

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
1049-331X/2023/1-ART1 $15.00
http://dx.doi.org/10.1145/3617169

ACM Trans. Softw. Eng. Methodol.

Acrobats and Safety-Nets: Problematizing Large-Scale Agile Software

Development

KNUT H. ROLLAND

University of Oslo, Norway

BRIAN FITZGERALD

University of Limerick and Lero, Ireland

TORGEIR DINGSØYR

Norwegian University of Science and Technology and SimulaMet, Norway

KLAAS-JAN STOL

University College Cork and Lero, Ireland, and SINTEF, Norway

Agile development methods have become a standard in the software industry, including in large-scale projects.

These methods share a set of underlying assumptions that distinguish them from more traditional plan-driven

approaches. In this paper we adopt Alvesson and Sandbergǯs problematization approach to challenge three key

assumptions that are prevalent in the large-scale agile literature: 1) agile and plan-driven methods are mutually

exclusive; 2) self-managing and hierarchically-organized teams are mutually exclusive; and 3) agile methods can

scale through simple linear composition. Using a longitudinal case study of large-scale agile development, we

describe a series of trigger events and episodes whereby the agile approach was tailored to address the needs of

the large-scale development context, which was very much at odds with these fundamental assumptions. We

develop a set of new underlying assumptions which suggest that agile and plan-driven practices are mutually

enabling and necessary for coordination and scaling in large-scale agile projects. We develop nine propositions for

large-scale agile projects based on these new alternative underlying assumptions. Finally, we summarize our

theoretical contribution in a generic process model of continuously adjusting agile and plan-driven practices in

order to accommodate process challenges in large-scale agile projects.

CCS CONCEPTS • Software and its engineering • Software development process management •
Agile software development • Collaboration in software development

Additional Keywords and Phrases: large-scale agile, problematization, assumptions, literature review,

case study, software architecture, requirements engineering, multiteam project management
This publication was financially supported by Science Foundation Ireland under Grant numbers 13/RC/2094_P2,
and 15/SIRG/3293, and by the competence-building project Agile 2.0, supported by the Research Council of
Norway through grant 236759 and by the companies DNV GL, Equinor, Kantega, Kongsberg Defence & Aerospace,
Sopra Steria and Sticos. For the purpose of Open Access, the authors have applied a CC-BY public copyright license
to any Author Accepted Manuscript version arising from this submission. Authorsǯ addresses: K.H. Rolland, Department of Informatics, University of Oslo, Norway; B. Fitzgerald, Lero—the
Science Foundation Ireland Research Centre for Software, Tierney Building, Department of Computer Science and
Information Systems, University of Limerick, Limerick, brian.fitzgerald@lero.ie; T. Dingsøyr, Department of
Computer Science, Norwegian University of Science and Technology (NTNU), Center for Effective Digitalization of
the Public Sector, SimulaMet, Oslo, Norway, torgeir.dingsoyr@ntnu.no; K.-J. Stol, School of Computer Science and

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617169&domain=pdf&date_stamp=2023-08-23

ACM Trans. Softw. Eng. Methodol.

Information Technology, Western Gateway Building, University College Cork, Western Road, Cork, k.stol@ucc.ie;
Lero—the Science Foundation Ireland Research Centre for Software, Cork, Ireland; SINTEF, Strindvegen 4,
Trondheim, Norway.

1 INTRODUCTION

The Acrobat’s Pole and Safety-Net

Picture a circus acrobat on a tightrope; two elements are obvious. One, a long pole which

twitches as the acrobat wobbles in maintaining balance on the tightrope – this local

flexibility is vital to maintain overall stability. The second, a safety-net, is also crucial, but for

a completely different reason. The acrobat could practice close to the ground but in order to

scale to greater heights (and survive the process), the safety net is required – just as the

brakes in a car permit faster driving, the safety-net permits the acrobat to scale to greater

heights.

Inspired by Bateson (1972) and Farjoun (2010)

Agile methods continue to increase in popularity and are by far the dominant mode of

software development today (State of Agile 2022). Agile methods were initially suggested

to be best suited to (a) small projects with (b) co-located teams, and (c) non-critical

projects (Abrahamsson et al. 2009; Williams and Cockburn 2003). These constraints have

been challenged and there are now many successful exemplars of the use of agile methods

in distributed environments (e.g., Moe et al. 2014), as well as the use of agile in safety-

critical and regulated domains, including aerospace (Hanssen et al. 2017), automotive (Hilt

et al. 2016), life-sciences (Fitzgerald et al. 2013), medical devices (McCaffery et al. 2016),

and railway (Stålhane et al. 2012). However, the successful use of agile methods in large

projects remains an outstanding challenge (Booch 2015; Dingsøyr et al. 2019; Edison et al.

2021). To assist organizations in Ǯscaling upǯ agile principles to large-scale projects, a multitude

of solutions have been proposed. These methods include Water-Scrum-Fall, Large Scale

Scrum (LeSS), the Scaled Agile Framework (SAFe), Disciplined Agile Delivery (DAD), Nexus,

and hybrid processes (Edison et al. 2021; Conboy and Carroll 2019; Dingsøyr et al. 2019; Šmite et al. 2019). However, as we illustrate in this article, these solutions apply the

fundamental assumptions underpinning agile methods in large-scale development settings,

without critically questioning or challenging them. This, we argue, contributes to an over-

reliance on principles and practices as encoded in agile methods (e.g., Beck 1999) in

contexts where those no longer apply, leading to confusion and misunderstanding,

including a misplaced insistence that plan-driven practices are somehow Ǯundesirableǯ and
that to be Ǯagile,ǯ all practices must be compliant with the Agile Manifesto. While some

literature acknowledges the potential co-existence of agile and plan-driven methods

(Boehm 2002), and more recently hybrid approaches (Kuhrmann et al. 2018; Kuhrmann

2021), we argue that prior work falls short on providing any theoretical foundation to help

understand and explain the tensions between these different approaches. To allow for a

deeper understanding and to help resolve the perceived tensions between plan-driven and

ACM Trans. Softw. Eng. Methodol.

agile methods, we (a) propose to reposition this relationship as a duality rather than a

dualism,1 and (b) develop new theory to guide the field further.

Given that large-scale agile appears to be the Ǯfinal frontierǯ for agile methods ȋBooch

2015; Dingsøyr et al. 2019), and that the complexity and scale of such development projects

have been perceived as requiring a plan-driven approach, we are particularly interested in

challenging the fundamental assumptions underpinning large-scale agile development.

Agile methods were originally positioned as light-weight methods in response to plan-

driven approaches that were the industry norm up to the 1990s, and which were characterized as Ǯdocumentation-heavyǯ and Ǯrigidǯ (phase-based) approaches (Boehm

2002). Over the years, there has been an increased acknowledgment that even for large-

scale projects, traditional plan-driven approaches no longer suffice (e.g., Ambler and Lines

2012; West et al. 2011). The need for agility is driven by changing market trends;

organizations that cannot respond quickly to market demands will suffer consequences.

Even behemoths such as Microsoft, which traditionally followed a document-heavy process

(Cusumano and Selby 1997) have adopted agile methods, and organizations around the

world seek to tailor agile methods to large-scale projects (Berntzen et al. 2023; Kuhrmann

et al. 2021; Russo 2021).

Although reporting a successful case of scaling up agile methods to large projects in itself

is interesting, our goal is to go beyond this. Through a systematic analysis of the literature

on large-scale agile, we observe a set of recurring patterns, namely, a set of assumptions in

relation to the use of agile methods in large-scale projects. We adopt Alvesson and Sandbergǯs ȋʹͲͳͳȌ problematization methodology to identify fundamental assumptions in
prior research on this topic. We then challenge these assumptions, and drawing on an in-

depth and longitudinal case study of a successful large-scale agile project, we propose a set

of revised assumptions that provide a better theoretical foundation to capture the duality

between agile and plan-driven practices. Using this new set of assumptions, we theorize on

the specific balanced combinations of such practices to provide better insights regarding

the scaling-up of agile methods. To the best of our knowledge, this is the first attempt to

theorize large-scale agile methods.

In this article we take an alternative approach to the more common practice of gap-

spotting and adopt a problematization approach. This approach is not widely used within

software engineering research. Hence, this article is also structured in an unconventional

way (see Figure 1), consisting of two major phases. In Section 2 we outline Alvesson and Sandbergǯs problematization method and its relevance for software engineering and agile
software development.)n particular, we draw on Farjoun ȋʹͲͳͲȌǯs framework, which was

originally designed to distinguish between dualism and duality, to help understand how

1 Summarizing briefly, dualism views paired concepts as separable, whereas duality views paired
concepts as interdependent which cannot exist independently from each other (Giddens 1979,
Jackson 1999).

ACM Trans. Softw. Eng. Methodol.

agile and plan-driven methods are traditionally positioned as opposites. The first phase of

our research approach is a systematic review of the large-scale literature through which we

identify three major assumptions—Section 3 presents the details of this review. We then

shift to the second phase of our research, which is a longitudinal case study of a successful

large-scale agile software development project. Section 4 presents the design of the case

study. Section 5 presents the results of our analysis, which comprises a series of Ǯepisodesǯ
that illustrate in detail how the three assumptions were challenged, and how agile and plan-driven methods were successfully combined. We then revisit Farjoun ȋʹͲͳͲȌǯs framework
in Section 6 to position and reflect on our observations, and propose a process model

(Newman and Robey 1992) that explains the dynamics in large-scale agile software

projects. We develop a set of alternative assumptions, and further develop theory by

deriving a series of propositions to guide future research. We conclude in Section 7 with an

outlook on how our propositions might inform future work.

Figure 1. Structure of this article

2 PROBLEMATIZING FUNDAMENTAL ASSUMPTIONS IN LARGE-SCALE

AGILE SOFTWARE DEVELOPMENT

Alvesson and Sandberg (2011; 2013) propose the problematization of both conventional

assumptions and the consensus in prevailing theoretical perspectives. They point out that

the typical mode of framing research is to identify research questions through spotting gaps ȋor even Ǯconstructingǯ gapsȌ in current theories or empirical studies—what they have

termed the gap-spotting approach. Research in software engineering and in many other

ACM Trans. Softw. Eng. Methodol.

scientific fields is expected to draw from, and build upon, established bodies of research.

Researchers often construct their research questions through finding Ǯgapsǯ in an existing
body of literature. In the context of large-scale agile software development, Paasivaara et al. ȋʹͲͳʹ, p.ʹ͵͸Ȍ identified a Ǯgapǯ in the research literature: ǲ[We] found only three research
articles briefly reporting experiences from projects with more than ten Scrum teams.ǳ By

pointing out the scarcity of research on Scrum projects that involve more than ten teams,

the authors identified a gap, based on which they position and legitimate their research on

Scrum-of-Scrums.

The literature on agile software development offers several examples of consensus-

building around important research challenges (Gregory et al. 2016), complemented by

special issues on agile systems development (e.g., Abrahamsson et al. 2009). Most of these initiatives can be characterized as Ǯgap-identifying,ǯ with gaps being uncovered in prior
research, or gaps between the literature and industry needs.

While gap-spotting is clearly a useful approach that has led to significant contributions in

most research fields, a fundamental problem with the gap-spotting approach is that it can

result in reinforcing existing theories, rather than challenging them. By adopting the

assumptions from prior studies without critical reflection, these assumptions are amplified.

Researchers tend to then build entirely from the premises of prior literature without

challenging the consensus.

As a primarily practitioner-driven phenomenon, agile methods have been viewed as

having relatively weak theoretical grounding (Abrahamsson et al. 2009; Conboy 2009). Rather than Ǯconstructingǯ a gap in the current large-scale agile literature, we adopt a

problematization approach that challenges the prevalent assumptions in that literature to

form an alternative perspective that can help us understand the dilemma between agility

and rigidity that seems to be inherent in large-scale development.

Alvesson and Sandberg (2011) provide methodological guidance in the form of a typology of assumptions and a series of Ǯprinciplesǯ for identifying and challenging

assumptions. The typology defines five types of assumptions (see Table 1). This typology

provides useful prompts for researchers to identify candidate assumptions that can

subsequently be further studied. In our study, we used this taxonomy to increase our

sensitivity while reviewing prior agile literature (see Section 3).

The second part of the methodological guidance is a set of principles for identifying and

problematizing assumptions (Alvesson and Sandberg 2011, p. 260):

1. Identify a domain of literature: what main bodies of literature and key texts make up the

domain?

2. Identify and articulate assumptions: what major assumptions underlie the literature within the

identified domain?

3. Evaluate articulated assumptions: Are the identified assumptions worthy of being challenged?

ACM Trans. Softw. Eng. Methodol.

4. Develop alternative assumptions: what alternative assumptions can be developed?

5. Relate assumptions to audience: What major audiences hold the challenged assumptions?

6. Evaluate alternative assumptions: Are the alternative assumptions likely to generate a theory

that will be regarded as interesting by the audiences targeted?

In this article, we focus on the literature on large-scale agile software development,

specifically, rather than the agile literature more broadly (Step 1 above). We identify and

articulate major assumptions in this body of literature (Step 2), and we argue in the same

section that these are worthy of being challenged (Step 3), and demonstrate that these are

prevalent in many papers on large-scale agile (Step 5). Through a longitudinal case study

(Sections 4 and 5), we illustrate these assumptions, and develop a set of alternative

assumptions (Step 4) in Section 6). We seek to develop theory by deriving a series of

propositions (Step 6) and discuss the implications of our alternative assumptions (Section

6).

