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Abstract

In a world experiencing an unprecedented wave of declining mental health, it is more im-
portant than ever to ensure early detection and prevention of damaging stress. A rising
field of study includes the combination of machine learning and Electroencephalography
(EEG) signals to detect psychological stress. EEG is a non-invasive, relatively inexpensive
diagnostic tool, making it the perfect candidate for widespread clinical use.

This study aims to find a possible solution to these problems, by designing and evaluating
methods of automated stress detection using EEG signals. Collecting data was necessary
to provide relevant data for classification. Natural stressors include taking an exam, there-
fore participants were selected from students at the Norwegian University of Science and
Technology, during and after their exam periods. The period prior to their exams were
used as the stressed state, while the baseline was recorded after they were on winter holi-
day. 28 students, 12 women and 16 men, participated in total, where the ages ranged from
20-28 years old, with a mean age of 23±2 years.

Two methods have been used to label the data, State-Trait Anxiety Inventory for Adults -
Y (STAI-Y) and Stress-Scale (SS). Three data sets have been constructed to use for clas-
sification. The first one consist of purely raw EEG data, the second has been through a
band-pass filter and notch filter prior to filtering with Signal-Space Projection (SSP). The
last data set was constructed in a similar matter with band-pass and notch filtering, then
decomposing the signal into the Delta frequency band. Four different methods of feature
extraction have been explored, time series feautes, entropy features, Hjorth features and
Power Spectral Density (PSD) features. All data sets have been segmented into epochs of
either 1 second, 2 seconds or 5 seconds. Lastly, the data have been classified using Support
Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN), and EEGNet.
The highest accuracy was achieved by PSD features with raw data using 5s epochs and SS
labels, reaching 77.97% accuracy, 64.22% sensitivity, and 86.21% specificity.
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Sammendrag

I en verden som opplever en uforutsigbar bølge av nedadgående mental helse, er det
viktigere enn noensinne å sikre tidlig påvisning og forebygging av skadelig stress. Et
voksende studiefelt inkluderer kombinasjonen av maskinlæring og Elektroencefalografi-
signaler for å oppdage psykologisk stress. EEG er et ikke-invasivt og relativt rimelig
diagnostisk verktøy, noe som gjør det til en perfekt kandidat for utbredt klinisk bruk.

Denne studien har som mål å finne en mulig løsning på disse problemene ved å ”utforme
og evaluere metoder for automatisert stressdeteksjon ved hjelp av EEG-signaler”. Innsam-
ling av data var nødvendig for å gi relevant data for klassifisering. Naturlige stressfaktorer
inkluderer å ta en eksamen, derfor ble deltakerne valgt blant studenter ved Norges teknisk-
naturvitenskapelige universitet, under og etter deres eksamensperioder. Perioden før ek-
samen ble brukt som den stressede tilstanden, mens referansestilstanden ble målt etter at
de hadde hatt juleferie. Totalt deltok 28 studenter, 12 kvinner og 16 menn, i alderen 20-28
år, med et gjennomsnitt på 23±2 år.

To metoder har blitt brukt for å merke dataene, State-Trait Anxiety Inventory for Adults -
Y (STAI-Y) og Stress-Scale (SS). Tre datasett har blitt konstruert for å brukes til klassifis-
ering. Det første består av ren, rå EEG-data, det andre har gjennomgått et båndpassfilter
og notch-filter før filtrering med Signal-Space Projection (SSP). Det siste datasettet ble
konstruert på en lignende måte med båndpass- og notch-filtrering, deretter ble signalet
dekomponert til deltafrekvensbåndet. Fire forskjellige metoder for ”feature extraction” har
blitt utforsket: tidsseriefunksjoner, entropifunksjoner, Hjorth-funksjoner og Power Spec-
tral Density (PSD)-funksjoner. Alle datasettene er blitt segmentert i epoker på enten 1
sekund, 2 sekunder eller 5 sekunder. Til slutt er dataene blitt klassifisert ved hjelp av
Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN) og
EEGNet. Høyest nøyaktighet ble oppnådd med PSD-funksjoner og rådata ved bruk av 5
sekunders epoker og SS-merker, med en treffsikkerhet (”accuracy”) på 77,97%, en sensi-
tivitet på 64,22% og en spesifisitet på 86,21%.
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1
Introduction

1.1 Background and motivation

The world is experiencing an unprecedented wave of mental health problems, arising
across generations. Accelerated by the global pandemic, and the numerous humanitar-
ian crises across the globe, i.e. war or poverty, mental health is now a hot topic both in
the media and research communities. The reasons for stress are numerous and subjective
to each individual experiencing it, so now the question is; how can we prevent stress and
detect it early enough to reduce the chance of stress evolving into more serious health
problems?

Stress is a natural response that is necessary to live a life. Without stress, no one would
not be able to do anything. As a response, stress is responsible for making us take actions,
stress is the reason we are able to cook when we are hungry, clean when it is needed,
and go to work on a regular basis. All actions a human takes is a results of stress (Selye,
1973). However, in recent years the focus has been shifted towards the fact that increased
stress, that is abnormal to the daily stress needed for survival, is leading towards increased
health problems. Chronic stress has been linked to increased risk of depression, anxiety,
cardiovascular diseases, and even neurological disorders (McEwen, 2008). Early detection
of increased stress may reduce the risk of it leading to serious health problems, so long
as the interventions resulting from detecting the stress are appropriate and feasible for the
situation.

1.2 Problem description

The aim of this study is to design and evaluate methods of automated stress detection us-
ing Electroencephalography (EEG) and Phonocardiogram (PCG) signals. EEG is a non-
invasive, medical tool used to examine the electrical activity in the brain, specifically look-
ing for changes or abnormal patterns, making it a good choice for this study. The thesis
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is a part of a larger research group working on the same data, consisting of Anne Joo Yun
Marthinsen and Ivar Tesdal Galtung working together, as well as Christian Sletten and
Øystein Stavnes Sletta working individually. The first step for this thesis is the collec-
tion of data. The participants were recruited from students at the Norwegian University
of Science and Technology during their exam period, assuming the exams are a natural
stressor that we can use for stress detection. Baseline data was recorded post exams, after
the students had been on winter break. Due to the subjective nature of stress, two methods
was used for ground truth labeling of the data. State-Trait Anxiety Inventory for Adults
- Y (STAI-Y) is a questionnaire developed to reveal anxiety states and traits, meaning
short term anxiety and long-term anxiety. The second method denoted Stress-Scale (SS)
is a scale from 1-10, where 1 means not stressed. The results of these methods will be
compared and analyzed along with the data. Raw EEG data requires pre-processing and
filtering, and two different methods are proposed in this thesis. Common for both methods
is initial filtering using a bandpass filter and a notch filter, to remove information in the
signal that is not related to neurological activity. Filtering using Signal-Space Projection
(SSP) is proposed as a way of removing blinking artifacts from the signals, while de-
composing the signal into specific frequency bands is proposed to evaluate if the different
frequency bands contain information regarding stress. Segmenting the data into epochs
is a way of reducing the complexity and increasing the amount of information gathered
when extracting features. Three different epoch lengths will be evaluated, namely 1 sec-
ond, 2 second and 5 second epochs. Feature extraction is an important part when dealing
with complex data, thus four feature extraction methods are evaluated here. This includes
Time series, Entropy, Hjorth and Power Spectral Density (PSD) features. To classify the
data three machine learning classifiers and one neural network will be tested, compared
and evaluated. The classifiers are Support Vector Machine (SVM), Random Forest (RF),
K-Nearest Neighbor (KNN) and EEGNet. They will be evaluated based on their accuracy,
sensitivity and specificity.

1.3 Related work
Research regarding stress detection using EEG signals have increased in the past years.
Katmah et al. (2021) have done an extensive review of 51 articles on EEG and stress,
concluding that the lack of consistency in data analyzing methods and experiments pro-
tocols, lead to varying and contradictory results for classification of stress. They propose
combining different approaches related to studying brain connectivity with network con-
nectivity, and empolying deep learning methods for classification. Khosrowabadi et al.
(2011) used 8 EEG channels to classify 26 students before and after exams, in a resting
and non-resting state, using Percieved Stress Scale to label the data. Classification was
performed with both KNN and SVM, using fractal dimension, Gaussian mixtures of the
EEG spectrogram and Magnitude Square Coherence Estimation as features. The results
using the latter feature reached over 90% accuracy with inter-object validation. The com-
bination of features is an area of exploration in the research community. Hou et al. (2015)
found that combining statistical features (time series features) with fractal features, the
accuracy using SVM improved. Using simultaneous EEG with Functional Near Infrared
Spectroscopy, Al-shargie et al. (2015) found that there is a correlation between the alpha

2



1 Introduction 1.4 Structure of the thesis

frequency band and the change in concentration of oxygenated hemoglobin due to stress-
ful tasks, and that stress decreased the PSD of the signal in the alpha frequency band. The
importance of continued research into using EEG as a diagnostic tool in combination with
artificial intelligence is proven by Tveit et al. (2023), where they achieved a performance
similar to human experts in classifying epilepsy with EEG signals.

1.4 Structure of the thesis
The thesis is divided into six chapters, each serving a purpose to structure the text into
meaningful sections. Chapter 2 presents the theory necessary to understand the proposed
methods and the discussion evaluating the performance of the methods. The chapter starts
with an overview of Electroencephalography (EEG), including placement of the elec-
trodes, explaining artifacts in the signal, how frequency bands are related to EEG, and
lastly defining stress and how it presents in EEG signals. The theory continues by intro-
ducing how filtering affects signals, while describing the filtering method Signal-Space
Projection (SSP). The next section introduces the need for feature extraction when per-
forming classification, and present the theory behind the features used in the thesis. The
last section of the theory will explain and describe how the machine learning techniques
work.

In Chapter 3 all the materials and methods used in this study are presented. That includes
an in depth description of the design of the experiment, an exploration of both the data set
and the labels, continuing to a walk-through of the filtering steps and how it affects the
data. Then the methods used for feature extraction and classification are presented, with
a detailed overview of their functions and hyperparameters. The chapter concludes in a
section detailing the performance metrics.

Chapter 4 presents the results following the classification of three data sets. The chap-
ter is structured by feature type, where each of the classifiers are presented with their own
tables with results. A brief description of the most notable results will precede each table.

The discussion of the results follows in Chapter 5. The results will be discussed on the
basis of the theories and methods mentioned in Chapters 2 and 3. Particularly fascinating
results like stand-out accuracies, sensitivities and specificities will be highlighted.

The conclusion to this thesis will be presented in Chapter 6 along with a note on the
possibilities of future work.
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2
Theory

This chapter will present the relevant theories and background necessary for understanding
and discussing this project. The five sections of the chapter cover Electroencephalography
(EEG), psychological stress, Signal-Space Projection (SSP), feature extraction, and ma-
chine learning.

2.1 Electroencephalography (EEG)

Electroencephalography (EEG) is a method used to measure the brain’s electrical activity.
It is mostly used for examining the function of the brain and diagnosing seizure disor-
ders such as epilepsy, discovering brain tumors, and for comatose patients to monitor their
brains and as a tool to determine whether or not there is brain activity to ascertain death.
In recent years, EEG has been used for research as it is a simple, non-invasive method that
provides real-time information about the state of the brain. Thus, research into how the
brain responds to sleep, depression, eating disorders, and other psychological disorders is
ongoing.

The electrical activity in the brain originates from the cells communicating. They commu-
nicate through action potentials, which are electrical impulses stemming from the potential
differences between the outside and inside of a cell’s membrane (Kaada, 2018). Feelings,
hormones, movement, or sensory sensations can trigger an action potential. Alone, one
action potential is too small to be measured; however, many cells usually work together,
and their combined electrical impulses are large enough to be able to measure. Still, the
electrical voltage is measured in microvolt (µV) and must be amplified before it can ap-
pear on screen in an EEG (Engstrøm and Jansen, 2022).
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2.1.1 EEG electrodes

The electrical impulses can be measured by placing electrodes across the scalp. Electrodes
are small metallic conductors that can be used dry or with conductive gels. By placing
a reference electrode on the ear lobe, each electrode on the scalp measures the voltage
difference between the reference and itself, meaning the electrical activity at that point,
and transmits this to the recording channels of the EEG. The electrical activity is shown
on a graph in a wavelike pattern with peaks and throughs. An example of an EEG is
pictured in Figure 2.1.

Figure 2.1: An image of a raw, noisy, EEG with 8 channels.

The placement of the electrodes plays a significant role; therefore, an international stan-
dard has been developed. The modified 10-20 system developed by Sharbrough et al.
(1991) is widely used. The 10-20 system derived its name from the fact that each adjacent
electrode is placed within either 10% or 20% of the total distance from the front to the back
or the left to the right side of the skull. The placement of 32 electrodes based on the 10-20
method is shown in Figure 2.2. A unique name represents each electrode, with one or two
letters in the name accompanied by a number. The numbers represent the sagittal lines,
i.e., all placements with the numerical value 3 lie on the same sagittal line, and the value
z (zero) lies on the midline sagittal plane of the skull. Even numbers refer to electrodes
to the right of the midline sagittal plane, and odd numbers refer to the left. Whereas the
lettering denotes which area of the brain the electrode is reading from; pre-frontal (Fp),
frontal (F), frontocentral (FC), frontotemporal (FT), central (C), temporal (T), centropari-
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etal (CP), parietal (P), posterior temporo-occiptial (PO), and occipital (O). The placement
of electrodes is often pairwise and symmetrical. Each electrode corresponds to a channel
in the EEG.

Figure 2.2: A 32 electrode placement map using the 10-20 method. Inspired by Ghosh et al. (2022)

2.1.2 EEG artifacts
Artifacts in EEG are defined as any noise in the data that can be attributed to specific,
often physiological sources. The most common forms of artifacts are eye blinks, eye
movements and muscle contractions. This type of noise can often overshadow the actual
brain activity that we want to measure, thus it is important to filter these artifacts. Artifacts
such as blinking often show up in the signal as high amplitude peaks (Jiang et al., 2019).
Examples of this can seen in 2.3, where the high amplitude peaks are marked by the red
boxes. Other artifacts like movement of the electrodes will often show up in the EEG as
drifting, like a slow decline of the signal of a channel. While muscle tension will present
itself as an increase in high frequency activity over a short amount of time.

2.1.3 EEG frequency bands
Research implies that the brain operates on different frequency levels depending on the
amount of activity. When examining an EEG, it is essential to note the frequency and
the amplitude of the brain waves and whether or not there are abnormal patterns—then
figure out if the phenomenons happen only in one part of the brain or across the whole
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Figure 2.3: Blinking artifact in an EEG. Artifacts are marked with red boxes.

brain (Engstrøm and Jansen, 2022). The frequency levels that the brain operates on can
be divided into what are called frequency bands. Usually, the frequency bands are divided
into five categories denoted delta, theta, alpha, beta, and gamma, defined in Table 2.1.
Figure 2.4 illustrates how the EEG signals appear in the different frequency bands.

Table 2.1: The table details the different frequency bands and their frequency ranges.

Frequency band Frequency range

Delta δ 0-4 Hz
Theta θ 4-8Hz
Alpha α 8-12 Hz
Beta β 12-30 Hz
Gamma γ 30-40 Hz

2.1.4 Physiology of stress

Stress has perhaps become one of the most difficult phenomena to properly describe and
define. In society today, stress is often commented in both media and healthcare, with
magazines shouting about ’good’ stress and ’bad’ stress, how to avoid it, and how people
today are more stressed than ever. The first formal definition stems from Hans Selye in
1936, when he observed that although people suffered from different diseases, many of
their symptoms were similar. They lost their appetite, muscular strength and their ambi-
tion to accomplish anything (Selye, 1973). By injecting rats with hormone extracts and

7



2 Theory 2.1.4 Physiology of stress

(a) Delta (b) Theta

(c) Alpha (d) Beta

(e) Gamma

Figure 2.4: Illustration of the how the frequency bands appear in EEG data.
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toxic drugs, he noticed that the adrenal cortex of the rats became enlarged, the thymus
and lymph nodes decreased in size, while ulcers appeared in their stomachs, regardless of
what was being injected. This was the basis for the definition of stress and the general
adaptation syndrome. Selye defined stress as ”the nonspecific response of the body to any
demand made upon it” (Selye, 1973, p. 692). Meaning that the factors that produce stress,
denoted stressors, can be anything from positive to negative, yet they still produce the
same biologic stress response in the body. Stress can be felt from receiving both devastat-
ing news like a family member has become ill, and positive new such as a family member
having recovered from a disease. They both illicit the same stress-reactions in our body,
where the only difference will be in the intensity of the demand. Each scenario yields a
demand to the body which then needs to regulate itself back to what is called homeostasis,
meaning the physiological processes that maintains a steady state of the body. As such,
stress is a response that is unavoidable, it is always present even at rest, when the heart
keeps beating, the chest rises and falls with each breath, the stomach digests the food con-
sumed, and so on. Stress is necessary to provide enough energy to adapt to the demands
stressors place on the body.

The general adaptation syndrome presents the three stages of a stress response. The first
stage is the alarm reaction, which is a short period where the body becomes activated to
respond to the stressor, most commonly it is described as the fight or flight stage. The sec-
ond stage is named the stage of resistance, where the body is in a lower state of activation
than the alarm stage, but still activated enough to fight the stressor for some period of time.
Lastly, the final stage is exhaustion, that happens when the body has spent all its resources,
that may happen if the stressor is severe enough and has been applied for a good amount of
time. If exhaustion incurs then fatigue, disease or even total collapse may happen (Selye,
1973). This is the point where stress becomes negative. The stress response, although gen-
eral and fitting for many people, is still relatively subjective given that the same stressor
with the same intensity and period, may produce entirely different reactions in different
people (Svartdal and Malt, 2022). Which is also why stress can become pathogenic under
certain conditions, and not just a mechanism that ensures our survival.

Measuring stress is often not straight forward. As mentioned, stress is a physiological
condition as well as psychological, however, the stress response is highly individualistic
in terms of stressors, and it can be hard to determine if someone is experiencing stress-
related symptoms towards a certain stressor. It is important to define what type of stress
that is to be measured. For example, (Crosswell and Lockwood, 2020, p. 3) defines acute
stress: ”short term, event-based based exposures to threatening, or challenging stimuli
that evoke a psychological and/or physiological stress response, such as giving a public
speech”. Often, acute stress is measured based on subjective reports such as answering
questionnaires, inquiring on levels of anxiety, bodily symptoms, tension, state of mind
and so on. Examples of questionnaires are State-Trait Anxiety Inventory for Adults - Y
(STAI-Y) (Spielberger et al., 1971) and Perceived Stress Scale (Cohen et al., 1983). Phys-
iologically, there is no one bio-marker that proves stress is present in the body. This makes
it difficult to determine ways of physiologically diagnosing stress. There are methods such
as measuring the amount of cortisol present in the body, but cortisol is not only released in
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negative, health impacting stress-responses (Dickerson and Kemeny, 2004). Which makes
it difficult to use cortisol as the only determining factor when diagnosing stress.

EEG has been proposed by several researchers as a tool to identify stress. Many stud-
ies and experiments have been conducted, though the results varies, and in some cases the
results are even contradicting (Katmah et al., 2021). Currently, there is no standard pro-
tocol for either collecting EEG-data, pre-processing, the type of stressor to be researched,
what part of the brain to study, feature extraction or what type of classifier to be used. This
may lead to the contradictory results. In that way, there is not yet a definitive method for
determining stress based on EEG.

2.2 Filtering
Filtering is an important part of signal processing as the sensors that are used for recording
can often be prone to noise. The noise in a signal can be a result from environmental noise,
frequency disturbances from the electrical grid surrounding us, or even other processes in
the body that can be picked up from the sensors. For EEG specifically, noise tends to be
a combination of environmental noise, frequency disturbances, heart beats, and muscle
movements such as eye blinking or even just tension from the muscles as mentioned in
section 2.1.2. The reason for filtering is to ensure that we retain as much of the important
information from the signal as possible, without the disturbances. There are many methods
available to filter EEG signals. Among them is Signal-Space Projection (SSP). The theory
detailing SSP-filtering will be presented in this section.

2.2.1 Signal-Space Projection (SSP)
Projection at its most basic form converts some data points into other data points, usu-
ally to convert from a higher dimension to a lower dimension. The same can be said for
Signal-Space Projection (SSP). Consider a projection from a three-dimensional space to
a two-dimensional plane. In this case, you could think of projection as when you stand
in the sun and look at your own shadow, you are the three-dimensional object and your
shadow is the two-dimensional projection. This is the general idea behind projection in
higher dimensions. In a way, EEG signals can be represented as vectors in space. The
number of dimensions in the space is dependent on the amount of recording channels and
the sampling time. There is one N-dimensional point for each sampling time. Noise can
then be represented as one or more dimensions, for example in a three-dimensional space,
the xyz-plane, if you know that the measurements in z-direction is mostly made up of noise
(due to your measurement set-up), then you can project your signal to the xy-plane and
then the noise component is removed from your signal.

Mathematically, projection is done using projection matrices. By multiplying the signal
(the N-dimensional points) with a projection matrix you can project the signal onto the
hyperplane (MNE). The important part is to choose the right projection matrix. It needs
to be chosen so that the unwanted noise is filtered out while the information in the signal
is not compromised, and the hyperplane spanned by the matrix needs to be orthogonal
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to the noise-vector. SSP (Uusitalo and Ilmoniemi, 1997) is a method for estimating the
projection matrix. It compares the measurements with and without the the signal that is
under interest. The best practice is to record special cases of noise that you know will be
present during the recordings. Either by recording empty room noises to filter background
noise, or adding specific electrodes that measure eye movements or heart rate. In that case
it is straight forward to use the noise recordings for calculating the projecting matrices.
A more detailed mathematical description of the method can be studied in Uusitalo and
Ilmoniemi (1997).

2.3 Feature extraction

As the amount and complexity of information contained in data has increased exponen-
tially with the digital age, it has become necessary to introduce feature extraction when
performing machine learning tasks. Feature extraction is meant to ensure that valuable
information from data is extrapolated, to hopefully reduce dimensionality and complex-
ity (Guyon and Elisseeff, 2006). Features can be thought of as distinctive markers of the
data, for example when meeting a new person you might notice the color of their hair and
eyes, what clothes they are wearing, if they have any tattoos or freckles etc., these are all
features that can help define a person. Selecting features is often a quite extensive part of
machine learning, and the success of the classification depends on the which features are
selected. The most important part is to ensure that the features do not suppress any im-
portant information, as you may risk losing information if the restrictions in selecting the
features is to strict (Guyon and Elisseeff, 2006). Meaning, the better practice is often ”the
more, the merrier”. A detailed description of several relevant features will be presented in
the following sections.

