
Networked Personalized Federated Learning
Using Reinforcement Learning
Francois Gauthier, Vinay Chakravarthi Gogineni, Stefan Werner

Dept. of Electronic Systems, Norwegian University of Science and Technology, Norway
E-mails: {francois.gauthier, vinay.gogineni, stefan.werner}@ntnu.no

Abstract—Personalized federated learning enables every edge
device or group of edge devices within the distributed network
to learn a device- or cluster-specific model tailored to their local
needs. Data scarcity, however, makes it difficult to learn such
individual models, resulting in performance degradation. Since
the device- or cluster-specific tasks are distinct but often related,
leveraging these similarities through inter-cluster learning allevi-
ates data shortage and enhances learning performance. Although
inter-cluster learning can boost performance, uncontrolled inter-
cluster learning may lead to performance degradation due to
over- or under-usage of local similarity enforcement. In light of
this issue, an intelligent mechanism that performs inter-cluster
learning based on device-specific needs is required. To this end,
this paper proposes adopting reinforcement learning principles
to control device-specific inter-cluster learning in real-time. We
propose networked personalized federated learning using rein-
forcement learning (NPFed-RL) as a general framework and then
demonstrate its feasibility by applying it to the ridge regression
problem. We conduct numerical experiments to compare the
proposed method with the state-of-the-art. The proposed method
successfully controls device-specific parameters and offers better
learning performance than existing solutions.

Index Terms—Personalized federated learning, networked fed-
erated learning, distributed learning, inter-cluster learning.

I. INTRODUCTION

Federated learning (FL) is a distributed learning paradigm
that enables geographically dispersed edge devices, often
called clients, to learn a global shared model on their locally
stored data without revealing it [1]. FL received enormous
attention due to the ability to handle system and statistical
heterogeneity. System heterogeneity refers to the various com-
putational and communication capacities of the participating
devices [2]. Statistical heterogeneity implies that data are im-
balanced and non-i.i.d. across devices [3]. Several challenges
associated with the practical implementation of FL, such as
communication efficiency [4], privacy preservation [5], byzan-
tine attacks [6], and asynchronous behavior of devices and
communication links [7], have been studied extensively in the
literature. In contrast to single-server methodologies, multi-
server architectures [8], [9] and fully distributed architectures
[10] have also been studied recently. This paper deals with a
fully distributed architecture.

In many practical applications, a network of clients must
learn more than one model. Those models might be different,
yet they exhibit similarities [11]. For instance, networked
vehicles need to learn and maintain customized models of
surrounding environments to plan trajectories [12]. Likewise,
patient-specific models in healthcare are required for better

diagnosis and treatment [13]. Personalized federated learning
fulfills the requirements of these applications by allowing each
client, or a group of clients (referred to as a cluster), to learn
client- or cluster-specific models [14], [15]. Building person-
alized models for clusters is challenging, as they often have
access to limited data. Inter-cluster learning, i.e., cooperation
across the clusters, can alleviate data scarcity [16].

Although inter-cluster learning can improve learning accu-
racy and speed by exploiting similarities across personalized
models, it can also have the opposite effects if not adequately
controlled [17]. In particular, a fixed regularization parameter
cannot effectively control inter-cluster learning for all clients
since system heterogeneity and network topology affect local
sensitivity to data shortages. For example, clients will benefit
more from inter-cluster learning if neighbors, and clients
within a few hops, mainly belong to different clusters, slowing
down the propagation of cluster-specific information through
the network. However, as consensus is reached within a group
of clients from a given cluster, the need for inter-cluster
learning diminishes. For these reasons, there is a need for an
intelligent mechanism that controls client-specific inter-cluster
learning parameters in real-time so that it is only used when it
improves performance [18]. To that end, this paper develops a
reinforcement learning-based mechanism that locally controls
client-specific inter-cluster learning parameters on-the-fly.

