training time than the PINN model. This is due to the fact that the
PINC has to train for a variety of initial conditions and control inputs. Unlike
the quick calculations of the RK4 solver, the PINC’s training process is far more
time-consuming. This makes the PINC less promptly deployable, especially when
dealing with more complex problems, and/or problems with a large feasible region
for the initial condition and control inputs.

However, like the PINN, once the PINC is trained it has a great advantage in its
efficiency during the inference phase. Again, the solution prediction outpaces the
computational demands of the RK4 solver, as seen in Table 6.2. This renders the
PINC with a great advantage, especially in the case of real-time applications where
fast solutions are essential.

Another interesting point to note from the results presented in Section 6.2, is how
the error of the solution increases as the network is trained on intervals, rather
than fixed points, for the initial condition and control inputs. In the first scenario,
the PINC is effectively working as a PINN, only being trained for one single initial
condition and one control input. The result of this is an accurate solution, that
matches that obtained using RK4.

However, already in the second scenario, where the PINC is trained on an interval
of initial conditions, but with a fixed control input, it can be seen that the solution
is becoming less accurate. This happens despite the model being trained using a
higher number of epochs. These results are in line with the results presented in
[47], which indicated that training a PINN network with varying initial conditions
results in high training times without a proportional decrease in the training error.
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This becomes yet more evident in scenarios 3 and 4, wherein scenario 3 PINC is
trained using an interval of initial conditions, an interval for the frequency of the
system, and a constant valve opening. In scenario 4, the valve opening as well is set
to be within an interval of possible values. The results of these scenarios show that
when increasing the training samples of the PINC to include varying control input
as well, the obtained solutions become even less accurate. However, the error of the
obtained solution, especially in scenario 3 and 4, can be observed to grow bigger
over time. Thus, shorter time horizons are a necessity in order for the models to be
reliable, so in order to obtain long-range simulations, the PINC needs to be used
in self-loop mode.

For the purpose of this thesis, several attempts were made to improve the per-
formance of the developed PINC model. This included increasing the amount of
training data, both for the initial values and the collocation points. Attempts
were made using a higher number of training epochs as well. Attempts were also
made at changing the order of the training data, and using batches in order to see
whether this would affect the overall results. Finally, the prediction horizon of the
network was decreased. However, most of these changes proved to have little effect
on the performance of the PINC model. Changing the amount of training data or
the number of training epochs did provide slightly better models, however, these
experiments were time- and resource-consuming.

While the problem of accuracy to a certain extent can be mitigated by small adap-
tions to the PINC model and its training, the underlying issue still remains. There
are several possible solutions that can be examined in order to minimize the prob-
lem. One is to look into the optimizer used. While this thesis only implements
the PINC network using the ADAM optimizer, in works such as [45] and [43], this
optimizer was used in combination with the L-BFGS. Another could be to look at
the proposed improvements to the original PINN formulation and incorporate these
ideas into the PINC model as well, this includes dynamic weighting strategies, a
change of the activation function, and strategic sampling of collocation points for
improved training efficiency.

However, other factors such as the complexity of the systems modeled and the size
of the feasible region might also factor in. Some systems might require a more
elaborate neural network structure in order to accurately capture the dynamics of
the system in different control settings. More training could also be a necessity,
however due to restrictions on hardware this might not always be a feasible solution.

7.3 Limitations and Challenges

One of the main challenges regarding the PINN, and especially the PINC, is the
efficiency in relation to the training. In relation to the PINN model, this mostly
applies if the neural network is used to solve a complex system. In such cases, the
PINN requires a larger amount of collocation points in order to properly approxi-
mate the real solution of the differential equations describing the system

The PINC, compared to the PINN, consists of several more inputs. In the case of
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the ESP system, the PINN has one single input, which is time, while the PINC
has six: the initial conditions of the three states, the two control inputs applied,
and the time. In order to fully utilize the capabilities of the PINC, it is necessary
to train the model for a variety of different initial conditions and control inputs
within the feasible region of the system. That way, the network can be used in
combination with controllers such as the MPC. However, this requires extensive
training of the network. For complex systems requiring many data points, systems
with a large set of inputs, or systems with a large feasible region, the training of
the PINC model may be an issue.

