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Abstract—The surge in data generated by IoT sensors has in-
creased the need for scalable and efficient data analysis methods,
particularly for robust algorithms like quantile regression, which
can be tailored to meet a variety of situations, including nonlinear
relationships, distributions with heavy tails, and outliers. This
paper presents a sub-gradient-based algorithm for distributed
quantile regression with non-convex, and non-smooth sparse
penalties such as the Minimax Concave Penalty (MCP) and
Smoothly Clipped Absolute Deviation (SCAD). These penalties
selectively shrink non-active coefficients towards zero, addressing
the limitations of traditional penalties like the l1-penalty in
sparse models. Existing quantile regression algorithms with non-
convex penalties are designed for centralized cases, whereas our
proposed method can be applied to distributed quantile regres-
sion using non-convex penalties, thereby improving estimation
accuracy. We provide a convergence proof for our proposed
algorithm and demonstrate through numerical simulations that it
outperforms state-of-the-art algorithms in sparse and moderately
sparse scenarios.

Index Terms—Distributed learning, quantile regression, non-
convex and non-smooth penalties, weak convexity, sparse learn-
ing

I. INTRODUCTION

Internet-of-things (IoT) and cyber-physical systems incor-
porate distributed devices and sensors that collect data to
provide inference and decision-making capabilities. It is nec-
essary to develop distributed solutions in such systems that
do not require data transfer to a central hub. Distributed
methods handle resource constraints as well as concerns
such as computational power, battery power, communication
bandwidth, and privacy [1]–[3].

In IoT systems, regression is a common task that involves
estimating the relationship between one or more predictor
variables and a response variable [4]. Regression algorithms
typically estimate the conditional mean of the response vari-
able associated with a set of observations using a mean re-
gression technique [5]. However, the mean regression method
is sensitive to outliers and cannot relate the response variable
to another point in the conditional distribution, such as the
median or a specific percentile. Alternatively, quantile regres-
sion, which describes regression relationships on the basis of
quantiles, can be used to alleviate the sensitivity of mean-
based regression [6]. It has therefore been found useful in
various applications, such as estimating uncertainty in data
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from smart electricity meters [7] and forecasting load on smart
grids [8].

In many real-world applications, the models to be estimated
tend to be sparse, such as quantitative traits in genetics
[9], gene selection for microarray gene expression [10], and
more. Using the a priori information about sparsity may
yield better results than the conventional quantile regression
method. Therefore, sparse-penalized quantile regression has
received considerable research interest [11], [12]. Using a l1-
penalty in a quantile regression model produces more accurate
results when the model is highly sparse, but fails when the
model is moderately or non-sparse since the l1-penalty shrinks
all coefficients uniformly. Consequently, l1-penalized quantile
regression provides poor performance and bias with reducing
model sparsity. One solution to this problem is using sparse
penalties, such as the minimax concave penalty (MCP) [13]
and the smoothly clipped absolute deviation (SCAD) [14],
that are capable of intelligently distinguishing between active
and inactive coefficients. Although these penalties encourage
sparse solutions, they mitigate the bias effect of the l1-penalty
[15], [16].

Solving l1-penalized quantile regression problems has con-
ventionally relied on linear programming algorithms [17],
[18]. However, these linear programming algorithms are lim-
ited in the sense that there is no guarantee of convergence or
the quality of the solution. Therefore, a new approach was in-
troduced in [19] that uses a local linear approximation (LLA)
algorithm as part of a general framework to solve folded
concave penalized regression. This approach approximates the
non-convex penalty function with a piece-wise linear function
and solves the resulting optimization problem iteratively. Al-
ternatively, the iterative coordinate descent algorithm (QICD),
was proposed in [20] for similar problems, with established
convergence and faster convergence rates than LLA. However,
both the LLA and QICD algorithms can be computationally
intensive and have slow convergence rates as they suffer from
inner loop. To tackle this issue, a more efficient single-loop
ADMM algorithm was proposed in [21]. Nevertheless, all the
algorithms mentioned above are limited to centralized quantile
regression, and there has been little research on using MCP
or SCAD penalties in distributed quantile regression. Further-
more, it is unclear whether existing distributed algorithms
for non-convex non-smooth problems, e.g., [22]–[27], can be
directly applied to the quantile regression context. Thus, more



research is needed to investigate these questions.
This paper introduces a new distributed sub-gradient-based