2.3.1 Time series features

Time-series features refers to features calculated on the time series of the signal. Examples
of time-series features can be defined as

Peak-to-peak amplitude: Peak-to-peak amplitude is defined as the difference between
the highest peak and lowest through of a signal.

Variance: The variance of a discrete random variable Xi is defined as

var =
1

N

N∑
i=1

(Xi − µ)2,

where N is the number of samples while µ is the expected value of the samples.
The variance measure how far from the mean the samples are, it is a measure of
dispersion of samples.
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Root Mean Square (RMS): Defining the RMS of a set of values xi as

RMS =

√√√√ 1

N

N∑
i=1

x2
i

where N is the number of samples, RMS can measure the signal amplitude and
energy in the time domain. Giving information about the strength of a signal.

2.3.2 Entropy features
Entropy features captures the amount of information present for a signal and in regards to
dynamical systems it measures the rate of information production. Some common entropy
features include approximate entropy, sample entorpy, spectral entropy and singular value
decomposition entropy, described below.

Approximate entropy: Approximate entropy measures the complexity and regularity of
a signal, by measuring the likelihood that runs of sequences that are close for some
observations will remain close for the next incremental comparison. Meaning it
measures the similarities between epochs. The greater the likelihood of remaining
close (being similar) means that the signal is more regular, and the lower the value
of the approximate entropy will be (Pincus, 1995).

Sample entropy: Sample entropy is a modified version of Approximate entropy, that also
measures the complexity and regularity of a signal. The modification from approx-
imate entropy is that sample entropy does not use self-matches when comparing
epochs, thus reducing the bias that approximate entropy may introduce to the results
leading to suggestions that sequences are more similar than they actually are (Joshua
S. Richman, 2000). Sample entropy is also independent on recording length.

Spectral entropy: Spectral entropy is defined as the Shannon entropy of the PSD of a
signal. It is able to quantify the spectral complexity of an uncertain system (Zhang
et al., 2008). The spectral entropy is mathematically defined as

SE = −
N∑
i=0

pi ln pi

where pi is the Power Spectral Density (PSD) function of the signal.

Singular Value Decomposition (SVD) entropy: SVD entropy is defined as the Shannon
entropy of the SVD of a signal. Mathematically this can be defined as

SVD entropy = −
N∑
i=1

σ̄i log σi

where σi represents the normalized eigenvalues (singular values) resulting from Sin-
gular Value Decomposition. A more in depth explanation can be studied in Roberts
et al. (1999).
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2.3.3 Hjorth features
Hjorth features were specifically developed for use in analyzing EEG (Hjorth, 1970). They
are are based on the standard deviation of a signal, including the standard deviation of the
amplitude of the signal. There are three types of Hjorth features, activity, mobility and
complexity. The latter two are described in more detail below based on the work of Hjorth
(1970).

Hjorth mobility parameter: Mobility is defined as the ratio

Mobility =

√
var(df(t)dt )

varf(t)
,

where f(t) is the EEG signal. The ratio will be dependent on the curve shape so that
is measures the relative average slope, as both of the variances are dependent on the
mean amplitude. The mobility can also be interpreted as the mean frequency of the
signal.

Hjorth complexity parameter: Complexity is a dimensionless parameter that measures
how similar the signal is to a sine wave. If the signal is similar to the sine wave it is
denoted as unity, and any deviation from the sine shape will lead to an increase in
unity. Complexity is defined as

Complexity =
Mobility(df(t)dt )

Mobility(f(t))
,

where f(t) is the signal. Meaning that complexity is defined as the ratio between the
mobility of the first derivative of the EEG signal and the mobility of the EEG signal
itself.

2.3.4 Power spectral density features
Power Spectral Density (PSD): PSD features are based on computing the PSD for dif-

ferent frequency bands. A more in depth description of the different frequency bands
is given in Section 2.1.3 along with an explanation of how the frequency bands are
significant for EEG signals.

2.4 Machine learning and neural networks
This section will present an introduction to machine learning, with an in-depth explanation
of the machine learning methods Support Vector Machine (SVM), Random Forest (RF),
K-Nearest Neighbor (KNN), including a neural network model called EEGNet.

2.4.1 Introduction
Machine learning is a method where the goal is for a machine to learn the patterns of
existing data to predict the outcome when introducing new, previously unseen data. Ma-
chine learning is a subset of the broader term Artificial Intelligence (AI). The difference is
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that machine learning learns from large amounts of data, improving with experience and
making predictions based on the data. AI, among other things, acts on these predictions
by responding to a problem or making recommendations based on data. AI is essentially
trying to mimic human intelligence, seeing, understanding, or analyzing situations.

Machine learning is a powerful tool when used right. It can be used for decision-making
processes by predicting future behavior, i.e., determining which days are more likely to be
busier for stores. As a diagnostic tool, we can rely on the experience of machine learning
and the enormous amount of data that a machine learning model can process to diagnose
new cases of a condition, such as providing medical imaging to a model that is accurately
able to determine if a tumor is benign or not. The applications are nearly unlimited as the
world progresses into being more data-driven, and the amount of data available is increas-
ing.

In general, we split machine learning further into several categories. Two are called super-
vised and unsupervised learning. Supervised learning means that you provide labels along
with your data to a machine learning model (Jordan and Mitchell, 2015). A label uniquely
corresponds to a data point, providing the answer to which class the data belongs. The
model then uses the answers to learn underlying patterns in the data that, when trained,
can be used on unseen, unlabeled data where it will predict which class the unseen data
belongs to. Meaning that if you want to train a supervised model, you need labels for all
your data. For example, if you’re going to make a classifier to detect if an EEG recording
suggests that someone is under the influence of alcohol, you need the training data to con-
sist of both recordings with and without the influence of alcohol. You need to explicitly
know and tell the model which recording was done with or without alcohol. Then predict
using the trained model.

On the other hand, unsupervised learning does not need labels to train a machine learning
model. Here, the purpose of the model is to detect underlying patterns and structures in
the data without the assistance of labels attached. Usually, the model can find clusterings
of data points and assigns that cluster a label (Jordan and Mitchell, 2015). It uses this clus-
ter’s characteristics to examine the new, unseen data of the test set and determine which
group it most likely belongs to.

To validate a machine learning model we often split a data set into two categories called
train data and test data. The goal of any machine learning models is to create a model that
can accurately predict new, unseen data. When fitting a model you use the training data
so that the model can learn the intrinsic patterns of the data. To check how the classifier
performs, we keep the test set unseen until it is time to do a performance check. The test
set will act as new, unseen data for our model, thus giving an indication of how the model
performs on data it has never seen before.

2.4.2 Support Vector Machine (SVM)
Support Vector Machine (SVM) is a machine learning algorithm that uses the method of
supervised learning. Every data point can be represented as a point on a plane, either a
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two-dimensional plane or any other dimension. For a two-class classification problem,
each data point corresponds to either class. The idea behind SVM is that every point in a
certain class will be near other data points of the same class and that there is a separation
between data points of different classes. SVM seeks to create a hyperplane that separates
the classes so that the model can look at the distance between the new data point to the hy-
perplane, and where the data lies relative to the plane, and then decide which class the new
data belongs to (Noble, 2006). The purpose is to learn what differs between the classes.

To learn the class differences, SVM uses specific parameters. One, already mentioned,
is the hyperplane. The hyperplane dictates where the SVM should differentiate between
the classes. Figure 2.5a shows how a hyperplane separates two classes. The dimension of
the data determines the hyperplane and its form. For example, two-dimensional data will
be separated by a line, while three-dimensional data will be separated by a plane spanning
the data. As Figure 2.5b shows, there are many possibilities for choosing a hyperplane.
The way SVM chooses the hyperplane relies on distance measuring and selects the hyper-
plane that ”lies in the middle.” If we define the distance from the hyperplane to the nearest
data point as the margin, SVM will choose the hyperplane that maximizes the margin be-
tween the data and the hyperplane, the maximum margin separating hyperplane (Noble,
2006). To do this we have to assume that the training and testing data are drawn from the
same distribution.

The kernel function of an SVM is used to add dimension to the data. In Figure 2.5d
we can see that the structure of the data seem to fit more to a curved hyperplane rather
than a linear. The kernel function solves this problem, it is a mathematical trick used to
increase the dimension by projecting the data into a higher dimension (Noble, 2006).
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(a) Two-dimensional plot of example data points
with a hyperplane separating them.

(b) Plot showing that SVM have many options for
a hyperplane, and it has to choose the one hyper-
plane that best maximize the distance from the hy-
perplane to the data points. (c) The maximum-margin hyperplane

(d) Choosing a different kernel can lead to a differ-
ent hyperplane.

(e) When introducing new data, the distance be-
tween the point and the hyperplane plays a part in
which class SVM predicts the point to be in

Figure 2.5: Showing how SVMs work. Image inspired by (Noble, 2006).

2.4.3 Random Forest (RF)

Random Forest (RF) is a type of decision tree algorithm. Decision tree algorithms are
algorithms that decide which class data belongs to by whether or not they satisfy some
conditions. Decision trees are made up of nodes called either decision nodes or leaf nodes.
Decision nodes often have a logical statement or a test that can either be true or false, if
the statement is true you move down to the left of the tree and to the right if the statement
is false. Leaf nodes are the endpoint of the tree, where no further decisions or statements
needs to be fulfilled, and they represent the class labels. The leaf nodes are what provides
the prediction. For example if you have a basket of fruit and you would like to know
what type of fruit is in the basket, you could build a simple decision tree. In Table 2.2 the
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chosen features for the fruit basket are diameter and color. Each of the features combined
yields a fruit, for example the combination of a size of 6 cm with the color red, will give
an apple. In general, a decision tree will contain some decision nodes and some leaf nodes
as presented in Figure 2.6a. Specifically the feature set from Table 2.2 can be represented
as shown in Figure 2.6b, where the first decision node asks if the diameter is larger than
5 cm. If the answer is no, then the fruit will have to be a grape, since it is the only fruit
with a diameter less than 5 cm, this represent a leaf node where we have reached a class
label. If the diameter of the fruit is larger than 5 cm the answer to the first decision node is
yes and we move down to the left. Since there are two kinds of fruit that have a diameter
larger than 5 cm, we need a second decision node to decide which fruit we are dealing
with. Here, we make use of the second feature that is color and the decision node asks if
the color is orange, if the answer is yes we move to the left and find that the answer is that
the fruit is an orange. If the answer is no, then we are moving to the right and are dealing
with an apple. Both of the last nodes are also leaf nodes. Now all the fruits have been
categorized.

Table 2.2: Fruits represented with features based on diameter and color.

Feature 1 - Diameter Feature 2 - Color Label - Fruit

6 cm Red Apple
2 cm Purple Grape

10 cm Orange Orange
8 cm Orange Orange

The downside to decision trees are that they are prone to change if the data set is in-
creased or otherwise changed, which will result in high variance. RF was then introduced
to minimize the variance and still produce an accurate result. As the name suggest, RF is
made up of multiple, random decision trees, thereby making a forest of trees. Each tree is
made with a method called bagging, developed by (Breiman, 1996), that generates multi-
ple versions of a predictor (in this case a decision tree). Bagging is a combination of two
methods, namely bootstrapping and aggregation. Bootstrapping means that we build each
tree by making a random selection from the training set with replacement. After building
N number of trees, each tree will be fitted to the test set and produce a prediction based
on their specific structure and logical statements. By using N trees we get N predictions.
Aggregation means that the most ’popular’ prediction from all the trees will be the result
of the classification (Breiman, 2001).

2.4.4 K-Nearest Neighbor (KNN)
K-Nearest Neighbor (KNN) is a non-parametric, supervised learning algorithm that was
first introduced in 1951 by Fix and Hodges Jr (1952). Non-parametric means that no
assumption is made regarding the structure of the data. It is based on the concept that the
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(a) A simple graphic showing decision nodes and leaf nodes in a Decision Tree

(b) The fruit basket represented with a decision tree

Figure 2.6: Decision trees
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classes in the closest proximity to a new, unlabeled data point, deliver useful information
about the label (Kramer and Kramer, 2013). The principle can be illustrated as in Figure
2.7. In Figure 2.7a a new point (in purple) is introduced to a data set consisting of three
classes; pink, blue and orange. KNN then uses the nearest neighbors by measuring the
distance from the new point to certain neighbors as in Figure 2.7b. In Figure 2.7c all the
distances have been ordered from nearest to farthest. K = 5 neighbors are then chosen,
and from those five the class with the most neighbors and the shortest distance, will be
the class appointed to the new data point. In this case the blue class has the three close
neighbors, compared to only one for each of the other classes, and thus the new data point
is classified as blue, Figure 2.7d. Usually, either Minkowski or Euclidean distance is used
for the distance calculation, they are respectively, defined as

∥ x̂− xj ∥p=

(
q∑

i=1

| (x̂)− (xi)j |p
)1/p

∥ x̂− xj ∥=

√√√√ q∑
i=1

(x̂)− (xi)2j ,

where x̂ is the new data point, xj are the existing data points, and q denotes the dimen-
sion we are working in. The K in KNN denotes how many neighbors should be apart of
the evaluation. Choosing an odd number for K ensures that there will always be major-
ity when the vote comes to stand. Weights are also used to determine how much power
each neighbor should have. Either all the neighbors are counted equally as with uniform
weighting, or the closest neighbors will have a greater influence to those further away, this
weighting is called distance.
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(a) A new data point is introduced
(b) The distances from the new data point to its nearest
neighbors is calculated.

(c) The distances of the neighbors are sorted from near-
est to farthest. Five neighbors are chosen to decide
which class the new point belongs to, and the class with
the most near neighbors is the deciding factor.

(d) The new data point has been classified and is now
colored blue.

Figure 2.7: An overview of the KNN classification method.

2.4.5 EEGNet
EEGNet was developed by Lawhern et al. (2018) where the objective was to make a com-
pact, convolutional neural network to accurately classify EEG signals from different Brain-
Computer Interface paradigms. Meaning that the goal is for EEGNet to generalize across
different methods that EEG is being used for, such as controlling prosthetic limbs, con-
trolling a drone, image reconstruction, visual-evoked potentials, and other paradigms. As
Lawhern et al. (2018) states, feature extraction and classification methods are often specif-
ically tailored to the characteristics of the EEG signal. The introduction of EEGNet seeks
then to generalize this process, by developing a neural network model that adapts to the
data at hand. The architecture of the model can be seen in Figure 2.8. The model first
uses a 2 dimensional convolutional neural network where the filter length is set to half the
sampling rate of the data, outputting feature maps of the EEG at different band-pass fre-
quencies. The next step uses depthwise convolutions to reduce the number of parameters,
and decoupling the relationship between the feature maps. Average pooling is performed
for dimension reduction. Then the features are used in the classification block where clas-
sification is performed using the softmax function (Lawhern et al., 2018).
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Figure 2.8: The architecture of the EEGNet model, image from Lawhern et al. (2018).
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3
Materials and methods

This chapter presents the materials and methods used in the thesis. The chapter starts with
design of the experiment, first describing the purpose of the experiment and how we chose
the participants. Then an explanation of how the data was labeled, and a statistical analysis
of the labels, comparing the two labeling methods. A quick recap of the equipment that
was used for the experiment follows, along with a walk-through of the protocol. The next
section focuses on exploring the data, both raw data and its Power Spectral Density. In
Figure 3.1 an overview of the method used in this thesis is presented. The thesis focuses
on three versions of the data, the raw data, data filtered with Signal-Space Projection,
and decomposed data. The latter two data sets have also been through an initial filtering
process that will be explained in more detail in Section 3.3.1. All three versions of the
data is then segmented into epochs of varying length, split into training and test sets,
before feature extraction with several types of features. Finally, classification is performed
with four different types of classifiers. To summarize; the method consists of three data
sets and two sets of labels, that will be classified with different combinations of features
and classifiers. Some key parts of the code have been included in the Appendix and will
be referenced when necessary throughout the text, the rest of the code and all its helper-
functions can be found in this GitHub repository: https://github.com/idamand/
stress_detection_EEG

3.1 Design of experiment
The data was compiled between December 2022 and January 2023. This project explores
whether there is a way to detect psychological stress using EEG and Phonocardiogram
(PCG) signals accurately. To detect psychological stress using machine learning, we need
to record both stressed and not stressed people (the control group). For this project, it was
chosen to use the same participants for the stressed and not stressed parts by recording the
participants at two separate times. We assumed it would be easier to compare the same
participant’s stressed and not stressed states. Considering that in a clinical setting, stress
might be ruled unhealthy if the current stress levels are higher than they previously have
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Figure 3.1: A flowchart presenting the steps in the methods of the thesis. From raw data through
pre-processing and filtering, then splitting the data into epochs before splitting into training and test
sets. Following is feature extraction and classifications methods.

been for a patient. As described in Section 2.1.4, real-life stressors that induce acute stress
include taking exams, which gives a perfect opportunity to recruit students with an exam
close to the data collection date. The second recording session was chosen to be in January,
after the students had been on winter break, assuming that their stress levels had decreased
from the period before their exam. There were 28 participants in total, 12 women and 16
men. Their ages ranged from 20 to 28, with a mean age of 23 ± 2 years. Though they
were first recorded during their exam period, not all showed signs of stress at their first
recording. Therefore, two methods were used to label the participants as stressed or not
stressed, the questionnaire State-Trait Anxiety Inventory for Adults - Y (STAI-Y), and the
participant’s stress rating, denoted Stress-Scale (SS) in this thesis.

Table 3.1 provides an overview of the notations used for the recording sessions that will
be used throughout this thesis.

Table 3.1: Overview of the notations used for the recordings in the project.

Recording time/
recording type December January

No stimuli Session 1, Run 1 Session 2, Run 1
Arithmetic test Session 1, Run 2 Session 2, Run 2
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3.1.1 Labeling the data

The subjective aspect of measuring stress is the main challenge of labeling whether stress
is active in a participant. As described in Section 2.1.4 people’s perceptions of stress may
differ daily based on physiological factors, such as sleep quality, food intake, and hydra-
tion levels. In addition to psychological factors such as how their day has been, difficult
tasks at school or work, or interpersonal problems. One day, which might be interpreted as
a level 8 stressor, might be interpreted as a level 4 the next day. By choosing two different
methods for labeling the data, there are grounds to compare each method and discover
which gives the most accurate picture.

The first method for labeling the data was to use the STAI-Y questionnaire (Spielberger
et al., 1971). It has two parts; the STAI-Y1 questionnaire focuses on the current state
of stress within the participant, while the STAI-Y2 questionnaire focuses on long-term
anxiety traits. This thesis focuses on measuring real-life, current stress, so the STAI-Y1
questionnaire was selected as a basis for one of the label sets. There are 20 questions
spanning from ”I feel calm” to ”I feel upset”, where each participant rates their answer
either ”Not at all,” ”Somewhat,” ”Moderately so,” or ”Very much so.” Each question is
scored between 1-4, depending on how much the answer is weighted. The more nega-
tively denoted questions (like ”I feel nervous”) are scored from 1-4, where ”not at all”
gives a score of 1, while ”very much so” yields a score of 4. For the positive questions (”I
feel calm”) the answer ”not at all” yields a score of 4, while ”very much so” is scored to
1. The final score is given by summing together the scores for each question, then each
participant get a final score between 20 and 80, depending on their current stress level. A
higher score corresponds to a greater chance of being stressed. The decision to only use
the Y1 questionnaire was decided after the recordings were done, and so each participant
filled out both Y1 and Y2 during each session. The participants answered the forms prior
to entering the recording room and after the final recording was done for each session giv-
ing two scores per session, four in total. The questionnaire can be found in Appendix M.

The Stress-Scale has an interval between 1-10, where 1 corresponds to not stressed and 10
corresponds to very stressed. The participants were asked to rate their stress after each run,
giving them two scores for each session, four in total. To convert the scores into labels,
where the labels are either 0 for not stressed or 1 for stressed, they were compared to a
threshold value chosen to be 4. So that each score below a 4 is denoted as 0, not stressed.
While each score above 4, is denoted as 1, stressed.

3.1.2 Equipment

Mentalab’s Explore device was used for recording EEG, (Mentalab). The device uses 8
channels meaning that 8 electrodes and 1 reference electrode are used for the experiment,
the sampling frequency is 250 Hz. The Mentalab equipment includes two caps, one in
size medium and one in size large, and open-source software to record data and check
the impedance of the electrodes. EkoDuo digital stethoscope (Eko) was used for recording
PCG, including the EkoDuo mobile application. The mobile application was used to check
that the audio signals were sufficient while the software AudioCapture (AudioCapture)
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was used to record the EkoDuo signals. The Python library PsychoPy (Peirce et al., 2019)
was used to display the arithmetic test. Three computers in total were needed to conduct
the experiment. One computer was connected via Bluetooth to the Mentalab Explore
device, one computer was connected to the EkoDuo with an audiojack while AudioCapture
was used for recording the PCG, and the last computer was using PsychoPy to display
the arithmetic tests. To stream and synchronize the recordings, we used the open-source
software called LabStreamingLayer (Kothe).

3.1.3 Protocol
The participants were selected after going through an initial screening. The initial screen-
ing was conducted as a questionnaire with questions regarding their physical and mental
health. The participants could not be on any medication regulating their heart rate or cog-
nitive functioning. In addition, they could not be diagnosed with any mental illnesses or
illnesses concerning the heart’s function.

Figure 3.2: A flowchart showing the protocol from the preliminary stages prior to data collection
shown in orange, to Session 1 in December shown in blue, and finally Session 2 conducted in January
in pink

A graphical overview of the protocol can be studied in Figure 3.2. The data were collected
similarly in the two sessions. Session one was at the beginning of December, close to
the exams of the participants. Before entering the recording room, the participants were
informed of the experiment and signed a consent form, available in Appendix L. Then
they filled out an STAI-Y form, both Y1, indicating the current state of anxiety, and the
Y2 form, indicating anxiety over time. Only STAI-Y1 was used for the labels as it most
accurately captures the current state of anxiety the participants may feel.

Upon entering the recording room, the participant’s head was measured, and the correct
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Mentalab cap was chosen. Then the Mentalab EEG cap and device were placed upon the
participant’s head. The scalp, where each of the eight electrodes was placed, was washed
with rubbing alcohol. To ensure decent quality recordings, the impedance of each elec-
trode was monitored until it reached an acceptable level which was deemed below 160 kΩ.
If the impedance was above this threshold, inductance gel was placed upon the electrode
to decrease the impedance. The placement of the eight electrodes are illustrated in Figure
3.3, their positions was determined by genetic algorithm as part of the project thesis of
Marthinsen (2022). Figure 3.4 shows the set up of the Mentalab software.