Another issue in regards to the PINC model, is the necessity of defining a feasible
region for all inputs. As the model may become unstable if it’s trained on infeasible
inputs, this is an important step. However, obtaining this region may require in-
depth knowledge of the system at hand, which may not always be easy to obtain.
One solution could be to check the feasibility of different states using a solver such
as RK4. However, for large systems containing potentially a very large number of
variables, this approach becomes unrealistic.

7.4 Implications for Practical Applications

As was shown in Chapter 6, when used for inference, physics-informed machine
learning models, are able to find the solution to the differential equations fast,
often outperforming traditional numerical methods like the RK4. This is a great
advantage when time is of the essence, such as in real-time decision support. In
control applications, if a controller necessities a model of the system dynamics in
order to determine the appropriate control action, time is critical as the system
continues to run while these calculations are happening. In these applications, the
PINC can be used to predict the solution in a swift manner, thus quickly offering
insights and recommendations to support agile decision-making.

Furthermore, the flexibility of the PINN makes the model suitable for practical ap-
plications that involve adapting to changing conditions and diverse inputs. This is
especially true in real-world scenarios that require dynamic responses and effective
control strategies. Similarly, the PINC excels in practical situations where the dy-
namics vary, as it is able to be used for a variety of different conditions and inputs.
In fact, both PINN and PINC offer benefits for real-world applications, as they
both are able to provide adaptable and efficient solutions to complex challenges.

In practical applications, access to data may be somewhat limited, and the system
might also deviate from the theoretical behavior. In such situations, the PINN
and PINC models come at a great advantage, as they have an inherent ability to
generalize, thus making them able to make informed predictions beyond the data
used for training. This can provide great benefits in practical applications where
there for instance is access to sparse data. Conventional numerical solvers might
have difficulties obtaining accurate outcomes in regions characterized by limited
data points. However, PINN models have the ability to combine the available data
with other known information of the system, rendering it capable of approximating
solutions even using a very limited number of data points. In fact, as demonstrated
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in Chapter 6, both the PINN and the PINC models are capable of providing ac-
curate results with only a single data point for the ESP system. Thus, PINN and
PINC allow for enhanced prediction accuracy for practical applications where there
are data irregularities.

Yet another key point of these types of models that make them useful in sev-
eral practical applications, is that they are able to solve problems that traditional
numerical methods may face difficulties. This includes applications such as high-
dimensional systems of equations [46], where the computational requirements in-
crease exponentially for numerical methods as the dimension of the system grows.
Another example is in the solution of inverse problems [24], where the PINN can
learn the mapping between inputs and outputs directly, whereas traditional nu-
merical methods could require iterative optimization techniques.

Despite having numerous positives that can be leveraged in practical applications,
there are still challenges to be faced, most notably that of the extensive training
time. While both the PINN and the PINC hold great promise, the duration of
the training phase for the models may potentially be hindering their application
in time-sensitive scenarios. As a considerable amount of time and computational
resources are required for training these models, this may impact the speed at which
such models can be deployed, especially in fast-paced environments. Therefore, it
might be necessary to do an assessment of the trade-off between the extensive
training time and the subsequent benefits these models offer when determining
their applicability and suitability for practical applications where agile and prompt
responses are required.
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Chapter 8
Conclusion and future work

This chapter summarizes the main results and findings in this thesis. Furthermore,
possible areas for future research are highlighted.

8.1 Summary of Findings

The objective of this thesis has been to create a Physics-Informed Neural Network
(PINN) for an Electric Submersible Pump (ESP) and to evaluate how these net-
works can be used to predict the behavior of the ESP, as well as how this network
can be extended to a Physics-Informed Neural Net for Control (PINC) to be used
in control applications.

8.1.1 PINN

Since they were first proposed in 2017, PINNs have gained wide attention, due
to their grand potential within a large field of application areas. In this thesis,
a PINN for the ESP was proposed and verified against the numerical solution
obtained using RK4.

In line with other research on the topic, the results obtained indicated that the
PINN is indeed capable of predicting a solution to the system that matches well
that which can be found using classical numerical solvers. While the training time
of the PINN network is significantly larger than the time taken by the RK4 method,
the inference, or prediction, time of the trained network is significantly lower than
the time taken by RK4.