Personalized distributed learning algorithms use a fixed
inter-cluster learning parameter and suffer from the above-
mentioned limitations [16], [17]. In [18], an ad-hoc rule has
been proposed to disable inter-cluster learning if it becomes
detrimental rather than adapting its impact according to client
requirements. For this purpose, every model received from
neighbors belonging to a different cluster is tested against
the local training dataset. This process results in a substantial
computational cost that grows with the network density, thus
prohibitive for practical usage. Reinforcement learning has
been used in distributed single-task learning [19], [20] and
multi-task learning [21]–[23], but they have yet to focus on
inter-cluster learning. In the field of evolutionary computing,
reinforcement learning has been proven effective for parame-
ter control [24], suggesting its potential for real-time control
of inter-cluster learning parameters in personalized FL.

This paper proposes the NPFed-RL algorithm, where clients
use the alternating direction method of multipliers (ADMM)
and interact with neighbors to learn cluster-specific models.
Inter-cluster learning is used to improve those models further.

Each client uses reinforcement learning to adapt its inter-
cluster learning parameter on-the-fly so that task similarity
with neighboring clients is only leveraged when it is beneficial
for local learning. Two reinforcement learning policies are
developed and studied: a deterministic policy gradient and
a stochastic actor-critic policy based on an estimate of the
action-value function. The proposed policies are computa-
tionally inexpensive and improve the convergence properties
of networked personalized federated learning. The proposed
NPFed-RL will first be derived as a framework and then used
to solve the ridge regression problem as proof of concept. Fi-
nally, numerical simulations will be conducted to demonstrate
the performance of the proposed NPFed-RL and to observe
the evolution of the inter-cluster learning parameters in the
proposed method.

II. NETWORKED PERSONALIZED FEDERATED LEARNING

We consider a fully distributed network modeled as an
undirected graph G = (C, E), where C is the set of clients
and E is the set of edges such that E(k, l) = 1 if the clients
k and l are neighbors and 0 otherwise. A client can only
communicate with its neighbors, we denote Nk the set of
the neighbors of client k. Further, clients are grouped into Q
clusters, and the clients grouped in a cluster q, denoted by
Cq , for q ∈ {1, . . . , Q}, carry out the same task, i.e., they
aim to learn the same model. For r ̸= q, (r, q) ∈ {1, . . . , Q},
the tasks associated with cluster q and r are different, but
similar. To warrant the use of inter-cluster learning, we take
the following assumption on task similarity, where w∗

q denotes
the optimal model for cluster q.
Assumption 1.

∥∥w∗
q −w∗

r

∥∥2
2
⩽ η,∀q, r ∈ {1, . . . , Q}

Each client k ∈ C has access to a proprietary dataset
(Xk,yk) composed of a matrix Xk = [xk,1, . . . ,xk,Dk

]T and
a response vector yk = [yk,1, . . . , yk,Dk

]T, where Dk is the
number of data samples available to client k. The objective
is to estimate each cluster-specific model as accurately as
possible without leaking data. This leads to the following
optimization problem for a given cluster q:

min
wq

∑
k∈Cq

(1

Dk

Dk∑
i=1

ℓk(xk,i, yk,i;wq)
)
+ λR(wq)

+
τ

Q− 1

∑
r∈{1,...,Q}\q

∥wr −wq∥2 , (1)

where ℓk denotes the loss function of the task performed by
client k, R denotes the regularizer function, and λ > 0 is
the regularization parameter. The term on the second line
corresponds to the enforcement of similarity between the
cluster-specific models, it is controlled by the global parameter
τ . A larger τ enforces more similarity, leading to more similar
cluster-specific models. This optimization problem uses a
global model wq for each cluster, this is not feasible in the
proposed setting.