Table 1. Typology of assumptions (Alvesson and Sandberg 2011)

Assumption

Type

Description Examples related to agile literature

In-house

assumption

Assumptions that are shared by subgroups of

researchers within an area of research and

which affect how they conceptualize or

measure a particular subject matter. Each agile method can be seen as a Ǯschool of thought,ǯ
including Scrum and XP.

The role of Product Owner within Scrum as a

surrogate for the customer, and who is assumed to

know the business requirements.

Root

metaphor

assumptions

Assumptions that signify a deeper aspect of the

subject matter by using conceptual images to

understand the topic of study

ǲWaterfallǳ as a metaphor for the software

development process, with strictly unidirectional

phases separated by Ǯstage gates.ǯ
Paradigmatic

assumptions

Assumptions concerned with the underlying

epistemological and ontological views of the

research in the dominant literature. These

views may relate to the research paradigm

(e.g., positivist vs. constructivist research, or

qualitative vs. quantitative), and also the

theoretical paradigm.

Over-emphasis on success stories and case studies

which are typically analyzed from a positivistic

viewpoint (Paasivaara et al. 2012).

Ideological

assumptions

Ideological assumptions include those that

relate to political, moral, and gender-related

issues.

ǮAgile Manifestoǯ as an ideological statement: the term Ǯmanifestoǯ is commonly used as a declaration

or statement of intent in politics (e.g., ǲCommunist ManifestoǳȌ.
Field

assumptions

Field assumptions can be identified within

several different branches of a field of study.

The assumption that agile methods are best suited to

small projects, with co-located teams, and for non-

critical development contexts. These assumptions

have long been held for all agile methods, but these

have been challenged (e.g., Hanssen et al. 2017).

To start our investigation, we draw on Farjoun (2010) to position plan-driven software

ACM Trans. Softw. Eng. Methodol.

development and agile methods (Figure 2). Farjoun proposes two key dimensions, namely

mechanisms and outcomes, both of which may feature stability or change. Mechanisms are

the processes and practices that people employ, whereas outcomes are the objectives that

people enacting those mechanisms seek to achieve. This conceptualization is especially

relevant to, and resonates well with, the traditional positioning of plan-driven and agile

approaches to software development. The waterfall approach emerged as a reaction to the ǲsoftware crisisǳ identified in the
early years of the software field (Naur and Randell 1968) whereby most software

development projects ended in failure to meet user needs. However, plan-driven, waterfall

approaches led to lengthy, multi-year development times (Taylor and Standish 1982)

without resulting in software that met user needs. This issue led to the emergence of the

Agile Manifesto which sought to address these issues.

Figure 2: Stability and change as mechanisms and outcomes to characterize plan-driven versus agile

software development (based on Farjoun 2010)

Plan-driven approaches to software development were first and foremost seen as a way

of securing a development process that is stable, predictable, and produces low variance

(Boehm 2003; Cho 2009; Humphrey 1989; Vinekar et al. 2006). For example, Figure 2

suggests that the waterfall approach, as a series of consecutive steps in the software

development lifecycle that are separated by stage gates, is such a plan-driven mechanism.

Another plan-driven mechanism (or practice) is to organize teams hierarchically, each

responsible for a specific part (component) of the overall software system. Each of these

software components is carefully planned and analyzed, resulting in a detailed set of fixed requirements before development starts. These are Ǯstableǯ mechanisms, rather than Ǯchangeǯ mechanisms, and traditionally have been thought to lead to stability, and

ACM Trans. Softw. Eng. Methodol.

associated attributes, such as predictability (Humphrey 1989; Vinekar et al. 2006).

In contrast, agile practices and processes are often seen as a way of achieving flexibility,

innovative solutions, and adaptability (Conboy 2009). Figure 2 suggests that agile practices

such as no Big Design Up Front (BDUF), self-organizing teams, and backlog refinement are

change mechanisms that lead to change outcomes, and associated attributes such as

adaptability. From the start, agile and plan-driven approaches have been positioned as

opposites, whereby plan-driven methods suggest the use of stable mechanisms leading to

stable outcomes, and agile methods offer flexible mechanisms leading to changeable

outcomes (Nerur et al. 2005; Vinekar et al. 2006).

As the figure suggests, this dichotomous positioning suggests that both plan-driven and agile methods are Ǯextremeǯ opposites. A number of empirical studies show that large-scale

agile methods rely on a variety of underlying mechanisms, ways of organizing, and roles

(Dingsøyr et al. 2018; Paasivaara and Lassenius 2014). However, these studies tend to draw

on the same underlying assumptions as small-scale agile projects (Rolland et al. 2016), as

we discuss in the next section.

3 PREVAILING ASSUMPTIONS IN LARGE-SCALE AGILE LITERATURE

In the first step of our research, we conducted a systematic review of the relevant literature

on large-scale agile development to identify the assumptions underpinning prior research.

The goal of the literature review was to investigate common assumptions in this body of

work which were specifically related to the nature of large-scale software development

using agile methods. Appendix A presents the protocol for this literature review and

describes details of our analysis. Our review comprised 67 relevant papers. This number is

consistent with a recent systematic review of large-scale agile (Edison et al. 2021); our

number of papers is slightly lower as we did not include experience reports, but only

empirical studies. The reading of the papers was divided among the author team. During

the review process, we met at regular intervals, both in person and at online meetings. We

also conducted several in-person full-day workshops that allowed for in-depth discussions. As each paper was read and discussed by the author team, we continuously asked: Ǯwhat

assumption does the paper make in relation to the use of agile methods in large-scale

settings?ǯ For each paper, we kept short notes in temporary memos, which were

subsequently discussed among the team. During the iterative analysis process, we

identified three central and recurring assumptions that are key to large-scale software

development: 1) agile and plan-driven methods are perceived to be mutually exclusive; 2)

self-managing and hierarchically-organized teams are perceived to be mutually exclusive;

and 3) scaling of agile methods is seen as a simple linear composition.

Table 2 presents a fragment of the full table (Table A.1) in the appendix that captures

relevant quotes in relation to these three assumptions that emerged during our analysis.

For example, Bick et al. (2016) suggest: ǲTop-down planning refers to a mechanistic,

centralized approach. Bottom-up adjustment, on the on the other hand, is largely organic and

ACM Trans. Softw. Eng. Methodol.

decentralized.ǳ This clearly dichotomizes coordination approaches as seen from agile and

plan-driven perspectives, thus emphasizing the assumption that self-organization and

hierarchical coordination are mutually exclusive. Several other studies make similar

observations that suggest the same assumption. Likewise, two of the references in Table 2

provide evidence for Assumption 3, namely that agile methods can be scaled through ǲsimpleǳ linear composition. For example, Cho et al. (2006) suggest that the Scrum ceremony can be scaled up linearly by conducting a ǲScrum of Scrumsǳ ȋSoSȌ, a meeting
among Scrum Masters from different Scrum teams.

Table 2: Quotes from selected sources that exhibit existence of assumptions

Reference Assumption 1: Agile and

plan-driven methods are

perceived to be mutually

exclusive

Assumption 2: Self-

organization and hierarchical

coordination are perceived to

be mutually exclusive

Assumption 3: Scaling

of agile methods is seen

as a linear composition

Bick et al.

2016

 Top-down planning refers to a

mechanistic, centralized

approach. Bottom-up adjustment,

on the on the other hand, is

largely organic and decentralised.

Scaling via Iterative

Proxy Collaboration –

CPO, SoS, central

architecture team.

Cao et al.

2004

Agile methods lack of up-

front design and

documentation.

We didnǯt have layers and layers
of management. We got rid of

those. Decentralizing

development-oriented decision-

making is critical for a successful

agile—push decision-making

down, empower the people who

are actually doing the work.

Cho et al.

2006

 The daily Scrum of

Scrums is a daily meeting

for SMs from multiple

Scrum teams.

Costa et al.

2014

 In opposition to the previous

methodologies, agile development

processes are based on self-

organized teams resolving their

problems.

As mentioned, Table A.1 in the appendix presents extracted text from all 67 papers

included in our review. Table 3 summarizes the frequency of observations of these three

assumptions in the reviewed papers. Taken together, these quotes provide evidence that

ACM Trans. Softw. Eng. Methodol.

these three assumptions are widespread throughout the large-scale agile literature. We

now discuss these core assumptions in more detail to explain what they mean, and how

they manifest in the literature.

Table 3: Frequency of observed assumptions in the sample of reviewed papers

(see Appendix Table A.1 for references to papers)

Assumption Number of papers

Assumption 1: Agile and Plan-driven Methods as Mutually Exclusive 40

Assumption 2: Self-Organization and Hierarchical Coordination as Mutually Exclusive 33

Assumption 3: Scaling through Simple Linear Composition 37

3.1 Assumption 1: Agile and Plan-Driven Methods are Mutually Exclusive

From the outset, agile methods were positioned to be in contrast to so-called plan-driven

methods which followed a waterfall life-cycle (Beck and Boehm 2003; Boehm and Turner

2004). Table A.1 (see appendix, column 2) lists several such claims that contrast agile and

plan-driven methods; for example, Cao et al. (2004) wrote: ǲAgile methods lack up-front

design and documentation.ǳ Agile advocates argued that all too often development processes were Ǯplan-orientedǯ rather than Ǯreality orientedǯ in that the software produced by traditional processes failed

to meet actual business needs, despite significant and formal up-front planning. This view is captured in the acronyms BDUF ȋBig Design Up FrontȌ and YAGN) ȋYou Ainǯt Gonna Need)tȌ
(Abrahamsson et al. 2010). Agile is characterized as avoiding this ineffective planning, with

the assumption in Extreme Programming (XP) that a system metaphor can be sufficient to

guide development. The agile approach is thus positioned as a reaction against traditional Ǯrelay-styleǯ development with exhaustive up-front planning and design (Hannay and

Benestad 2010). Being adaptable to change may be seen to be in contradiction to planning

(Gunyho and Guiterrez-Plaza 2011). The fundamental assumption behind traditional

methods is that systems are fully specifiable and built through meticulous and extensive

planning. Agile methods, on the other hand, assume that systems can be built from scratch

through continuous design, improvement, and testing based on rapid feedback while

responding to changing requirements (Nerur et al. 2005; Dingsøyr et al. 2018).

Several researchers have suggested Ǯdecision rulesǯ to determine whether an agile
method would be more appropriate than a plan-driven approach (cf. Boehm 2002; Boehm

and Turner 2003; Hobbs and Petit 2017). However, when transitioning to agile, Weiss and

Brune (2017) suggested staying ǲas close as possible to pre-defined agile practices,ǳ citing Boehm and Turnerǯs ȋʹͲͲ͵Ȍ rationale that it is more effective to ǲbuild up processes rather

than tailoring them down.ǳ Note that studies of ǲsmall scaleǳ development suggest that
methods are ǲadopted and adaptedǳ to suit the context of development ȋDittrich et al. ʹͲʹͲȌ
and there are often deviations between formal descriptions of methods and ǲmethods-in-

ACM Trans. Softw. Eng. Methodol.

actionǳ ȋFitzgerald ͳͻͻ͸Ȍ.
The Agile Manifesto suggests that the nature of planning in agile projects is emergent

(e.g., Adikari et al. 2009; Bjarnason et al. 2011; Ernst and Murphy 2012; Ramesh et al. ʹͲͳʹȌ. The ceremony of Ǯbacklog refinementǯ further illustrates the assumption of emergent
planning. The backlog reflects the requirements as they are known and prioritized, and the

assumption is that, as additional learning occurs during development, the backlog planning

estimates can be updated or refined in preparation for development. The fact that

requirements inevitably change (or become obsolete), allied to the cost of design carry-

through from earlier stages, mitigates against upfront planning (Elshamy and Elssamadisy

2006). At best, ǲa little design up front approachǳ might be used, for example, an Ǯarchitecture spikeǯ might be considered to establish an initial architectural platform, but

overall, these spikes are acknowledged as exceptions which are counter to agile principles

(Alsaqaf et al. 2017).

3.2 Assumption 2: Self-managing Teams and Hierarchically-organized Teams are

Mutually Exclusive

One of the key ideas in agile software development lies in the Agile Manifesto principle that

the ǲbest architectures, requirements, and designs emerge from self-organizing teams.ǳ The

notion of self-managing teams is certainly a fundamental assumption for early influential

advocates of agile methods (Fowler and Highsmith 2001), and is a key aspect in Scrum

(Deemer et al. 2010; Hoda et al. 2013). Table A.1 (see appendix, column 3) lists the claims

in several papers that contrast self-management and traditional top-down organization. For

example, Bass and Haxby (2019) wrote: ǲSelf-organizing teams relinquish some autonomy

toward an architecture board or design authority that determines common policies and

approaches.ǳ This assumption is also present in large-scale frameworks such as Large-Scale

Scrum (LeSS) and the Scaled Agile Framework (SAFe) which state that a team should be a

ǲself-organizing, self-managing, and cross-functional group of five to nine peopleǳ (Leffingwell

2016). Eckstein (2016) states that while some believe that a large team cannot be self-

organized, establishing a hierarchy for control ǲis often understood as a sign of mistrust,
which has negative effects on morale.ǳ A particular challenge when migrating to agile

methods is the change from a hierarchically-oriented organization with heavy

specialization to self-managing teams. The roots of self-organization in software

development have been traced back to research on complex adaptive systems and

complexity theory (Nerur at al. 2010; Vidgen and Wang 2009). With self-management, the

focus is ǲmore on adding value to the teamǯs primary objectives rather than on their job
functions aloneǳ (Nerur at al. 2010).