Another advantage of the PINN model that was observed in this thesis, is its ability
to solve the system even for sparse amounts of data. In the experiments conducted
in this thesis, only one data point was used, that is the initial condition. Yet, the
network was able to find accurate solutions to the system of differential equations.
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8.1.2 PINC

Many of the key advantages of the PINN models, such as their flexibility and their
short inference time, make these models suitable for use in control applications.
However, the PINN in itself can not readily be used in such settings, as the input
does not include the control action or initial condition. To remediate this issue,
the PINC was proposed. This extended version of the PINN includes the control
input and initial condition of the system as input, thus allowing it to be used in
control applications.

However, the PINC suffers from a known issue of the PINN, which is that the
error of the predicted solution gets larger with time. That means the model can
only be used for short time horizons. However, a solution to still obtain long-range
simulations has already been proposed, and it consists of chaining the network so
that the final condition of the network will be used as the initial condition in the
next iteration. This requires the network to be trained for a variety of different
initial conditions and control inputs, in order to be able to give accurate responses.

In this thesis, several PINC models were trained. In order to examine the gen-
eralization capabilities of the network, it varied how many of the inputs of the
network were fixed and how many were chosen from an interval of values. The
PINC obtained good results when all inputs were fixed, and also while the initial
conditions varied while the control input was fixed. However, the latter already
required far more training to obtain similar results. When extending the varying
input to include one or both of the control inputs, the error in the solution grew
even more, especially with time.

While appearing promising, the issues of training the PINC models should not
be ignored. For complex problems, and for problems with larger feasible regions,
training a PINC to perform well for a variety of conditions will require many
computational resources and a large training time. While examining the exact
time of such a process is outside of the scope of this thesis, this has been studied
for a regular PINN extended to be used for multiple initial conditions in [47], and
the results indicated that the time taken for proper training of such a network is
within the scope of days and weeks.

8.2 Future Research Directions

As was detailed in the theoretical background on the PINN, there are several ways
of formulating the loss function of the network to incorporate knowledge of the
physical dynamics of a system. However, this work, as well as other current research
on PINC mainly utilizes the basic formulation of the loss function. An interesting
future direction of research would be to incorporate more terms to the loss function
of the PINC, to see how this affects its performance.

Furthermore, in this work, only one data point was considered. The same was done
in other work on PINC, such as [43] and [45]. However, in the implementation
of the regular PINN, the term for data points opens up the ability to combine
data gathered from the actual behavior of the system, and training the network
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using a combination of this and the known dynamics. This is especially useful if
the dynamics of the system are not necessarily precisely known, which in most
processes is the case. Thus, another potential direction for future research within
the field of PINC is to look into the possibility of incorporating real system data
into the training process.

Another point to consider is one of the key disadvantages of the PINN and PINC
models, which is their long training time. In this thesis, both models were trained
using NVIDIA’s T4 GPU, yet in order to train the PINC model for a sufficiently
large set of initial values and control inputs, significant time is needed. For complex
systems, or systems where a wide range of initial conditions and/or control inputs
are to be considered, the training may become very inefficient. Thus, in order to
truly unlock the potential within physics-informed machine learning, a key direction
of future research is how to efficiently train these networks.

Finally, while the PINC is a fairly new proposal, it is based upon the more re-
searched PINN model. As highlighted in Section 2.3.3, much effort has already
been made to render the original PINN more effective and capable of tackling a
wider array of complex problems. Thus, a possible direction for future research
on the topic of PINC could be to explore whether implementing these proposed
improvements in the PINC model renders it more efficient. This includes explor-
ing the effect of weighting the terms of the loss function in an intelligent manner,
looking into the possible effects of changing the activation function used, and also
improving training efficiency by generating the collocation points more effectively.

8.3 Final Remarks

This thesis presented a Physics-Informed Neural Network (PINN) and a Physics-
Informed Neural Net for Control (PINC) for the Electric Submersible Pump (ESP).
The experiments concluded on the PINN model gave results in line with current
research on the topic, proving that this type of network is able to provide an
accurate solution to the system for this problem.

The PINC model treated in this thesis also shows great promise, however, the
results obtained for this model for the ESP indicate that more research is needed
before such models can be applied. While having great potential, the issue of
training these networks in an effective and reliable manner remains.
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