To circumvent this difficulty, the learning process must rely
on the clients’ models and enforce consensus among these
models. To do so, the auxiliary variables zlk,∀(k, l) ∈ Cq :

E(k, l) = 1 are introduced. The optimization problem for a
given client k belonging to cluster q is then given by

min
wk,q

1

Dk

Dk∑
i=1

ℓk(xk,i, yk,i;wk,q) + λR(wk,q)

+
τk

Q− 1

∑
r∈{1,...,Q}\q

∥ŵk,r −wk,q∥2 ,

s.t. wk,q = zlk,wl,q = zlk;∀(k, l) ∈ Cq : E(k, l) = 1, (2)

where wk,q denotes the model of client k belonging to cluster
q, and the constraints enforce intra-cluster consensus. The
global parameter τ is replaced by client-specific parameters
τk that control inter-cluster learning locally. ŵk,r denotes the
best available estimate of the model for cluster r available at
client k. This corresponds to the average of the models of the
neighboring clients from the cluster in question, given by

ŵk,r =
1

|Nk

⋂
Cr|

∑
l∈Nk

⋂
Cr

wl,r. (3)

It is possible to derive the augmented Lagrangian for a
given cluster q with the set of primal variables Vq = {wk,q},
Lagrange multipliers M = ({µl

k}, {γl
k}), and auxiliary

variables Z = {zlk} as

Lρ,q(Vq,M,Z) =∑
k∈Cq

(
1

Dk

Dk∑
i=1

ℓk(xk,i, yk,i;wk,q) +
λ

|Cq|
R(wk,q)

+
∥∥∥ τk
Q− 1

∑
r∈{1,...,Q}\q

(ŵk,r −wk,q)
∥∥∥2)

+
∑
k∈Cq

∑
l∈Nk

⋂
Cq

(
µlT

k (wk,q − zlk) + γlT
k (wl,q − zlk)

)
+

ρ

2

∑
k∈Cq

∑
l∈Nk

⋂
Cq

(
∥wk,q − zlk∥2 + ∥wl,q − zlk∥2

)
, (4)

where ρ is the penalty parameter. Given that the Lagrange
multipliers are initialized to zero, by using the Karush-
Kuhn-Tucker conditions of optimality and setting γk =
2
∑

l∈Nk

⋂
Cq

γl
k, it can be shown that the Lagrange multi-

pliers µl
k and the auxiliary variables Z are eliminated [25].

From the Lagrangian, the local update steps of the ADMM
for a given client k belonging to cluster q can be derived as:

• Primal update

w
(n)
k,q = argmin

w

1

Dk
ℓk(Xk,yk;w) +

λ

|Cq|
R(w)

+
∥∥∥ τk
Q− 1

∑
r∈{1,...,Q}\q

(ŵ
(n−1)
k,r −w)

∥∥∥2
+wTγ

(n−1)
k,q

+ ρ
∑

l∈Nk

⋂
Cq

∥∥∥w −
w

(n−1)
k,q +w

(n−1)
l,q

2

∥∥∥2, (5)

• Dual update

γ
(n)
k,q = γ

(n−1)
k,q + ρ

∑
l∈Nk

⋂
Cq

(w
(n)
l,q −w

(n)
k,q), (6)

where the superscript (n) denotes the iteration number.
The choice of the inter-cluster learning parameters τk will

greatly impact the performance of the proposed solution. A
common and fixed value would fail to accommodate the
heterogeneous data distribution and would not remain relevant
throughout the various learning stages of the clients. To
address this, we adopt in the next section the principles of
reinforcement learning to control time-varying and client-
specific inter-cluster learning parameters τ

(n)
k .

III. CONTROLLED INTER-CLUSTER LEARNING USING
REINFORCEMENT LEARNING

Obtaining the optimal values for all τ (n)k would require prior
knowledge of the network topology and data distribution as
well as extensive computational power. Instead, each client
k controls the real time evolution of the parameter τ

(n)
k

using local data and information received from neighbors.
Computationally inexpensive reinforcement learning is used
for this purpose.