Maruping et al. (2009) suggest that autonomy can be both beneficial and detrimental in

an agile development context. However, we did not identify any studies on large-scale agile

development that directly challenge the role of autonomy. On the contrary, current

research tends to take self-managed teams for granted, even as the scale increases

(Gustavsson 2018). For example, Paasivaara and Lassenius (2019) argue that ǲthe whole

ACM Trans. Softw. Eng. Methodol.

development organization [can form] a single empowered community,ǳ suggesting that

empowerment can be driven by self-organization. Schwaber (2013) cautions that

traditional coordination practices can suffocate team autonomy and thus restrict self-

management.

Hoda and Murugesan (2016) identify several challenges that arise from self-

management. They suggest that self-management will be problematic in trying to establish

cross-functional teams, as there will be a natural tendency in self-managing teams to

choose specializations that suit the skills and preferences of team members. Šablis and Šmite (2016) contrast the bottom-up Ǯempower and reflectǯ style of team management with
the top-down command and control style, and associate the former with the agile concept of Ǯteam autonomy.ǯ (owever, some studies identify the need for boundaries on autonomy
and flexibility. For example, Hannay and Benestad (2010) and Dingsøyr et al. (2018) report

restrictions on autonomy in order to provide control in large programs. Likewise, Bass and

Haxby (2019) identify the need for restrictions on team self-governance to ensure

compliance with standards and guidelines. For example, the agile concept of Ǯemergent architectureǯ may lead to noncompliance with architectural standards and rules set within
an organization.

It has been suggested that scaling of self-managing teams should be organic (Tessem and

Maurer 2007) with the addition of specialist roles (e.g., a champion to elicit top

management support for team self-management (Hoda and Murugesan 2016)). A

significant facilitator of self-organization is the notion of direct face-to-face communication,

also a core theme of agile methods. Direct communication facilitates timely feedback and

reflection on activities that have taken place, and this in turn facilitates continuous

improvement (Batra et al. 2011), which is the goal of the Sprint Retrospective ceremony in

Scrum, for example. In large projects with distributed teams, distortion of communication

can occur across organizational layers (Dingsøyr et al. 2014).

3.3 Assumption 3: Linear Composition versus Multi-faceted Scaling

There are several examples which illustrate the assumption that agile activities can be

scaled unproblematically in a straightforward linear fashion. The Scrum of Scrums concept

(Arseni 2016) is a clear example of this, with all Scrum Masters meeting for a higher-level Scrum meeting, Ǯmetascrumǯ ȋDingsøyr et al. ʹͲͳ͹Ȍ, or Ǯforum of forumsǯ ȋŠāblis and Šmite ʹͲͳ͸Ȍ, or even ǮScrum-of-Scrum-of-Scrums ȋSoSoSȌǯ ȋPaasivaara et al. ʹͲͳʹȌ. Gupta et al.
(2017) propose a linear temporal scale of daily, weekly and bi-weekly Scrum of Scrums.

Even in terms of organizing the transformation from plan-driven to agile, Laanti (2017)

suggests that work should be arranged into ǲbacklogs of smaller batchesǳ as opposed to the

traditional model, again based on the assumption that reductionism is possible in

transforming from a large plan to a scaled-down version.

Linear composition is also evident in how roles are amalgamated across teams. For

ACM Trans. Softw. Eng. Methodol.

example, in relation to the Product Owner role in Scrum, both Gustavsson (2017) and Putta

et al. (2018) suggest the role of Area Product Owner who would report to the Chief Product

Owner, a role also identified by Bick et al. (2016). Similarly, Gupta et al. (2017) identify

Chief Product Owner and Chief Scrum Master roles who lead teams of Product Owners and

Scrum Masters respectively. Arseni ȋʹͲͳ͸Ȍ suggest a ǲproduct owner teamǳ to manage the
product backlog.

This linear scaling also appears in the assumption that complex requirements and

features, which may be expressed in epics, can be broken down into smaller tasks or user

stories that can be accomplished by small teams over a shorter time period (Sekitoleko et

al. 2014). However, breaking down development work in this manner serves to mask

interdependencies which may spill across teams (Crowston et al. 2016).

3.4 Summary

In summary, the fundamental assumptions underpinning agile tend to be treated as

sacrosanct in the literature, to the extent that some approaches suggest restructuring the

organization and breaking it down into smaller units rather than altering the basic tenets of

the agile methodology (Crowston et al. 2016). These fundamental assumptions are

important because they guide how developers and other stakeholders respond to the

typical process challenges in large-scale agile. These mutually exclusive assumptions also

tend to be seen as a dualism, in that it is one or the other. However, as we will argue

subsequently, these assumptions are better conceived as a duality, in that they mutually

reinforce each other.

4 CASE STUDY METHOD

In the second step of this research, we carried out a longitudinal case study (Runeson and

Höst 2009) between September 2014 and December 2019 of a successful large-scale agile

software development project in a governmental organization (hereafter referred to as ǮNorTranǯȌ in the transport sector with ͹,ͲͲͲ employees across ͹Ͳ locations. The project
was business critical and involved a core legacy system which had been running for many

years. The focus of the case study was to understand changes in the development process

during the project, and this was one of three cases studied in the research project Agile 2.0 ȋDingsøyr et al. ʹͲͳͺ, Dingsøyr et al. ʹͲʹ͵Ȍ where one key topic was ǲlarge-scale agile

development.ǳ

NorTran signed a contract for this project with a major consulting company, ConsultCorp

(a pseudonym). ConsultCorp had experience with large-scale agile at another government

agency. The project was a large agile project, involving more than 120 participants over a

four-year period. Hence, the selection of this case gave us a unique opportunity to study the

adaptation and scaling of agile methods in a large project in a complex organizational

setting. The project is further described in Section 5.1 In the following, we present the

information on data sources and data analysis procedures.

ACM Trans. Softw. Eng. Methodol.

4.1 Data Collection

The case study draws on multiple data sources (see Table 4). The main source of empirical

data is 27 in-depth semi-structured interviews with participants from both the customer

and ConsultCorp, conducted by the first and third authors. Participants were carefully

selected based on their level of participation and knowledge of the project. We interviewed

informants across all roles in the project, including project managers, designers, architects,

developers, testers, and Scrum Masters. In addition, we interviewed participants on the

customer-side of the project – including the project manager, test manager, project

architects, user representatives and domain experts. The interviews ranged from 60 to 90

minutes and were transcribed. The interviews were done towards the end and after project

completion.

The semi-structured nature of the interviews encouraged participants to speak freely, to

share their insights and interpretations, and to steer the topics of discussion as they saw fit.

This interviewing strategy was also helpful in terms of illuminating the assumptions behind

the approach. However, a checklist of topics was used to guide the interviews, and included

the agile and non-agile practices being used, team coordination, scaling of practices and

organizing, integration challenges, and collaboration with customers and stakeholders. As

the interviews were conducted over a prolonged period, the checklist was refined over time

in order to cover emerging themes. A second source of data was a series of eleven meetings

with ConsultCorp. We used the information from these meetings to inform further in-depth

interviews. These meetings also provided important historical and contextual insights on

the project, the initial assumptions behind its organization, and the agile practices

preferred by the consultants. A third important source of data was two workshops, which

focused on specific issues the participants identified as especially important for the

outcomes of the project at different phases in the process. Finally, a fourth data source was

the project documentation to which we had unrestricted access, including the issue tracker

and an internal wiki containing material comprising all user stories, contract documents

and other documentation used by project management. This triangulation of data sources,

as well as the triangulation among researchers, were two tactics that helped us to better

establish the credibility of this study (Lincoln and Guba 1985).

4.2 Data Analysis First, drawing on Miles and (ubermanǯs ȋͳͻͻͶȌ guidelines, we conducted an extensive

process of descriptive coding over three iterations of the transcribed interviews

emphasizing characteristics of practices, processes, and major events such as deliverables,

changes in organizing, and roles in the project. The dominant data source was the interview

material. Examples of such descriptive codes included method adaptation, integration team,

refactoring, ready-to-sprint process, champion roles, architect, and developer. A total of 58

descriptive codes were used. As recommended by Miles and Huberman (1994), some of

these were defined upfront as Ǯseed codes.ǯ Some initial codes were changed in later

ACM Trans. Softw. Eng. Methodol.

iterations, and a substantial number of codes were added during the first iteration of

descriptive coding. We used the software package HyperResearch to support the qualitative

analysis. Second, we linked the relevant descriptive categories to the assumptions that we identified in the literature review. For example, the information coded as Ǯchampion rolesǯ was linked to the issue of Ǯself-managing teams versus hierarchically-organized teamsǯ
since the champion role is an example of how teams became less self-managing as they

needed to relate to how other teams worked and solved similar problems. Consequently, it does not fit the underlying assumption in the agile literature. Similarly, the Ǯready-to-sprint processǯ code was linked to the theme of Ǯagile versus plan-drivenǯ as it can be
characterized as a plan-driven activity that was added with the aim of making each

individual team more agile, thus illustrating that it is not a question of either agile or plan-

driven practices, but how they are combined. Finally, we also linked the relevant descriptive codes to the identified theme of Ǯsimple linear composition versus complex multi-faceted scaling.ǯ One example of this is the Ǯcode architect.ǯ This was used to tag information

regarding how the architect role was practiced and how it changed over time in the project

to facilitate scaling of the project in a non-linear fashion.

Table 4: Summary of data sources for the longitudinal case study

Interviews Workshops and Meetings Supplementary Sources

27 interviews with informants

from both NorTran and

ConsultCorp, conducted over a

period of 24 months, including:

 Project managers

 Designers

 Architects

 Developers

 Testers

 Scrum Masters

 Test manager

 Project architects

 User representatives

 Domain experts

Eleven meetings with ConsultCorp to

discuss historical and contextual

insights on the project, organizational

aspects, agile practices preferred by

consultants, commercial and

competence aspects.

Two workshops focusing on specific

issues identified by participants as

important for project outcome.

Unrestricted access to project

documentation including issue

tracker, internal wiki containing

material on user stories, contract

documents, and other project

management documentation.

In order to focus the analysis on tension points that arise in a large-scale agile

development setting and how these tensions unfolded over time, we drew on Newman and Robeyǯs ȋͳͻͻʹȌ social process model. We used the temporal bracketing strategy (Langley

1999; Langley et al. 2013) in order to focus on specific, critical phases in the project. This

strategy helps to decompose critical events in a ǲstream of longitudinal data,ǳ and ǲare

constructed as progressions of events and activities separated by identifiable discontinuities in

the temporal flowǳ (Langley et al. 2013). Temporal bracketing is frequently used to identify

ACM Trans. Softw. Eng. Methodol.

phases or stages; in this study, we also identified critical events that caused ǲdiscontinuitiesǳ in how the project was run. Our focus is not on demonstrating a strict

sequence of events or identifying phases or stages, but instead on the shifts that took place that separates the ǲbeforeǳ from the ǲafter.ǳ For this reason, unlike many other studies
using this strategy (e.g., Sabherwal et al. 2001), we do not present a timeline of events to

identify phases or stages.

We drew primarily on interview data, and also on information from the two workshops

at which the participants identified the major events in the project. Workshops were used

to check preliminary analysis results with informants as a form of member checking

(Lincoln and Guba 1985). We identified six episodes that were triggered by the tensions

represented in the three assumptions in the literature. This Ǯprocess approachǯ complements a Ǯfactor approachǯ which has been more commonly used in other studies,
that have focused on Ǯsuccess factorsǯ for large-scale agile transformations (Dikert et al.

2016; Russo 2021). The latter focuses on identifying conditions or predictors that give rise to a certain outcome, but the process by which this outcome is achieved remains a Ǯblack box.ǯ The process approach that we followed, on the other hand, opens up that black box by

identifying the antecedents and the sequence of events that led to a particular outcome. The process approach seeks to identify Ǯtriggering eventsǯ that challenge existing ways of
organizing development and development practices, and episodes in which the project

responds to those challenges.

5 CASE STUDY RESULTS

We first provide a brief history of the case project and then, using a process analysis

approach, we present the findings according to the three broad assumptions identified in

the literature (see Section 3), and illustrate through six episodes how these assumptions

were challenged. This is summarized in Table 5 and discussed in detail below. Apart from

these six episodes, several others were identified, which are summarized in Appendix B.

5.1 The project

The project used a delivery model based on the Scrum development framework with four

different deliverables involving sets of new features to be put into production at the same

time. The incorporation of agile methods was chosen by NorTran in order to ǲmaximize
flexibility, and to avoid specifying all details up front,ǳ as the NorTran project manager

pointed out. In our case analysis we refer to the first two deliverables as the first phase

(Episodes 1 and 2) and the final two as the second phase (Episodes 3 to 6) because of the differences in the development process that was used in these two phases. From NorTranǯs
perspective, the first phase was a failure overall as they only developed around 75% of the

expected scope. During this phase, it became evident to NorTran that they lacked the

competence and experience to implement large-scale agile software development projects.