Figure 3.3: The eight electrodes used for the experiment are marked in pink. The channels are
namely, Fp2, F4, FC6, T8, Oz, O1, C3 and FT9. Inspired by Ghosh et al. (2022)

After ensuring a good enough connection with the electrodes, the participant moved to the
recording station to be fitted for the EkoDuo PCG sensor. The sensor was placed on Erb’s
point, above and to the right of the heart, as illustrated in Figure 3.5. The EkoDuo records
audio through a microphone in the sensor. Thus, it is sensitive to surrounding noise, and it
is crucial to obtain a good placement over the heart to get quality recordings. A strap was
placed over the sensor to increase the quality, across the participant’s chest, over their left
shoulder, and under their right armpit. The strap was tightened so that the sensor got good
audio signals from the heart, but not to the point of discomfort or pain for the participant.
It was not easy to tighten the strap enough to obtain satisfactory recordings on female
participants due to breast tissue, so the strap was often adjusted to lay more towards the
center, in between the breasts. The recording quality was checked using the EkoDuo app,
and when it proved satisfactory, the recordings began.

The recordings were done in two runs per session, each lasting five minutes. During
the first run, the participant was seated on a chair without stimulation. The second run
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Figure 3.4: Image showing the set-up for EEG. The computer runs the Mentalab software to display
and stream the EEG-signals to LabStreamingLayer.

included a cognitive arithmetic test to induce stress in the participant. The arithmetic test
was constructed so that the participants sat in front of a screen, as seen in Figure 3.6,
which displayed different arithmetic tasks on the form 4 + 1 = 7 where the goal is for
the participant to determine if the arithmetic statement is true or false. If they believe the
statement to be true they press ”T” on the keyboard, if the statement is false the press ”F”.

3.2 Exploring the dataset
For this thesis, the data consists of recordings of brain waves from stressed and not stressed
participants. Analyzing the data is essential to fully understand how to filter and prepare
the data for machine learning and increase our understanding of the data. Firstly, this sec-
tion will visually analyze the raw, unfiltered data. Looking for potential artifacts such as
blinking or saccades and check for abnormal noise levels. To compare the two Sessions
and if there are are any differences in noise levels, one recording from Session 1 and one
from the same Participant in Session 2 will be examined. Namely, Participant 2, Session 1
- Run 1 and Session 2 - Run 1

Following, I will examine the PSD of two specific recordings. The analysis includes a
comparison of the PSD of both a stressed and not stressed participant and the differences
in PSD between EEG channels. Including an analysis of the topographic maps of the PSD.
The two specific recordings are from Participant 2, like in the raw data analysis, though
this time the recordings are from Session 1, both Run 1 and Run 2, as the labels have
reported a difference in stress-levels between the two runs.

In general, the dataset consists of 108 recordings from 28 participants.
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Figure 3.5: Illustrating the placement of the electrodes. Image from Andreassen (2023) based on
AMBOSS

3.2.1 Raw data

Figure 3.7 shows 10 seconds of the raw EEG from Participant 2, Session 1, Run 1. With
only the raw data available it is impossible to draw conclusions regarding the existence of
artifacts in this signal. As the signal is presented here, it is only clear that it inhabits quite
some amount of noise. Whether that is present due to head movement, poor connections
with the electrodes, the power grid frequency or other sources is difficult to tell. Clearly,
pre-processing the signal and filtering need to be applied before any amount of informa-
tion is to be extracted from the signals.

Construction work was being done to the building where the recordings were taking place
in session 2 in January. The environmental noise included drilling, hammering and other
disturbing noises that arises from standard construction work. To see how the noise af-
fected the recordings, if it was affected at all, the raw EEG from Participant 2, Session 2,
Run 1 was plotted. In addition to comparing it to the Session 1 recording where no outside
disturbances were present. Looking at Figure 3.8 it is evident that the recordings were
affected by the environmental noise. In this case it is impossible to draw any conclusions
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Figure 3.6: Image showing the set-up with a participant during Session 1, run 2. Explicit consent
was given from the participant to include the image in this thesis. The image shows the participant
with the EEG cap on the head, and the strap holding the PCG-sensor can be seen across the back of
the participant. The computer directly in front of the participant displays one of the arithmetic tasks.
While the computer to the left streams the PCG-signals.

regarding the state of the data. This noise was evident in most of the recordings from
Session 2.

3.2.2 Power Spectral Density

The next step to extract more information from the raw EEG is to compute and plot the
Power Spectral Density (PSD) of the signal. By comparing the PSD between a stressed
and not stressed run it is possible to examine if there are differences in the power of the
EEG-signal due to stress. Figure 3.9 shows the comparison of the PSD across all channels
between Participant 2- Session 1- Run 1 (not stressed) and Participant 2 - Session 1- Run
1 (stressed). The first thing to notice is the two high amplitude peaks at 50 Hz and 100
Hz. These peaks are most likely not due to anything stress related, or even brain activity.
The power grid frequency in Norway is 50 Hz which explains the peak at 50 Hz. The
explanation behind the peak at 100 Hz is not evident, however, this falls outside of the
range where neurophysiological information lies, thus it needs to be filtered. By looking
at the PSD we have now gained information as to where some of the noise present in the
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Figure 3.7: A section of a raw EEG, each signal correspond to a channel named on the left.

Figure 3.8: 10 second section of the raw EEG from Session 2 during considerable outside distur-
bances.
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Figure 3.9: The Power Spectral Density (PSD) of two raw data recordings from Participant 2. The
pink graph shows the PSD for a stressed recording, while the blue line shows the PSD for a non-
stressed recording. The two recordings are from Participant 2, Session 1, Run 1 and Run 2.

raw EEG is coming from and now know that this needs filtering.

There appears to be some clear differences between the PSD of the stressed and not
stressed signal in Figure 3.9. To examine this phenomenon closer, each channel have
been plotted separately in Figure 3.10. Upon first glance, all channels but T8 show a dif-
ference between not stressed and stressed signals. Channel Fp2 appear to have the greatest
difference between not stressed and stress, and that the stress has increased Power Spec-
tral Density compared to not stressed. The Fp2 channel is situated in the pre-frontal cortex.

The next step in the analysis is to examine the topographic maps (topomaps) of the PSD
across the different frequency bands. This can give us information regarding which fre-
quencies are most affected by stress. Figure 3.11a shows the topomaps from the non-
stressed recording of Participant 2. The Delta and Theta band seem to have more active
electrodes on the frontal part of the brain, implying that the frontal part is contributing to
the low frequencies of the signal. The Alpha band is active for both the frontal and the
temporal electrodes, yielding a larger area. The Beta and Gamma band is concentrated
in the temporal part of the brain. Comparing this to Figure 3.11b, we can observe that
there are differences in the Delta band where the PSD has a much higher value in the
stressed recording. Likewise, in both the Theta and Alpha band the PSD is much higher
when stressed. In addition the Alpha band has concentrated in the frontal part of the brain.
There is not much of a difference between the stressed and non stressed Beta and Gamma
bands.
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Figure 3.10: The Power Spectral Density (PSD) has been plotted for each channel in the recordings.
The pink graph shows the stressed recording, while the blue graph shows the non-stressed recording.
Top row, left to right shows the channels; F4, Fp2, C3m FC6, while the bottom row from left to right
shows channels; O1, Oz, FT9 and T8.

(a) Topographic map of the PSD of participant 2 while not stressed. The frontal electrodes appear to be most
active for both the Delta and the Theta bands, while Alpha is more impacted from the frontal and temporal
electrodes. Beta and Gamma are most affected by the temporal electrodes.

(b) Topographic map of the PSD of Participant 2 while stressed. The Delta, Theta and Alpha bands are most
affected by the frontal electrodes, while Beta and Gamma are affected by the temporal electrodes.

Figure 3.11: Topographic maps of the PSD of the different frequency bands from a raw EEG signal.
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3.2.3 Exploring the labels

After scoring the questionnaires and determining the threshold values for both STAI-Y
and SS, all the scores were plotted. In Figure 3.12 the scores for the first 14 participants
are shown, where Figure 3.12a show the STAI-Y scores, and Figure 3.12b shows the SS
scores. Likewise, Figure 3.13 shows the scores for participant 15-28. Upon closer anal-
ysis there are some discrepancies with how the scores will be labeled. Specifically, for
Participant 5, the STAI-Y scores from both of the sessions are below the threshold value
of 40, meaning that the recordings will be labeled to 0 meaning Not Stressed. While the
SS scores of the same participant scores the two recordings in Session 2 as above the
threshold meaning a label of 1 - Stressed. The results of this analysis have culminated
in doing a t-test to further the insights into the differences between the label sets. Us-
ing scipy.stats.ttest ind (SciPy), the resulting p-value will determine if the two
label sets are similar or not. The t-test was done on the labels sets after they had been
converted to strictly 0 and 1 labels, and the resulting p-value was 0.78, meaning that we
cannot reject the null hypothesis stating that the samples have the same mean. I.e. the
labels are similar.
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(a) STAI-Y1 scores for Participants 1-14 with a threshold at 40.

(b) SS scores for Participants 1-14 with a threshold at 4.

Figure 3.12: STAI-Y and SS scores for participants 1-14.
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(a) STAI-Y1 scores for Participants 15-28 with a threshold at 40.

(b) SS scores for Participants 15-28 with a threshold at 4.

Figure 3.13: STAI-Y and SS scores for participants 15-28.

3.3 Pre-processing
For simplicity and efficiency, a class named Filtering was created to pre-process the
data. The code can be found in Appendix E. The class encompasses all aspects of filtering,
saving, and plotting the recordings, including loading the data, initial filtering, filtering
with Signal-Space Projection (SSP), and decomposing the recordings by frequency bands.
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Several functions were implemented in Filtering; an overview and description of the
functions can be studied in Table 3.2. Most of this chapter uses the MNE Python library
created by Larson et al. (2023); Gramfort et al. (2013). The resulting data sets will from
now on be called raw data, SSP data, and delta data. Lastly, the function that prepares all
the data sets for classification will be presented.
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Table 3.2: Listing all the functions implemented in the Filtering-class with their descriptions

Functions Descriptions

load data() Loads the raw .mat data recording for the given sub-
ject, session and run.

save ssp data() Saves the filtered SSP data to a .mat-file.

save decomp data() Saves the filtered decomposed data to a .mat-file.

save psd(data type) Saves the PSD data to a .mat-file.

init filter() Filters the data with a basic band-pass filter with cut-
offs at 1 and 50 Hz, then with a notch-filter at both 50
and 100 Hz, with a bandwidth of 0.5 Hz.

compute and save
psd(data type)

Computes the PSD for a given data type that is
either raw or filtered, then saves the com-
puted PSD using save psd(data type). Here,
filtered means data that has been passed through
the init filter().

decompose data
(freq band, method)

Decomposes the data using a band-pass filter based on
the given frequency band and method. The frequency
bands are γ, β, α, θ, and δ.

vizualize artifacts() Visualize the artifacts that will be filtered away with
SSP, with built-in functions from the MNE toolbox.
The functions create EOG epochs, apply a baseline
and plot the artifacts.

compute ssp
projectors()

Computes the SSP projectors.

plot eog projectors() Plots the projectors.

plot ssp() Plots the EEG recordings with and without the projec-
tors.

plot psd comparison
(filename1,
filename2, title psd,
title ch comparison)

Given two filenames and titles for the plots, this func-
tion makes comparison plots between the PSD record-
ings from the filenames. Used to compare the PSD of
stressed and not-stressed recordings.
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Before moving on to the detailed explanations of the filtering methods, there are a few
steps in the Filtering-class that is common for all the methods:

Initialization: The first step is to initialize a Filtering-object. This is done by pass-
ing subject number, session nr and run nr to Filtering and this cor-
responds to a specific recording.

Global values: subject number, session nr and run nr are set as global vari-
ables for the Filtering-object.

Loading data: load data() is then used to load the raw .mat-files, corresponding to
the given subject number, session number an run number, into a global variable.

Creating a RawArray: mne.create info() creates an info-object to be passed into
mne.io.RawArray() along with the raw data, where mne.io.RawArray()
creates a RawArray, that is stored in a variable called raw arr.

Rename channels and set montage: To get the proper names of the channels we need to
rename them using a built-in MNE function mne.rename channels. Then de-
fine the montage that was used (the set-up of the electrodes) with mne.set montage.
Here, a 10-20 set-up was used as described in 2.1.1.

Initial filtering: Initial filtering was saved to a variable called filtered arr. The
filtering was done with init filter() as described in Table 3.2 which included
a band-pass filter and a notch filter.

3.3.1 Initial filtering

The idea behind doing an initial filtering is to remove both low and high frequency noise
that is outside the range of where neurophysiological information lies. Starting with a
simple band-pass filter, we remove frequencies below 1 Hz and above 50 Hz. In addition,
as has been pointed out during the data exploration in Section 3.2, there are distinct peaks
at both 50 and 100 Hz. Power line grids operate at 50 Hz and by creating a notch filter at
50 Hz we remove the noise that originates from the power lines. It is not apparent where
the noisy peak at 100 HZ comes from, though we remove that as well with a notch filter. In
Figure 3.14 the differences between the raw data and the data that has been filtered can be
studied. The noise is noticeably reduced in Figure 3.14b compared to 3.14a, although there
is still some noise and high-amplitude peaks (for example around 55 s) visible. Figure 3.15
confirms that the peaks from Figure 3.9 have been reduced by the notch filter.
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(a) The raw EEG of Participant 2, Session 1, Run 1

(b) The EEG after going through initial filtering with bandpass filter and notch filter. The signal is less noisy than
the raw signal, however there are still some noise present in channel T8.

Figure 3.14: A comparison of the raw EEG signal and the signal after initial filtering with a bandpass
filter and a notch filter.
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Figure 3.15: The PSD of Participant 2, Session 1, Run 1 and 2, where the high amplitude peaks at
50 Hz and 100 Hz have been reduced by the notch filter from the initial filtering.

3.3.2 Signal-Space Projection (SSP)

Figure 3.16: An overview of the steps of SSP filtering. The structure of the input, the raw data, is
an array of all the recordings. Firstly, the raw data is bandpass filtered and notch filtered, before the
artifacts are visualized. Following, the projectors are computed and applied to the EEG signal, then
the projectors are plotted, and the new, SSP filtered data is saved as individual .mat-files, ready to be
gathered into an array when its time for classification.

This Subsection will include a walk-through of the SSP filtering method on Participant
13, Session 1, Run 2 during the arithmetic test. An overview of the filtering method can
be studied in Figure 3.16. The SSP filtering method usually makes use of dedicated Elec-
trooculography (EOG)-channels to filter out eye blinks and other eye-related artifacts. This
was not available during the data collection and thus the two electrodes closest to the eye
muscles was chosen as a basis for the filtering. The two channels are Fp2 that lies on
the pre-frontal cortex, and FT9 which lies on the frontotemporal part of the scalp, their
placement can be seen in Figure 3.3. The first step is to visualize the artifact we want to
remove. Firstly, we can observe the high-amplitude peaks in Figure 3.14b that resembles
the blinking artifact described in Section 2.1.2. Figure 3.17 visualizes how the ocular arti-
fact manifests across the channels. The faint, light green line represent channel Fp2, while
dark green line is the channel FT9. The fact that both of these channels are present and
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contributes to the artifact means that choosing the two channels for EOG artifacts was a
reasonable choice.

(a) A visualization of the artifacts from the Fp2 channel. The faint light green line represents the Fp2 channel,
and due to the high amplitude peak, there is clearly some blinking artifacts present.

(b) A visualization of the artifacts present in channel FT9. The dark green line represents the channel, it appears
as though the blinking artifact is not so present in this channel.

Figure 3.17: A visualization of the artifacts of the EEG signal. The plot shows a short epoch where
it detected EOG artifacts, showing the distribution of the artifact across the channels.

Confirming that there are in fact some artifacts that can be removed, the next step is to
compute the SSP projectors. In Figure 3.18, the left column shows the data traces before
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and after applying the projectors. The center column shows the topographic maps that is
associated with each projector, here we see that the projectors are concentrated towards
the front of the skull. The right column shows the data traces in black once again, though
this time they are also projected onto the projector for each channel, the trace in red. In
addition, the graph show a surrogate ground truth for the chosen channel.

(a) Showing the EOG projectors for channel Fp2.

(b) Showing the EOG projectors for channel FT9.

Figure 3.18: A visualization of the projectors showing the data trace before and after projection in
the left column, the topographic map of the projectors in the middle column, and the right column
shows the data traces in black, along the projectors in red and the yellow represents the ground truth
of each channel.

After applying the projectors to the data it is important to visualize the effect that the
SSP-filtering had on the data. Figure 3.19 shows the difference between data that has
gone through the initial filtering (Figure 3.19a) and data that has been though both initial
filtering and SSP-filtering (Figure 3.19b). The most noticeable difference it that the high-
amplitude peaks have been reduced. Still, there is significant noise in the signal.
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(a) Showing the EEG of the signal withput EOG projectors, note the high amplitude peaks at around 3s, 4.5s,
5.5s 7s, and 8.5s

(b) The EEG signals after applying EOG projectors. The high amplitude peaks from the image above have been
reduced, though there is still some noise present in the signal.

Figure 3.19: Shows a comparison of EEG signal with and wihtout EOG projectors active.
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3.3.3 Signal decomposition

From the exploration of the data in Section 3.2 the conclusion was that stress seems to be
relatively active in the Delta (δ) frequency band. Signal decomposition can be obtained
by creating a filter bank, using the built in mne.filter() function and defining the
frequency cutoff. The Delta band ranges from 0-4Hz, so the lower cutoff frequency will
be zero and higher cutoff frequency will be 4. Figure 3.20 shows the difference in the
initially filtered data and the decomposed Delta band of the EEG data.

(a) The EEG after initial filtering of Participant 13, Ses-
sion 1, Run 2

(b) The EEG of the Delta-band of Participant 13, Ses-
sion 1, Run 2

Figure 3.20: A visualization of the difference between initially filtered data and Delta-band data.

3.3.4 Preparing the data for classification

prepare data.py is a script that contains all the necessary steps to prepare the data
for classification, depending on which data set, label type, epoch duration, and feature
type needed for classification. The script can be found in Appendix A. All the differ-
ent recordings will be regarded as one set of data, meaning that the classification will
not be performed subject wise. data type, label type, epoch duration and
feature type are all parameters that are passed to the function prepare data(...).
All the Python-functions in the script are listed in Table 3.3. After splitting the data sets
into train and test sets, the parameter feature type determines if the features of the
train/test sets should be calculated or not, and if so then the features are calculated. The
EEGNet classifier does not use features, therefore the option of setting feature type
= None exists.
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Table 3.3: Listing all the functions implemented in the prepare data(data type,
label type, epoch duration, feature type)-function with their descriptions.

Functions Descriptions

get valid recordings
(data type)

Finds all the valid recordings based on the data type.

extract eeg data
(valid recordings,
data type)

Extracts the EEG-recordings based on the valid
recordings and the data type.

get stai labels
(valid recordings,
cutoff)

Fetches the STAI-Y-labels for each of the valid
recordings. The cutoff denotes the value at which to
separate between stressed and not stressed labels. De-
fault value is 40.

get pss labels
(valid recordings,
threshold)

Fetches SS-labels for the valid recordings, the thresh-
old denotes the value at which to separate the stressed
and not stressed labels. Default threshold is 4.

segment data(data,
labels,
epoch duration)

Fetches SS-labels for the valid recordings, the thresh-
old denotes the value at which to separate the stressed
and not stressed labels.

create train test
split(segmented data,
segmented labels,
epoch duration)

Splits the segmented data into train and test sets.
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3.4 Features
This section will focus on presenting the methods used for feature extraction. The theory
behind each feature is described in more detail in 2.3, where all the features mentioned are
implemented in this section, while the code can be found in Appendix B. All the features
are a part of the Python library MNE-features (MNE-features). Table 3.4 lists all the
functions implemented in features.py, the file in which all the features are calculated.

Table 3.4: Listing all the functions implemented in the features.py-file with their descriptions.

Functions Descriptions

time series
features(data)

Calculates the three time-series fea-
tures using the MNE-features func-
tions compute ptp amp(data),
compute variance, compute rms(data)

entropy features(data) Calculates the four different entropy features
using compute app entropy(data),
compute samp entropy(data),
compute spect entropy(data, sfreq),
compute svd entropy(data)

hjorth features(data) Calculates the two Hjorth features using
compute hjorth mobility spect(sfreq,
data), compute hjorth complexity
spect(sfreq, data)

psd features(data) Calculates the PSD of the five frequency
bands mentioned in Section 2.1.3 using
compute pow freq bands(sfreq, data)

3.5 Machine learning
This section will present the methods for machine learning utilized in this thesis. As
the interest and research has increased on the topic of machine learning and neural net-
works, many open-source libraries have been created that incorporates the most com-
mon machine learning models. SVM, RF and KNN uses the Scikit-learn Python library
(Pedregosa et al., 2011). All the three machine learning classifiers utilize Scikit-learn’s
sklearn.model selection.GridSearchCV() to tune their respective hyperpa-
rameter grids, to ensure that the most optimal hyperparameters are being used.
GridSearchCV uses the grid search optimization algorithm with cross-validation, with
a ’fit’ and ’score’ method. It exhaustively search the grid space, meaning that it tests all
possible combinations of the parameter grid, and retains the best possible model. The
search is run with 10-fold cross-validation, and the refit parameter is set to True so the
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data will be re-fitted with the best parameters from the search. The specific hyperparam-
eter grids will be presented in the sections to come. EEGNet is a neural network from
Lawhern et al. (2018) utilizing the Python-library Tensoflow with the high-level API
keras (Abadi et al., 2015).

Each classifier is being predicted with an array of different input data, label types, fea-
tures and epoch duration. The classification is done as a general model where the all the
recordings are thought of as one data set. There are three different data sets; raw data con-
taining the raw data of the recordings, meaning no filtering methods have been applied,
SSP data containing the data that has been filtered with a bandpass filter, notch filter and
by the SSP filtering method, and delta data (denoted ”decomp” in the code) where the data
has been filtered with bandpass filter and notch filter, and then lowpass-filtered from 0 - 4
Hz. There are two types of labels as described in Section 3.2.3; the labels obtained from
the STAI-Y-method denoted STAI-Y-labels, and the label set from the SS-method denoted
SS-labels. The different features have been introduced in Section 3.4, consisting of time-
series-, entropy-, Hjorth-, and PSD-features. Lastly, predictions will be computed with
three different epoch durations; 1s, 2s, and 5s. The code implementation can be studied in
Appendix C.

