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Abstract—This paper proposes an alternating direction method
of multiplier (ADMM) based algorithm for solving the sparse
robust phase retrieval with non-convex and non-smooth sparse
penalties, such as minimax concave penalty (MCP). The accuracy
of the robust phase retrieval, which employs an l1 based estimator
to handle outliers, can be improved in a sparse situation by
adding a non-convex and non-smooth penalty function, such as
MCP, which can provide sparsity with a low bias effect. This
problem can be effectively solved using a novel proximal ADMM
algorithm, and under mild conditions, the algorithm is shown to
converge to a stationary point. Several simulation results are
presented to verify the accuracy and efficiency of the proposed
approach compared to existing methods.

Index Terms—Robust phase retrieval, MCP, non-convex and
non-smooth optimization, sparse learning, ADMM

I. INTRODUCTION

Retrieving phases is a challenging problem in several fields,
including X-ray crystallography [1], astronomy [2], quantum
tomography [3], optics [4], and microscopy [5]. In these
applications, amplitude or intensity can be measured, but not
phase, because measuring phase is difficult and expensive.
Phase retrieval, therefore, involves reconstructing the signal
from phaseless measurements.

Initial phase retrieval efforts focused on non-convex alter-
nating projection algorithms for Fourier transform models,
namely the error reduction techniques. Gerchberg and Saxton
(GS) [6] and Fienup [7] are well-known error reduction meth-
ods. There has been a growing interest in optimization-based
approaches for phase retrieval in recent years. PhaseLift [8],
PhaseCut [9], and PhaseMax [10], for example, reformulate
phase retrieval as a convex problem to take advantage of
convex optimization. Alternatively, a non-convex formulation
can be obtained by minimizing an intensity-based loss func-
tion, such as Wirtinger flow (WF) [11], and its variations
[12,13]. Furthermore, robust phase retrieval algorithms have
been proposed in recent years to deal with outliers, e.g.,
[14,15]. Since outliers are inevitable due to sensor anomalies
and recording errors, robust phase retrieval is critical in
practical applications.

In many phase retrieval applications, such as image pro-
cessing [16], the signal acquired are sparse in nature. Hence,
many phase retrieval methods have been generalized to their
sparse versions [17,18]. An approach, for example, is to use
a threshold method to provide sparsity solutions for k-sparse
signals [19]. However, the value k needs to be known, which
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is not practical in many cases. As an alternative, the objective
function can likewise be penalized by adding an l1 penalty
[20]. However, the l1 norm has a few drawbacks, including
its inability to enforce sufficient sparsity and its tendency to
penalize large coefficients excessively [21]. For this reason,
we need a sparsity penalty that can distinguish between zero
and non-zero coefficients of the model. To that end, one may
consider using non-convex and non-smooth penalties, such as
minimax concave penalty (MCP) [22] and smoothly clipped
absolute deviation (SCAD) [23].

While non-convex and non-smooth penalties may improve
estimation accuracy in many problems [24,25], because of
their non-convexity and non-smoothness, they complicate op-
timization. For penalized robust penalized phase retrieval,
in particular, proposing an optimization algorithm is more
challenging due to its non-convex and non-smooth nature.
The alternative direction method of multiplier (ADMM) is
a potent optimization algorithm that can handle penalized
problems efficiently and effectively in parallel. However, since
robust phase retrieval penalized with non-convex and non-
smooth penalties does not exhibit Lipschitz differentiability,
it is unclear whether the existing ADMM-based non-convex
optimization algorithms [26]–[29] can reach a stationary point.
Recently, a Moreau envelope-based augmented Lagrangian
method (MEAL) [30] has been developed for constraint
optimization of non-smooth and non-convex functions that
satisfy implicit Lipschitz differentiability or implicit bounded
subgradient conditions. These conditions are more general
than Lipschitz differentiability conditions and include a group
of non-smooth functions as well. However, MEAL and its
variations [30] cannot handle penalized robust penalized phase
retrieval optimization because it has two non-smooth parts.
It is still necessary to develop an ADMM-based algorithm
that can handle fully non-smooth and non-convex two-part
problems.