This had unfortunate consequences for the capability of the project to scale, and in turn,

this was one of the main causes for the failure of the first phase. According to the

ACM Trans. Softw. Eng. Methodol.

contractual agreement, ConsultCorp established a project with four teams consisting of

more than 50 participants working full-time. However, NorTran, who hired ConsultCorp,

had only four dedicated participants. This imbalance in staff numbers became evident when

the customer-side of the project struggled to develop user stories, with dependencies

identified, in time for the next sprint. A NorTran architect described the situation as

follows: ǲ)t is hard to follow the supplier [ConsultCorp] and answer their requests. They want to

work in an iterative and agile manner, and expect to have two or three domain experts in

each team. We were never able to deliver those resources – we were not organized for that.ǳ ȋSoftware Architect, NorTranȌ

The typical Scrum team in the project consisted of around 12 people — seven

developers, one User-Experience (UX) designer, one technical architect, one functional

architect, one domain expert who served as a customer proxy representative, and one

Scrum Master who also served in the more traditional role of team lead.

The project was organized as a matrix organization (similar to other large-scale agile

projects, cf. Dingsøyr et al. 2018), implying that a person would be a member of a specific

team, and also a member of an organizational unit for Business, Architecture, Development,

Maintenance, Test or Infrastructure. The organizing structure was partly replicated for both

the customer (NorTran) and the consultancy company (see Figure 3).

Figure 3: Project organization

The Scrum-based delivery model involved splitting this large project into a set of

deliverables. For each deliverable, the process involved first defining user stories on a low-

level, then architectural design, overall user-experience (UX) design, and refinement of user

stories – but with minimal effort in order to refrain from too much up-front planning.

Project Director

Steering Committee

NorTran

Business

Architecture

Development

Test

Steering Committee

Consultant Company

Project Manager

Business

Architecture

Development

Maintenance

Test

Infrastructure

Coordinating

Group

Partly replicated organization structure

ACM Trans. Softw. Eng. Methodol.

5.2 Combining Agile and Plan-driven Practices

Rather than viewing agile and plan driven approaches as mutually-exclusive (Assumption

1), the project drew upon both agile and plan-driven practices – in combination. In fact,

these different practices were interdependent and strengthened each other: plan-driven

practices increased the agility of the teams, and in turn, the agile mindset of bottom-up

process innovation helped establish new plan-driven practices. The combination of these

practices was triggered by challenging situations and events in the project.

5.2.1 Episode 1: Establishing “Tornado meetings”

During the first phase, this episode was triggered by the initial challenge of handling

complex architectural issues while using an agile approach with iterative short sprints.

After the first phase, the project was almost a year behind schedule. The project ran into

considerable difficulties related to the initial software architecture, technical issues

concerning integration with other systems, and scaling the project with additional feature

teams and customer representatives. One of the most pressing issues was that the initial

plan for delivering the architecture with standard off-the-shelf components did not meet

the requirements of the project. Hence, there was also a considerable scope creep in this

phase.

In order to ensure discovery of such major obstacles at an earlier stage, a new ceremony

referred to as the Tornado meeting was established prior to starting work on any future

deliverable. The name ǮTornado meetingǯ was used because six groups would Ǯthrow aroundǯ user stories without a set agenda, and the discussions could take unexpected

directions. This practice added a stage in up-front planning. Representatives from NorTran

and ConsultCorp would meet, including functional architects, technical architects, testers,

and the graphical user interface designer. One of the pressing problems solved in the

Tornado meeting was an architectural issue with off-the-shelf components: ǲThis problem with off-the-shelf architectural products emerged particularly during the

Tornado meetings. We were supposed to use off-the-shelf products, but these turned out

not to meet user needs. We realized that it was too complicated to solve with standardized products.)t was less costly to develop everything ourselves. This made integration easier.ǳ
(Technical Architect, ConsultCorp)

Hence, in this episode, the failure to deliver according to plan that resulted from the

problems of integrating different off-the-shelf products, triggered the need for better

planning and problem-solving across teams. The new practice that emerged can be

characterized as primarily plan-driven, because it introduced a new type of meeting that

sought to establish a plan for further development, but also because issues were identified,

analyzed, and solved during these Tornado meetings, rather than letting these issues

emerge during development and dealing with them as needed. This in turn allowed the

agile development process to proceed more smoothly. Recognizing that the introduction of

ACM Trans. Softw. Eng. Methodol.

new plan-driven practices was ǲin conflictǳ with the agile approach that NorTran sought to
follow, a functional architect described Tornado meetings as ǲa pestilence and plague, but
one of the smartest things we introduced.ǳ Despite being seen as ǲnon-agile,ǳ it was deemed
highly necessary and successful by participants, illustrating that plan-driven practices and

agile methods are not mutually exclusive. The new Tornado meetings facilitated the

coordination of a common solution across teams. Because of this new practice, the upfront

architectural design process was completely re-designed, and was described as ǲextreme
service-oriented architecture.ǳ The Ǯextremeǯ prefix was chosen to reflect the agility of
responding rapidly to the architecture not meeting the actual user needs. In addition to

agile practices such as refactoring, short iterations, and prototyping, more plan-driven

activities were introduced. These plan-driven practices were not a substitute for agile

practices, but rather complementary practices.

5.2.2 Episode 2: Establishing “Ready-to-sprint process”

As the project progressed, it increasingly faced challenges arising from interdependencies

between different teams. This triggered a need for more comprehensive coordination prior

to commencing the regular cadence of development sprints. An additional up-front planning step called the Ǯready-to-sprint processǯ was established. This was a formal meeting which was practiced frequently during sprints, not to be confused with the ǮSprint Ͳǯ concept that takes place once, prior to commencing the sprint schedule. The ready-to-

sprint process was introduced in order to optimize completion of user stories. Thus, similar to, but more extensive than the continuous agile practice of Ǯbacklog refinement,ǯ this
practice involved more people and was done in a three-day seminar, making it a stage-gate

prior to sprint planning.

Before commencing work on user stories, the solution description was discussed by

technical and functional architects from both customer and provider, to ensure the main

design decisions were fully discussed, and that work would not be delayed when assigned

to an actual development Scrum team. This practice was described as ensuring agreement on what was called the ǮDefinition of Preparedǯ ȋFunctional Architect, ConsultCorpȌ, mirroring the agile practice of ǮDefinition of Done.ǯ This practice ensured greater
standardization and agreement across development teams.

ACM Trans. Softw. Eng. Methodol.

Table 5: Dominant assumptions from literature on large-scale agile software development identified

in episodes of the case study

Dominant

assumption

Episode description Challenging the assumption

Agile and Plan-

Driven Methods

are perceived to

be Mutually

Exclusive

Episode ͷ: Establishing ǲTornado

meetingsǳ

In response to initial challenges with

the agile approach to tackle

architectural issues, a plan-driven practice called the ǲTornado meetingǳ
was introduced as an arena for solving

problems related to architecture and

developing better user stories. This

practice also increased common

understanding across teams and roles.

Plan-driven practice: Tornado meetings as

stage-gate to up-front planning, which also

served as a means to coordinate a common

solution across teams. This stage-gate helped

to resolve issues allowing the agile

development process to proceed more

smoothly.

Episode ͸: Establishing ǲReady-to-sprint

processǳ

Triggered by increasing complexity and

interdependencies across teams, a new

plan-driven practice referred to as ǲready-to-sprint processǳ was
established. This improved the

capability to recognize important

interdependencies. In turn, this

reinforced agile practices within teams.

Plan-driven practice: Ready-to-sprint as a

stage-gate prior to sprint planning. Allowed

teams to be more flexible, and reduced need

for coordination.

Plan-driven practice: Definition of Prepared to

ensure greater standardization and agreement

across development teams.

Self-managing

Teams and

Hierarchically-

organized Teams

are perceived to

be Mutually

Exclusive

Episode 3: Re-organizing the project

Triggered by problems due to

distribution of integration tasks across

all teams, management decided to re-

organize the project. The project was re-

organized from generic feature teams

into more specialized teams. One ǲintegration teamǳ was established as a
means for reducing interdependencies

across teams. This both reduced and increased the teamsǯ level of self-
management.

Plan-driven practice: Central integration team as Ǯcontrol structureǯ to take ownership of
integration; this additional top-down

mechanism took away some level of

management but also helped teams to self-

organize; thus, self-management and

hierarchical organization are not mutually

exclusive.

ACM Trans. Softw. Eng. Methodol.

Episode 4: Introducing cross-team roles

and task forces

A bottom-up initiative to establish ǲchampion rolesǳ for specific technology
areas for supporting all teams. Also introducing temporary ǲtask forcesǳ to
solve specific problems that were show-

stoppers for work within the teams.

This both reduced and increased the teamsǯ level of self-management.

Agile practice: Cross-team champions who set

standards and provided advice to others.

Task-forces as multi-skilled and self-

organizing teams to address emergent

technical problems, which were dissolved

after a problem was resolved.

Scaling through

Simple Linear

Composition

Episode 5: Scaling across complex

interdependencies and multiple actors

Triggered by the complexity of multiple

actors and systems to be integrated in

the project, architect roles and meetings

were scaled. Architect roles and

architecture meetings were added in

order to deal with continuously re-

occurring architectural challenges. Plan-

driven practices were also needed for

coordinating activities with external

actors and projects.

Plan-driven practice: additional meetings

among architects to facilitate more fine-

grained coordination.

Agile practice: architect role shifted from
setting the architecture to more informal roles of Ǯfacilitatorǯ and Ǯknowledge brokerǯ; this contrasts the concept of Ǯlinear compositionǯ where architects would become Ǯsupervisors.ǯ

Episode 6: Down-scaling

Toward the end of the project it became

essential to reduce the number of teams

and developers without reducing

quality and productivity. Giving some developers a ǲfreelance roleǳ outside
teams.

Agile practice: New Ǯfreelance roleǯ to take on
work outside teams to work on issues that

required more personnel. Scaling down was just not the reverse of ǲscaling up,ǳ not merely

taking people off the project, but rather

through a more flexible process to ensure

quality.

Again, this plan-driven practice of Ǯready-to-sprintǯ was not in conflict (or mutually

exclusive) with agile practices already in use, but rather complementary, in that it increased

the flexibility of the teams as less coordination was necessary during subsequent sprints. A

team leader described this process as ǲkey to ensuring good quality of user stories and flow

of tasksǳ (Development Manager, ConsultCorp). Such plan-driven practices also meant that

the teams had a better overview of what to expect in the upcoming sprint. This, in turn,

allowed developers and UX designers to select more appropriate agile practices, such as

prototyping: ǲWe had a team of customer representatives and developers. (owever, identifying how a
solution should work is not necessarily trivial. It is hard to know if we really have a

ACM Trans. Softw. Eng. Methodol.

common understanding of new functionality. Although the ready-to-sprint process helped in that respect, there were misunderstandings. Thus,) started to develop prototypes.ǳ
(Developer, ConsultCorp.)

In this way, the agile practice of introducing prototypes helped to improve communication

and identify functional requirements. In contrast to the dominant assumption of agile and

plan-driven practices being mutually exclusive, the introduction of plan-driven practices

seemed to enable more agile practices such as prototyping, thus creating a positive outcome

for the project.

5.3 Combining Hierarchical Organizing and Self-organizing

Self-management is a fundamental principle in agile development, in contrast to more

hierarchical forms of management. Self-management is associated with benefits such as

flexibility in solving tasks and increased employee satisfaction. In the project, there was a

mixture of hierarchical ways of organizing and a degree of self-management within teams.

5.3.1 Episode 3: Re-organizing the Project

As described in Episode 1 above, the project experienced a major setback in the second

deliverable which led to a project re-organization. This re-organization was triggered by

the complexity of integration tasks. All four teams were initially doing development work

involving integration across external projects and systems. In particular, the project was supposed to follow the Ǯextreme service-oriented-architectureǯ practice as explained above.
Consequently, all teams strove to implement integration through the architecture, but this

led to misunderstandings and increased workload in coordination across teams. One

developer explained how this was addressed through the forming of an integration team: ǲ)n the beginning we had purely generic teams where each team had their own modules. All

teams were supposed to have the competence to do everything. But we soon realized that

the scope was too large for any single team, so we established an integration team. They

were responsible for connecting the different systems and making things function as a

whole. Those who were interested in working on integration were then moved to the integration team.ǳ ȋDeveloper, ConsultCorpȌ

Project management re-organized the project based on competence and interest in doing

back-end integration work, thereby reducing the self-management of the teams, and

increasing an element of hierarchical organization by management. However, later in the

project, when the integration team had existed for some months, the distinction between

the integration team and the other teams became more Ǯfluidǯ: ǲDuring sprints there were several teams that worked on the same domain. We distributed
the task among us. We got the integration part, but also helped some of the other teams.ǳ
(Developer, ConsultCorp)

The self-organization now took place within the structures that were imposed from the

ACM Trans. Softw. Eng. Methodol.

top (such as the integration team mentioned above). These findings suggest that self-

organization and hierarchical management are not mutually exclusive, and positioning

these as opposing approaches is too simplistic. Rather, self-organization can still happen

even within hierarchical management.

5.3.2 Episode 4: Introducing cross-team roles and task forces

Triggered by the lack of specific competence or problem-solving capabilities within each

team, new roles that cut across teams were introduced in Episode 4. The project introduced more than a dozen ǮChampionǯ roles. These champions were individuals with specialized
skills in a specific technology such as databases, service integration, GUI-related skills, and

information security. The champions provided advice and reviewed solutions. At technical

kick-offs for sprints, champions presented standards and Ǯrecipes.ǯ One informant
explained: ǲThe JavaScript Champion set the standard. He was the most skilled developer and taught

others how to work with JavaScript across teams. He had a mandate to provide advice and

tips on the internal chat-channel, to do code reviews.ǳ ȋDevelopment Manager,
ConsultCorp).