3.5.1 Support vector machine (SVM)
Support Vector Machine (SVM) was implemented with Scikit-learn’s sklearn.svm.SVC().
Considering that SVM creates a hyperplane to separate the different classes, it is impor-
tant that the data is normalized. This was achieved using sklearn.preprocessing.
StandardScaler which removes the mean and scales the data to unit variance. The
regulation parameter C and the kernel were selected for hyperparameter tuning.
GridSearch() searches through the parameter grid where C iterates through the values
[0.01, 0.1, 1, 10, 100, 1000, 10000] and the kernel is either poly, sigmoid, linear,
or rbf.

3.5.2 Random forest (RF)
Random Forest (RF) was implemented using sklearn.ensemble.
RandomForestClassifier(). RF is not sensitive to the distance between data
points thus the data does not need to scaled for classification. The parameter grid con-
sist of number of estimators (n estimators) iterating through [50, 75, 100, 125, 150,
175, 200, 225, 250], maximum number of features used for each tree (max features)
that is either auto, sqrt or log2, and the maximum depth of the tree (max depth)
iterating through [3, 5, 7, 9]. The selected parameters are an important to the performance
of the classifier, and thus were chosen in order to find the best representative parameters.

3.5.3 K-Nearest Neighbor (KNN)
K-Nearest Neighbor (KNN), like SVM, is dependant on the distance between the data
points. Therefore, the data was scaled using
sklearn.preprocessing.StandardScaler prior to classification. The selected
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hyperparameters of the KNN was number of neighbors that decides how many neighbors
are to be taking into account when deciding the nearest class, leaf size which affects the
speed of construction of the algorithm used for finding the nearest neighbors, and lastly, the
weights parameter which determines how to weigh the neighbors. Number of neighbors
(n neighbors) iterates through the values [1, 5, 9, 15, 19, 25, 29, 35, 39], where all the
possible values are odd to ensure that there will always be a majority when voting for the
nearest neighbors. The leaf size (leaf size) varies between [5, 10, 20, 30, 40, 50]. The
weight parameter only has two option, either uniform or distance. If the weight
is uniform then all neighbors will be weighted equally, if it is distance, then the neighbors
closer to the new point will have more influence when deciding the class.

3.5.4 EEGNet

EEGNet uses training, validation and test sets to perform classification. The first step in
this classifier is to split the training set returned from prepare data described in Sec-
tion 3.3.4, into a new training set and a validation set.
sklearn.model selection.train test split()was used to split into the new
training and validation set, using 25% for validation. The EEGNet model is mostly run on
the default parameters from the original model. The only parameter that changed in this
implementation is the kernel length (kernLength. The kernel length was defined as half
the sample frequency, thus the parameter was set to 125 in my implementation. The epoch
duration was also added as an input parameter to the function to ensure that the model
would work with varying epoch lengths. As the model itself creates features, the data did
not go through feature extraction prior to classification with EEGNet.

3.6 Classification metrics

To evaluate the performance of the classifiers, certain performance metrics are used. In
clinical research the most common metrics are accuracy, sensitivity and specificity. To
measure the metrics we need to define a confusion matrix. A confusion matrix is a 2x2
matrix that reports on the number of true positive, true negative, false positives and false
negatives when comparing predictions from a classifier with ground truth labels. The true
positives (TP) are defined as a prediction that correctly indicates the presence of a condi-
tion. In this case it would be to correctly indicate that a person is stressed. True negative
(TN) means that the prediction correctly classifies the absence of a condition, in this case
that would be to correctly indicate that a person is not stressed. False positive (FP) occurs
when the prediction wrongly indicates that a condition is present, like if the prediction
stated that the person was stressed, when they were not. False negative (FN) means that
the prediction indicates that a condition is not present when it is in fact present, meaning
that the prediction states that the person is not stressed, when they actually are. These
definitions help us to further define the accuracy, sensitivity and specificity of a classifier
where
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Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN
.

The metrics have been calculated using sklearn.metrics.confusion matrix
and sklearn.metrics.ConfusionMatrixDisplay. The code can be found in
Appendix D.

49



4
Experimental results

The chapter will present all the results from the experiment and the methods detailed in
Chapter 3. The structure of this chapter is as follows: the results from the three classifiers
SVM, RF and KNN, will first be divided into sections by feature type, then each classifier
and their results are presented in tables outlining which data set, epoch duration and label
type has been tested. Lastly, the results from EEGNet will have its own section, as this
classifier does not use features as input, only the data itself. The tables report on accuracy,
sensitivity and specificity. The tbales have been constructed this way to be able to com-
pare the performance of the different label types, epoch durations and data sets. There is
an extensive number of results from this experiment, with over 200 unique results. For
each combination of classifier, feature type, data set, epoch duration and label type, their
respective confusion matrices can be found from Appendix G - K. The structure of the
Appendices matches the structure in this Chapter. The complete overview of the result is
presented in Appendix F, where all the hyperparameters from the GridSearch is also noted.

Note: the SVM classifier using sklearn.svm.SVC() is very sensitive to the size of
the data set in regards to fit time. It scales quadratically with number of samples, hence
when splitting the data into epochs of both 1 and 2 seconds, the run time of the algorithm
is very lengthy. The run-time for PSD-features, which yields the largest amount of sam-
ples, with 2 second epochs averages around 12 hours. Therefore, the results for the SVM
classifier is not complete. Results that have not been computed have been marked with ’-’
in the tables.

4.1 Time-series features

This Section will present all the results regarding time-series features for each type of
classifier.
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4.1.1 Support Vector Machine (SVM)

The results from the SVM with time-series features is presented in Table 4.1. Though the
table is not complete due to the reasons stated in the note at the beginning of the chapter,
most of the combinations yields a higher accuracy for the SS label type. For the data sets
SSP and Delta-band, many of the results yield a low sensitivity and a high specificity,
indicating that the classifier is mostly predicting Not Stressed, which is the majority class
in the data. Across the epoch duration there are some discrepancies like between raw data
with 2 and 5 second epochs with SS labels, where 2s epochs yield 70.67% while 1s epochs
yields 55.08%.

Table 4.1: Accuracy, sensitivity and specificity for time-series features classified by SVM. The
results yielding a percentage above 70 are marked in bold. The first column defines the data set
used, the second column states the epoch duration and the third column describes the label type
used.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 56.15% 55.24% 56.19%1s SS 50.46% 77.26% 34.38%

STAI-Y 69.16% 50.27% 85.13%2s SS 70.67% 66.29% 73.29%

STAI-Y 69.00% 52.70% 82.79%

Raw

5s SS 55.08% 73.26% 44.18%

STAI-Y - - -1s SS - - -

STAI-Y 46.62% 19.36% 69.70%2s SS 61.65% 6.38% 93.24%

STAI-Y 45.34% 18.64% 67.93%

SSP

5s SS 62.56% 34.75% 78.45%

STAI-Y - - -1s SS - - -

STAI-Y - - -2s SS 62.61% 0.75% 99.73%

STAI-Y 60.52% 23.27% 92.05%

Delta-band

5s SS 62.50% 0.00% 100.00%
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4.1.2 Random Forest (RF)

The results from the RF classifier with time-series features is shown in Table 4.2. The raw
data set is performing at a higher accuracy across all combinations of epoch and labels,
than Signal-Space Projection (SSP) and Delta-band. The SS-labels in general yields a
higher sensitivity than that of the STAI-Y-labels. The sensitivity is also lower on both
SSP and Delta-band data than for raw data. Across epoch duration the results are quite
consistent, though a slight drop in accuracy is noted for 2 second epoch compared to the
other epochs. The best combination with the highest accuracy, sensitivity and specificity
was raw, with 1s epoch and SS-labels, yielding an accuracy of 70.97%, sensitivity of
77.78% and specificity of 66.89%.

Table 4.2: Accuracy, sensitivity and specificity for time-series features classified by RF. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 70.33% 59.29% 79.68 %1s SS 70.97% 77.78% 66.89%

STAI-Y 61.10% 42.34% 76.97%2s SS 69.18% 72,48% 67.30%

STAI-Y 70.62% 46.38% 91.13%

Raw

5s SS 70.27% 70.06% 70,40%

STAI-Y 51.21% 14.47% 82.30%1s SS 63.56% 23.41% 86.50%

STAI-Y 49.02% 18.91% 74.50%2s SS 65.16% 45.72% 76.27%

STAI-Y 48.94% 25.12% 69.10%

SSP

5s SS 66.87% 40.25% 82.08%

STAI-Y 56.59% 17.82% 89.40%1s SS 62.71% 19.47% 88.65%

STAI-Y 58.05% 24.65% 86.32%2s SS 61.49% 31.84% 79.28%

STAI-Y 57.77% 25.58% 85.01%

Delta-band

5s SS 65.32% 39.36% 80.90%
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4.1.3 K-Nearest Neighbor
The results from time-series features classified with KNN classifier is shown in Table 4.3.
All the results have a higher accuracy with SS-labels. The same is true for sensitivity
except for the combination of raw data and 5s epoch, while for specificity the exception
is for SSP data with 1s epoch. The results are quite similar across raw data and SSP data,
while Delta-band performs slightly better regarding accuracy and specificity. Best result
across the three metrics is Delta-band with 5s epoch and SS labels.

Table 4.3: Accuracy, sensitivity and specificity for time-series features classified by KNN. The
results yielding a percentage above 70 are marked in bold. The first column defines the data set
used, the second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 52.20% 47.80% 55.93%1s SS 60.09% 53.81% 63.86%

STAI-Y 45.13% 45.09% 45.17%2s SS 50.76% 47.05% 52.66%

STAI-Y 45.55% 50.54% 41.33%

Raw

5s SS 46.82% 43.88% 48.59%

STAI-Y 50.60% 31.74% 66.56%1s SS 57.57% 46.70% 63.78%

STAI-Y 49.27% 36.30% 60.25%2s SS 58.69% 40.94% 68.84%

STAI-Y 44.77% 36.36% 51.89%

SSP

5s SS 53.93% 46.61% 58.11%

STAI-Y 54.85% 30.01% 75.87%1s SS 63.82% 44.11% 75.65%

STAI-Y 55.23% 32.52% 74.45%2s SS 62.53% 45.34% 72.84%

STAI-Y 55.72% 33.90% 74.19%

Delta-band

5s SS 64.19% 49.72% 72.88%
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4.2 Entropy features
This Section will present all the results with Entropy features, across the three classifiers.

4.2.1 Support Vector Machine
The results of SVM using Entropy features is presented in Table 4.4. With the exception of
raw data with 5s epochs, SS has a higher accuracy than STAI-Y. However, by inspecting
the sensitivity it becomes apparent that the SS labels are performing quite poorly. Many
combinations yields a very low sensitivity with raw data with 2s and SS-labels has the
worst sensitivity of 0.15%. By inspecting the confusion matrix for this combination in
Figure H.1e, it is evident that the classifier is mostly predicting Not Stressed.

Table 4.4: Accuracy, sensitivity and specificity for entropy features classified by SVM. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y - - -1s SS 55.82% 50.84% 58.82%

STAI-Y 57.33% 31.97% 78.78%2s SS 62.25% 0.15% 99.51%

STAI-Y 58.62% 42.06% 72.62%

Raw

5s SS 46.54% 56.31% 40.68%

STAI-Y - - -1s SS - - -

STAI-Y 54.31% 32.46% 72.79%2s SS 57.26% 22.06% 77.37%

STAI-Y 53.11% 31.74% 71.19%

SSP

5s SS 59.40% 19.07% 82.45%

STAI-Y - - -1s SS - - -

STAI-Y - - -2s SS 62.56% 0.82% 99.60%

STAI-Y 55.30% 13.25% 90.87%

Delta-band

5s SS 62.15% 21.66% 86.44%
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4.2.2 Random Forest
The results from RF classifier with Entropy features is presented in Table 4.5. For raw data
the accuracy and specificity is higher for STAI-Y labels compared to SS labels, though the
sensitivity is lower. Raw data, in general, performs marginally better than SSP and Delta-
band. The accuracy of 1s epoch with SSP data and SS labels is 4 percentage points higher
than the other epochs. While the the accuracy decreases with decreasing epohc duration
for raw data with SS labels. The specificity is high across all combinations.

Table 4.5: Accuracy, sensitivity and specificity for entropy features classified by RF. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 66.22% 39.84% 88.55 %1s SS 57.33% 58.42% 56.68%

STAI-Y 66.67% 41.31% 88.13%2s SS 60.10% 56.90% 61.88%

STAI-Y 65.75% 43.91% 84.22%

Raw

5s SS 62.85% 68.55% 59.44%

STAI-Y 52.33% 25.36% 75.15%1s SS 60.55% 49.08% 67.10%

STAI-Y 58.33% 39.96% 73.88%2s SS 56.89% 49.16% 61.31%

STAI-Y 57.06% 40.22% 71.32%

SSP

5s SS 55.32% 45.13% 61.14%

STAI-Y 55.46% 12.92% 91.46%1s SS 62.57% 19.81% 88.23%

STAI-Y 56.54% 20.50% 87.04%2s SS 61.41% 29.90% 80.31%

STAI-Y 56.85% 30.05% 79.53%

Delta-band

5s SS 62.43% 41.24% 75.14%
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4.2.3 K-Nearest Neighbors
The results of classification using KNN and Entropy features are shown in Table 4.6.
Raw data is performing better than the other data sets, with both higher accuracy and
specificity. The sensitivity is somewhat similar across the three data sets. For different
combinations the higher accuracy varies between the different label types. For raw data
the best performing epoch is 2s, while 2s is the epoch with the lowest accuracy for the
other data sets. The best result is achieved with raw data, 2s epoch and SS labels, with an
accuracy of 70.36%, sensitivity of 45.49% and specificity of 85.28%.

Table 4.6: Accuracy, sensitivity and specificity for entropy features classified by KNN. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 63.50% 29.92% 91.92%1s SS 67.88% 42.55% 83.08%

STAI-Y 62.92% 29.96% 90.81%2s SS 70.36% 45.49% 85.28%

STAI-Y 64.34% 39.45% 85.40%

Raw

5s SS 63.21% 50.66% 70.73%

STAI-Y 54.82% 38.67% 68.48%1s SS 55.72% 52.42% 57.60%

STAI-Y 54.73% 42.40% 65.15%2s SS 51.95% 50.84% 52.59%

STAI-Y 57.34% 46.53% 66.49%

SSP

5s SS 52.08% 47.25% 54.84%

STAI-Y 54.25% 24.90% 79.08%1s SS 58.47% 37.35% 71.15%

STAI-Y 55.70% 30.02% 77.44%2s SS 57.66% 42.88% 66.53%

STAI-Y 55.65% 38.21% 70.40%

Delta-band

5s SS 58.83% 57.63% 59.55%
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4.3 Hjorth features
The results of classification using Hjorth features are presented in this Section.

4.3.1 Support Vector Machine (SVM)
The results of SVM classification on Hjorth features are presented in Table 4.7. Upon
first glance, the specificity across most of the combinations stand out. The specificity is
either at a 100% or close to that, while the sensitivity is close to 0.00%. This means that
the classifier predicts mostly Not Stressed. Raw data with 1s epoch and SS and SSP data
with 5s epoch and SS labels are the only two combinations that are not skewed towards
predicting only Not Stressed. SS labels seem to yield more results where the sensitivity
and specificity is exactly 0.00% and 100%, respectively.

Table 4.7: Accuracy, sensitivity and specificity for Hjorth features classified by SVM. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y - - -1s SS 52.51% 77.78% 53.36%

STAI-Y 51.23% 9.52% 86.53%2s SS 62.50% 0.00% 100.00%

STAI-Y 51.98% 1.69% 94.52%

Raw

5s SS 62.50% 0.00% 100.00%

STAI-Y - - -1s SS - - -

STAI-Y 53.13% 1.83% 96.54%2s SS 63.64% 0.00% 100.00%

STAI-Y 52.90% 2.47% 95.57%

SSP

5s SS 42.37% 34.96% 46.61%

STAI-Y - - -1s SS - - -

STAI-Y - - -2s SS 62.50% 0.00% 100.00%

STAI-Y 57.52% 12.63% 95.31%

Delta-band

5s SS 62.50% 0.00% 100.00%
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4.3.2 Random Forest (RF)
The results from the classification using RF with Hjorth features can be studied in Table
4.8. Across the board, raw data with SS labels has the best performance. The accuracies
are all around 73%, sensitivity around 77% and the specificity around 71%. There is no
major differences between epoch length for the raw data data. Comparatively, the STAI-
Y labels are performing quite poorly, yielding accuracies around 54%, sensitivity around
43% and specificity around 63%. Both SSP and Delta-band data have very high specificity,
however, the sensitivity of the Delta-band is very low.

Table 4.8: Accuracy, sensitivity and specificity for Hjorth features classified by RF. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 54.08% 43.20% 63.29%1s SS 73.65% 77.33% 71.44%

STAI-Y 53.13% 42.34% 62.26%2s SS 73.60% 77.63% 71.19%

STAI-Y 54.80% 43.91% 64.02%

Raw

5s SS 73.94% 77.78% 71.64%

STAI-Y 58.49% 31.35% 81.45%1s SS 64.06% 22.45% 87.84%

STAI-Y 58.86% 31.79% 81.78%2s SS 66.35% 26.93% 88.88%

STAI-Y 56.36% 31.28% 77.57%

SSP

5s SS 62.71% 36.44% 77.72%

STAI-Y 54.79% 4.20% 97.61%1s SS 63.13% 1.97% 99.82%

STAI-Y 55.01% 5.43% 96.95%2s SS 62.82% 1.27% 99.73%

STAI-Y 55.65% 8.23% 95.70%

Delta-band

5s SS 64.69% 6.59% 99.55%
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4.3.3 K-Nearest Neighbors (KNN)
The results following classification with KNN using Hjorth features is presented in Table
4.9. The accuracy is ranging from 51% to 62% across all combinations except, for raw
data with 5s epoch using SS labels, where the accuracy is as low as 48.80%. There is a
12 percentage point difference in the accuracy between the SS label and STAI-Y label in
this case. Generally, Delta-band data performs worse regarding sensitivity than the other
data sets, in return the specificity is high. For raw data with STAI-Y labels the accuracy
increases with increasing epoch duration, while it decreases for SS labels. For the other
two data sets, the accuracy does not change dramatically with varying epochs.

Table 4.9: Accuracy, sensitivity and specificity for Hjorth features classified by KNN. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 52.76% 37.18% 65.94%1s SS 55.23% 58.64% 53.18%

STAI-Y 58.67% 38.50% 75.74%2s SS 51.37% 47.43% 53.74%

STAI-Y 60.73% 59.01% 62.19%

Raw

5s SS 48.80% 46.14% 50.40%

STAI-Y 57.93% 52.30% 62.70%1s SS 59.97% 54.39% 63.16%

STAI-Y 58.05% 50.40% 64.53%2s SS 59.61% 54.70% 62.42%

STAI-Y 58.26% 55.78% 60.37%

SSP

5s SS 57.94% 56.14% 58.96%

STAI-Y 52.08% 21.25% 78.16%1s SS 60.91% 37.57% 74.92%

STAI-Y 53.38% 23.73% 78.47%2s SS 61.47% 37.29% 75.97%

STAI-Y 54.80% 31.59% 74.45%

Delta-band

5s SS 61.79% 50.28% 68.70%
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4.4 Power Spectral Density (PSD) features
The results from classification with Power Spectral Density (PSD) features will be pre-
sented in this Section.

4.4.1 Support Vector Machine (SVM)
The classification results from SVM using PSD features are presented in Table 4.10. Raw
data with 1s and 2s epoch perform better with STAI-Y labels than SS labels by a good
margin. For 5s epoch SS labels perform marginally better for the accuracy. For SSP and
Delta-band data the SS labels perform better regarding accuracy, though for Delta-band
data the sensitivity is near zero.

Table 4.10: Accuracy, sensitivity and specificity for PSD features classified by SVM. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 68.90% 35.97% 96.76%1s SS 58.95% 7.06% 90.08%

STAI-Y 68.62% 34.90% 97.16%2s SS 57.75 4.40% 89.75%

STAI-Y 60.52% 37.90% 79.66%

Raw

5s SS 61.65% 16.38% 88.81%

STAI-Y - - -1s SS - - -

STAI-Y 52.38% 41.67% 61.44%2s SS 59.64% 57.21% 61.03%

STAI-Y 50.99% 37.60% 60.32%

SSP

5s SS 60.02% 66.31% 56.42%

STAI-Y - - -1s SS - - -

STAI-Y - - -2s SS 62.50% 0.00% 100.00%

STAI-Y 54.17% 1.39% 98.83%

Delta-band

5s SS 62.50% 0.00% 100.00%
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4.4.2 Random Forest (RF)
Table 4.11 presents the results from classification using RF with PSD features. The best
performing combination is raw data with 5s epoch and SS labels, reaching 77.97% accu-
racy, 64.22% sensitivity and 86.21% specificity. The accuracy across the epoch lengths in
raw data vary considerably. No major differences in accuracy across epochs are detected
for SSP or Delta-band data. The sensitivity of the Delta-band data is continuously low
while the specificity is high, across labels and epochs.

Table 4.11: Accuracy, sensitivity and specificity for PSD features classified by RF. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 60.35% 26.24% 89.22%1s SS 71.06% 65.55% 74.36%

STAI-Y 62.19% 30.63% 88.90%2s SS 66.83% 65.55% 67.71%

STAI-Y 63.70% 31.12% 91.26%

Raw

5s SS 77.97% 64.22% 86.21%

STAI-Y 55.06% 28.37% 77.64%1s SS 60.16% 45.65% 68.44%

STAI-Y 54.84% 27.21% 78.21%2s SS 61.47% 46.90% 69.80%

STAI-Y 55.51% 38.83% 69.62%

SSP

5s SS 61.56% 54.03% 65.86%

STAI-Y 54.42% 3.56% 97.45%1s SS 62.51% 0.04% 100.00%

STAI-Y 54.50% 1.34% 99.48%2s SS 62.53% 0.07% 100.00%

STAI-Y 55.86% 14.33% 91.00%

Delta-band

5s SS 62.15% 0.94% 98.87%
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4.4.3 K-Nearest Neighbors (KNN)
The results from classification of PSD features with KNN is presented in Table 4.12. The
best result with 71.61% accuracy, 73.82% sensitivity and 70.28% specificity is achieved
with raw data using 2s epochs and SS labels. SS labels are performing better regarding
accuracy and sensitivity across all combinations than STAI-Y labels. There are some
differences between epoch lengths across the data sets, where 5s epochs perform better
for Delta-band data with STAI-Y labels and for both label types with raw data. SSP has
similar results across epoch length for both label types.