At any given moment, the state of the reinforcement learn-
ing process, at a client k in cluster q, is given by the primal
variable, w(n)

k,q . The action a corresponds to the modification
of the local inter-cluster learning parameter τ

(n)
k . We denote

w
(n)
k,q (·) the function taking a value for the inter-cluster learn-

ing parameter and giving the corresponding alternative primal
variable. The original primal variable in (5) corresponds to
w

(n)
k,q = w

(n)
k,q (τ

(n)
k). For an action a, the corresponding

alternative primal variable is given by w
(n)
k,q (a).

The state- and action-value functions correspond to the error
on the local test dataset of the initial and alternative primal
variables, respectively. For instance, the state-value function
is given by

Vt(w
(n)
k,q) =

1

Dk
ℓk(Xk,t,yk,t;w

(n)
k,q) +

λ

|Cq|
R(w

(n)
k,q), (7)

where (Xk,t,yk,t) denotes the test dataset. To avoid over-
fitting, it is preferable not to use the test dataset in the
reinforcement learning process. Instead, estimates of the state-
and action-value functions are computed on a validation
dataset (Xk,v,yk,v). The estimate of the state-value function
is given by Vv(w

(n)
k,q), and the estimate of the action-value

function by Vv(w
(n)
k,q (a)).

Policy gradient [26], [27] and deterministic policy gradient
[28] are among the most popular policies for continuous
action reinforcement learning. They propose a gradient ascent
alternative to the greedy maximization of the action-value
function given by

τ
(n+1)
k = argmax

a
Vv(w

(n)
k,q (a)). (8)

In its simplest form, deterministic policy gradient relies on
the gradient of the policy reward with respect to the policy

parameter at the current state. In the proposed setting, this
corresponds to the derivative of Vv(w

(n)
k,q (a)) with respect to

a taken at τ (n)k , where the sign of the gradient is inverted since
the reward corresponds to the error. The policy parameter
update is given by

τ
(n+1)
k − τ

(n)
k ∝

∂Vv(w
(n)
k,q (a))

∂a
, (9)

where ∝ denotes proportionality. Given the primal update (5),
the computation of this derivative is impossible in the general
case. However, it can be possible when the loss and regularizer
functions are known.

The second proposed policy is a stochastic actor-critic
mechanism that takes a random action and compares the
action-value function with the state-value function to decide
on the next value of the policy parameter. This policy offers
better policy parameter exploration than the deterministic
policy gradient [29]. First, the policy proposes a random
direction α ∼ U [−νSAC

2 , νSAC
2] for the policy parameter τ

(n)
k

so that a = τ
(n)
k + α. U(·) denotes the uniform distribution,

and νSAC is a hyper-parameter for the policy. The alternative
primal variable w

(n)
k,q (a) is computed so that the action-value

function can be compared with the state-value function. The
policy parameter update is given by

τ
(n+1)
k − τ

(n)
k ∝ −sign

(
Vv(w

(n)
k,q (a))− Vv(w

(n)
k,q)
)
α.

IV. NPFED-RL FOR RIDGE REGRESSION

As a proof of concept, we use the proposed framework to
solve the ridge regression problem. In ridge regression, the
loss and regularizer functions used in (2) are given by

ℓ(Xk,yk,w) = ∥yk −Xkw∥2 ,
R(w) = ∥w∥2 . (10)

The primal variable update for ridge regression is obtained
by substituting ℓ(Xk,yk,w) and R(w) with their above
values in equation (5). Doing so, it is possible to compute
the gradient of the term in the argmin with respect to the
primal variable w, and, setting it to zero, we obtain

w
(n)
k,q (τ

(n)
k) =

(XT
kXk

Dk
+ (

λ

|Cq|
+ τ

(n)
k + ρ|Nk|)I

)−1

(XT
kyk

Dk

τ
(n)
k

(Q− 1)

∑
r∈{1,...,Q}\q

ŵ
(n−1)
k,r

+
ρ

2

∑
l∈Nk

⋂
Cq

(w
(n−1)
k,q +w

(n−1)
l,q)−

γ
(n−1)
k,q

2

)
.