In this paper, we propose an ADMM based algorithm for
solving robust phase retrieval penalized with non-convex and
non-smooth sparse penalties, e.g., MCP. Since the robust phase
retrieval objective function and MCP are non-convex and
non-smooth, demonstrating the convergence of ADMM is a
challenging issue. We are able to demonstrate the convergence
of our ADMM method by using an innovative technique based
on Moreau envelope functions and the presence of a implicit
Lipschitz subgradient property for the robust phase retrieval
objective function. Additionally, we validate our theoretical
claims through numerical simulations. Our results show that



the proposed algorithm outperforms state-of-the-art methods.

II. PROBLEM FORMULATION

In real phase retrieval, the aim is to recover a signal x based
on the amplitude of its linear measurements:

yi = |⟨aT
i ,x⟩|2, ∀i ∈ {1, · · · , N} (1)

where ai ∈ RM are observations, yi ∈ R are the measured
intensities, and x ∈ RM is the target signal we wish to recover.
In practice, however, real-world applications exhibit noise,
which may corrupt measurements and lead to incorrect solu-
tions. In order to deal with such outliers, a robust formulation
can be used as follows:

x̂ = argmin
x

N∑
i=1

li(x), with li(x) = |yi−|⟨aT
i ,x⟩|2|. (2)

In order to improve the quality of inference, the robust phase
retrieval loss function can be penalized in a suitable manner
based on a priori information about the model coefficients.
Once the penalty Pλ,ζ(x) is incorporated, the optimization
problem takes the form:

x̂ = argmin
x

1

N

N∑
i=1

li(x) + ωPλ,ζ(x), (3)

where ω is a regularization parameter. By using an auxiliary
variable z, (3) can be rewritten as:

x̂ = argmin
x

1

N

N∑
i=1

li(xi) + ωPλ,ζ(z). (4)

subject to z = xi, ∀i ∈ {1, · · · , N}
l1 norm is popular as a sparse penalty function, but it leads

to estimation bias. To overcome this limitation, in this paper,
we investigate using an MCP as Pλ,ζ(w) =

∑P
p=1 gλ,ζ(wp)

[23], which is a non-convex and non-smooth function, to
provide sparsity in the estimated signal. The definition of MCP
is given by [23]:

gMCP
λ,ζ (wp) =

{
λ|wp| −

w2
p

2ζ , |wp| ≤ ζλ
ζλ2

2 , |wp| > ζλ
for ζ ≥ 1. (5)

It is noteworthy that MCP is weakly convex with ρ ≥ 1
ζ ,

meaning that there is a function convex function h(x) such
that h(x) = gMCP

λ,ζ (wp)+
ρ
2∥wp∥22 [24]. Additionally, each li(.)

is also weakly convex with ρ = 2∥ai∥22 [15].
In the next section, we propose an ADMM based algorithm

for solving the optimization problem (4).

III. PROPOSED METHOD

For solving (4) with an ADMM algorithm, we write the
associated augmented Lagrangian function as follows:

Lρu
(X, z,U) =

1

N

N∑
i=1

li(xi) + ωPλ,ζ(z)

+

N∑
i=1

(
uT
i (z− xi) +

ρu
2
∥xi − z∥22

)
, (6)

where U = [u1, · · · ,uN ] is dual variable, X = [x1, · · · ,xN ],
and ρu is the dual penalty parameter. According to our under-
standing, existing ADMM-based approaches [26,28] cannot
guarantee convergence to a stationary point in the absence
of Lipschitz differentiability and convexity of the objective
function. In the following, we derive a proximal ADMM that
guarantees convergence in the above mentioned settings.