Many challenges identified throughout the project required solutions involving multiple

project roles across different teams. One example related to the technical issue of

combining thousands of source code components into a working software product. The

project established a Ǯtask forceǯ that included people from the Operations department, from the customer, and from the ConsultCorp teams. Such a task force would work for ǲa week or twoǳ ȋDeveloper, ConsultCorpȌ to solve technical problems in the automatic build

process. Another task force was established to solve technical problems with the service

bus, a component which should offer increased flexibility when integrating the new system

with legacy systems. The Ǯtask forceǯ practice was an agile reaction that involved the rapid and ad hoc creation

of a multi-skilled and self-organizing team to address an emergent technical problem,

which would then provide future stability for the overall development process to proceed

as planned. After a task force had solved a problem, it was dissolved. While this practice provided a flexible solution, it did involve a form of role assignment, thus reducing teamsǯ
level of self-management that is uncharacteristic of cross-functional, agile teams. In this

case, the level of expertise necessary was not always present in teams, requiring a more

cross-team solution.

5.4 Scaling as a Complex Socio-Technical and Ongoing Process

The literature on agile software development suggests that scaling is achieved in a linear

fashion—for example, through establishing Scrum-of-Scrums as a coordinating mechanism,

or by more sophisticated Communities-of-Practice (Paasivaara and Lassenius 2014). In the

project, scaling involved much more than setting up Scrum-of-Scrums. Importantly, scaling

ACM Trans. Softw. Eng. Methodol.

also involved changing practices and applying a new configuration of both agile and plan-

driven practices in tandem. Our study revealed two specific episodes of scaling.

5.4.1 Episode 5: Scaling across complex interdependencies and actors

As noted in Episode 1 above, the Tornado meetings improved the development process by

adding a crucial coordination mechanism for planning across teams. In these meetings,

problems concerning the upfront architecture were resolved. However, the problems

associated with scaling in terms of negotiating the more fine-grained details could not be

solved indefinitely, but presented an ongoing challenge throughout the project. One

architect stated that: ǲA significant challenge was how to manage transactions in the system, this was a

discussion between architects and the chief architect. ... all teams worked on the same

development and test servers. And if there were things causing problems – sometimes the

servers would go down when introducing new code ... this was handled by coordinating amongst architects across the development teams.ǳ ȋDeveloper, ConsultCorpȌ

In order to scale the architecture, a new meeting among architects was established at the

end of Deliverable 1 to enable coordination and communication of details of the software

architecture across different teams. Over time, the frequency and importance of these

architecture meetings increased, as the different feature teams needed to use many of the

same services when developing new features. Although each feature team was responsible

for a specific domain, the interdependencies between domains increased, which made

coordination and communication of these interdependencies increasingly important. Large-

scale systems cannot simply be decomposed into smaller-scale components and features

that are delivered by feature teams. Instead, the scaling requires considerable fine-grained

coordination to identify and resolve key interdependencies.

The architect role also shifted in focus. While initially focused on the overall software

architecture to ensure a maintainable, efficient and evolvable architecture, the architect

role evolved into a translator role between the feature teams and the rest of the project. As

one architect noted: ǲour role became a facilitator, a kind of front-end for developersǳ

(Developer, ConsultCorp). In this sense, the architects provided an important new

coordination mechanism across the different development teams that increased stability

and predictability.

The architect role was also very important in establishing contact and communicating

with stakeholders outside the project.)n this sense, architects became key Ǯknowledge brokersǯ ȋPawlowski and Robey ʹͲͲͶ). Through their knowledge broker role, architects

became essential for scaling and coordinating across complex interdependencies in the

project by bridging across different stakeholders, such as user groups, system owners, and

external actors. One informant described the complex interdependencies as follows:

ACM Trans. Softw. Eng. Methodol.

ǲWhen one other system under development was down, it almost stopped the entire

project. There was a tight coupling between this other system and our project, which we

had not accounted for initially. We realized that this system needed to follow the same

production schedule as our project – although they were not part of the official project.ǳ
(Technical Architect, NorTran)

This situation was particularly frustrating as it caused requirements to be unstable in

ongoing sprints. Tight coupling between systems implied the need to have a common

overall production plan. Hence, again, this situation triggered a more plan-driven practice

for coordinating this: ǲWe took responsibility for coordinating all the different projects and their production
schedules, simply because we were absolutely dependent upon them. At first, the steering

committee was only concerned with the current project, so I had to explain to them that we

were equally dependent on other projects finishing – if not, we would not be able to put the project into production.ǳ ȋTechnical Architect, NorTran)

This shows how both agile and plan-driven practices were essential for scaling the

project. Plan-driven practices seemed necessary for preserving the stability of the project

while adding new team members, integrating with an increasing number of systems, and

involving an increasing number of stakeholders. Agile practices, in terms of the architects

relying on more informal practices of facilitating and knowledge brokering across actors,

were equally important. Again, this illustrates that large-scale agile projects are not simply

scaled in a linear fashion or decomposed in a Ǯdivide and conquerǯ fashion, but rather that

the complexity of large projects must be addressed by a combination of both fine-grained

coordination of interdependencies on the one hand, and new types of roles that facilitate

knowledge sharing.

5.4.2 Episode 6: Down-scaling

As the project progressed towards its final stages during the fourth deliverable, the need for

resources to develop new features declined. Hence, down-scaling the number of developers

and certain competencies became a crucial issue to reduce cost. Because of the pressure to

deliver high quality software on time, balancing this was particularly difficult. This was

solved, not by simply taking developers off the project, but instead releasing some of them as Ǯfreelancersǯ who were given a flexible role outside the teams to be able to help with

pressing issues across all teams. This allowed management the flexibility to use extra

personnel in critical situations where the customer wanted improvements in quality,

testing, and small modifications. A project manager explained how these issues were

related: ǲThe big issue was down-scaling. During a test phase you produce a backlog of items that

need bug fixing. And it was the production of this backlog which was the bottleneck, not

ACM Trans. Softw. Eng. Methodol.

correcting the bugs… So, we had a situation where instead of getting rid of developers, we freed them to do other productive work.ǳ ȋProject Manager Deliverable ͵, ConsultCorp)

Again, this illustrates how the arrangement of different practices needed to change. The

project could not down-scale by just inverting the sequence of the up-scaling. Instead, it relied on the new Ǯfreelancer roleǯ to ensure that the backlog with bug fixes was well

managed while addressing all bugs. We characterize this as an agile practice: rather than

planning which personnel are to be taken off the project, which is very difficult to do. Some were now unassigned, allowing them to ǲroamǳ and take on work in a fashion that

resembles self-organization and self-selection of tasks that is more typical of agile methods.

These last two episodes illustrate how scaling is not simply linear. Both upscaling and

downscaling require flexible resources: when upscaling, a simple decomposition approach

is not sufficient, but instead, flexible and informal roles are necessary to facilitate and share

knowledge. When downscaling, developers are not simply taken off a project, but the

resources can again be set free, flexibly and informally, in order to address emergent needs

and challenges.

6 DISCUSSION AND THEORY DEVELOPMENT

We now revisit the underlying assumptions identified in our literature review, formulate

alternative assumptions based on the case study findings, and then revisit Farjoun (2010)ǯs
framework to develop a set of propositions on how plan-driven practices enable flexibility

and agility, and how agile practices mitigate failure and increase predictability. In Section

6.4, we propose a process model for large-scale agile software development (see Figure 5).

Finally, we discuss the main limitations of this study and present a set of research

directions based on our propositions.

6.1 New assumptions for large-scale agile

A primary aim of this article was to uncover and problematize assumptions that underpin

previous research on large-scale agile software development. These assumptions have far-

reaching implications for how software engineering researchers frame their research, what

research questions they ask, and subsequently what insights their research offers to

practitioners. Our literature review identified three assumptions that are widespread in

previous research on large-scale agile (Table 6). As described in the case study, these assumptions were not in accordance with stakeholdersǯ responses to the process challenges
in our case study. The case study provides detailed insight into how responses to different

process challenges required the project teams to continuously adjust their practices and

ways of working. Based on our case study, we suggest an alternative set of assumptions that

more readily accommodate the paradox that the introduction of plan-driven elements

appeared to make the project more agile.

We anchor these alternative assumptions on large-scale agile development in Figure 4

which further elaborates Farjoun ȋʹͲͳͲȌǯs framework presented in Figure ʹ earlier. We

ACM Trans. Softw. Eng. Methodol.

suggest that previous research on large-scale agile has operated on the dualistic assumption

that agile processes and plan-driven processes are in opposition and incompatible; that

hierarchical organizing and self-organizing teams are in opposition; and finally, that scaling

an agile project can simply be done in a linear fashion, without having to change practices

regarding collaboration and communication. In contrast, we suggest that large-scale agile

software development is better understood and explained through the notion of duality.

Duality is similar to dualism in that it describes the relationship between two entities.

However, if the relationship is a duality, then the two entities are interdependent, and both

contradictory and complementary at the same time (Farjoun 2010). This distinction is

essential as it conceptualizes stability and change as mutually enabling rather than mutually

exclusive. As the opening vignette of this paper illustrates, in a duality, the acrobatǯs agility
is enabled by the pole, but also fundamentally by the safety-net which provides the stability

for the entire process.

Table 6. Old and New Assumptions of Large-Scale Agile Software Development

Old Assumption New Assumption

Agile and plan-driven processes are perceived to be in

conflict or mutually exclusive.

Agile and plan-driven practices are mutually

enabling.

Hierarchical organizing and self-organizing teams are

perceived to be in conflict or mutually exclusive.

Hierarchical organization and self-organization

have reciprocal impact on teams.

Scaling of agile practices is seen as linear (e.g., Scrum of

Scrums), implying that scaling can be conducted through

just adding more participants and increasing the scope

without changing practices.

Scaling requires both stability and change

simultaneously, and also involves down-scaling.

Farjoun (2010) suggests that stability and change can be complementary in that stability

is associated with low variance, predictability and reliability and can produce change, and

that change typically associated with innovation and flexibility is necessary for producing

stability. Moreover, they can also be conflicting in the sense that practices that promote

change provide less stability, and vice versa. Looking at the relationship as a duality affords

more nuanced and balanced theorizations of seemingly paradoxical conditions and

mechanisms that produce certain changes and forms of stability in complex organizational

settings. Thus, we argue that this lens is highly relevant for understanding large-scale agile,

as such processes typically involve a different arrangement of both agile and plan-driven

mechanisms and practices to succeed (Rolland et al. 2016).

The notion of duality is not new, but we adopt it here specifically for understanding how

large-scale agile software development is different from small-scale agile and that such

processes need both plan-driven as well as agile practices in combination to succeed. It also

ACM Trans. Softw. Eng. Methodol.

underscores that in order for something to change in the first place, other parts need to be

kept stable. Hence, scaling a small project to a large one does not solely rest on either agile

or plan-driven practices—but always on a combination of both. We now revisit Figure 2

and populate two further quadrants to reflect this duality perspective in Figure 4.

Henceforth, in the subsections below we elaborate on: 1) how plan-driven practices enable

flexibility and agility (Quadrant 3 in Figure 4); and 2) how agile practices mitigate failure

and increase predictability (Quadrant 2). At the end of this section, we summarize how new

alternative assumptions support a more nuanced understanding of large-scale agile, and

how such complex processes can succeed.

6.2 Plan-driven practices enabling flexibility and agility

All six episodes presented in Section 5 refer to events resulting from the large-scale nature

of the project; the characteristics of large-scale projects led to a need for teams to

coordinate, frequently after unexpected events caused problems for teams to solve. It is

clear from prior literature that NorTran is not the only project that suffers from such issues.

Batra et al. (2010) present a series of challenges that resulted from the characteristics of a

large-scale project, including changing requirements, changing schedule, conflicting goals,

and communication breakdowns. Previous literature reviews on this topic also reported

numerous challenges in relation to the large-scale nature of projects, including

communication and interfaces between teams, issues in relation to managers, and the

tension between long-term and short-term planning (Edison et al. 2021; Dikert

Figure 4: Stability and change as mechanisms and outcomes (based on Farjoun 2010)

et al. 2016). While there have been numerous studies of large-scale agile projects, it is

perhaps surprising that these studies frequently report challenges as unanticipated

outcomes. Thus, we embrace the obvious in our first proposition:

ACM Trans. Softw. Eng. Methodol.

Proposition 1: Large-scale agile projects have characteristics that lead to tension points.

While previous studies of large-scale agile projects have suggested that a mix of plan-

driven and agile methods is necessary (e.g., Batra et al. 2010), often invoking the term Ǯhybrid approachesǯ (Kuhrmann et al. 2018; Kuhrmann et al. 2021), to the best of our

knowledge, none of these studies develop theory that explains how and precisely why this

is necessary. For example, Kuhrmann et al. ȋʹͲͳͺȌǯs survey of European organizations

reports several motivations as to why organizations adopt hybrid approaches, including

Ǯimproving stability,ǯ a need to integrate Ǯhigh-level Waterfall-like and low-level Agile

approaches,ǯ and pragmatism. However, whereas previous work positions ǲagile transformationsǳ as singular events (e.g., Russo 2021), which potentially may last

considerable time, the various episodes in our study emphasize that large-scale agile

processes not only require a mix of plan-driven and agile practices, but also that the

development process evolves during the project in response to a stream of tension points that emerge over time, rather than ǲone-offǳ events. Henceforth, we theorize that:

Proposition 2: To resolve the tension points in large-scale agile projects, emergent

responses are needed to adjust and re-adjust development practices and processes.