(11)

The alternative primal variable w
(n)
k,q (a) for an action a can

be computed in the same manner, by replacing τ
(n)
k with a in

(11). Using this alternative primal variable and the values of

Algorithm 1 NPFed-RL for ridge regression

Initialization: w
(0)
k,q and γ

(0)
k,q, k ∈ C are set to 0, the

parameters τ
(0)
k are set to a given value within (0, 1).

Procedure at client k:
For n = 1, 2, . . . , N

If n > 1

(DPG) τk is updated as in (13).
(SAC) τk is updated as in (14).

end If
Primal update: w(n)

k,q takes the value in (11).

Client k shares w
(n)
k,q with its neighbors in Nk.

Dual update:
γ
(n)
k,q = γ

(n−1)
k,q + ρ

∑
l∈Nk

⋂
Cq
(w

(n)
l,q −w

(n)
k,q).

the loss and regularizer function for ridge regression in (10),
the action-value function can be expressed as

Vv(w
(n)
k,q (a)) =

1

Dk

∥∥∥yk,v −Xk,vw
(n)
k,q (a)

∥∥∥2
+

λ

|Cq|

∥∥∥w(n)
k,q (a)

∥∥∥2 . (12)

Using the expression for the primal variable (11) and the
action-value function specific to ridge regression in (12), it is
possible to compute the derivative of the policy reward with
respect to the policy parameter ∂Vv(w

(n)
k,q (τ

(n)
k))/∂τ

(n)
k . The

explicit derivation is not included because of space constraints.
Given that the action-value function is to be minimized,
the policy parameter update step for the deterministic policy
gradient, which we refer to as (DPG), is given by:

τ
(n+1)
k = τ

(n)
k − δDPG

∂Vv(w
(n)
k,q (a))

∂a
, (13)

where δDPG is the learning rate.
For a random direction α and corresponding action a =

τ
(n)
k +α, using (12) for the action- and state-value functions,

the update step of the policy parameter for the stochastic
actor-critic policy, which we refer to as (SAC), is given by

τ
(n+1)
k = τ

(n)
k − δSACsign

(
Vv(w

(n)
k,q (a))− Vv(w

(n)
k,q)
)
α,

(14)

where the sign is negated to minimize the action-value func-
tion and δSAC is the learning rate.

The resulting algorithms, referred to as Networked Per-
sonalized Federated learning using Reinforcement Learning
(NPFed-RL) are summarized in Algorithm 1.

V. NUMERICAL SIMULATIONS

We considered a distributed network composed of |C| = 30
clients with an average of 6 neighbors per client. The clients
are randomly grouped into Q = 3 clusters. The goal is to
estimate cluster-specific tasks given by wq = w0+δqw0, with
δq ∼ U(−0.5, 0.5). U denotes the uniform distribution, and

0 200 400 600 800

-20

-15

-10

-5

0

NFed

NPFed =0

NPFed =0.05

NPFed =0.1

NPFed =0.2

NPFed =0.4

Fig. 1: Learning curves of the NFed and NPFed algorithms
for various values of τ .

w0 is a randomly chosen base model. Each client k possesses
a training dataset (Xk,yk) where Xk ∈ RDk×60 and yk ∈
RDk×1 with Dk ∼ U(5, 35), as well as identically distributed
testing and validation datasets. The data is generated as yk =
Xkwq + nk, with nk ∼ N (0, ηk), where ηk is the client-
specific noise variance and wq is its cluster model. Finally, the
Lagrangian penalty parameter is set to ρ = 3. We considered
the mean squared error on the testing data set (Test MSE) as
the performance metric for comparison of the algorithms. It
is given by

Test MSE =
1

|C|

|C|∑
k=1

∥wk,q − w̄q∥22
∥w̄q∥

, (15)

where {wk,q, k ∈ Cq, q ∈ {1, . . . , Q}} are the models of the
considered method and w̄q is the optimal model for the cluster.
The simulation results presented in the following are obtained
by averaging the results of 10 independent experiments. To
ensure a fair comparison, the algorithms are tuned to have the
same initial convergence rate in Fig. (2).