By defining an auxiliary variable H = [h1, · · · ,hN ], the
proximal augmented Lagrangian can be defined as:

Ψρu,ρh
(X, z,U,H) = Lρu(X, z,U) +

ρh
2
||X−H||22, (7)

where ρh is a penalty parameter. The proximal term in (7)
assists in obtaining a convergence result using the Moreau
envelope function. The (m + 1)th iteration of our proposed
proximal ADMM algorithm can be expressed as:

z(m+1) = argmin
z

Ψρu,ρh
(X(m), z,U(m),H(m)), (8a)

X(m+1) = argmin
X

Ψρu,ρh
(X, z(m+1),U(m),H(m)), (8b)

H(m+1) = H(m) − η(H(m) −X(m+1)), (8c)

U(m+1) = U(m) + ρu(z
(m+1)1T

N −X(m+1)), (8d)

where η ∈ (0, 2) is a step size.
More precisely, the z-step update in (m+1)th can be written

as:

z(m+1) = Proxpλ,ζ

(
1

N

N∑
i=1

(x
(m)
i − u

(m)
i

ρu
);

ω

Nρu

)
, (9)

where Proxh(w;κ) = argminx
{
h(x) + 1

2κ∥x − w∥22
}

.
Moreover, for each xi, separate updates can be performed as
follows:

x
(m+1)
i = Proxli

(
ρuz+ ρhhi + ui

ρu + ρh
;

1

N(ρu + ρh)

)
. (10)

It can be shown that by considering w1 = w − 2κaT
iw

2κ∥ai∥2
2+1

ai,

w2 = w − 2κaT
iw

2κ∥ai∥2
2−1

ai, w3 = w − aT
iw+

√
yi

∥ai∥2
2

ai, and w4 =

w − aT
iw−√

yi

∥ai∥2
2

ai, for 0 < κ ≤ 1
2∥ai∥2

2
we have:

Proxli(w;κ) =



w1, (
aT
iw

2κ∥ai∥2
2+1

)2 ≥ yi

w2, (
aT
iw

2κ∥ai∥2
2−1

)2 ≤ yi

w3, −√
yi <

aT
iw+

√
yi

2κ∥ai∥2
2

<
√
yi

w4. −√
yi <

aT
iw−√

yi

2κ∥ai∥2
2

<
√
yi

(11)

Finally, we can adapt the stopping criteria in [31] to our
algorithm. The proposed algorithm for solving the sparse
robust phase retrieval is summarized in Algorithm 1.



Algorithm 1: Proximal ADMM (PADM) for sparse
robust phase retrieval

Initialize z(0), H(0), and U(0) to zero vectors,
η ∈ (0, 2), and {x(0)

i }Ni=1 as in [11];
repeat

Update z(m+1) by (9);
for i = 1, . . . , N do

Update x
(m+1)
i by (10)-(11);

end
Update H(m+1) by (8c);
Update U(m+1) by (8d);

until the convergence criterion is met;

IV. CONVERGENCE PROOF

In this section, a convergence analysis of the Algorithm 1 is
presented. We construct our convergence proof based on the
following assumption.

Assumption 1. Each of li(·) for 0 < κ < 1
2∥ai∥2

2
satisfies

the implicit Lipschitz subgradient property, which means that
∀w ∈ Prox−1

li
(u, κ),∀w′ ∈ Prox−1

li
(v, κ), there exists an

Lf > 0 such that:

∥∇Mli(w, κ) − ∇Mli(w
′, κ)∥ ≤ Lf∥u − v∥, (12)

in which Mh(w;κ) = minx
{
h(x) + 1

2κ∥x−w∥22
}

.

By considering that the the Moreau envelope function
Mh(w;κ) is smooth, the Assumption 1 can be satisfied if
each Proxli(w, κ) is locally invertible. When M = 1, it is
easy to demonstrate that the assumption 1 holds. Based on
Assumption 1 one can derive the following lemma.

Lemma 1. For all m ≥ 1, the following inequality is held:

ρ−1
u ∥u(m+1)

i −u
(m)
i ∥22 ≤ ρ−1

u

(
(Lf +ρh)

2∥x(m+1)
i −x

(m)
i ∥

+ ρ2h∥h
(m)
i − h

(m−1)
i ∥22

)
, ∀i ∈ {1, · · · , N}. (13)

Proof. This can be demonstrated by adapting [30, Lemma 4].