Building on our longitudinal case study of NorTran, we saw that agile and plan-driven

practices were used in combination, and that this contributed to reducing the coordination

and scaling challenges threatening to undermine the entire project. We observed that a

combination of upfront planning practices and agile practices was often mutually enabling.

For instance, in Episode ʹ the Ǯready-to-sprintǯ process established a common
understanding that made it easier for individual teams to conduct prototyping to improve

customer communication and collaboration. In Episode 5 the plan-driven practice of

architecture meetings improved coordination across different teams and enabled scaling.

Hence, we propose that:

Proposition 3: In large-scale agile development projects, agile and plan-driven practices

are mutually enabling.

In contrast to underlying assumptions about large-scale agile, we suggest that plan-

driven practices are an important mechanism for producing flexibility and agility in the

process of large-scale agile software development. In general, plan-driven approaches to

software development are seen as a way of establishing a development process that is

stable, predictable, and produces low variance (e.g., Humphrey 1989). In contrast, agile

practices and processes are often seen as a way of ensuring flexibility, innovative solutions,

and adaptability (e.g., Baham and Hirschheim 2022; Conboy 2009). Henceforth, the

traditional view is that these practices and processes are in direct conflict, or at least partly

conflicting. In problematizing this view, we suggest that a more nuanced position would be

to view these as complementary and interdependent. Thus, we consider agile practices and

processes as distinctly different from plan-driven practices and processes, but they are

complementary in that one requires the other in order to produce both stability and

change. More concretely, this position holds that plan-driven practices (in addition to agile

ACM Trans. Softw. Eng. Methodol.

practices) are important for providing flexibility and agility in large-scale agile

development. This is an important insight, because this directly opposes the view of many

agile advocates that plan-driven practices would reduce the agility in a project.

Drawing on the case study of NorTran, we can identify several examples of situations

where plan-driven practices enabled agility during the development process. In Episode 1,

the plan-driven practice of ǲTornado meetingsǳ reduced some of the main obstacles, with a

deliverable early on that helped to establish stability, thereby allowing individual teams to

experiment without creating problems for other teams. As illustrated in Episode 2, this was

strengthened through the plan-driven practice of ǲReady-to-sprintǳ that was initiated by

project management. Moreover, plan-based decisions to re-organize the tasks of the teams

so that integration work was done by a single team in Episode 3, also increased the

flexibility for all teams. The integration team could experiment to find the optimal ways to

integrate with various external systems, and the other teams could spend their efforts on

experimenting with all other aspects of the design. Finally, in Episode 6, the plan-driven

initiative to establish regular architectural meetings afforded possibilities to scale the

project in an evolutionary manner. Hence, a plan-driven practice made agile in the large

possible. Based on these insights, we posit the following propositions:

Proposition 4a: Plan-driven practices can increase internal flexibility of development

teams in a context of multiple teams.

Proposition 4b: Plan-driven practices can improve coordination across teams and other

actors in the project, necessary for scaling agile software development.

6.3 Agile practices mitigating failure and increasing predictability

According to a duality perspective, change can also enable stability. Likewise, we theorize

that agile practices, self-organizing teams, and non-linear scaling are all important

mechanisms for ensuring reliability and predictability in large-scale agile projects.

Increasing reliability and predictability is typically associated with plan-driven practices

and processes, but increased experimentation and redundancy is also necessary for such

outcomes to materialize. As such, agile practices and self-organizing teams utilize

experimentation and redundancy as mechanisms for achieving greater stability.

First, in contrast to the prevalent dualistic perspective found in the literature, we

theorize that agile practices and self-organizing teams are fundamental to mitigate failure

in large-scale agile. As seen in Episode 4, the situated and bottom-up initiative of

establishing Ǯtask forcesǯ solved crucial problems typically related to compliance with non-

functional requirements such as performance issues. In this regard, the task forces were an

agile response to increase the reliability of deliverables, and especially to mitigate potential

failure of the delivered products. Hence this leads us to the following proposition:

Proposition 5a: Agile practices allow for quick responses to problems involving complex

ACM Trans. Softw. Eng. Methodol.

socio-technical interdependencies so that failures are mitigated.

Second, rather than seeing moderately overlapping responsibilities of agile teams and

individuals as a threat to reliability and effectiveness in large-scale agile software

development processes, we recognize that this can be a resource and a mechanism

facilitating it. Again, drawing on Farjoun (2010), this underscores how agile practices and

processes contribute to increasing stability in large-scale software development.

Empirically, a typical illustration of this was evident in Episode 6 where individual developers and testers were taken out of their teams to operate like Ǯfreelancers.ǯ This
experiment succeeded in producing a controlled down-scaling of the project while

preserving crucial competence. Hence, we suggest the following:

Proposition 5b: Agile practices can be a mechanism for increasing predictability in all

phases of large-scale agile processes.

6.4 A Process Model for Large-Scale Agile Software Development

In this article, we problematize large-scale agile, and draw on the concept of duality, leading

to a number of contributions which are summarized in the process model presented in

Figure 5. As such, large-scale agile has some characteristics that typically imply increasing

process challenges due to utilizing the same agile practices in the context of large projects

as in small projects (Rolland et al. 2016), difficulties and lack of inter-team coordination

(Bick et al. 2018), and difficulties in scaling through simply adding more teams (Paasivaara

et al. 2012). However, new alternative assumptions backed by a duality lens (as opposed to

a dualism lens) suggest that plan-driven and agile practices are not necessary in conflict but

can be mutually enabling. As seen in Figure 5, we theorize that responses that are based on

this tend to reduce the specific process challenges around preserving the flexibility in

feature teams, establishing coordination mechanisms across teams and actors, and

managing scaling in large-scale agile projects. As such,

Figure 5: Process model with propositions based on our study

novel combinations of agile and plan-driven practices, as seen in the NorTran case, can

greatly reduce process challenges typically related to coordination across teams and

ACM Trans. Softw. Eng. Methodol.

various stakeholders, as well as scaling and down-scaling in large-scale agile projects. Thus,

we theorize that:

Proposition 6: Novel combinations of agile and plan-driven practices can collectively

reduce process challenges in large-scale agile development projects.

Finally, we do not claim that all process problems will be solved at once by combining

agile and plan-driven practices as exemplified in the six episodes. Rather, we suggest this as

a continuous process where novel combinations can solve some of the challenges,

potentially reducing process challenges. Each of the six episodes described an emergent

response to some challenge, which ultimately reduced the process challenge at hand, but

new tensions would arise; continuing perturbations would lead to new tensions within a

large-scale agile project. These perturbations may originate from within the project, or

externally, when the environment in which the project sits changes. Examples of these

include changing regulations, a reduction in project budget as decided by upper-level

management, or global events such as the Covid-19 pandemic. Any type of event may lead

to tensions within a large-scale agile project, and these, in turn, will require new emergent

responses. We capture this in the final proposition:

Proposition 7: Internal or external perturbations in large-scale agile projects lead to

tension points.

6.5 Limitations

Given that this was a complex research study with several components, i.e., systematic

literature review, problematization, and a longitudinal case study, there was a potential for

threats to validity from a methodological perspective. For the problematization, we

followed the steps described by Alvesson and Sandberg (2011). For the systematic

literature review, we followed guidelines by Kitchenham and Charters (2007), and for the

case study we drew on recommendations suggested by Runeson and Höst (2009). In terms

of identifying the fundamental assumptions in the literature on large-scale agile

development, one could ask if we really have captured core fundamental assumptions.

While there are many thousands of articles published on agile development, we were

reassured that our identification of 197 papers on large-scale agile is consistent with the

recent systematic review by Edison et al. (2021) which identified 191 studies on large-scale

agile development. As part of narrowing down our set of studies to 67 studies, we

eliminated those which were experience reports, as we sought to focus on papers that

would provide a strong research and conceptual foundation, thereby ensuring that any

assumptions were grounded in the research. Could it be that underlying assumptions were

expressed in articles as a part of an argument for a contribution or a research gap, and that

the assumptions were not truly held by the authors of these papers? This might be the case

in some sources, but our analysis in Sections 3.1 to 3.3 suggests that the identified

assumptions are held by authors of the selected articles. Hence, we argue our set of studies

should be sufficient to identify the widely held assumptions in the literature.

ACM Trans. Softw. Eng. Methodol.

One could further question how we evaluated the articulated assumptions to select the

three fundamental assumptions presented in Section 3. We held several discussions within

the research team to use our knowledge of relevant prior research in order to focus on

assumptions which were relevant, common, and fundamental to the further development of

the research field. Other researchers could have made other choices, and we acknowledge

this is a matter of judgment. We have sought to explain why the three selected assumptions

are fundamental in Section 3.

Given that our overall research approach was qualitative, the traditional validity criteria

used for quantitative studies, namely construct validity, internal validity and external

validity are not the most appropriate. Rather, we draw on Lincoln and Guba (1985) who

proposed the following alternative criteria for qualitative research: credibility,

dependability, transferability, and confirmability.

Credibility refers to the extent to which the findings make sense and can be believed or

recognized by participants or readers. We drew on a number of techniques that can help

achieve this, including prolonged engagement, persistent observation, member-checking,

and peer-debriefing. Firstly, the research was conducted over a period of several years. A

member-checking process took place whereby the interviewees in the case study

participated in two workshops at which findings were presented and discussed. This meant

that there were several opportunities for participants to reflect on our analysis and suggest

changes if necessary. Furthermore, peer review occurred when preliminary findings were

presented at a conference (Rolland et al. 2016).

Dependability refers to the extent to which the research process is logical, traceable,

clearly documented, and can be repeated. In this case, data-coding followed a coherent and

traceable process, and was undertaken by multiple researchers who performed both hand-

coding and software-supported coding (HyperResearch). Intermediate coding results were

extensively discussed and scrutinized through a dedicated workshop and subsequent

virtual discussion. This process produced an Ǯaudit trailǯ that documented the research

process from data collection through to drawing of conclusions.

Transferability is concerned with how the findings could be applicable to other contexts

and is similar to the notions of generalizability and external validity in quantitative

research. While proof of transferability cannot be shown, the richness of the findings can

help indicate to what extent the research can apply in other contexts. Here we sought to get

a rich picture of the situation as it applied in one real development context. Indeed, we are heartened by Mintzbergǯs ȋͳͻ͹ͻ, p. ͷͺ͵Ȍ very apt observation: Ǯwhat, for example, is wrong
with samples of one?ǯ The goal of the case study research was not to draw generalizable

conclusions, but rather to understand how processes evolve in a large-scale agile project,

which could then help us to develop new theory.

Finally, confirmability is concerned with establishing that findings are clearly derived

ACM Trans. Softw. Eng. Methodol.

from the data. Our methodological discussion above provides evidence for this. Lincoln and

Guba (1985) suggest that confirmability can be established by successfully achieving

credibility, transferability, and dependability. Nowell et al. (2017) recommend providing a

clear methodological and theoretical rationale which they suggest is useful to help ensure

confirmability. Here we have sought to provide such a rationale and have gathered our

findings into a theoretical model which can be tested and evolved in further research.

7 CONCLUSIONS AND FUTURE WORK

The aim of this article has been to challenge some of the fundamental assumptions in the

current literature on large-scale agile, so as to provide new practical and theoretical

avenues for researchers and practitioners to follow. The paper draws on both a systematic

literature review on large-scale agile software development and a longitudinal case study of

a successful large-scale agile project. This study provides three distinct contributions. First,

we contribute by providing a systematic literature review of large-scale agile software

development. While a systematic review of the topic has been published before (Edison et al. ʹͲʹͳȌ, this article additionally utilizes Alvesson and Sandbergǯs method for
problematizing fundamental assumptions in large-scale agile. We identified three basic

overarching assumptions, relating to: 1) how agile and plan-driven processes are perceived

as in conflict or mutually exclusive; 2) hierarchical organizing and self-organizing teams are

perceived as in conflict or mutually exclusive; and 3) how scaling of agile practices is seen

as linear (e.g., Scrum of Scrums), implying that scaling can be conducted through just

adding more participants and increasing the scope without changing practices. Based on

this we concluded that the literature on large-scale agile software development seems to

reinforce the same underlying principles as in small-scale agile software development with

a few co-located teams. Against this backdrop, the second main contribution of this article

is the presentation of a longitudinal case study on a successful large-scale agile project. A novel aspect of our case study is the use of Newman and Robeyǯs process model as an
analytical approach, which to the best of our knowledge has not been used in software

engineering research before. This approach proved effective to capture key events ȋǲepisodesǳȌ that occurred during our study. The empirical findings from our case study of

successful large-scale agile development were at odds with the underlying assumptions in

the systematic literature review. Consequently, based on our analysis of the case study, we

developed three alternative assumptions for large-scale agile. Thirdly, based on the new

underlying assumptions and the empirical evidence from the NorTran case, we derived

nine theoretical propositions and a new process model.

ACM Trans. Softw. Eng. Methodol.