The first experiment studied the impact of the inter-cluster
learning parameter τ on the learning behavior of conventional
networked FL algorithms. For this purpose, we simulated the
following algorithms:

• NFed: is the traditional networked FL that learns one
universal model for the whole network.

• NPFed: is conventional personalized networked FL that
learns cluster-specific models. The global parameter τ
is fixed throughout the learning process, so that ∀k ∈
C, n > 0; τk = τ . Inter-cluster learning is absent when
τ = 0.

The learning curves (i.e., Test MSE in dB vs. iteration index
n) of the above algorithms are presented in Fig. 1. The figure
shows that the NFed algorithm does not achieve satisfactory

0 200 400 600 800

-20

-15

-10

-5

0
NPFed =0.05

NPFed-RL (DPG)

NPFed-BRL (DPG)

NPFed-RL (SAC)

NPFed-BRL (SAC)

Fig. 2: Learning curves of the NPFed-RL and NPFed-BRL
with different policies. Also plotted is the learning curve of
NPFed for τ = 0.05.

accuracy since it tries to learn a single universal model that
cannot accommodate client-specific tasks. NPFed with τ = 0
implies that each cluster independently builds its own model
by relying solely on the cooperation among cluster members.
Its performance can, therefore, be regarded as a benchmark for
networked personalized federated learning. As the value of τ
increases (e.g., τ = 0.05), the NPFed performance improves,
as it enforces similarity between the cluster-specific models.
However, as more similarity is enforced between models for
non-identical tasks, the steady-state accuracy decreases, as can
be seen with NPFed τ = 0.1, τ = 0.2, and τ = 0.4. This
confirms that inter-cluster learning can be beneficial but leads
to performance degradation when over-used.

In the second experiment, we demonstrated the effective-
ness of the proposed NPFed-RL in the learning of person-
alized models. For this purpose, we simulated the following
algorithms:

• NPFed-RL (DPG): is the proposed NPFed-RL using the
deterministic policy gradient method. The policy hyper-
parameter was set to δDPG = 0.001, and its policy
parameter update step is given in (13).

• NPFed-BRL (DPG): is the NPFed-RL using the policy
gradient and batch reinforcement learning [30] with 3
epochs and δDPG = 0.003.

• NPFed-RL (SAC): is the proposed NPFed-RL using
the stochastic actor-critic policy. The policy hyper-
parameters were set to νSAC = 0.05 and δSAC = 0.1.
The policy parameter update step is given in (14).

• NPFed-BRL (SAC): is the NPFed-RL using the stochas-
tic actor-critic policy and batch reinforcement learning
[30] with 3 epochs, νSAC = 0.05 and δSAC = 0.04.

The learning curves of these algorithms are presented in
Fig. 2. For comparison purposes, the learning curve of NPFed

0 200 400 600 800
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Client 3 (SAC)

Client 22 (SAC)

Client 30 (SAC)

Client 3 (DPG)

Client 22 (DPG)

Client 30 (DPG)

Fig. 3: Evolution of τ (n)k for the 3rd, 22nd, and 30th clients.

with τ = 0.05 is also displayed. We see that all the versions
of NPFed-RL exhibit better performance in initial learning
speed and steady-state accuracy compared to NPFed operating
with a fixed τ value. Since the clients have device-specific
requirements, usage of a fixed universal τ is impractical.
Whereas the proposed NFed-RL controls the amount of inter-
cluster learning locally by learning the device-specific param-
eters τ

(n)
k in real time. Further, we also see that NPFed-RL

(SAC) exhibites enhanced accuracy over NPFed-RL (DPG).
The reason for this is that the stochastic nature of NPFed-RL
(SAC) ensures sufficient exploration of the policy parameters
τk, which is not the case for NPFed-RL (DPG). This stochastic
nature also leads to extensive randomness in the convergence
of NPFed-RL (SAC), batch reinforcement learning attenuates
this issue as can be seen with NPFed-BRL (SAC). In the case
of deterministic policy gradient, batch reinforcement learning
increases the learning accuracy. It is important to note that
batch reinforcement learning comes with a computational cost
proportional to the number of epochs performed.