Table 4.12: Accuracy, sensitivity and specificity for PSD features classified by KNN. The results
yielding a percentage above 70 are marked in bold. The first column defines the data set used, the
second column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 58.96% 33.63% 80.40%1s SS 66.83% 64.96% 67.96%

STAI-Y 58.67% 32.52% 80.80%2s SS 66.75% 66.29% 66.02%

STAI-Y 60.66% 36.83% 80.83%

Raw

5s SS 71.61% 73.82% 70.28%

STAI-Y 53.08% 39.34% 64.70%1s SS 58.47% 54.06% 60.99%

STAI-Y 54.25% 37.10% 68.77%2s SS 58.45% 48.66% 64.05%

STAI-Y 52.40% 44.38% 59.19%

SSP

5s SS 59.71% 63.98% 57.26%

STAI-Y 50.96% 26.54% 71.62%1s SS 56.20% 37.42% 67.47%

STAI-Y 50.59% 28.37% 69.39%2s SS 55.26% 36.61% 66.44%

STAI-Y 54.03% 32.82% 71.97%

Delta-band

5s SS 54.73% 43.69% 61.36%
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4.5 EEGNet
This Section will present the results of classification on the three different data sets using
EEGNet. The best result from this classifier yields 72.24% accuracy, 84.68% sensitiv-
ity and 61.54% specificity, achieved by raw data with 1s epoch and STAI-Y labels. On
raw data the STAI-Y labels performed significantly better than SS labels. For SSP and
Delta-band data the opposite is true. The Delta-band achieved low sensitivity results while
specificity was high.

Table 4.13: Accuracy, sensitivity and specificity for classification with EEGNet. The results yielding
a percentage above 70 are marked in bold. The first column defines the data set used, the second
column states the epoch duration and the third column describes the label type.

Data set Epoch duration Label type Accuracy Sensitivity Specificity

STAI-Y 72.14% 84.68% 61.54%1s SS 54.17% 33.33% 66.67%

STAI-Y 62.50% 63.64% 61.54%2s SS 49.58% 33.33% 59.33%

STAI-Y 63.14% 73.50% 54.37%

Raw

5s SS 58.47% 57.63% 58.98%

STAI-Y 57.66% 48.13% 65.73%1s SS 70.28% 34.32% 90.83%

STAI-Y 54.45% 35.20% 70.73%2s SS 58.69% 73.32% 50.34%

STAI-Y 52.61% 28.97% 72.62%

SSP

5s SS 61.56% 37.71% 75.18%

STAI-Y 53.04% 1.64% 96.55%1s SS 62.47% 9.77% 94.04%

STAI-Y 54.70% 3.54% 97.99%2s SS 61.83% 16.70% 88.90%

STAI-Y 55.01% 9.71% 93.35%

Delta-band

5s SS 61.79% 10.73% 92.43%

63



5
Discussion

This chapter will present a discussion regarding the methods that have been utilized in this
work presented in Chapter 3. As well as a discussion regarding the results of the meth-
ods presented in Chapter 4. The discussion will touch on the methods of data collection,
labeling the data, filtering, and the information gained from classification. To expand on
the conclusions drawn from the discussion, a section regarding further work will be intro-
duced with suggestions to the next steps in this research endeavor.

In summation: the best result with an accuracy of 77.97%, sensitivity of 64.14% and
specificity of 86.21% from Random Forest (RF) classification of Power Spectral Density
(PSD) features using raw data with 5 second epoch and Stress-Scale (SS) labels, will not
be sufficient enough to employ in an online automated stress detection system for clinical
use. The most consistent results was achieved by Hjorth features using a RF classifier with
raw data and SS labels, regardless of epoch length. Where the results for each epoch length
was between 71% and 78% across all the metrics. In general, the raw data set performed
better across all feature combinations than both the filtered data sets SSP and Delta-band.
This may be somewhat surprising considering the amount of noise present in most of the
Session 2 recordings. It is difficult to determine if the classifiers are then simply predicting
based on noise patterns rather than patterns originating from stress.

There are several methods to reduce noise in recordings that could have been implemented
in this experiment. One method is to record empty room noise to use as a basis for filter-
ing with Signal-Space Projection (SSP). This would have been especially helpful during
the second session when the construction work was disturbing the data collection. The
impedance threshold of 160kΩ that was set prior to recording could have been lowered
to ensure better contact with the electrodes. There are some drifting artifacts present, and
taking into account the movements made by the participants as they conducted the arith-
metic test, there is a high likelihood that the electrodes have shifted and moved during the
recording period. Other methods of filtering may be beneficial in reducing the noise and
securing more information from the data.
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Upon analysis of the results of the Delta-band, it is evident that the classifiers are un-
able to construct patterns to distinguish between stressed and not stressed characteristics
when predicting the Delta-band data. Most of the results for sensitivity are either 0.00% or
close. The fact that the specificity in that case is so high is due to the symmetric nature of
sensitivity vs. specificity. 0.00% sensitivity and 100% specificity means that the classifier
predicted all the samples in the test set as Not stressed. This is a sign that the classifier is
unable to detect patterns in the data, and that the Delta-band specifically might not con-
tain any information that can help differentiate between a stressed or not stressed person.
Exploration of other frequency bands may lead to better results, as mentioned in Section
3.2, the alpha-band showed differences in the topographic map between stressed and not
stressed participants.

The Signal-Space Projection (SSP) data had an average performance compared to the
other two data sets. Usually the accuracy was around 50%-60%, where the sensitivity
and specificity was neither very low or very high.

Though the Stress-Scale (SS) labels mostly performed better than the STAI-Y labels, there
were some notable exceptions. The accuracy of raw data using 1s epochs classified with
EEGNet and STAI-Y labels outperformed the SS labels by 18 percentage points, 72%
vs. 54%. With a sensitivity of 84.68% vs 33.33% from SS labels. The label sets were
deemed to be quite similar from the t-test performed in the data exploration in Section
3.2.3. Which makes it difficult to conclude that one method is definitely better than the
other. However, based on the majority of better performances from using SS, it appears
that a self perceived rating of stress does have significance. It should be noted that some
of the participants struggled with the language used in the STAI-Y form, in understanding
the questions, and that may have impacted some of the answers. It should be mentioned
that either method does rely on the subjective experience of stress, and thus it is difficult
to retain a label set were the labels are guaranteed to be the truth. This is one of the main
difficulties in this thesis, as it affects the performance of the classifiers and validity of the
results.

Epoch duration is an area of research in the EEG community. The results obtained in
this thesis are not conclusive in its exploration of epoch lengths. In some cases a de-
creased epoch duration led to increased accuracies, while the opposite was true for other
cases. This occurred both in the classification of the same features and across data sets. In
most cases the performance of different epoch lengths seems arbitrary. Further statistical
analysis of the epoch duration is needed to conclude, though in this case it seems that the
performance of the classifiers is somewhat independent on epoch duration.

To determine which classifier is better for this task we need to look at the results span-
ning all the features. Random Forest (RF) appears to be the classifier with the most results
above 70% without reaching either 0.00% or 100% for sensitivity or specificity. The ran-
domness introduced in RF may be the reason this classifier performs so well. Randomness
will contribute to capturing more complex relationships within the data, and EEG data is
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often both complex and non-linear. Though I do not have all the results from Support
Vector Machine (SVM) classification making the analysis incomplete, the main patterns
in the results is that it is prone to overfitting and only predicting the majority class. The
latter scenario happens mostly to Delta-band data regardless of feature type. K-Nearest
Neighbor (KNN) performs quite consistent when comparing the results from the different
feature types, although not particularly high accuracy results.

Across the feature types Hjorth and Time Series features with RF provides the most con-
sistent, good results, while Power Spectral Density (PSD) features produce the highest
accuracy. Hjorth features measures the complexity of a signal based on the standard devi-
ation, and it specifically developed for use on EEG signals. Time Series features calculates
the variance of the signal, the peak-to-peak amplitude and the Root Mean Square (RMS),
meaning that both Hjorth and Time Series are based on similar principles, especially re-
garding variance. Therefore, the variance may be a contributing factor to the consistency in
results that the two feature types produce. Entropy is based on the principle of regularity,
by wanting to calculate the amount of information and chaos in a signal. Due to the fact
that many recordings were noisy, it can appear that the entropy is measuring the regularity
of the noise instead of the signal itself, as the results for entropy features are somewhat
lessened compared to the other features. Even though PSD provided the best result, it has
not performed consistently. Consistent results are crucial when introducing new technol-
ogy to clinical settings, so PSD on its own might not yield satisfactory outcomes, based on
these results. This thesis has not combined the features and performed feature importance
analysis. This is a natural next step to see if some of the features combined can produce a
better result than they achieve on their own.

Using only 8 electrodes may have impacted the results as well as the reasons already men-
tioned. Stress has not been definitively linked to one specific part of the brain, so it will be
beneficial to increase the amount of electrodes to get a better representation of where stress
is located in the brain. Section 3.2 showed specifically that channel Fp2 might contribute
to stress detection. The difference in PSD from a stressed to a not stressed participant was
quite distinguished in channel Fp2. Increasing the number of channels will increase the
amount of data, however, it can also increase the amount of relevant information regarding
stress. In addition, a more extensive exploration into which part of the brain contributes to
stress will be beneficial. Note that EEG does not show a one-to-one correlation on location
of the signals in the brain, but it can give indications.

Exploring different positions for the participants as they are being recorded may also im-
prove on the signal quality. In this study the participants were sitting in a chair, and during
the second run they had to focus on a screen and move their arm to answer the arithmetic
questions on the keyboard. As drifts have been present in the signal, along with noise
that can neither be ascribed to construction work or blinking, a possible explanation can
simply be movement in the participant. Sometimes muscle contractions and tense muscles
can result in noise in an EEG. Some of the participants moved a lot during run 2 with the
arithmetic test, either the arm or the head swiveling back and forth, possibly explaining
parts of the noise that did not get filtered.
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6
Conclusion

The main goal of this thesis was to explore different methods of classifying stress using
Electroencephalography (EEG) signals to develop an automated stress detection system. A
wide range of classifiers, features, data sets, label types and epoch lengths was used, to gain
as much experience and information as possible. The data set was collected by myself and
four others, during December and January, using other students during their exam period
as participants in the study. Three machine learning classifiers and one neural network
was tested, Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor
(KNN), and EEGNet respectively. Four types of features were selected, including Time
Series, Entropy, Hjorth and Power Spectral Density (PSD). The data was transformed into
three data sets where one was the raw, unfiltered data, the second was filtered using band-
pass and notch filters before filtering with Signal-Space Projection (SSP), and the last data
set was the Delta frequency band of the original raw data including a bandpass and notch
filter for initial filtering. Two sets of labels were collected during the experiment, one
based on the State-Trait Anxiety Inventory for Adults - Y (STAI-Y) questionnaire, and the
other based on the Stress-Scale (SS). Lastly, three epoch duration were explored, namely
1 second, 2 second and 5 second epochs.

The thesis concluded with over 200 unique results, contributing to valuable insights into
what classifier works best with which feature, what label type yielded the best result and
how epoch duration affected the accuracy of a classifier. The metrics of the classifiers
were measured in accuracy, sensitivity and specificity. The highest accuracy was achieved
by PSD features with raw data using 5s epochs and SS labels, reaching 77.97% accuracy,
64.22% sensitivity, and 86.21% specificity. The results with the second highest accuracy
had an even better sensitivity, where the results were 73.94% accuracy, 77.78% sensitivity
and 71.64% specificity, resulting from from Hjorth features using RF on raw data with 5s
epoch and SS labels.
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6 Conclusion 6.1 Future work

6.1 Future work
This thesis is merely a starting point and a guide to how different methods affect the re-
sults of classifiers. As such there are many ways to improve and further develop the ideas
and results from this thesis. Exploring the importance of features and the combinations
of different features are a natural place to start. Increasing the data set by collecting more
data, and increasing the number of channels is also a good way of increasing the size of
the data set, and perhaps gain more information regarding how stress manifests in EEG
recordings.

To continue the work in examining the significance of labels in this subjective line of
research, it is perhaps necessary to do a more in depth analysis of the STAI-Y and SS
labels. One way to further examine the relationship between the two label sets is to im-
plement an unsupervised learning algorithm and see how it labels the data compared to
the two methods used here. This will again not be an objective measure of the ground
truth labels, yet it can bring some insights into whether the data is actually clustered with
a difference in stress levels. A different approach might be to collect more data and use
experts in psychology to help determine if the participants are stressed or not. This may
introduce a layer of objectivity when it comes to the labels.
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Appendix

A Code: prepare data.py

1 from u t i l s . d a t a p r o c e s s i n g i m p o r t e x t r a c t e e g d a t a , s e g m e n t d a t a ,
c r e a t e t r a i n t e s t s p l i t , d i c t t o a r r l a b e l s , d i c t t o a r r

2 from u t i l s . l a b e l s i m p o r t g e t s t a i l a b e l s , g e t p s s l a b e l s
3 from u t i l s . v a l i d r e c o r d i n g s i m p o r t g e t v a l i d r e c o r d i n g s
4 from f e a t u r e s i m p o r t t i m e s e r i e s f e a t u r e s , e n t r o p y f e a t u r e s ,

h j o r t h f e a t u r e s , p s d f e a t u r e s
5 i m p o r t numpy as np
6

7 d e f p r e p a r e d a t a ( d a t a t y p e , l a b e l t y p e , e p o c h d u r a t i o n=5 , f e a t u r e t y p e=’
None ’ ) :

8 ’ ’ ’
9 P r e p a r e d a t a o f d i f f e r e n t t y p e s f o r c l a s s i f i c a t i o n .

10

11 P a r a m e t e r s
12 −−−−−−−−−−
13 d a t a t y p e : s t r
14 S t r i n g c o n t a i n i n g t h e d a t a t y p e t o be c l a s s i f i e d . E i t h e r ’ raw ’ , ’

f i l t e r e d ’ , o r ’ decomposed ’
15 l a b e l t y p e : s t r
16 I n p u t can be e i t h e r ’STAI ’ o r ’PSS ’ , t o i n d i c a t e e i t h e r STAI−

l a b e l s o r PSS− l a b e l s .
17 e p o c h d u r a t i o n : i n t
18 The chosen epoch d u r a t i o n f o r s e g m e n t i n g t h e da t a , i n s e c o n d s .

D e f a u l t i s 5 s e c o n d s .
19 f e a t u r e t y p e : s t r
20 The chosen f e a t u r e type , d e f a u l t i s None , a v a i l a b l e f e a t u r e t y p e s

i s ’ t i m e s e r i e s ’ , ’ e n t r o p y ’ , ’ h j o r t h ’ , o r ’ psd ’
21

22

23 R e t u r n s
24 −−−−−−−
25 t r a i n d a t a : nd . a r r a y
26 An a r r a y c o n t a i n i n g t h e t r a i n i n g d a t a o f t h e g i v e n d a t a t y p e
27 t r a i n l a b e l s : nd . a r r a y
28 An a r r a y c o n t a i n i n g t h e t r a i n i n g l a b e l s o f t h e g i v e n d a t a t y p e
29 t e s t d a t a : nd . a r r a y
30 An a r r a y c o n t a i n i n g t h e t e s t d a t a o f t h e g i v e n d a t a t y p e
31 t e s t l a b e l s : nd . a r r a y
32 An a r r a y c o n t a i n i n g t h e t e s t l a b e l s o f t h e g i v e n d a t a t y p e
33

34 ’ ’ ’
35 v a l i d r e c o r d i n g s = g e t v a l i d r e c o r d i n g s ( d a t a t y p e=d a t a t y p e )
36 d a t a = e x t r a c t e e g d a t a ( v a l i d r e c o r d i n g s=v a l i d r e c o r d i n g s , d a t a t y p e=

d a t a t y p e )
37

38 i f l a b e l t y p e == ’STAI ’ :
39 l a b e l s = g e t s t a i l a b e l s ( v a l i d r e c o r d i n g s , c u t o f f=40)
40 e l i f l a b e l t y p e == ’PSS ’ :
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41 l a b e l s = g e t p s s l a b e l s ( v a l i d r e c o r d i n g s=v a l i d r e c o r d i n g s ,
t h r e s h o l d=4)

42 e l s e :
43 p r i n t ( ’ S u g g e s t e d l a b e l t y p e i s n o t s u p p o r t e d . ’ )
44

45 s e g m e n t e d d a t a , s e g m e n t e d l a b e l s = s e g m e n t d a t a ( da t a , l a b e l s ,
e p o c h d u r a t i o n )

46

47 t r a i n d a t a , t r a i n l a b e l s , t e s t d a t a , t e s t l a b e l s =
c r e a t e t r a i n t e s t s p l i t ( s e g m e n t e d d a t a , s e g m e n t e d l a b e l s ,
e p o c h d u r a t i o n=e p o c h d u r a t i o n )

48

49 p r i n t ( f ’−−−−−−−−−−−−−−−− CHOSEN FEATURE TYPE : { f e a t u r e t y p e
}−−−−−−−−−−−−−−−− ’ )

50 p r i n t ( f ”−−−−− Shape o f t r a i n d a t a s e t : { t r a i n d a t a . shape}
Shape of t r a i n l a b e l s s e t : { t r a i n l a b e l s . shape} −−−−−” )

51 # p r i n t ( f ” Shape o f t r a i n l a b e l s s e t : { t r a i n l a b e l s . shape }” )
52

53 p r i n t ( f ”−−−−− Shape o f t e s t d a t a s e t : { t e s t d a t a . shape}
Shape of t e s t l a b e l s s e t : { t e s t l a b e l s . shape} −−−−−” )

54 # p r i n t ( f ” Shape o f t e s t l a b e l s s e t : { t e s t l a b e l s . shape }” )
55

56 i f f e a t u r e t y p e == ’ t i m e s e r i e s ’ :
57 t r a i n d a t a f e a t u r e s = t i m e s e r i e s f e a t u r e s ( t r a i n d a t a )
58 t e s t d a t a f e a t u r e s = t i m e s e r i e s f e a t u r e s ( t e s t d a t a )
59 p r i n t ( f ” Shape o f t r a i n d a t a f e a t u r e s s e t : { t r a i n d a t a f e a t u r e s .

shape}” )
60 p r i n t ( f ” Shape o f t e s t d a t a f e a t u r e s s e t : { t e s t d a t a f e a t u r e s . shape

}” )
61 r e t u r n t r a i n d a t a f e a t u r e s , t e s t d a t a f e a t u r e s , t r a i n l a b e l s ,

t e s t l a b e l s
62

63 e l i f f e a t u r e t y p e == ’ e n t r o p y ’ :
64 t r a i n d a t a f e a t u r e s = e n t r o p y f e a t u r e s ( t r a i n d a t a )
65 t e s t d a t a f e a t u r e s = e n t r o p y f e a t u r e s ( t e s t d a t a )
66 p r i n t ( f ” Shape o f t r a i n d a t a f e a t u r e s s e t : { t r a i n d a t a f e a t u r e s .

shape}” )
67 p r i n t ( f ” Shape o f t e s t d a t a f e a t u r e s s e t : { t e s t d a t a f e a t u r e s . shape

}” )
68 r e t u r n t r a i n d a t a f e a t u r e s , t e s t d a t a f e a t u r e s , t r a i n l a b e l s ,

t e s t l a b e l s
69

70 e l i f f e a t u r e t y p e == ’ h j o r t h ’ :
71 t r a i n d a t a f e a t u r e s = h j o r t h f e a t u r e s ( t r a i n d a t a )
72 t e s t d a t a f e a t u r e s = h j o r t h f e a t u r e s ( t e s t d a t a )
73 p r i n t ( f ” Shape o f t r a i n d a t a f e a t u r e s s e t : { t r a i n d a t a f e a t u r e s .

shape}” )
74 p r i n t ( f ” Shape o f t e s t d a t a f e a t u r e s s e t : { t e s t d a t a f e a t u r e s . shape

}” )
75 r e t u r n t r a i n d a t a f e a t u r e s , t e s t d a t a f e a t u r e s , t r a i n l a b e l s ,

t e s t l a b e l s
76

77 e l i f f e a t u r e t y p e == ’ psd ’ :
78 t r a i n d a t a f e a t u r e s = p s d f e a t u r e s ( t r a i n d a t a )
79 t e s t d a t a f e a t u r e s = p s d f e a t u r e s ( t e s t d a t a )
80 p r i n t ( f ” Shape o f t r a i n d a t a f e a t u r e s s e t : { t r a i n d a t a f e a t u r e s .

shape}” )
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81 p r i n t ( f ” Shape o f t e s t d a t a f e a t u r e s s e t : { t e s t d a t a f e a t u r e s . shape
}” )

82 r e t u r n t r a i n d a t a f e a t u r e s , t e s t d a t a f e a t u r e s , t r a i n l a b e l s ,
t e s t l a b e l s

83

84 e l i f f e a t u r e t y p e == ’ None ’ :
85 r e t u r n t r a i n d a t a , t e s t d a t a , t r a i n l a b e l s , t e s t l a b e l s
86

87

88

89

90 d e f p r e p a r e d a t a f o r c l u s t e r i n g ( d a t a t y p e , e p o c h d u r a t i o n ) :
91 ’ ’ ’
92 P r e p a r e d a t a f o r c l u s t e r a l g o r i t h m s wi th t ime − s e r i e s f e a t u r e s .
93 ’ ’ ’
94

95 v a l i d r e c o r d i n g s = g e t v a l i d r e c o r d i n g s ( d a t a t y p e=d a t a t y p e )
96 d a t a = e x t r a c t e e g d a t a ( v a l i d r e c o r d i n g s=v a l i d r e c o r d i n g s ,

d a t a t y p e=d a t a t y p e )
97

98

99 s t a i l a b e l s = g e t s t a i l a b e l s ( v a l i d r e c o r d i n g s , c u t o f f=40)
100 p s s l a b e l s = g e t p s s l a b e l s ( v a l i d r e c o r d i n g s=v a l i d r e c o r d i n g s ,

t h r e s h o l d=4)
101

102 s t a i l a b e l s a r r = d i c t t o a r r l a b e l s ( s t a i l a b e l s )
103 p s s l a b e l s a r r = d i c t t o a r r l a b e l s ( p s s l a b e l s )
104

105 s e g m e n t e d d a t a , = s e g m e n t d a t a ( da t a , s t a i l a b e l s , e p o c h d u r a t i o n ) #
a r b i t r a r y l a b e l t y p e f o r s e g m e n t i n g

106

107 d a t a a r r = d i c t t o a r r ( d a t a d i c t=s e g m e n t e d d a t a , e p o c h d u r a t i o n
=e p o c h d u r a t i o n )

108

109 d a t a f e a t u r e s = t i m e s e r i e s f e a t u r e s ( d a t a=d a t a a r r )
110 r e t u r n d a t a f e a t u r e s , s t a i l a b e l s a r r , p s s l a b e l s a r r
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B Code: features.py

1 i m p o r t numpy as np
2 i m p o r t m n e f e a t u r e s . u n i v a r i a t e a s mnf
3 i m p o r t u t i l s . v a r i a b l e s a s v a r
4

5

6 d e f h j o r t h f e a t u r e s ( d a t a ) :
7 ’ ’ ’
8 Computes t h e f e a t u r e s H j o r t h m o b i l i t y ( s p e c t r a l ) and H j o r t h c o m p l e x i t y

( s p e c t r a l ) u s i n g t h e package m n e f e a t u r e s .
9

10 P a r a m e t e r s
11 −−−−−−−−−−
12 d a t a : d i c t
13 d a t a ( l i s t o f d i c t s ) : A l i s t o f d i c t i o n a r i e s , where each

d i c t i o n a r y c o n t a i n s EEG d a t a f o r m u l t i p l e t r i a l s . The keys i n
each d i c t i o n a r y r e p r e s e n t t r i a l IDs , and t h e v a l u e s a r e numpy
a r r a y s o f shape ( n c h a n n e l s , n s a m p l e s ) .