Table 7. Propositions and suggestions for future work

Proposition Research directions

Proposition 1. Large-scale agile projects have
characteristics that lead to tension points.

What is the range of relevant characteristics of large-
scale agile software development that may lead to

tension points?
How do types of characteristics vary by the scale of their

impact?

Proposition 2. To resolve the tension points in
large-scale agile projects, emergent responses are

needed to adjust and re-adjust development
practices and processes.

Given the limited research on large-scale over time;
future research should cover longitudinal and

evolutionary studies of agile practices.
Influence of changes in project context on agile methods,

such as contemporary trends including Digital
Transformation, AI, cost-cutting programs, staffing-

related issues, and technology changes.

Proposition 3. In large-scale agile development
projects, agile and plan-driven practices are

mutually enabling.

How do agile practices support plan-driven practices, and
vice versa?

How do agile and plan-driven practices interact?
What are attributes of plan-driven practices vs. agile

practices, and how do these attributes vary?

Proposition 4a. Plan-driven practices can
increase internal flexibility of development teams

in a context of multiple teams.

How do plan-driven practices influence cognitive load of
a development team?

How do plan-driven practices influence teamwork
effectiveness?

Are plan-driven practices perceived as offering stability
or as a barrier to team autonomy and self-

organization?

Proposition 4b. Plan-driven practices can
improve coordination across teams and other

actors in the project, necessary for scaling agile
software development.

What role do plan-driven practices have as a mediator of
inter-team and intra-team coordination?

Proposition 5a. Agile practices allow for quick
responses to problems involving complex socio-
technical interdependencies so that failures are

mitigated.

How do methods influence decision-making regarding
critical issues such as providing business value from

the project?

Proposition 5b. Agile practices can be a
mechanism for increasing predictability in all

phases of large-scale agile processes.

How do agile practices influence predictability in the
various phases of a project?

Proposition 6. Novel combinations of agile and
plan-driven practices can collectively reduce

process challenges in large-scale agile
development projects.

What type of plan-driven and agile practices are good
combinations?

Proposition 7. Internal or external perturbations
in large-scale agile projects lead to tension points.

What is the range of perturbations that can cause
tensions in large-scale agile software development?

How does the impact of perturbations vary by their
source, i.e., whether they are internal or external?

How do perturbations vary, i.e., by the size of the impact?

Table 7 suggests a number of research directions based on this set of propositions.

ACM Trans. Softw. Eng. Methodol.

Rather than re-emphasizing and reiterating the distinctions between agile and plan-driven

methods, we argue that it is more important to let go of initial characterizations of agile

methods, and discover and investigate emergent properties of these methods when applied

in large-scale settings.

Our study has uncovered fundamental assumptions in the literature on large-scale agile

development, which we have argued are not suited to solve some of the pressing

coordination and scaling challenges in large-scale agile development. Given the criticality of

large software projects for society today, we hope the perspectives developed in this article

will lead to more relevant and theoretically robust studies, which better reflect the

characteristics of complex and large-scale development efforts. Evoking our metaphor of

acrobats and safety-nets, we suggest that, just like an acrobat, agile approaches in large-

scale contexts need some level of stability, akin to a safety net, in order to sustain flexibility

over time. On the other hand, there would be no need for a safety net, i.e., plan-driven

practices, if the acrobats were not seeking to overcome challenges requiring agility and

flexibility.

ACKNOWLEDGMENTS

In loving memory of our friend, colleague, and co-author Knut Rolland, who sadly passed

away during this project.

APPENDIX A: SYSTEMATIC LITERATURE REVIEW PROCEDURE

The first step of our study comprised a systematic literature review (SLR) to identify

studies that discuss the use of agile methods for large-scale projects (see Figure A.1). We

conducted searches in SCOPUS and the AIS e-library of studies published until and

including 2019. Prior to the systematic literature review, we developed a review protocol

as recommended by Kitchenham and Charters (2007). We created the following search

string for use in SCOPUS:

TITLE((ǲextreme programmingǳ OR scrum OR (agile AND software) OR ǲagile
developmentǳ OR ǲagile project*ǳ OR ǲagile team*ǳ OR ǲagile method*ǳ OR ǲagile
approach*ǳ OR ǲagile practice*ǳ)) AND TITLE (ǲlarge-scaleǳ OR ǲlarge scaleǳ OR (large*
OR big* OR huge OR multi*) AND (organization* OR organisation* OR project* OR
team*))

The first step identified 132 papers. We conducted a systematic process to identify all

relevant articles in multiple steps, summarized in Fig. A.1. The selection was based on a

clearly defined set of inclusion and exclusion criteria which are described here. In step 2,

we examined article titles only. If the decision whether or not to include a paper was not

straightforward, it was included for further assessment in step 3. Overall, we selected a

total of 99 articles in step 2. During step 3, we examined the abstract. Again, where no

definitive decision could be made, articles were retained for the next step. A total of 62

articles were included at this point.

ACM Trans. Softw. Eng. Methodol.

Figure A.1. The study selection process of the systematic literature review

After this search and selection of results from SCOPUS, we conducted a search in the AIS

e-library, using a simplified search string as its search capabilities are not as extensive as

those of SCOPUS. We used the following simplified string:

title: ("extreme programming" OR scrum OR (agile AND software) OR "agile development"

OR "agile project*" OR "agile team*" OR "agile method*" OR "agile approach*" OR "agile

practice*")

While this simplified string is less specific, and therefore likely to include more

irrelevant search results, the total number of search results was relatively low (n=197). We

followed the same systematic selection process to identify relevant papers in this initial set

of 197, through which we identified 5 papers that were not already included in the

selection identified through SCOPUS. The total search process therefore resulted in 67

papers (62 following the initial SCOPUS search and 5 additional papers from the AIS e-

library).

We used the following inclusion and exclusion criteria during the paper selection

process for the review. Inclusion criteria are explicit statements or guidelines that prompt

the inclusion of an article, whereas exclusion criteria are explicit statements or guidelines

that lead to the non-selection of an article. As the selection progressed, criteria were further

clarified as needed to remove any ambiguities. These criteria were employed during steps 2

and 3 in the process (see Figure A.1).

Inclusion Criteria

Search in
SCOPUS

Step 1 n=132

Selection based
on title

Step 2 n=99

Selection based
on abstract

Step 3 n=62

Search in AIS e-
library

Step 4 n=197

Additional articles
selected based on

title

Step 5 n=6

Additional articles
selected based on

abstract

Step 6 n=5

Analysis
n=67

ACM Trans. Softw. Eng. Methodol.

 Articles that present studies of the use of any agile methods for large projects.

 Articles that present studies of the use of agile methods in ǲlarge organizations.ǳ

Exclusion Criteria

 Any article not written in English.

 Any article that uses the terms ǲlargeǳ or ǲbigǳ in other contexts than ǲlarge projects,ǳ for example, ǲBig Data.ǳ

 Any article that does not have a focus on the use of agile methods in a large software

development project context, but instead on another topic of interest within the setting of

large-scale projects, e.g., quality attributes or motivation, or user experience (UX) in large-

scale agile projects, or project estimation, or the use of agile for general change

management outside the context of software development

 Any article that refers to ǲdistributed projectsǳ or ǲdistributed organizationsǳ exclusively, without any mention of ǲlarge scale projects.ǳ

 Any article that discusses ǲlarge-scale agile transformationsǳ; the focus of these articles is
organizations that are transitioning to using agile methods, rather than the use of agile

methods employed in large-scale projects.

 Any article that discusses multi-project scrum teams; these are scrum teams which work on

multiple projects at the same time.

 Any document that is not a peer reviewed article, such as books, editorials, presentation

summaries, abstracts or briefings.

 Literature reviews of large-scale agile.

In order to identify the assumptions from this body of literature, we read all papers in

full. All authors were involved in this process. It became clear during this process that there

were a number of common assumptions that appeared in multiple papers. The analysis was

conducted over an extensive period of several months and involved numerous meetings,

both in-person and online, as well as a number of dedicated workshops. During the analysis

we identified three high level assumptions which were recurrent across the selection of

papers. These three assumptions were 1) Agile and plan-driven methods are perceived to

be mutually exclusive; 2) Self-organization and hierarchical coordination are perceived to

be mutually exclusive; and 3) Scaling agile methods is seen as a simple linear composition.

Table A.1 below lists all 67 papers included in the review and identifies how the

assumptions were manifest in each of the papers.

ACM Trans. Softw. Eng. Methodol.

Table A.1: Quotes from selected papers illustrating the three assumptions

Reference Assumption 1: Agile

and Plan-driven

Methods perceived

to be Mutually

Exclusive

Assumption 2:

Self-Organization and

Hierarchical Coordination

are perceived to be

Mutually Exclusive

Assumption 3:

Scaling agile methods is seen as a

Simple Linear Composition

Arseni

2016

 Decision making can stall

when visibility and

transparency are limited.

Creating a design authority

can help to avoid these

problems and maximize

opportunities.

Product owner team (POT) multi-

users team in charge to manage

Product Backlog.

Baca et al.

2015

 Scrum of Scrums meeting an

important technique in scaling to

large project teams.

Security group includes security

manager, security architect,

security master.

Badampudi

et al. 2013

Misalignment of need

for predictability and

dependability with

agile.

Every scrum group would

have their own priorities to

finish their tasks.

Dedicated integration team.

Barlow et al.

2011

Plan-driven assumes

that project

interdependencies

are mostly

sequential. Agile

assumes the

opposite, they de-

emphasize formal,

upfront planning.

Empowering developers to

make important decisions

makes development faster.

Projects would still include a

full up-front design phase

while allowing programmers

to make decisions during

coding and testing phases.

Bass

2015

 Product owner team identifies new

functions that allow teams to scale-

up. Nine functions within the

product owner role are identified.

Bass

2016

 Programme Governance Groups,

Product Owner Teams or Scrum of

Scrums meetings to overcome

challenges to the expansion of agile

methods to large-scale

ACM Trans. Softw. Eng. Methodol.

development.

Bass

2014

 Scrum of scrums help scale agile

methods to large programs.

Further, scrum masters can

specialize by assigning these

activities within a scrum master

group.

Bass and

Haxby 2019

 Self-organizing teams

relinquish some autonomy

toward an architecture board

or design authority that

determines common policies

and approaches.

Product-owner (PO) role tailoring

in which the role is no longer

performed by a single individual

but by a product-owner team

(POT).

Berger and

Benyon-

Davies

2009

 Development by small joint

development teams, in which

decision-making is

empowered and

consequently speedy.

Batra et al.

2011

Lightweight agile

software

development

methods have

emerged as

alternatives to

process-heavy plan-

based methodologies.

 Scrum can be managed as a

hierarchy of Scrum of Scrums.

Batra et al.

2010

A concern that the

project would lose

discipline if an agile

approach were

instituted.

Principles that were not

supported include the best

architectures, requirements,

and designs

emerge from self-organizing

teams. Individuals were

empowered, but management

had no issues confronting

ego-centric individuals.

Bick et al.

2016

 Top-down planning refers to

a mechanistic, centralized

approach. Bottom-up

adjustment, on the on the

other hand, is largely organic

and decentralised.

Scaling via Iterative Proxy

Collaboration – CPO, SoS, central

architecture team.

ACM Trans. Softw. Eng. Methodol.

Cao et al.

2004

Agile methods lack of

up-front design and

documentation.

We didnǯt have layers and
layers of management. We

got rid of those.

Decentralizing development-

oriented decision-making is

critical for a successful

agile—push decision-making

down, empower the people

who are actually doing the

work.

Cho et al.

2006

 The daily Scrum of Scrums is a daily

meeting for SMs from multiple

Scrum teams.

Costa et al.

2014

 In opposition to the previous

methodologies, agile

development processes are

based on self-organized

teams resolving their

problems.

Dingsøyr et

al. 2014

 Coordination of teams can be

achieved in a new forum such as a

Scrum of Scrums forum.

Several forums are needed for

coordination, such as multiple

Scrum of Scrums.

Dingsøyr et

al. 2017

 Program management met twice a

week in a forum - ǲMetascrum.ǳ The
Metascrum included managers from

the main projects and the central

program management.

Dingsøyr et

al. 2018

The fundamental

assumption behind

traditional methods

is that systems are

fully specifiable and

built through

meticulous and

extensive planning.

Agile methods, on the

other hand, assume

that systems can be

ACM Trans. Softw. Eng. Methodol.

built through

continuous design,

improvement, and

testing based on

rapid feedback and

change.

Eckstein

2016

 Sociocracy enables self-organization… scaling agile
requires also scaling self-

organization.

Elshamy and

Elssamadisy

2006

We have the non-

agile solution to this

problem which is

design upfront.

Elshamy and

Elssamadisy

2007

 Sub teams will have their own

stand-ups. To ensure information

exchange between teams everyday

a member of each sub team should

attend another team stand-up.

Fægri and

Moe 2015

 People need to apply their

own judgment in when they

need to seek information…Project culture
and project management

promoted face-to-face

communication and rejected

written reports.

Farmer 2004 Management let us find our

own way, rather than forcing

process on us from above.

Fruhling and

DeVreede

2006

To address plan-

driven methodology

shortcomings, new

development models

were proposed such

as agile.

Goh et al. Formal outcome control and

ACM Trans. Softw. Eng. Methodol.

2013 the ǲfreedomǳ given to the
project manager to

implement many of the

requirements (informal self-

control).

Gunyho et al.