algorithm to tackle the distributed quantile regression problem
when faced with non-convex and non-smooth sparse penalties,
such as MCP and SCAD. In spite of the fact that MCP and
SCAD are non-convex and non-smooth, their weak convex-
ity allows us to demonstrate the convergence of the algo-
rithm under mild conditions, including connected and doubly
stochastic networks, and non-summable and diminishing step
sizes. To validate our theoretical findings, we conducted
several numerical simulations. The simulation results confirm
that our proposed algorithm outperforms the state-of-the-art
techniques, distributed quantile regression (dQR) [28] and its
l1-penalized variant (l1-dQR) [28], in terms of accuracy for
sparse and moderately sparse settings.
Mathematical Notations: Lowercase letters represent scalars,
bold lowercase letters represent column vectors, and bold
uppercase letters represent matrices. The transpose of a matrix
is represented by (·)T, and the jth column of a matrix A is
denoted as aj . Additionally, the entry in the ith row and jth
column of A is denoted as aij . Lastly, ∂f(u) represents the
sub-gradient of the function f(·) evaluated at u.

II. PRELIMINARIES

A brief introduction to quantile regression is provided in
this section. Considering a scalar random variable Y , a P -
dimensional vector of covariates χ, and FY (y|x) = P (Y ≤
y|χ = x) as the conditional cumulative distribution function,
the conditional quantile τ is denoted as follows:

QY (τ |x) = inf{y : FY (y|x) ≥ τ}, (1)

for τ ∈ (0, 1). In the quantile regression model, QY (τ |x) is
assumed to be linearly related to x as follows:

QY (τ |x) = xTβτ + qϵτ , (2)

where βτ ∈ RP is the coefficient vector, qϵτ ∈ R is the τ th
quantile of the noise, and both are unknown and must be
estimated. The optimization problem for βτ and qϵτ can be
formulated as [29]:

{βτ , q
ϵ
τ} = argmin

βτ ,q
ϵ
τ

E[ρτ (y − xTβτ − qϵτ )], (3)

where ρτ (z) = ||z||1 − (2τ − 1)1Tz which is also known as
check loss function. Given a data set of measurements and
observations (xj , yj)

m
j=1, where j is the sample index, and

the selected value of τ , the parameters βτ and qϵτ can be
estimated by optimizing the following problem [29]:

ŵ = argmin
w

1

m

m∑
j=1

ρτ (yj − x̄T
jw), (4)

where m is the number of samples, x̄j = [xT
j , 1]

T ∈ RP+1,
and w = [βT

τ , q
ϵ
τ ]

T ∈ RP+1.
One way to improve inference quality in quantile regression

is to utilize a priori information about the model coefficients.
This can be achieved by adding a penalty function, Pλ,γ(w),

to the quantile regression loss function. The optimization
problem (4) takes a new form after penalizing the loss function
as [21]:

ŵ = argmin
w

1

m

m∑
j=1

ρτ (yj − x̄T
jw) + Pλ,γ(w). (5)

When it comes to promoting sparsity, there are several reg-
ulation functions to choose from, but the LASSO function
has gained widespread popularity. Despite its popularity, the
LASSO function can lead to estimation bias and is not
well-suited for group sparsity. In this paper, we present a
solution that utilizes the MCP and SCAD penalty functions
as Pλ,γ(w) =

∑P
p=1 gλ,γ(wp) to achieve sparsity. Due to

the definitions of MCP [13] and SCAD [14] with constraints
γ ≥ 1 and γ ≥ 2 respectively, which are given by:

gMCP
λ,γ (wp) =

{
λ|wp| −

w2
p

2γ , |wp| ≤ γλ
γλ2

2 , |wp| > γλ
(6)

and

gSCAD
λ,γ (wp) =


λ|wp|, |wp| ≤ λ

− |wp|2−2aλ|wp|+λ2

2(γ−1) , λ < |wp| ≤ γλ
(γ+1)λ2

2 , |wp| > γλ

(7)

these non-convex and non-smooth functions can clearly differ-
entiate between active and non-active coefficients. Addition-
ally, the MCP and SCAD functions are known to be weakly
convex for ρ ≥ 1

γ and ρ ≥ 1
γ−1 respectively, according to [30].

This final property is useful in demonstrating the convergence
of the sub-gradient algorithm with these penalty functions
[22].

III. DISTRIBUTED PENALIZED QUANTILE REGRESSION

Let us consider a network with L agents modeled as an
undirected graph G consisting of vertices V = {1, · · · , L}
and bidirectional communication links represented by the edge
set E . Each agent i ∈ V can communicate with those in its
neighborhood Ni of cardinality |Ni|. The network’s weighting
matrix C is a L×L dimensional matrix, in which each entry
cij quantifies the weight assigned by node i to information
received from node j. We make the following assumptions
about the connectivity of the graph and the weight matrix C:

Assumption 1. The graph G is strongly connected, meaning
that all agents have direct or indirect connections to one
another.