14

15 R e t u r n s
16 −−−−−−−
17 f e a t u r e s : l i s t o f n d a r r a y s
18 l i s t o f n d a r r a y s wi th t h e computed f e a t u r e s .
19 ’ ’ ’
20

21 s f r e q = v a r . SFREQ
22 f e a t u r e s p e r c h a n n e l = 2
23 n r e c o r d i n g s , n c h a n n e l s , n s a m p l e s = d a t a . shape
24

25 f e a t u r e s = np . empty ( [ n r e c o r d i n g s , n c h a n n e l s * f e a t u r e s p e r c h a n n e l ] )
26

27 f o r i i n r a n g e ( n r e c o r d i n g s ) :
28 sample s = d a t a [ i ]
29 m o b i l i t y s p e c t = mnf . c o m p u t e h j o r t h m o b i l i t y s p e c t ( s f r e q=s f r e q ,

d a t a=sample s )
30 c o m p l e x i t y s p e c t = mnf . c o m p u t e h j o r t h c o m p l e x i t y s p e c t ( s f r e q=s f r e q

, d a t a=samples )
31 f e a t u r e s [ i ] = np . c o n c a t e n a t e ( [ m o b i l i t y s p e c t ,

c o m p l e x i t y s p e c t ] )
32

33 f e a t u r e s = f e a t u r e s . r e s h a p e ( [ n r e c o r d i n g s , n c h a n n e l s *
f e a t u r e s p e r c h a n n e l ] )

34

35 r e t u r n f e a t u r e s
36

37 d e f e n t r o p y f e a t u r e s ( d a t a ) :
38 ’ ’ ’
39 Computes t h e f e a t u r e s Approximate Entropy , Sample Entropy , S p e c t r a l

En t ropy and SVD e n t r o p y u s i n g t h e package m n e f e a t u r e s .
40

41 P a r a m e t e r s
42 −−−−−−−−−−
43 d a t a : d i c t
44 A l i s t o f d i c t i o n a r i e s , where each d i c t i o n a r y c o n t a i n s EEG d a t a

f o r m u l t i p l e t r i a l s . The keys i n each d i c t i o n a r y r e p r e s e n t
t r i a l IDs , and t h e v a l u e s a r e numpy a r r a y s o f shape (

77



n c h a n n e l s , n s a m p l e s ) .
45

46 R e t u r n s
47 −−−−−−−
48 f e a t u r e s : l i s t o f n d a r r a y s
49 l i s t o f n d a r r a y s o f t h e computed f e a t u r e s .
50 ’ ’ ’
51

52 s f r e q = v a r . SFREQ
53 f e a t u r e s p e r c h a n n e l = 4
54 n r e c o r d i n g s , n c h a n n e l s , n s a m p l e s = d a t a . shape
55

56 f e a t u r e s = np . empty ( [ n r e c o r d i n g s , n c h a n n e l s * f e a t u r e s p e r c h a n n e l ] )
57

58 f o r i i n r a n g e ( n r e c o r d i n g s ) :
59 sample s = d a t a [ i ]
60 a p p e n t r o p y = mnf . c o m p u t e a p p e n t r o p y ( d a t a=sample s )
61 s a m p e n t r o p y = mnf . c o m p u t e s a m p e n t r o p y ( d a t a=sample s )
62 s p e c t e n t r o p y = mnf . c o m p u t e s p e c t e n t r o p y ( s f r e q=s f r e q , d a t a=

sample s )
63 s v d e n t r o p y = mnf . c o m p u t e s v d e n t r o p y ( d a t a=sample s )
64 f e a t u r e s [ i ] = np . c o n c a t e n a t e ( [ a p p e n t r o p y , samp en t ropy ,

s p e c t e n t r o p y , s v d e n t r o p y ] )
65

66 f e a t u r e s = f e a t u r e s . r e s h a p e ( [ n r e c o r d i n g s , n c h a n n e l s *
f e a t u r e s p e r c h a n n e l ] )

67

68 r e t u r n f e a t u r e s
69

70 d e f t i m e s e r i e s f e a t u r e s ( d a t a ) :
71 ’ ’ ’
72 Compute t ime − s e r i e s f e a t u r e s from d a t a .
73

74 P a r a m e t e r s
75 −−−−−−−−−−
76 d a t a : n d a r r a y , shape ( n r e c o r d i n g s , n c h a n n e l s , n s a m p l e s )
77 An n d a r r a y c o n t a i n i n g t h e d a t a .
78

79 R e t u r n s
80 −−−−−−−
81 f e a t u r e s : n d a r r a y , shape ( n r e c o r d i n g s , n c h a n n e l s *

f e a t u r e s p e r c h a n n e l )
82 An n d a r r a y o f t h e computed f e a t u r e s
83 ’ ’ ’
84 s f r e q = v a r . SFREQ
85 f e a t u r e s p e r c h a n n e l = 3
86 n r e c o r d i n g s , n c h a n n e l s , n s a m p l e s = d a t a . shape
87

88 f e a t u r e s = np . empty ( [ n r e c o r d i n g s , n c h a n n e l s * f e a t u r e s p e r c h a n n e l ] )
89

90 f o r i i n r a n g e ( n r e c o r d i n g s ) :
91 sample s = d a t a [ i ]
92 ptp amp = mnf . compute p tp amp ( d a t a=sample s )
93 v a r i a n c e = mnf . c o m p u t e v a r i a n c e ( d a t a=sample s )
94 rms = mnf . compute rms ( d a t a=samples )
95 f e a t u r e s [ i ] = np . c o n c a t e n a t e ( [ ptp amp , v a r i a n c e , rms ] )
96
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97 f e a t u r e s = f e a t u r e s . r e s h a p e ( [ n r e c o r d i n g s , n c h a n n e l s *
f e a t u r e s p e r c h a n n e l ] )

98

99 r e t u r n f e a t u r e s
100

101 d e f p s d f e a t u r e s ( d a t a ) :
102 s f r e q = v a r . SFREQ
103 n f r e q u e n c i e s = 5 # d e f a u l t number o f ( f r e q s −1) f o r mnf .

c o m p u t e p o w f r e q b a n d s
104 n r e c o r d i n g s , n c h a n n e l s , n s a m p l e s = d a t a . shape
105

106 f e a t u r e s = np . empty ( [ n r e c o r d i n g s , n c h a n n e l s * n f r e q u e n c i e s ] )
107

108 f o r i i n r a n g e ( n r e c o r d i n g s ) :
109 samples = d a t a [ i ]
110 psd = mnf . c o m p u t e p o w f r e q b a n d s ( s f r e q=s f r e q , d a t a=sample s )
111 f e a t u r e s [ i ] = np . c o n c a t e n a t e ( [ psd ] )
112

113 f e a t u r e s = f e a t u r e s . r e s h a p e ( [ n r e c o r d i n g s , n c h a n n e l s * n f r e q u e n c i e s ] )
114

115 r e t u r n f e a t u r e s
116

117 d e f a l l f e a t u r e s ( d a t a ) :
118 ’ ’ ’
119 Compute h j o r t h , e n t r o p y and t ime − s e r i e s f e a t u r e s i n one
120

121 ’ ’ ’
122

123 s f r e q = v a r . SFREQ
124 f e a t u r e s p e r c h a n n e l = 10
125 n r e c o r d i n g s , n c h a n n e l s , n s a m p l e s = d a t a . shape
126

127 f e a t u r e s = np . empty ( [ n r e c o r d i n g s , n c h a n n e l s * f e a t u r e s p e r c h a n n e l ] )
128

129 f o r i i n r a n g e ( n r e c o r d i n g s ) :
130 samples = d a t a [ i ]
131 m o b i l i t y s p e c t = mnf . c o m p u t e h j o r t h m o b i l i t y s p e c t ( s f r e q=

s f r e q , d a t a=sample s )
132 c o m p l e x i t y s p e c t = mnf . c o m p u t e h j o r t h c o m p l e x i t y s p e c t ( s f r e q=

s f r e q , d a t a=sample s )
133 a p p e n t r o p y = mnf . c o m p u t e a p p e n t r o p y ( d a t a=sample s )
134 s a m p e n t r o p y = mnf . c o m p u t e s a m p e n t r o p y ( d a t a=samples )
135 s p e c t e n t r o p y = mnf . c o m p u t e s p e c t e n t r o p y ( s f r e q=s f r e q , d a t a=

sample s )
136 s v d e n t r o p y = mnf . c o m p u t e s v d e n t r o p y ( d a t a=sample s )
137 ptp amp = mnf . compute p tp amp ( d a t a=sample s )
138 v a r i a n c e = mnf . c o m p u t e v a r i a n c e ( d a t a=sample s )
139 rms = mnf . compute rms ( d a t a=samples )
140 mean = mnf . compute mean ( d a t a=samples )
141 f e a t u r e s [ i ] = np . c o n c a t e n a t e ( [ m o b i l i t y s p e c t ,

c o m p l e x i t y s p e c t , a p p e n t r o p y , samp en t ropy , s p e c t e n t r o p y ,
s v d e n t r o p y , ptp amp , v a r i a n c e , rms , mean ] )

142

143 f e a t u r e s = f e a t u r e s . r e s h a p e ( [ n r e c o r d i n g s , n c h a n n e l s *
f e a t u r e s p e r c h a n n e l ] )
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C Code: classifiers.py

1 from m a t p l o t l i b i m p o r t p y p l o t a s p l t
2 i m p o r t numpy as np
3 # from s k l e a r n . m e t r i c s i m p o r t p l o t c o n f u s i o n m a t r i x
4

5 from s k l e a r n . svm i m p o r t SVC
6 from s k l e a r n . ensemble i m p o r t R a n d o m F o r e s t C l a s s i f i e r
7 from s k l e a r n . n e i g h b o r s i m p o r t K N e i g h b o r s C l a s s i f i e r
8 from s k l e a r n . c l u s t e r i m p o r t KMeans
9 from m e t r i c s i m p o r t c o m p u t e m e t r i c s

10 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t GridSearchCV
11 from s k l e a r n . p r e p r o c e s s i n g i m p o r t R o b u s t S c a l e r , S t a n d a r d S c a l e r
12 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
13

14 from EEGNet . EEGModels i m p o r t EEGNet
15 from t e n s o r f l o w . k e r a s i m p o r t u t i l s a s n p u t i l s
16 from t e n s o r f l o w . k e r a s . c a l l b a c k s i m p o r t ModelCheckpoin t
17 # from k e r a s . u t i l s i m p o r t n p u t i l s
18 # from k e r a s . c a l l b a c k s i m p o r t ModelCheckpoin t
19 from pyr iemann . u t i l s . v i z i m p o r t p l o t c o n f u s i o n m a t r i x
20

21 i m p o r t u t i l s . v a r i a b l e s a s v a r
22 i m p o r t mne
23

24

25 d e f svm ( t r a i n d a t a , t e s t d a t a , t r a i n l a b e l s , t e s t l a b e l s ) :
26 ’ ’ ’
27 P a r a m e t e r s
28 −−−−−−−−−−
29 t r a i n d a t a : d i c t
30 Pa th t o t h e f i l e t o be r e a d .
31 t e s t d a t a : d i c t
32 T e s t d a t a
33 t r a i n l a b e l s : d i c t
34 L a b e l s o f t h e t r a i n d a t a
35 t e s t l a b e l s : d i c t
36 L a b e l s o f t h e t e s t d a t a
37

38 R e t u r n s
39 −−−−−−−
40 m e t r i c s : c o n f u s i o n m a t r i x
41 The c o n f u s i o n m a t r i x wi th t h e r e s u l t s
42 ’ ’ ’
43

44 p a r a m g r i d = {
45 ’C ’ : [ 0 . 0 1 , 0 . 1 , 1 , 10 , 100 , 1000 , 10000 ] ,
46 ’ k e r n e l ’ : [ ’ po ly ’ , ’ s igmoid ’ , ’ l i n e a r ’ , ’ r b f ’ ]
47 }
48

49 s c a l e r = S t a n d a r d S c a l e r ( )
50 t r a i n d a t a = s c a l e r . f i t t r a n s f o r m ( t r a i n d a t a )
51 t e s t d a t a = s c a l e r . t r a n s f o r m ( t e s t d a t a )
52

53 # w e i g h t s = {0 : 6 7 , 1 :33}
54 # s c a l e r = R o b u s t S c a l e r ( )
55 # t r a i n d a t a = s c a l e r . f i t t r a n s f o r m ( t r a i n d a t a )
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56 # t e s t d a t a = s c a l e r . t r a n s f o r m ( t e s t d a t a )
57

58 s v m c l f = GridSearchCV (SVC( ) , p a r a m g r i d=p a r a m g r i d , r e f i t=True ,
n j o b s=−1 , cv=10)

59 s v m c l f . f i t ( t r a i n d a t a , t r a i n l a b e l s )
60

61 y p r e d = s v m c l f . p r e d i c t ( t e s t d a t a )
62 y t r u e = t e s t l a b e l s
63

64 c v r e s u l t s = s v m c l f . c v r e s u l t s
65 a c c u r a c y = c v r e s u l t s [ ’ m e a n t e s t s c o r e ’ ]
66 # p r i n t (’−−−−−−−−−−−−−−−−−−−−− RESULTS FROM GRIDSEARCH

−−−−−−−−−−−−−−−−−−−−− \n ’ , c v r e s u l t s )
67 p r i n t ( ’−−−−−−−−−−−−−−−−−−−−− BEST PARAMETERS FROM GRIDSEARCH

−−−−−−−−−−−−−−−−−−−−− \n ’ , s v m c l f . b e s t p a r a m s )
68 p r i n t ( ’ OVERALL ACCURACY: ’ , np . round ( np . sum ( a c c u r a c y ) / l e n ( a c c u r a c y )

*100 ,2 ) )
69

70 p l t . f i g u r e ( 1 )
71 p l t . p l o t ( a c c u r a c y )
72 p l t . x l a b e l ( ’ Fo ld ’ )
73 p l t . y l a b e l ( ’Mean a c c u r a c y of t e s t s c o r e ’ )
74 p l t . show ( )
75

76 m e t r i c s = c o m p u t e m e t r i c s ( y t r u e , y p r e d )
77

78 r e t u r n m e t r i c s
79

80

81 d e f r f ( t r a i n d a t a , t e s t d a t a , t r a i n l a b e l s , t e s t l a b e l s ) :
82 ’ ’ ’
83 I n p u t : d a t a o f shape ( n samples , n f e a t u r e s ) , and l a b e l s o f shape (

n s a m p l e s ) . P e r f o r m s random f o r e s t c l a s s i f i c a t i o n
84 ’ ’ ’
85

86 p a r a m g r i d = {
87 ’ n e s t i m a t o r s ’ : [ 50 , 75 , 100 , 125 , 150 , 175 , 200 , 225 , 250 ] ,
88 ’ m a x f e a t u r e s ’ : [ ’ a u t o ’ , ’ s q r t ’ , ’ l og2 ’ ] ,
89 ’ max depth ’ : [ 3 , 5 , 7 , 9 ]
90 }
91

92 # w e i g h t s = {0 : 6 7 , 1 :33}
93

94 r f c l f = GridSearchCV ( R a n d o m F o r e s t C l a s s i f i e r ( ) , p a r a m g r i d=p a r a m g r i d ,
r e f i t=True , n j o b s=−1 , cv=10)

95 r f c l f . f i t ( t r a i n d a t a , t r a i n l a b e l s )
96

97 y p r e d = r f c l f . p r e d i c t ( t e s t d a t a )
98 y t r u e = t e s t l a b e l s
99

100 c v r e s u l t s = r f c l f . c v r e s u l t s
101 a c c u r a c y = c v r e s u l t s [ ’ m e a n t e s t s c o r e ’ ]
102 # p r i n t (’−−−−−−−−−−−−−−−−−−−−− RESULTS FROM GRIDSEARCH

−−−−−−−−−−−−−−−−−−−−− \n ’ , c v r e s u l t s )
103 p r i n t ( ’−−−−−−−−−−−−−−−−−−−−− BEST PARAMETERS FROM GRIDSEARCH

−−−−−−−−−−−−−−−−−−−−− \n ’ , r f c l f . b e s t p a r a m s )
104 p r i n t ( ’ OVERALL ACCURACY: ’ , np . round ( np . sum ( a c c u r a c y ) / l e n ( a c c u r a c y )
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*100 ,2 ) )
105

106 p l t . f i g u r e ( 1 )
107 p l t . p l o t ( a c c u r a c y )
108 p l t . x l a b e l ( ’ Fo ld ’ )
109 p l t . y l a b e l ( ’Mean a c c u r a c y of t e s t s c o r e ’ )
110 p l t . show ( )
111

112 m e t r i c s = c o m p u t e m e t r i c s ( y t r u e , y p r e d )
113

114

115 r e t u r n m e t r i c s
116

117 d e f knn ( t r a i n d a t a , t e s t d a t a , t r a i n l a b e l s , t e s t l a b e l s ) :
118 ’ ’ ’
119 E x p l a n a t i o n
120

121 P a r a m e t e r s
122 −−−−−−−−−−
123 t r a i n d a t a : n d a r r a y
124 An a r r a y c o n t a i n i n g t h e t r a i n i n g da ta , shape ( n r e c o r d i n g s ,

n c h a n n e l s * n f e a t u r e s )
125 t e s t d a t a : n d a r r a y
126 An a r r a y c o n t a i n i n g t h e t e s t da t a , shape ( n r e c o r d i n g s , n c h a n n e l s *

n f e a t u r e s )
127 t r a i n l a b e l s : n d a r r a y
128 An a r r a y c o n t a i n i n g t h e l a b e l s o f t h e t r a i n i n g s e t , shape (

n r e c o r d i n g s , )
129

130 R e t u r n s
131 −−−−−−−
132 m e t r i c s : some th ing
133

134 ’ ’ ’
135 p a r a m g r i d = {
136 ’ n n e i g h b o r s ’ : [ 1 , 5 , 9 , 15 , 19 , 25 , 29 , 35 , 39 ] ,
137 ’ l e a f s i z e ’ : [ 5 , 10 , 20 , 30 , 40 , 50 ] ,
138 ’ w e i g h t s ’ : [ ’ un i fo rm ’ , ’ d i s t a n c e ’ ]
139 }
140

141 s c a l e r = S t a n d a r d S c a l e r ( )
142 t r a i n d a t a = s c a l e r . f i t t r a n s f o r m ( t r a i n d a t a )
143 t e s t d a t a = s c a l e r . t r a n s f o r m ( t e s t d a t a )
144

145 k n n c l f = GridSearchCV ( K N e i g h b o r s C l a s s i f i e r ( ) , p a r a m g r i d , r e f i t=True ,
n j o b s=−1 , cv = 10)

146 k n n c l f . f i t ( t r a i n d a t a , t r a i n l a b e l s )
147

148 y p r e d = k n n c l f . p r e d i c t ( t e s t d a t a )
149 y t r u e = t e s t l a b e l s
150

151 c v r e s u l t s = k n n c l f . c v r e s u l t s
152 a c c u r a c y = c v r e s u l t s [ ’ m e a n t e s t s c o r e ’ ]
153 # p r i n t (’−−−−−−−−−−−−−−−−−−−−− RESULTS FROM GRIDSEARCH

−−−−−−−−−−−−−−−−−−−−− \n ’ , c v r e s u l t s )
154 p r i n t ( ’−−−−−−−−−−−−−−−−−−−−− BEST PARAMETERS FROM GRIDSEARCH

−−−−−−−−−−−−−−−−−−−−− \n ’ , k n n c l f . b e s t p a r a m s )
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155 p r i n t ( ’ OVERALL ACCURACY: ’ , np . round ( np . sum ( a c c u r a c y ) / l e n ( a c c u r a c y )
*100 ,2 ) )

156

157 p l t . f i g u r e ( 1 )
158 p l t . p l o t ( a c c u r a c y )
159 p l t . x l a b e l ( ’ Fo ld ’ )
160 p l t . y l a b e l ( ’Mean a c c u r a c y of t e s t s c o r e ’ )
161 p l t . show ( )
162

163 m e t r i c s = c o m p u t e m e t r i c s ( y t r u e , y p r e d )
164

165 r e t u r n m e t r i c s
166

167

168 d e f E E G N e t c l a s s i f i e r ( t r a i n d a t a , t e s t d a t a , t r a i n l a b e l s , t e s t l a b e l s ,
e p o c h d u r a t i o n ) :

169

170 # Add v a l i d a t i o n s e t
171 t r a i n i n g d a t a , v a l i d a t i o n d a t a , t r a i n i n g l a b e l s , v a l i d a t i o n l a b e l s =

t r a i n t e s t s p l i t ( t r a i n d a t a , t r a i n l a b e l s , t e s t s i z e=0 . 2 5 ,
r a n d o m s t a t e=42 , s t r a t i f y= t r a i n l a b e l s )

172

173 # c o n f i g u r e t h e EEGNet −8 ,2 ,16 model wi th k e r n e l l e n g t h o f 32 samples (
o t h e r

174 # model c o n f i g u r a t i o n s may do b e t t e r , b u t t h i s i s a good s t a r t i n g
p o i n t )

175 model = EEGNet ( n b c l a s s e s=2 , Chans=v a r .NUM CHANNELS, Samples=(
e p o c h d u r a t i o n * v a r . SFREQ)+1 ,