The convergence proof can be illustrated by ensuring that
all conditions in [30, Lemma 3] are met. There is only one
increasing step in each iteration of the algorithm, which is the
update of the dual update step. By considering Assumption 1,
as one can see in Lemma 1, the amount of increase in the dual-
update step is bound by the primal and auxiliary variables. Due
to this, we can tune the parameters of the proximal augmented
Lagrangian to ensure that the sufficient decrease condition in
[30, Lemma 3] is met. Furthermore, the subgradient of the
proximal augmented Lagrangian based on each of its inputs
can be easily shown to be bound in every iteration, which
is sufficient for validating the bounded subgradient condition
of [30, Lemma 3]. Finally, by knowing that the robust phase
retrieval function is a coercive function and adopting the [30,
proposition 3], which shows that under certain conditions the

proximal augmented Lagrangian is lower bounded in each
step, and with the knowledge that the proximal augmented
Lagrangian is a continuous function based on its inputs, we
can show that the continuity condition of [30, Lemma 3] holds.

V. SIMULATION RESULT

This section compares the proposed proximal ADMM al-
gorithm (PADM) for MCP penalized robust phase retrieval
with sparse PhaseliftOff (SPhaseliftOff) [18], a well-known
algorithm for sparse phase retrieval, and robust phase retrieval
with the subgradient method (Sub) [32] in three scenarios.
The relative error equal to ∥x̂−x∥2

2

∥x∥2
2

is used as a performance
measure, and all results were derived from averaging over 100
independent trials.

The first scenario compares the accuracy of algorithms
when there are outliers in the measurements. For generating
measurements, the following settings were chosen:

yi = |⟨aT
i ,x⟩|2 + ϵi, ∀i ∈ {1, · · · , N} (14)

where ai
i.i.d∼ N (0, I) and x ∼ N (0, I) ⊙ Bs, in which ⊙

represents the Hadamard product and Bs ∈ RM×M is a
random diagonal matrix with s = 3

10 of the diagonal elements
are non-zero and equal to one. In addition, {ϵi}Ni=1 are compo-
nents of the noise sampled i.i.d from a mixture of exponential
distributions in the form of

∑2
i=1 ciλie

−λiv, for v >= 0,
in which c1 = 0.9, c2 = 0.1, and λ2 = λ1

10 . In terms of

SNR (γ), λ1 can be derived as λ1 =

√
N×21.8×10

γ
10∑N

i=1 |aT
ix|2

. In this

setting, 10% of the measurement can be assumed as outliers.
Simulation results were obtained for (N,M) = (150, 25) and
varying SNR values from −10 dB to 40 dB, in steps of 5
dB. Fig. 1 illustrates that PADM with MCP outperforms other
methods in terms of relative error.

The second scenario compares the algorithms’ performance
under a noisy phase schema. The following settings were used
to generate measurements:

yi = |⟨aT
i ,x+ ϵi⟩|2, ∀i ∈ {1, · · · , N}, (15)

where ai
i.i.d∼ N (0, I), and x ∼ N (0, I) ⊙ Bs with s = 3

10 .
Also, each component of noise ϵi

i.i.d∼ N (0, σ2I), where σ =√ ∑N
i=1 |aT

ix|2

N×M2×10
γ
10

. Simulation results were derived for (N,M) =

(150, 25) and varying SNR values from 0 dB to 50 dB, in steps
of 5 dB. In this scenario, PADM with MCP performs better
than other methods, as shown in Fig. 2.

Under a noiseless schema, the final scenario compares
the convergence rate of the algorithms. Measurements were
generated with the following settings:

yi = |⟨aT
i ,x⟩|2, ∀i ∈ {1, · · · , N}, (16)

where ai
i.i.d∼ N (0, I), and x ∼ N (0, I) ⊙ Bs with s = 1

10 .
Simulation results were obtained for (N,M) = (60, 10). In
Fig. 3, PADM with MCP exhibits a faster convergence rate
than Sub. Additionally, SPhaseLiftOff suffers from an inner
loop and each iteration solves an ADMM algorithm, which in
total is slower than our algorithm.
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VI. CONCLUSION

This paper introduced a new proximal variant of ADMM
called PADM for sparse robust phase retrieval problems
penalized with non-convex penalties. In the presence of an
implicit Lipschitz subgradient property for the robust phase
retrieval function, our analysis demonstrated that the proposed
algorithm can converge to a stationary point. According to the
simulation results, the proposed algorithm with MCP penalty
outperforms state-of-the-art methods in terms of accuracy and
convergence speed.
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