Finally, we illustrate the evolution of the inter/cluster
learning parameters τ

(n)
k for NPFed-RL (SAC) and NPFed-

RL (DPG) in Fig. 3. We selected three clients 22, 3, 30,
having access to large, moderate, and small amounts of data,
respectively. Therefore, these clients have different local re-
quirements for inter-cluster learning. From Fig. 3, we observe
that the evolution of τ (n)k is very smooth when using NPFed-
RL (DPG) but fails to quickly adapt. On the other hand, the
NPFed-RL (SAC) algorithm provides sufficient exploration
of the policy parameter, ensuring that the τ

(n)
k parameters

evolve quickly at the cost of extensive randomness (BRL helps
to overcome this issue). Furthermore, we also see that τ

(n)
k

evolves according to the needs of clients. Since client 30 has
access to a small amount of data, τ (n)30 increases linearly at first
to enforce higher inter-cluster learning. After reaching near-
convergence, the τ

(n)
30 value decreases to reduce the amount of

inter-cluster learning to avoid its harmful effect. In contrast,
since client 22 has access to a large amount of data, the
τ
(n)
22 parameter decreases almost immediately and stabilizes

around 0 as inter-cluster learning is not valuable for this client.
Finally, client 3 has access to an average amount of data. τ (n)3

increases at first as similarity enforcement allows for faster
initial convergence, but decreases afterwards and stabilizes
around 0 to avoid performance degradation.

VI. CONCLUSIONS

Personalized federated learning suffers from data scarcity
within clusters, this is alleviated by leveraging the similarity
between the learning tasks. However, how much a specific
client needs to rely on inter-cluster learning depends on
its local data and the network topology. To accommodate
the varied needs of the clients, we propose a networked
personalized federated learning algorithm using reinforcement
learning to control evolving client-specific inter-cluster learn-
ing parameters. Each local parameter is updated on-the-fly
by the reinforcement learning process in a computationally
inexpensive manner so that model similarity is enforced only
as much as what is beneficial for local learning. Numerical
simulations show that the proposed method has better learning
performances than the state-of-the-art.

ACKNOWLEDGEMENT

The Research Council of Norway supported this work.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, Oct. 2016.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Proc. Mag.,
vol. 37, no. 3, pp. 50–60, May. 2020.

[3] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[4] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Communication-
Efficient Online Federated Learning Strategies for Kernel Regression,”
IEEE Internet Things J., pp. 1–1, Nov. 2022.

[5] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q.
Quek, and H. V. Poor, “Federated learning with differential privacy:
Algorithms and performance analysis,” IEEE Trans. Inf. Forensics
Secur., vol. 15, pp. 3454–3469, Apr. 2020.

[6] J. So, B. Güler, and A. S. Avestimehr, “Byzantine-resilient secure
federated learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp.
2168–2181, Jul. 2020.

[7] F. Gauthier, V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh,
“Resource-aware asynchronous online federated learning for nonlinear
regression,” in Proc. IEEE Int. Conf. Commun., pp. 2828–2833, May
2022.

[8] E. Rizk and A. H. Sayed, “A graph federated architecture with privacy
preserving learning,” in Proc. IEEE Int. Workshop Signal Process.
Advances Wireless Commun., pp. 131–135, Sep. 2021.

[9] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Decentralized
graph federated multitask learning for streaming data,” in Proc. Annu.
Conf. Inf. Sciences Sys., pp. 101–106, Mar. 2022.