176 d r o p o u t R a t e = 0 . 5 , k e r n L e n g t h = 125 , F1 = 8 , D = 2 , F2
= 16 ,

177 dropou tType = ’ Dropout ’ )
178

179 # compi l e t h e model and s e t t h e o p t i m i z e r s
180 model . compi l e ( l o s s=’ s p a r s e c a t e g o r i c a l c r o s s e n t r o p y ’ , o p t i m i z e r=’ adam ’

,
181 m e t r i c s = [ ’ a c c u r a c y ’ ] )
182

183 # c o u n t number o f p a r a m e t e r s i n t h e model
184 numParams = model . c o u n t p a r a m s ( )
185

186

187 # s e t a v a l i d p a t h f o r your sys tem t o r e c o r d model c h e c k p o i n t s
188 c h e c k p o i n t e r = ModelCheckpoin t ( f i l e p a t h=’ / tmp / c h e c k p o i n t . h5 ’ , v e r b o s e=

1 ,
189 s a v e b e s t o n l y=True )
190

191 #
##############################################################################

192 # i f t h e c l a s s i f i c a t i o n t a s k was i m b a l a n c e d ( s i g n i f i c a n t l y more t r i a l s
i n one

193 # c l a s s v e r s u s t h e o t h e r s ) you can a s s i g n a we igh t t o each c l a s s
d u r i n g

194 # o p t i m i z a t i o n t o b a l a n c e i t o u t . Th i s d a t a i s a p p r o x i m a t e l y b a l a n c e d
so we

195 # don ’ t need t o do t h i s , b u t i s shown h e r e f o r i l l u s t r a t i o n /
c o m p l e t e n e s s .
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196 #
##############################################################################

197

198 # t h e s y n t a x i s { c l a s s 1 : we igh t 1 , c l a s s 2 : we igh t 2 , . . . } . Here j u s t
s e t t i n g

199 # t h e w e i g h t s a l l t o be 1
200 c l a s s w e i g h t s = {0 : 1 , 1 :1}
201

202 #
###############################################################################

203 # f i t t h e model . Due t o ve ry s m a l l sample s i z e s t h i s can g e t
204 # p r e t t y n o i s y run − to −run , b u t most r u n s s h o u l d be comparab le t o xDAWN

+
205 # Riemannian geomet ry c l a s s i f i c a t i o n ( below )
206 #

###############################################################################

207 f i t t e d M o d e l = model . f i t ( t r a i n i n g d a t a , t r a i n i n g l a b e l s , b a t c h s i z e =
64 , epochs = 300 ,

208 v e r b o s e = 2 , v a l i d a t i o n d a t a=( v a l i d a t i o n d a t a ,
v a l i d a t i o n l a b e l s ) ,

209 c a l l b a c k s=[ c h e c k p o i n t e r ] , c l a s s w e i g h t =
c l a s s w e i g h t s )

210

211 # l o a d o p t i m a l w e i g h t s
212 model . l o a d w e i g h t s ( ’ / tmp / c h e c k p o i n t . h5 ’ )
213

214 #
##############################################################################

215 # can a l t e r n a t i v e l y used t h e w e i g h t s p r o v i d e d i n t h e r epo . I f so i t
s h o u l d g e t

216 # you 93% a c c u r a c y . Change t h e WEIGHTS PATH v a r i a b l e t o whereve r i t i s
on your

217 # sys tem .
218 #

##############################################################################

219

220 # WEIGHTS PATH = / p a t h / t o / EEGNet−8−2− w e i g h t s . h5
221 # model . l o a d w e i g h t s (WEIGHTS PATH)
222

223 #
##############################################################################

224 # make p r e d i c t i o n on t e s t s e t .
225 #

##############################################################################

226

227 p r o b s = model . p r e d i c t ( t e s t d a t a )
228 p r e d s = p r o b s . argmax ( a x i s = −1)
229 acc = np . mean ( p r e d s == t e s t l a b e l s )
230 p r i n t ( ” C l a s s i f i c a t i o n a c c u r a c y : %f ” % ( acc ) )
231
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232 #names = [ ’ Not s t r e s s e d ’ , ’ S t r e s s e d ’ ]
233 # p l t . f i g u r e ( 0 )
234 # p l o t c o n f u s i o n m a t r i x ( p reds , t e s t l a b e l s , names , t i t l e = ’EEGNet

−8 ,2 ’ )
235 c o m p u t e m e t r i c s ( y t r u e=t e s t l a b e l s , y p r e d=p r e d s )
236 r e t u r n p r o b s
237

238

239 d e f k m e a n s c l u s t e r i n g ( d a t a ) :
240 ’ ’ ’
241 Per form K−Means c l u s t e r i n g on d a t a
242

243 P a r a m e t e r s
244 −−−−−−−−−−
245 d a t a : n d a r r a y o f shape ( n samples , n f e a t u r e s )
246

247 ’ ’ ’
248 s c a l e r = S t a n d a r d S c a l e r ( )
249 d a t a = s c a l e r . f i t t r a n s f o r m ( d a t a )
250

251 kmeans = KMeans ( i n i t=’ random ’ , n c l u s t e r s=2 , n i n i t=10 , m a x i t e r=300 ,
r a n d o m s t a t e=42)

252 kmeans . f i t ( d a t a )
253

254 l a b e l s = kmeans . l a b e l s
255

256 r e t u r n l a b e l s
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D Code: metrics.py

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 from s k l e a r n . m e t r i c s i m p o r t C o n f u s i o n M a t r i x D i s p l a y
4 from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n m a t r i x
5 from m a t p l o t l i b . c o l o r s i m p o r t L inearSegmentedColormap
6

7 d e f c o m p u t e m e t r i c s ( y t r u e , y p r e d ) :
8 ’ ’ ’
9 Compute t h e c o n f u s i o n m a t r i x o f t h e i n p u t , a ccu racy , s e n s i t i v i t y , and

s p e c i f i c i t y .
10 I n p u t i s y t r u e and y p r e d i c t e d .
11 Outpu t i s d i s p l a y o f c o n f u s i o n m a t r i x and an a r r a y o f accu racy ,

s e n s i t i v i t y , and s p e c i f i c i t y .
12 ’ ’ ’
13 c o n f m a t r i x = c o n f u s i o n m a t r i x ( y t r u e , y p r e d )
14

15 t r u e n e g a t i v e = c o n f m a t r i x [ 0 ,0 ]
16 f a l s e n e g a t i v e = c o n f m a t r i x [ 1 ,0 ]
17 t r u e p o s i t i v e = c o n f m a t r i x [ 1 ,1 ]
18 f a l s e p o s i t i v e = c o n f m a t r i x [ 0 ,1 ]
19

20 a c c u r a c y = ( ( t r u e p o s i t i v e+t r u e n e g a t i v e ) / ( t r u e p o s i t i v e +
t r u e n e g a t i v e + f a l s e p o s i t i v e + f a l s e n e g a t i v e ) ) *100

21

22 s e n s i t i v i t y = ( t r u e p o s i t i v e / ( t r u e p o s i t i v e + f a l s e n e g a t i v e ) ) *100
23 s p e c i f i c i t y = ( t r u e n e g a t i v e / ( f a l s e p o s i t i v e + t r u e n e g a t i v e ) ) *100
24

25 l a b e l s = ( ’ Not s t r e s s e d ’ , ’ S t r e s s e d ’ )
26 c o l o r s = [ ” # e f8114 ” , ” # b01b81 ” , ” #482776 ” ]
27 cmap1 = LinearSegmentedColormap . f r o m l i s t ( ”mycmap” , c o l o r s )
28 c o n f u s i o n m a t r i x d i s p l a y = C o n f u s i o n M a t r i x D i s p l a y . f r o m p r e d i c t i o n s (

y t r u e , y p red , cmap=cmap1 , d i s p l a y l a b e l s=l a b e l s )
29

30 t e x t s t r = f ” Accuracy : { round ( accu racy , 2 )}% \ n S e n s i t i v i t y : { round (
s e n s i t i v i t y , 2 )}% \ n S p e c i f i c i t y : { round ( s p e c i f i c i t y , 2 )}%”

31 p r o p s = d i c t ( b o x s t y l e=’ round ’ , f a c e c o l o r=’ w h i t e ’ , a l p h a=0 . 5 )
32 xpos = 0 . 5
33 ypos = −0 . 2
34 c o n f u s i o n m a t r i x d i s p l a y . ax . t e x t ( xpos , ypos , t e x t s t r , t r a n s f o r m=

c o n f u s i o n m a t r i x d i s p l a y . ax . t r a n s A x e s , f o n t s i z e=16 ,
35 v e r t i c a l a l i g n m e n t=’ t o p ’ , bbox=props , ha=’ c e n t e r ’ )
36

37 p l t . show
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E Code: Filtering.ipynb
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95



Data Labels Epoch Feature Classifier Accuracy Sensitivity Specificity Hyperparameters
Raw STAI 1 EEGNet 72,14% 84,68% 61,54%
Raw STAI 2 EEGNet 62,50% 63,64% 61,54%
Raw STAI 5 EEGNet 63,14% 73,50% 54,37%
Raw PSS 1 EEGNet 54,17% 33,33% 66,67%
Raw PSS 2 EEGNet 49,58% 33,33% 59,33%
Raw PSS 5 EEGNet 58,47% 57,63% 58,98%
Raw STAI 1 Time-series SVM 56,15% 55,24% 56,91% C=100, kernel = rbf
Raw STAI 2 Time-series SVM 69,16% 50,27% 85,13% C=100, kernel = poly
Raw STAI 5 Time-series SVM 69,00% 52,70% 82,79% C=100, kernel = poly
Raw STAI 1 Entropy SVM
Raw STAI 2 Entopy SVM 57,33% 31,97% 78,78% C=10, kernel = rbf
Raw STAI 5 Entropy SVM 58,62% 42,06% 72,62% C=10, kernel = rbf
Raw STAI 1 Hjorth SVM
Raw STAI 2 Hjorth SVM 51,23% 9,52% 86,53% C=10000, kernel = poly
Raw STAI 5 Hjorth SVM 51,98% 1,69% 94,52% C=10000, kernel = rbf
Raw STAI 1 PSD SVM 68,90% 35,97% 96,76% C=1, kernel=poly
Raw STAI 2 PSD SVM 68,62% 34,90% 97,16%  
Raw STAI 5 PSD SVM 60,52% 37,90% 79,66% C=10, kernel=rbf
Raw STAI 1 Time-series RF 70,33% 59,29% 79,68% max_depth=7, max_features=log2, n_estimators=75
Raw STAI 2 Time-series RF 61,10% 42,34% 76,97% max_depth=7, max_features=auto, n_estimators=50
Raw STAI 5 Time-series RF 70,62% 46,38% 91,13% max_depth = 9, max_features = log2, n_estimators = 125
Raw STAI 1 Entropy RF 66,22% 39,83% 88,55% max_depth=9, max_features=log2, n_estimators=175
Raw STAI 2 Entopy RF 66,67% 41,31% 88,13% max_depth=9, max_features=log2, n_estimators=250
Raw STAI 5 Entropy RF 65,75% 43,91% 84,22% max_depth=9, max_features=sqrt, n_estimators=100
Raw STAI 1 Hjorth RF 54,08% 43,20% 63,29% max_depth=9, max_features=sqrt, n_estimators=125
Raw STAI 2 Hjorth RF 53,13% 42,34% 62,26% max_depth=9, max_features=log2, n_estimators=50
Raw STAI 5 Hjorth RF 54,80% 43,91% 64,02% max_depth=9, max_features=sqrt, n_estimators=125
Raw STAI 1 PSD RF 60,35% 26,24% 89,22% max_depth=9, max_features=auto, n_estimators=225
Raw STAI 2 PSD RF 62,19% 30,63% 88,90% max_depth=9, max_features=log2, n_estimators=75
Raw STAI 5 PSD RF 63,70% 31,12% 91,26% max_depth=9, max_features=log2, n_estimators=100
Raw STAI 1 Time-series KNN 52,20% 47,80% 55,93% leaf_size = 5, n_neighbors = 39, weights = uniform
Raw STAI 2 Time-series KNN 45,13% 45,09% 45,17% leaf_size = 5, neighbors = 15, weights = uniform
Raw STAI 5 Time-series KNN 45,55% 50,54% 41,33% leaf_size = 5, n_neighbors = 35, weights = distance
Raw STAI 1 Entropy KNN 63,50% 29,92% 91,92%
Raw STAI 2 Entopy KNN 62,92% 29,96% 90,81% leaf_size = 5, n_neighbors = 19, weights = distance
Raw STAI 5 Entropy KNN 64,34% 39,45% 85,40% leaf_size = 5, n_neighbors = 15, weights = distance
Raw STAI 1 Hjorth KNN 52,76% 37,18% 65,94% leaf_size = 5, n_neighbors = 39, weights = uniform
Raw STAI 2 Hjorth KNN 58,67% 38,50% 75,74% leaf_size = 5, n_neighbors = 39, weights = uniform
Raw STAI 5 Hjorth KNN 60,73% 59,01% 62,19% leaf_size = 5, n_neighbors = 29, weights = distance
Raw STAI 1 PSD KNN 58,96% 33,63% 80,40% leaf_size = 5, n_neighbors = 5, weights = distance
Raw STAI 2 PSD KNN 58,67% 32,52% 80,80% leaf_size = 5, n_neighbors = 9, weights = distance
Raw STAI 5 PSD KNN 60,66% 36,83% 80,83% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw PSS 1 Time-series SVM 50,46% 77,26% 34,38% C = 0.1, kernel = sigmoid
Raw PSS 2 Time-series SVM 70,67% 66,29% 73,29% c=0.1, kernel = poly
Raw PSS 5 Time-series SVM 55,08% 73,26% 44,18% C=0,1, kernel = sigmoid
Raw PSS 1 Entropy SVM 55,82% 50,84% 58,82% C = 100, kernel = poly
Raw PSS 2 Entopy SVM 62,25% 0,15% 99,51% c=0.01, kernel = poly
Raw PSS 5 Entropy SVM 46,54% 56,31% 40,68% C=0,1, kernel = sigmoid
Raw PSS 1 Hjorth SVM 52,51% 77,78% 53,36% C=0.01, kernel = rbf
Raw PSS 2 Hjorth SVM 62,50% 0,00% 100,00% C=0,01, kernel=sigmoid
Raw PSS 5 Hjorth SVM 62,50% 0,00% 100,00% C=0,01, kernel=sigmoid
Raw PSS 1 PSD SVM 58,95% 7,06% 90,08% c = 0.01, kernel = poly
Raw PSS 2 PSD SVM 57,75% 4,40% 89,75% c=0.01, kernel = poly
Raw PSS 5 PSD SVM 61,65% 16,38% 88,81% C=0,1, kernel = poly
Raw PSS 1 Time-series RF 70,97% 77,78% 66,89% max_depth = 3, max_features = sqrt, n_estimators = 250
Raw PSS 2 Time-series RF 69,18% 72,48% 67,20% max_depth = 3, max_features = auto, n_estimators = 75
Raw PSS 5 Time-series RF 70,27% 70,06% 70,40% max_depth=9, max_features=log2, n_estimators=50
Raw PSS 1 Entropy RF 57,33% 58,42% 56,68% max_depth = 3, max_features = auto, n_estimators = 75
Raw PSS 2 Entopy RF 60,10% 56,90% 61,88% max_depth = 3, max_features = sqrt, n_estimators = 200
Raw PSS 5 Entropy RF 62,85% 68,55% 59,44% max_depth = 7, max_features = log2, n_estimators = 50
Raw PSS 1 Hjorth RF 73,65% 77,33% 71,44% max_depth = 5, max_features = auto, n_estimators = 150
Raw PSS 2 Hjorth RF 73,60% 77,63% 71,19% max_depth = 5, max_features = sqrt, n_estimators = 50
Raw PSS 5 Hjorth RF 73,94% 77,78% 71,64% max_depth = 5, max_features = log2, n_estimators = 250
Raw PSS 1 PSD RF 71,06% 65,55% 74,36% max_depth=7, max_features=auto, n_estimators=175
Raw PSS 2 PSD RF 66,83% 65,55% 67,71% max_depth = 5, max_features = sqrt, n_estimators = 200
Raw PSS 5 PSD RF 77,97% 64,22% 86,21% max_depth = 9, max_features = sqrt, n_estimators = 250
Raw PSS 1 Time-series KNN 60,09% 53,81% 63,86% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw PSS 2 Time-series KNN 50,76% 47,05% 52,66% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw PSS 5 Time-series KNN 46,82% 43,88% 48,59% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw PSS 1 Entropy KNN 67,88% 42,55% 83,08% leaf_size = 5, n_neighbors = 19, weights = distance
Raw PSS 2 Entopy KNN 70,36% 45,49% 85,28% leaf_size = 5, n_neighbors = 35, weights = distance

F Complete result overview
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Raw PSS 5 Entropy KNN 63,21% 50,66% 70,73% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw PSS 1 Hjorth KNN 55,23% 58,64% 53,18% leaf_size = 5, n_neighbors = 19, weights = uniform
Raw PSS 2 Hjorth KNN 51,37% 47,43% 53,74% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw PSS 5 Hjorth KNN 48,80% 46,14% 50,40% leaf_size = 5, n_neighbors = 5, weights = uniform
Raw STAI 1 PSD KNN 66,83% 64,96% 67,96% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw STAI 2 PSD KNN 66,75% 66,29% 67,02% leaf_size = 5, n_neighbors = 1, weights = uniform
Raw STAI 5 PSD KNN 71,61% 73,82% 70,28% leaf_size = 5, n_neighbors = 9, weights = distance
SSP STAI 1 EEGNet 57,66% 48,13% 65,73%
SSP STAI 2 EEGNet 54,45% 35,20% 70,73%
SSP STAI 5 EEGNet 52,61% 28,97% 72,62%
SSP PSS 1 EEGNet 70,28% 34,32% 90,83%
SSP PSS 2 EEGNet 58,69% 73,32% 50,34%
SSP PSS 5 EEGNet 61,56% 37,71% 75,18%
SSP STAI 1 Time-series SVM
SSP STAI 2 Time-series SVM 46,62% 19,34% 69,70% C = 10, kernel = linear
SSP STAI 5 Time-series SVM 45,34% 18,64% 67,93% C = 0.01, kernel = linear
SSP STAI 1 Entropy SVM
SSP STAI 2 Entopy SVM 54,31% 32,46% 72,79% C = 10, kernel = poly
SSP STAI 5 Entropy SVM 53,11% 31,74% 71,19% C = 100, kernel = poly
SSP STAI 1 Hjorth SVM
SSP STAI 2 Hjorth SVM 53,13% 1,83% 96,54% C = 10000, kernel = linear
SSP STAI 5 Hjorth SVM 52,90% 2,47% 95,57% C = 100, kernel = linear
SSP STAI 1 PSD SVM
SSP STAI 2 PSD SVM 52,38% 41,67% 61,44% C = 1, kernel = rbf
SSP STAI 5 PSD SVM 50,99% 37,60% 62,32% C = 0.1, kernel = rbf
SSP STAI 1 Time-series RF 51,21% 14,47% 82,30% max_depth = 5, max_features = sqrt, n_estimators = 125
SSP STAI 2 Time-series RF 49,02% 18,91% 74,50% max_depth = 5, max_features = log2, n_estimators = 150
SSP STAI 5 Time-series RF 48,94% 25,12% 69,10% max_depth = 9, max_features = log2, n_estimators = 50
SSP STAI 1 Entropy RF 52,33% 25,36% 75,15% max_depth = 3, max_features = log2, n_estimators = 175
SSP STAI 2 Entopy RF 58,33% 39,96% 73,88% max_depth = 7, max_features = sqrt, n_estimators = 50
SSP STAI 5 Entropy RF 57,06% 40,22% 71,32% max_depth = 5, max_features = auto, n_estimators = 200
SSP STAI 1 Hjorth RF 58,49% 31,35% 81,45% max_depth = 9, max_features = auto, n_estimators = 75
SSP STAI 2 Hjorth RF 58,86% 31,79% 81,78% max_depth = 9, max_features = log2, n_estimators = 75
SSP STAI 5 Hjorth RF 56,36% 31,28% 77,57% max_depth = 7, max_features = auto, n_estimator = 50
SSP STAI 1 PSD SVM 55,06% 28,37% 77,64% max_depth = 9, max_features = sqrt, n_estimators = 250
SSP STAI 2 PSD SVM 54,84% 27,21% 78,21% max_depth = 9, max_features = auto, n_estimators = 150
SSP STAI 5 PSD SVM 55,51% 38,83% 69,62% max_depth = 9, max_features = auto, n_estimators = 150
SSP STAI 1 Time-series KNN 50,60% 31,74% 66,56% leaf_size = 5, n_neighbors = 39, weights = distance
SSP STAI 2 Time-series KNN 49,27% 36,30% 60,25% leaf_size = 5, n_neighbors = 9, weights = distance
SSP STAI 5 Time-series KNN 44,77% 36,36% 51,89% leaf_size = 5, n_neighbors = 15, weights = distance
SSP STAI 1 Entropy KNN 54,82% 38,67% 68,48% leaf_size = 5, n_neighbors = 29, weights = distance
SSP STAI 2 Entopy KNN 54,73% 42,40% 65,15% leaf_size = 5, n_neighbors = 39, weights = distance
SSP STAI 5 Entropy KNN 57,34% 46,53% 66,49% leaf_size = 5, n_neighbors = 39, weights = distance
SSP STAI 1 Hjorth KNN 57,93% 52,30% 62,70% leaf_size = 5, n_neighbors = 9, weights = uniform
SSP STAI 2 Hjorth KNN 58,05% 50,40% 64,53% leaf_size = 5, n_neighbors = 5, weights = uniform
SSP STAI 5 Hjorth KNN 58,26% 55,78% 60,37% leaf_size = 5, n_neighbors = 1, weights = uniform
SSP STAI 1 PSD SVM 53,08% 39,34% 64,70% leaf_size = 5, n_neighbors = 39, weights = distance
SSP STAI 2 PSD SVM 54,25% 37,10% 68,77% leaf_size = 5, n_neighbors = 39, weights = distance
SSP STAI 5 PSD SVM 52,40% 44,38% 59,19% leaf_size = 5, n_neighbors = 39, weights = uniform
SSP PSS 1 Time-series SVM
SSP PSS 2 Time-series SVM 61,65% 6,38% 93,24% c = 1, kernel = poly
SSP PSS 5 Time-series SVM 62,56% 34,75% 78,45% C = 0.1, kernel = sigmoid
SSP PSS 1 Entropy SVM
SSP PSS 2 Entopy SVM 57,26% 22,06% 77,37% C = 0.1, kernel = poly
SSP PSS 5 Entropy SVM 59,40% 19,07% 82,45% C = 0.1, kernel = poly
SSP PSS 1 Hjorth SVM
SSP PSS 2 Hjorth SVM 63,64% 0,00% 100,00% c = 0.01, kernel = rbf
SSP PSS 5 Hjorth SVM 42,37% 34,96% 46,61% C = 10, kernel = sigmoid
SSP PSS 1 PSD SVM
SSP PSS 2 PSD SVM 59,64% 57,21% 61,03% C = 1, kernel = rbf
SSP PSS 5 PSD SVM 60,02% 66,31% 56,42% C = 1, kernel = rbf
SSP PSS 1 Time-series RF 63,56% 23,41% 86,50% max_depth = 3, max_features = sqrt, n_estimators = 150
SSP PSS 2 Time-series RF 65,16% 45,72% 76,27% max_depth = 9, max_features = log2, n_estimators = 50
SSP PSS 5 Time-series RF 66,87% 40,25% 82,08% max_depth = 7, max_features = sqrt, n_estimators = 100
SSP PSS 1 Entropy RF 60,55% 49,08% 67,10% max_depth = 9, max_features = sqrt, n_estimators = 50
SSP PSS 2 Entopy RF 56,89% 49,16% 61,31% max_depth = 9, max_features = log2, n_estimators = 100
SSP PSS 5 Entropy RF 55,32% 45,13% 61,14% max_depth = 9, max_features = sqrt, n_estimators = 175
SSP PSS 1 Hjorth RF 64,06% 22,45% 87,84% max_depth = 3, max_features = auto, n_estimators = 75
SSP PSS 2 Hjorth RF 66,35% 26,93% 88,88% max_depth = 3, max_features = auto, n_estimators = 100
SSP PSS 5 Hjorth RF 62,71% 36,44% 77,72% max_depth = 9, max_features = sqrt, n_estimators = 50
SSP PSS 1 PSD RF 60,16% 45,65% 68,44% max_depth = 9, max_features = sqrt, n_estimators = 50
SSP PSS 2 PSD RF 61,47% 46,90% 69,80% max_depth = 9, max_features = log2, n_estimators = 200
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SSP PSS 5 PSD RF 61,56% 54,03% 65,86% max_depth = 9, max_features = log2, n_estimators = 175
SSP PSS 1 Time-series KNN 57,57% 46,70% 63,78% leaf_size = 5, n_neighbors = 5, weights = distance
SSP PSS 2 Time-series KNN 58,69% 40,94% 68,84% leaf_size = 5, n_neighbors = 39, weights = uniform
SSP PSS 5 Time-series KNN 53,93% 46,61% 58,11% leaf_size = 5, n_neighbors = 1, weights = uniform
SSP PSS 1 Entropy KNN 55,72% 52,42% 57,60% leaf_size = 5, n_neighbors = 39, weights = distance
SSP PSS 2 Entopy KNN 51,95% 50,84% 52,59% leaf_size = 5, n_neighbors = 35, weights = distance
SSP PSS 5 Entropy KNN 52,08% 47,25% 54,84% leaf_size = 5, n_neighbors = 39, weights = distance
SSP PSS 1 Hjorth KNN 59,97% 54,39% 63,16% leaf_size = 5, n_neighbors = 39, weights = uniform
SSP PSS 2 Hjorth KNN 59,61% 54,70% 62,42% leaf_size = 5, n_neighbors = 25, weights = uniform
SSP PSS 5 Hjorth KNN 57,94% 56,14% 58,96% leaf_size = 5, n_neighbors = 39, weights = uniform
SSP PSS 1 PSD KNN 58,47% 54,06% 60,99% leaf_size = 5, n_neighbors = 25, weights = uniform
SSP PSS 2 PSD KNN 58,45% 48,66% 64,05% leaf_size = 5, n_neighbors = 39, weights = uniform
SSP PSS 5 PSD KNN 59,71% 63,98% 57,26% leaf_size = 5, n_neighbors = 39, weights = distance