Assumption 2. The weight matrix C is doubly stochastic, i.e.,∑
j ci,j =

∑
j cj,i = 1 for all i.

Let Xi = [x̄T
i,1, · · · , x̄T

i,Mi
]T ∈ RMi×(P+1) denote the ob-

servation matrix at agent i and yi = [yi,1, · · · , yi,Mi
]T ∈ RMi

the corresponding response vector, where Mi is the number of
measurements at agent i and

∑L
i=1 Mi = m. The parameter

vector w ∈ RP+1, consisting of βτ and qϵτ , models the lin-
ear relationship between all measurements and observations,
represented by X = [XT

1, · · · ,XT
L]

T and y = [yT
1 , · · · ,yT

L]
T



respectively. The penalized quantile regression estimate of w
is obtained by solving

ŵ = argmin
w

1

m

L∑
i=1

Mi∑
j=1

ρτ (yi,j − x̄T
i,jw) + Pλ,γ(w). (8)

This optimization problem can be expressed as the sum
of local objective functions, each defined as fi(w) =
1
m

∑Mi

j=1 ρτ (yi,j − x̄T
i,jw) + 1

LPλ,γ(w), leading to the fol-
lowing global optimization problem:

ŵ = argmin
w

L∑
i=1

fi(w). (9)

The proposed algorithm for quantile regression in a dis-
tributed setting, called distributed sub-gradient method for
penalized quantile regression (DSPQ), updates each node’s
estimate of the actual parameter w∗ through a diffusion step
and a sub-gradient update step. Taking vi as the diffusion
variable for node i, at each time instant k, diffusion occurs as
follows:

v
(k)
i :=

L∑
i=1

ci,jw
(k)
j , (10)

where each node updates its estimate by making a linear
combination of its own generated estimate and the estimates
received from its neighboring nodes. This update is performed
through a sub-gradient update step described by the following
equation:

w
(k+1)
i = v

(k)
i − α(k)g

(k)
i , (11)

where α(k) is step-size at iteration k and g
(k)
i ∈ ∂fi(v

(k)
i ) is

any element of the sub-differential set of fi(·). It is important
to note that each function fi(·) is neither convex nor smooth,
and thus, the distributed sub-gradient method [22] is adopted
for iteratively computing the estimate of w at each node.

The sub-gradient of the local penalized quantile regression
loss function fi(·) with respect to the coefficient v

(k)
i is

computed as follows:

∂g
(k)
i =

1

m

Mi∑
j=1

∂ρτ (yi,j − x̄T
i,jv

(k)
i ) +

1

L
∂Pλ,γ(v

(k)
i ). (12)

Here, ∂ρτ (yi,j − x̄T
i,jv

(k)
i ) represents the sub-gradient of the

check loss function with respect to v
(k)
i when the measure-

ment x̄i,j , yi,j is available. This function is obtained as:

∂ρτ (yi,j − x̄T
i,jv

(k)
i ) =


−τ x̄i,j , yi,j − x̄T

i,jv
(k)
i ≥ 0,

(1− τ)x̄i,j , yi,j − x̄T
i,jv

(k)
i < 0,

0P+1, yi,j − x̄T
i,jv

(k)
i = 0.

(13)
Additionally, ∂Pλ,γ(v

(k)
i ) represents the sub-gradient of the

penalty function with respect to v
(k)
i , which can be derived

as:

∂Pλ,γ(v
(k)
i ) = [∂gλ,γ(v

(k)
i,1 ), · · · , ∂gλ,γ(v

(k)
i,P ), 0]

T. (14)

Algorithm 1: Distributed Sub-gradient Method for
Penalized Quantile Regression (DSPQ)

Initialize w
(k)
i (1) for each node i, the step-size α1,

and γ the number of iterations K , the parameter τ
and the regularized parameters γ and λ.;

for k = 1, · · · ,K do
for i = 1, · · · , L do

Receive wj from neighbors in Ni;
Update v

(k)
i by (10);

The DSPQ-MCP algorithm:
Update g

(k)
i by (12)-(15);

The DSPQ-SCAD algorithm:
Update g

(k)
i by (12)-(14), and (16);

Update w
(k+1)
i by (11);

end
end

For MCP the sub-gradient can be derived as [13]:

∂gMCP
λ,γ (vi,p) =

{
(λ− |vi,p|

γ )sign(vi,p), |vi,p| ≤ γλ

0. |vi,p| > γλ
(15)

In the same way, SCAD’s subgradient can be deduced as
follows [14]:

∂gSCAD
λ,γ (vi,p) =


λ sign(vi,p), |vi,p| ≤ λ
γλ−|vi,p|

γ−1 , λ < |vi,p| ≤ γλ

0, |vi,p| > γλ

(16)

As a final requirement, the step-size α(k) for convergence
of DSPQ should meet Assumption 3, i.e., it should be non-
summable and diminishing. A summary of the proposed
method for solving distributed sparse penalized quantile re-
gression can be found in Algorithm 1.