[10] Y. Sarcheshmehpour, M. Leinonen, and A. Jung, “Federated learning
from big data over networks,” in Proc. IEEE Int. Conf. Acoust., Speech
and Signal Process., pp. 3055–3059, Jan. 2021.

[11] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–
4144, Jun. 2014.

[12] B. Yang, X. Cao, K. Xiong, C. Yuen, Y. L. Guan, S. Leng, L. Qian,
and Z. Han, “Edge intelligence for autonomous driving in 6G wireless
system: Design challenges and solutions,” IEEE Wireless Commun.,
vol. 28, no. 2, pp. 40–47, Apr. 2021.

[13] S. Boll and J. Meyer, “Health-X dataLOFT: A Sovereign Federated
Cloud for Personalized Health Care Services,” IEEE MultiMedia,
vol. 29, no. 1, pp. 136–140, May 2022.

[14] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Trans. Neural Networks Learning Sys., Mar. 2022.

[15] V. C. Gogineni, S. Werner, F. Gauthier, Y.-F. Huang, and A. Kuh,
“Personalized online federated learning for IoT/CPS: challenges and
future directions,” IEEE Internet Things Mag., 2022.

[16] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–
4144, Jun. 2014.

[17] V. C. Gogineni and M. Chakraborty, “Diffusion affine projection algo-
rithm for multitask networks,” in Proc. Asia-Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf., pp. 201–206, Nov. 2018.

[18] ——, “Improving the performance of multitask diffusion APA via
controlled inter-cluster cooperation,” IEEE Trans. Circuits Sys. I: Reg.
Papers, vol. 67, no. 3, pp. 903–912, Dec. 2019.

[19] W. Lei, Y. Ye, M. Xiao, M. Skoglund, and Z. Han, “Adaptive stochastic
ADMM for decentralized reinforcement learning in edge IoT,” IEEE
Internet Things J., Jun. 2022.

[20] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Communication-
efficient and federated multi-agent reinforcement learning,” IEEE Trans.
Cogn. Commun. Netw., vol. 8, no. 1, pp. 311–320, Nov. 2021.

[21] S. El Bsat, H. B. Ammar, and M. E. Taylor, “Scalable multitask policy
gradient reinforcement learning,” in Proc. Thirty-first AAAI Conf. Artif.
Intell., Feb. 2017.

[22] R. Tutunov, D. Kim, and H. Bou Ammar, “Distributed multitask
reinforcement learning with quadratic convergence,” Advances Neural
Inf. Process. Syst., vol. 31, 2018.

[23] Y. Ye, M. Xiao, and M. Skoglund, “Randomized neural networks based
decentralized multi-task learning via hybrid multi-block ADMM,” IEEE
Trans. Signal Process., vol. 69, pp. 2844–2857, May 2021.

[24] G. Karafotias, A. E. Eiben, and M. Hoogendoorn, “Generic parameter
control with reinforcement learning,” in Proc. Annu. Conf. Genetic Evol.
Comput., pp. 1319–1326, Jul. 2014.

[25] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, “Splitting
Methods in Communication, Imaging, Science, and Engineering,” in
Scientific Computation. Springer Int. Publishing, Jan. 2017, pp. 461–
497.

[26] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances Neural Inf. Process. Syst., vol. 12, 1999.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
Jul. 2017.

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., pp. 387–395, Jan. 2014.

[29] H. Wang, T. Zariphopoulou, and X. Y. Zhou, “Reinforcement Learning
in Continuous Time and Space: A Stochastic Control Approach,” J.
Mach. Learn. Res., vol. 21, no. 198, pp. 1–34, Jan. 2020.

[30] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,”
Reinforcement Learning, pp. 45–73, Springer, 2012.

	Introduction
	Networked Personalized Federated Learning
	Controlled Inter-Cluster Learning using Reinforcement Learning
	NPFed-RL for Ridge Regression
	Numerical Simulations
	Conclusions
	References