Delta STAI 1 EEGNet 53,04% 1,64% 96,55%
Delta STAI 2 EEGNet 54,70% 3,54% 97,99%
Delta STAI 5 EEGNet 55,01% 9,71% 93,35%
Delta PSS 1 EEGNet 62,47% 9,77% 94,04%
Delta PSS 2 EEGNet 61,83% 16,70% 88.9%
Delta PSS 5 EEGNet 61,79% 10,73% 92,43%
Delta STAI 1 Time-series SVM
Delta STAI 2 Time-series SVM
Delta STAI 5 Time-series SVM 60,52% 23,27% 92,05% C = 10, kernel = rbf
Delta STAI 1 Entropy SVM
Delta STAI 2 Entropy SVM
Delta STAI 5 Entropy SVM 55,30% 13,25% 90,87% c = 1, kernel = poly
Delta STAI 1 Hjorth SVM
Delta STAI 2 Hjorth SVM
Delta STAI 5 Hjorth SVM 57,52% 12,63% 95,31% C = 10000, kernel = rbf
Delta STAI 1 PSD SVM
Delta STAI 2 PSD SVM
Delta STAI 5 PSD SVM 54,17% 1,39% 98,83% c = 0.01, kernel = poly
Delta STAI 1 Time-series RF 56,59% 17,82% 89,40%
Delta STAI 2 Time-series RF 58,05% 24,65% 86,32% max_depth=9, max_features = log2,, n_estimators=200
Delta STAI 5 Time-series RF 57,77% 25,58% 85,01% max_depth=3, max_features = log2, n_estimators =75
Delta STAI 1 Entropy RF 55,46% 12,92% 91,46% max_depth = 3, max_features = log2, n_estimators = 50
Delta STAI 2 Entropy RF 56,54% 20,50% 87,04% max_depth = 3, max_features = auto, n_estimators = 125
Delta STAI 5 Entropy RF 56,85% 30,05% 79,53% max_depth=3, max_features = sqrt, n_estimators = 50
Delta STAI 1 Hjorth RF 54,79% 4,20% 97,61% max_depth=9, max_features = sqrt, n_estimators = 250
Delta STAI 2 Hjorth RF 55,01% 5,43% 96,95% max_depth = 9, max_features = auto, n_estimators = 100
Delta STAI 5 Hjorth RF 55,65% 8,32% 95,70% max_depth = 7, max_features = sqrt, n_estimators = 50
Delta STAI 1 PSD RF 54,42% 3,56% 97,45% max_depth = 5, max_features = auto, n_estimators = 50
Delta STAI 2 PSD RF 54,50% 1,34% 99,48% max_depth=3, max_features = sqrt, n_estimators = 225
Delta STAI 5 PSD RF 55,86% 14,33% 91,00% max_depth = 5, max_features = auto, n_estimators =175
Delta STAI 1 Time-series KNN 54,85% 30,01% 75,87% leaf_size = 5, n_neighbors = 39, weights = distance
Delta STAI 2 Time-series KNN 55,23% 32,52% 74,45% leaf_size = 5, n_neighbors = 35, weights = distance
Delta STAI 5 Time-series KNN 55,72% 33,90% 74,19% leaf_size = 5, n_neighbors = 35, weights = distance
Delta STAI 1 Entropy KNN 54,25% 24,90% 79,08% leaf_size = 5, n_neighbors = 39, weights = uniform
Delta STAI 2 Entropy KNN 55,70% 30,02% 77,44% leaf_size = 5, n_neighbors = 39, weights = uniform
Delta STAI 5 Entropy KNN 55,65% 38,21% 70,40% leaf_size = 5, n_neighbors = 19, weights = distance
Delta STAI 1 Hjorth KNN 52,08% 21,25% 78,16% leaf_size = 5, n_neighbors = 39, weights = uniform
Delta STAI 2 Hjorth KNN 53,38% 23,73% 78,47% leaf_size = 5, n_neighbors = 29, weights = distance
Delta STAI 5 Hjorth KNN 54,80% 31,59% 74,45% leaf_size = 5, n_neighbors = 29, weights = distance
Delta STAI 1 PSD KNN 50,96% 26,54% 71,62% leaf_size = 5, n_neighbors = 39, weights = distance
Delta STAI 2 PSD KNN 50,59% 28,37% 69,39% leaf_size = 5, n_neighbors = 29, weights = uniform
Delta STAI 5 PSD KNN 54,03% 32,82% 71,97% leaf_size = 5, n_neighbors = 35, weights = uniform
Delta PSS 1 Time-series SVM
Delta PSS 2 Time-series SVM 62,61% 0,75% 99,73% c = 0.01, kernel = poly
Delta PSS 5 Time-series SVM 62,50% 0,00% 100,00% c = 0.01, kernel = rbf
Delta PSS 1 Entropy SVM
Delta PSS 2 Entropy SVM 62,56% 0,82% 99,60% c = 0.01, kernel = rbf
Delta PSS 5 Entropy SVM 62,15% 21,66% 86,44% c = 1, kernel = poly
Delta PSS 1 Hjorth SVM
Delta PSS 2 Hjorth SVM 62,50% 0,00% 100,00% c = 0.01, kernel = rbf
Delta PSS 5 Hjorth SVM 62,50% 0,00% 100,00% c = 0.01, kernel = rbf
Delta PSS 1 PSD SVM
Delta PSS 2 PSD SVM 62,50% 0,00% 100,00% C = 0.01, kernel = linear
Delta PSS 5 PSD SVM 62,50% 0,00% 100,00% c = 0.01, kernel = sigmoid
Delta PSS 1 Time-series RF 62,71% 19,47% 88,65% max_depth = 9, max_features = sqrt, n_estimators = 175
Delta PSS 2 Time-series RF 61,49% 31,84% 79,28% max_depth = 7, max_features = auto, n_estimators = 225
Delta PSS 5 Time-series RF 65,32% 39,36% 80,90% max_depth = 7, max_features = sqrt, n_estimators = 50
Delta PSS 1 Entropy RF 62,57% 19,81% 88,23% max_depth = 7, max_features = sqrt, n_estimators = 100
Delta PSS 2 Entropy RF 61,41% 29,90% 80,31% max_depth = 9max_features = sqrt, n_estimators = 125
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Delta PSS 5 Entropy RF 62,43% 41,24% 75,14% max_depth = 9, max_features = sqrt, n_estimators = 200
Delta PSS 1 Hjorth RF 63,13% 1,97% 99,82% max_depth = 3, max_features = log2, n_estimators = 50
Delta PSS 2 Hjorth RF 62,81% 1,27% 99,73% max_depth = 3, max_features = auto, n_estimators = 125
Delta PSS 5 Hjorth RF 64,69% 6,59% 99,55% max_depth = 3, max_features = auto, n_estimators = 225
Delta PSS 1 PSD RF 62,51% 0,04% 100,00% max_depth = 3, max_features = sqrt, n_estimators = 100
Delta PSS 2 PSD RF 62,53% 0,07% 100,00% max_depth = 3, max_features = log2, n_estimaators = 125
Delta PSS 5 PSD RF 62,15% 0,94% 98,87% max_depth = 3, max_features = sqrt, n_estimators = 175
Delta PSS 1 Time-series KNN 63,82% 44,11% 75,65% leaf_size = 5, n_neighbors = 35, weights = distance
Delta PSS 2 Time-series KNN 62,53% 45,34% 72,84% leaf_size = 5, n_neighbors = 19, weights = distance
Delta PSS 5 Time-series KNN 64,19% 49,72% 72,88% leaf_size = 5, n_neighbors = 35, weights = uniform
Delta PSS 1 Entropy KNN 58,47% 37,35% 71,15% leaf_size = 5, n_neighbors = 39, weights = uniform
Delta PSS 2 Entropy KNN 57,66% 42,88% 66,53% leaf_size = 5, n_neighbors = 39, weights = uniform
Delta PSS 5 Entropy KNN 58,83% 57,63% 59,55% leaf_size = 5, n_neighbors = 29, weights = distance
Delta PSS 1 Hjorth KNN 60,91% 37,57% 74,92% leaf_size = 5, n_neighbors = 35, weights = distance
Delta PSS 2 Hjorth KNN 61,47% 37,29% 75,97% leaf_size = 5, n_neighbors = 39, weights = uniform
Delta PSS 5 Hjorth KNN 61,79% 50,28% 68,70% leaf_size = 5, n_neighbors = 35, weights = uniform
Delta PSS 1 PSD KNN 56,20% 37,42% 67,47% leaf_size = 5, n_neighbors = 39, weights = distance
Delta PSS 2 PSD KNN 55,26% 36,61% 66,44% leaf_size = 5, n_neighbors = 35, weights = distance
Delta PSS 5 PSD KNN 54,73% 43,69% 61,36% leaf_size = 5, n_neighbors = 39, weights = distance
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G Time-series results

Support Vector Machine (SVM)

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure G.1: Raw data classified with SVM with both label types and three different epoch lengths
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(a) STAI-Y-labels with 2s epoch. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure G.2: SSP data classified with SVM with both label types and two different epoch lengths
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(a) STAI-Y-labels with 2s epoch not
recorded. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure G.3: Delta-band data classified with SVM with both label types and two different epoch
lengths
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Random Forest (RF)

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure G.4: Raw data classified with RF with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure G.5: SSP data classified with RF with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure G.6: Delta-band data classified with RF with both label types and three different epoch
lengths
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K-Nearest Neighbor

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure G.7: Raw data classified with KNN with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure G.8: SSP data classified with KNN with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure G.9: Delta-band data classified with KNN with both label types and three different epoch
lengths
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H Entropy

SVM

(a) STAI-Y-labels with 1s epoch
not recorded. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure H.1: Raw data classified with SVM with both label types and three different epoch lengths
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(a) STAI-Y-labels with 2s epoch. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure H.2: SSP data classified with SVM with both label types and two different epoch lengths
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(a) STAI-Y-labels with 2s epoch not
recorded. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure H.3: Delta-band data classified with SVM with both label types and two different epoch
lengths
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RF

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure H.4: Raw data classified with RF with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure H.5: SSP data classified with RF with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure H.6: Delta-band data classified with RF with both label types and three different epoch
lengths
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KNN

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure H.7: Raw data classified with KNN with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure H.8: SSP data classified with KNN with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure H.9: Delta-band data classified with KNN with both label types and three different epoch
lengths
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I Hjorth

SVM

(a) STAI-Y-labels with 1s epoch
not recorded.

(b) STAI-Y-labels with 2s epoch
not recorded. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure I.1: Raw data classified with SVM with both label types and three different epoch lengths
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(a) STAI-Y-labels with 2s epoch. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure I.2: SSP data classified with SVM with both label types and two different epoch lengths
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(a) STAI-Y-labels with 2s epoch not
recorded. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure I.3: Delta-band data classified with SVM with both label types and two different epoch
lengths
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RF

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure I.4: Raw data classified with RF with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure I.5: SSP data classified with RF with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure I.6: Delta-band data classified with RF with both label types and three different epoch lengths

118



KNN

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure I.7: Raw data classified with KNN with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure I.8: SSP data classified with KNN with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure I.9: Delta-band data classified with KNN with both label types and three different epoch
lengths
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J Power Spectral Density (PSD)

SVM

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure J.1: Raw data classified with SVM with both label types and three different epoch lengths
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(a) STAI-Y-labels with 2s epoch. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure J.2: SSP data classified with SVM with both label types and two different epoch lengths
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(a) STAI-Y-labels with 2s epoch not
recorded. (b) STAI-Y-labels with 5s epoch.

(c) SS-labels with 2s epoch. (d) SS-labels with 5s epoch.

Figure J.3: Delta-band data classified with SVM with both label types and two different epoch
lengths
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RF

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure J.4: Raw data classified with RF with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure J.5: SSP data classified with RF with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure J.6: Delta-band data classified with RF with both label types and three different epoch
lengths
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KNN

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure J.7: Raw data classified with KNN with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure J.8: SSP data classified with KNN with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure J.9: Delta-band data classified with KNN with both label types and three different epoch
lengths
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K EEGNet

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure K.1: Raw data classified with EEGNet with both label types and three different epoch lengths
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(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure K.2: SSP data classified with EEGNet with both label types and three different epoch lengths

(a) STAI-Y-labels with 1s epoch. (b) STAI-Y-labels with 2s epoch. (c) STAI-Y-labels with 5s epoch.

(d) SS-labels with 1s epoch. (e) SS-labels with 2s epoch. (f) SS-labels with 5s epoch.

Figure K.3: Delta-band data classified with EEGNet with both label types and three different epoch
lengths
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Department of Engineering Cybernetics 

DATA ACQUISITION CONSENT FORM 

You are being invited to participate in a research study, which the Norwegian Center for Research 
Data (NSD) has reviewed and approved for conduction by the investigators named here. This form is 
designed to provide you - as a human subject - with information about this study. The investigator or 
his/her representative will describe this study to you and answer any of your questions. You are 
entitled to a copy of this form. If you have any questions or complaints about the informed consent 
process of this research study or your rights as a subject, please contact the PI or Co-PI 
(marta.molinas@ntnu.no, +47 94287670, andres.f.soler.guevara@ntnu.no).  

Project Title: FlexEEG in Mental Health 

Principal Investigators: Marta Molinas 

Co-investigator: Andres Soler & Mohit Kumar 

Thank you for agreeing to participate in this research project. This study involves research aimed at 
detecting the presence of psychological stress in the human body based on the analysis of EEG and 
PCG signals. You will participate in two separate data collection sessions.  The first session will take 
place in the exam period of nov-dec 2022, and the second will take place after the holidays, early 
2023. Before each session we will ask you to answer a self-evaluation questionnaire called ‘State-
Trait Anxiety Inventory’. This questionnaire will be used to determine whether you are stressed or 
not. During both sessions, you will be recorded twice: one five-minute period with no stressor, and 
one five-minute period with an Arithmetic stressor. You will be asked to rate your stress level on a 
scale from 1-10 after each recording. The Arithmetic stressor consists of different arithmetic 
statements presented on a screen. Your task will be to calculate each task in your head and click “T” 
on the keyboard if the statement is True, and “F” if it is False.  This task is supposed to induce stress 
so please keep this in mind. Each session will last about 30 minutes. 10 of these minutes are for 
recording of EEG and PCG signals using Mentalab EEG and EkoDuo stethoscope. We will clean the 
areas of the scalp where the electrodes are placed with isopropyl alcohol. Electrode cap gel will be 
applied to the areas, but it is easily washed out with water and shampoo.  

Participation in this study will take approximately 60 minutes of your time. We warn that the set-up 
of the EEG cap can lead to some discomfort, and the tasks you are given will (hopefully) induce some 
stress response. Your participation in this study is completely voluntary. Should you decide to 
discontinue participation or decline to answer any specific part of the study, you may do so without 
penalty.  

Your participation in this study may help you understand the manifestations of stress on EEG signals.  
We are not asking you to place your name anywhere on the experimental booklet, so your 
participation is anonymous. None of your answers can be directly traced back to you. Should you 
have any further questions, please feel free to contact the study’s principal investigator or co-PI, 
Marta Molinas and Andres Soler at the Department of Engineering Cybernetics. Her office is at 
Elektro D+B2 room D244, her phone number is +47 94287670, and her e-mail address is 
marta.molinas@ntnu.no.  
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By signing below, I confirm that: 

o I give my consent to participate in the research study entitled “FlexEEG in Mental Health”. 

o I hereby confirm that I have read the above information and have been informed about the 

content and purpose of the research. 

o I fully understand that I may withdraw from this research project at any time without prejudice 

or effect on my standing with NTNU. 

o I also understand that I am free to ask questions about techniques or procedures that will be 

undertaken. 

o I give my consent for the collection and use of all data of the research “EEG and PCG in mental 

health” for use in research and teaching purposes.  

o I give my consent to use my data for scientific purposes, its documentation and publications 

(including any exhibitions and further publications) 

o I hereby declare that I am currently not diagnosed by a with any heart disease, or neurological 

disease  

o I am also not on any medications affecting heart rate and/or brain wave function 

o I hereby declare that I am not officially diagnosed with any mental illness 

 

Date and place:  ____________________________  and ____________________________ 

Participant’s signature: _______________________________________________________ 

First and last name: __________________________________________________________ 

Date of Birth and current Age: _____________________________and _________________ 

 

I hereby certify that I have given an explanation to the above individual of the contemplated study 
and its risks and potential complications.  

                  29/11/2022 

_______________________________        ________________  

Principal Investigator’s signature                                      Date 

 

132



M State Trait Anxiety Inventory for Adults

133



134



135



136



137



138


	Abstract
	Sammendrag
	Acknowledgements
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background and motivation
	Problem description
	Related work
	Structure of the thesis

	Theory
	Electroencephalography (EEG)
	EEG electrodes
	EEG artifacts
	EEG frequency bands
	Physiology of stress

	Filtering
	Signal-Space Projection (SSP)

	Feature extraction
	Time series features
	Entropy features
	Hjorth features
	Power spectral density features

	Machine learning and neural networks
	Introduction
	Support Vector Machine (SVM)
	Random Forest (RF)
	K-Nearest Neighbor (KNN)
	EEGNet


	Materials and methods
	Design of experiment
	Labeling the data
	Equipment
	Protocol

	Exploring the dataset
	Raw data
	Power Spectral Density
	Exploring the labels

	Pre-processing
	Initial filtering
	Signal-Space Projection (SSP)
	Signal decomposition
	Preparing the data for classification

	Features
	Machine learning
	Support vector machine (SVM)
	Random forest (RF)
	K-Nearest Neighbor (KNN)
	EEGNet

	Classification metrics

	Experimental results
	Time-series features
	Support Vector Machine (SVM)
	Random Forest (RF)
	K-Nearest Neighbor

	Entropy features
	Support Vector Machine
	Random Forest
	K-Nearest Neighbors

	Hjorth features
	Support Vector Machine (SVM)
	Random Forest (RF)
	K-Nearest Neighbors (KNN)

	Power Spectral Density (PSD) features
	Support Vector Machine (SVM)
	Random Forest (RF)
	K-Nearest Neighbors (KNN)

	EEGNet

	Discussion
	Conclusion
	Future work

	Bibliography
	Appendix
	Code: prepare_data.py
	Code: features.py
	Code: classifiers.py
	Code: metrics.py
	Code: Filtering.ipynb
	Complete result overview
	Time-series results
	Entropy
	Hjorth
	Power Spectral Density (PSD)
	EEGNet
	Consent form
	State Trait Anxiety Inventory for Adults