Assumption 3. The step-size α(k) satisfies the follow-
ing constraints: limk→∞ α(k) = 0,

∑∞
i=1 α

(k) = +∞,∑∞
i=1(α

(k))2 < +∞.

Theorem 1. Assuming the static graph G adheres to the
connectivity assumption stated in Assumption 1, the weighted
graph C satisfies the doubly stochasticity requirement outlined
in Assumption 2, and the step-size follows the not-summable
but diminishing assumption described in Assumption 3, the
DSPQ algorithm will converge to a stationary point.

Proof. The convergence of our proposed algorithm is estab-
lished by ensuring that all the assumptions stated in [22,
Theorem 1] are satisfied, and the objective function of the
penalized quantile regression with either the MCP or SCAD
penalty is weakly convex.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DSPQ algorithm through simulations, comparing it to the dQR
and l1-dQR algorithms presented in [28]. The sensor network
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Fig. 1: MSE versus iterations

considered consists of L = 30 nodes, randomly distributed
over a 2.5 × 2.5 square area and is fully connected, with
connections established between nodes if the distance between
them is less than 0.8 and a minimum and maximum of 2 and
10 neighbors, respectively. The weighting matrix is generated
according to the metropolis rule [31]. The measurement data,
xi,j , for each node and time instance is generated from an
i.i.d normal distribution N (0,ΣP×P ) with P = 18, where
Σpq = 0.5|p−q|. We set γSCAD = 3.7, γMCP = 2.4, and
λ = 30 × 1.7 × 10−4 for penalty functions. The step-size
for each iteration, α(k), was chosen as 3.5

k(0.51) , ensuring it
meets the requirements of Assumption 3. Moreover, the mean
square error (MSE), represented by

∑L
i=1 ||ŵi−w||22

L , serves as
the performance measure and all the results were determined
by averaging the results of 100 individual trials.

In the first scenario, we evaluate the accuracy of these
methods using the MSE metric for two different values of τ ,
namely τ = 0.55 and τ = 0.75. We consider yi,j as described
by the following equation:

yi,j = xT
i,jβ + ϵi,j , (17)

where β represents the linear parameter with S = 3 randomly
selected active coefficients equal to one, and ϵl,j is a random
noise that is generated i.i.d from N (0, 0.2). As a result, the
quantile of error can be expressed as qϵτ = 0.2 · Φ(τ), where
Φ(·) represents the cumulative distribution function of the
standard normal distribution. Fig. 1 presents the mean squared
error against the number of iterations for different algorithms,
plotted for τ = 0.55 and τ = 0.75 in the learning curves. As
shown in Fig. 1, the proposed DSPQ achieves a lower MSE
than other existing approaches with the same convergence rate.

In the second scenario, we evaluated the performance of
the algorithms with varying levels of sparsity, as the number
of active coefficients increased from 0 to P . τ was fixed at
0.75, and S coefficients were randomly set to 1 while the
rest were set to 0. Fig. 2 displays the mean squared error
against the number of active coefficients for each algorithm.

0 3 6 9 12 15 18
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-50

-45

-40

-35

Fig. 2: Steady-state MSE versus the number of non-zero
elements

The results demonstrate that the proposed DSPQ algorithm
outperformed the others, delivering better MSE results across
all sparsity levels. The dQR algorithm outperformed the l1-
dQR for S > 12, showing that l1 is only effective in
sufficiently sparse scenarios. These results indicate that MCP
and SCAD are effective in both sparse and non-sparse models.

V. CONCLUSION

This paper presented a sub-gradient algorithm for quantile
regression that employed non-convex and non-smooth sparse
penalties. The convergence of the proposed algorithm was
rigorously established. Our simulation results demonstrated
the superiority of this algorithm in terms of mean squared
error compared to the conventional dQR and l1-dQR meth-
ods. The algorithm was consistently effective, particularly in
moderate and non-sparse scenarios, where other algorithms
demonstrated subpar performance.
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