2011

Being adaptable to

change may be seen

in contradiction with

planning.

Gupta et al.

2017

 Is your team self-organizing,

rather than functioning in command and control…
participatory decision

making, rather than bending

to authoritarian decision-making…

team decisions consensus

driven, rather than leader

driven.

Chief Scrum Master, Chief PO,

Scrum Master-cum-Part Product

Owner (SMPO).

Gustavsson

2018

 Fundamental principle in

agile is to allow autonomy to

the team. This autonomy is a

major reason for success in

agile development.

Hannay and

Benestad

2010

Vendors want to

work agile, and now

we're suddenly

supposed to work

waterfall.

The combination of

autonomous teams and the

necessity for overall

organizational control

structure may lead to

conflicts.

Heikkila et

al. 2013a

ScrumBut: We use Scrum, but we canǯt
build a piece of

functionality in a

month, so our Sprints

are 6 weeks long

(which is like a

Waterfall).

 Area Product Owner (APO) and

Chief Product Owner (CPO).

Heikkilä et

al.

2013b

 PO team consisted of a Chief

Product Owner (Chief PO) and ten

Proxy Product Owners (PPOs).

ACM Trans. Softw. Eng. Methodol.

Hobbs and

Petit 2017

Both the traditional

and the agile

methodologies co-

exist in separate

subunits.

Hoda and

Murugesan

2016

 Self-organizing agile teams

take ownership of

management responsibilities

which were hitherto limited

to project managers.

Jørgensen

2019

Some software

professionals believe

less in working fully

agile when projects get large…it is
possible to argue in

favour of both agile

and more plan-

driven, non-agile

methods.

Kähkönen

2004

 Communities-of-Practice,

Integration Camp.

Kettunen

and Laanti

2008

 Project team should first be

empowered to gain the full

benefits of the agile.

Ktata and

Lévesque

2009

Agile development

has legalized what

was forbidden by

traditional plan-

driven development.

Laanti

2008

 Program Content Backlog

containing Program, Scrum and

Sprint backlogs, Program PO, Team

PO.

Laanti

2017

 Best in class agile is

empowered, self-controlled

adaptive organisation.

Lagerberg et

al. 2013

Project A (Agile) and

Project B (Plan-

driven) differ

sufficiently

 Cross-functional team includes

system analysts,

designers and testers, as well as a

Scrum Master and a Product Owner.

ACM Trans. Softw. Eng. Methodol.

in their ways of

working and are

sufficiently similar in

other aspects that the

impact of using agile

practices can be

studied by comparing

the two projects.

Lindsjørn et

al. 2018

 Large projects need stronger

mechanisms to control cost

and time schedules.

Scrum of Scrums.

Martini et al.

2013

 (Agile) trend of defining small

self-sufficient teams. If a team doesnǯt have all the
knowledge, they may have to

wait for the expert to be

available.

Moe et al.

2018

 Principles and work

structures emerge during the

project and are not predetermined… complex
agile projects need more

flexible forms of management …rather than pure top-down

approaches to governance.

Metascrum, SoS.

Moe et al.

2014

 Technical Area Responsible (TAR)

role on Cross Functional teams

(XFTs), Operative

Product Owner (OPO), Area Product

Owner (APO), System Owner.

Nyfjord et al.

2014

 The best way to coordinate

the teams is to ask them how they want to be managed… A
manager should accept a

certain amount of chaos in

the development process…should not try to
control everything.

Paasivaara et

al. 2008

 Weekly Scrum-of-Scrums,

Synchronized 4-week sprints.

Paasivaara Increases the need Scrum-of-Scrums, Area PO.

ACM Trans. Softw. Eng. Methodol.

and

Lassenius

2016

for formal

documentation and

thus reduces agility.

Paasivaara

and

Lassenius

2014

Transformation from

a traditional plan-

driven organization

to lean and agile.

 Feature Coordination CoPs,

Coaching CoPs, Developer CoPs.

Paasivaara

and

Lassenius

2011

 Area Product Owners (APOs) for

scaling the Product Owner role,

Global Scrum-of-Scrums.

Paasivaara,

Lassenius,

Heikkilä

2012

 Scrum-of-Scrum-of-Scrums (SoSoS).

Qureshi

2012

Extended XP to

include stable

requirements, strong

architecture and risk

management plan.

Read and

Briggs

2012

 HyperEpic - a structured collection

of closely related HyperStories.

Rolland et al

2015

Emergent nature of requirements…notori
ously difficult to

establish a stable and

complete set of

requirements early

on in the process.

Rolland et al.

2016

 Task forces were not initiated

by management, but grew out

of a need recognized by

developers.

Champion roles were implemented

working across teams.

Šablis and Šmite ʹͲͳ͸

 When there are many teams,

should they be governed or

autonomous?

Forum of forums.

Scheerer and

Kude 2014

 Organic structure of teams. Scrum-of-Scrums.

Sekitoleko et

al. 2014

The shift towards

agile is difficult for

 Scrum-of-Scrums (SoS), cross-

functional teams (XFT).

ACM Trans. Softw. Eng. Methodol.

companies that are

used to heavyweight

sequential processes.

Søvik and

Forfang M.

2010

Started with a

waterfall-like

methodology and

then adopted Scrum

after less than a year.

Stettina and

Smit 2016

 We designed the Team Portfolio

Scrum (TPS) practice and the Team

Portfolio Owner (TPO) role to

support the implementation of

portfolio management.

Sundararaja

n et al. 2014

 ǲprocess-centric, command and controlǳ v. ǲpeople-

centric, self-organising…make
sites self-managing, introduce

team empowerment.

Tessem and

Maurer 2007

 This way of working gives the

developer significant

autonomy in the daily work.

A concept like ǲScrum of Scrumsǳ is
useful for making larger teams

agile. Uludağ et al.
2019

 Squads are self-organizing

and autonomous teams that

have all the skills to design,

develop, test, and release for

production.

All teams are part of an agile release

train (ART), a team of teams that

delivers a continuous flow of

incremental releases.

Wale-Kolade

2015

 ǲFollow the leaderǳ approach versus the ǲindividualisticǳ
approach to encourage

people to think for

themselves and not be so

rigid in following your leader.

Scrum of Scrums model …a
technique for scaling Scrum

practices, thus enabling inter-team

coordination and consensus.

van

Waardenbur

g and van

Vliet 2013

The agile process is

often preceded by

traditional

requirements

elicitation and

analysis phases.

The hierarchical, centralized

decision making in plan-

driven methods versus the

empowerment of agile

developers to make their own

decisions.

Combining product backlogs of

teams that depend on one another

helps teams plan and align

dependent work items.

Vlietland and

van Vliet

2015

Even though Agile

principles aim to

introduce flexibility

 An interdependent chain of Scrum

team. Scrum of Scrums; For

managing more than seven Scrum

ACM Trans. Softw. Eng. Methodol.

the need for plans

and structure

remains.

teams an intermediate

organizational layer is suggested

between the product teams and

Scrum teams to cater for the

necessary coordination.

Weiss and

Brune 2017

The interface

between agile

development teams

and plan-driven

release management

is critical and

challenging.

Teams should receive enough

freedom to adapt agile

methods to their specific

needs.

Zheng et al.

2011

Managing carefully

the balance between

flexibility and rigour.

Tension between the

deliberate action of planning

and the uncontrolled

processes of drifting.

APPENDIX B AUXILIARY EPISODES

Besides the episodes discussed above, we identified several others that challenged the

three key assumptions we identified (see Table B.1). Some of the entities we identified, such

as Solution Description and Blurred Boundaries, could also be pinpointed in a different

large-scale project reported by Dingsøyr et al. (2018).

Table B.1: Summary of additional episodes

Dominant

assumption

Episode description Challenging the assumption

Agile and Plan-

Driven Methods

are perceived to

be Mutually

Exclusive

Introduction of Solution Description ȋSDȌ as Ǯbig design up frontǯ style
process, but one that allowed a

flexibility in terms of the amount of

detail. The SD represents an iterative

process that afforded a pragmatic approach to ǲjust-in-timeǳ design.

The Solution Description was not a plan-driven

style design document, but rather a flexible,

more agile approach to an evolving design

document that allowed an incremental process

of detailing, thus combining a plan-driven and

agile approach.

 Blurred boundaries: the boundaries

between development process phases such as ǲanalysis of needsǳ and ǲsolution descriptionǳ phases blurred
over time.

The large-scale nature of the project required

some type of phased approach to establish

milestones, such as ǲanalysis of needsǳ and the ǲsolution descriptionǳ phases, the boundaries
between different phases blurred over time as

the people in the development and

architecture teams were close in proximity. A

ACM Trans. Softw. Eng. Methodol.

more holistic orientation emerged that allowed

people to consider requirements and how

these could be satisfied in a solution

description.

Self-managing

Teams and

Hierarchically-

organized Teams

are perceived to

be Mutually

Exclusive

From the start, roles were imposed on

team members, such as team lead, test

responsible, technical architect,

functional architect, while teams as a

whole remained responsible for their

sprint backlogs.

Traditionally, agile teams as a whole have a

joint responsibility to deliver software,

whereas the traditional plan-driven approach

would assign specific roles and responsibilities

to individuals. At NorTran, a combination was

used, whereby the team as a whole remained

responsible, yet roles were imposed on

individual team members.

Scaling through

Simple Linear

Composition

Exponential increase in coordination

mechanisms as project grew in size.

Scaling up a project cannot be simply done by

adding additional layers of coordination, such

as the Scrum-of-Scrums activity. Instead, a

more dramatic exponential increase, rather

than a linear increase, in coordination

mechanisms may be necessary.

 Physical co-location of project with an

open work area enabled efficient

direct one-to-one dialogue as

participants had become aware of othersǯ work tasks, responsibilities,

and background knowledge.

Scaling up of projects doesnǯt necessarily need
more coordination mechanisms: additional

teams could also benefit from being co-located,

leveraging unplanned interactions.

REFERENCES
Abrahamsson, P., Babar, M. A., and Kruchten, P. ʹͲͳͲ. ǲAgility and Architecture: Can They Coexist?)ntroduction,ǳ IEEE Software

27(2), pp. 16-22. Abrahamsson, P., Conboy, K., and Wang, X. ʹͲͲͻ. ǲ ǮLots Done, More to Doǯ: The Current State of Agile Systems Development Research,ǳ European Journal of Information Systems 18(4), pp. 281-284. Adikari, S., McDonald, C., Campbell, J. ʹͲͲͻ. ǲLittle design up-front: A design science approach to integrating usability into agile requirements engineering,ǳ)n: Jacko J.A. ȋeds.Ȍ Human-Computer Interaction. New Trends. HCI 2009. Lecture Notes in
Computer Science, vol 5610. Springer, Berlin, Heidelberg, pp. 549–558. Alsaqaf, W., Daneva, M. and Wieringa, R., ʹͲͳ͹. ǲQuality requirements in large-scale distributed agile projects–a systematic literature review,ǳ In International Working Conference on Requirements Engineering: Foundation for Software Quality, pp.
219-234. Springer, Cham. Alvesson, M., and Sandberg, J. ʹͲͳͳ. ǲGenerating Research Questions through Problematization,ǳ Academy of Management Review
36(2), pp. 247-271.

Alvesson, M., and Sandberg, J. 2013. Constructing Research Questions: Doing Interesting Research. Sage.

Ambler, S.W. and Lines, M. 2012. Disciplined Agile Delivery: A Practitionerǯs Guide to Agile Software Delivery in the Enterprise. Upper
Saddle River, NJ: IBM Press, 2012. Arseni, G. ʹͲͳ͸. ǲRole of the Design Authority in Large Scrum of Scrum Multi-team-based Programs,ǳ in P. Ciancarini et al. ȋeds.Ȍ,
Proceedings of 4th International Conference in Software Engineering for Defence Applications, Advances in Intelligent Systems

and Computing 422

Baca, D., Boldt, M., Carlsson, B., Jacobsson, A. 2015. ǲA novel security-enhanced agile software development process applied in an
industrial setting,ǳ Proceedings of the 10th International Conference on Availability, Reliability and Security, pp. 11–19.

ACM Trans. Softw. Eng. Methodol.

Badampudi, D., Fricker, S.A., and Moreno, A.M. ʹͲͳ͵. ǲPerspectives on Productivity and Delays in Large-Scale Agile Projects,ǳ
Proceedings of the International Conference on Agile Software Development, pp. 180-194.

Baham, C. and Hirschheim, R. 2022. ǲIssues, challenges, and a proposed theoretical core of agile software development research,ǳ
Information Systems Journal, 32(1). Barlow, J.B. Giboney, J.S., Keith, M.J., Wilson, D.W., Schuetzler, R.M., Lowry, P.B., and Vance, A. ʹͲͳͳ. ǲOverview and Guidance on Agile Development in Large Organizations,ǳ Communications of the Association for Information Systems, 29(2) pp. 25–44. Bass, J.M. ʹͲͳͶ. ǲScrum Master Activities: Process Tailoring in Large Enterprise Projects,ǳ Proceedings of the International

Conference on Global Software Engineering (ICGSE).

Bass, J.M. 2015. ǲ(ow product owner teams scale agile methods to large distributed enterprises,ǳ Empirical Software Engineering
20(6), pp. 1525-1557. Bass, J.M. ʹͲͳ͸, ǲArtefacts and agile method tailoring in large-scale offshore software development programmes,ǳ Information and

Software Technology 75, pp. 1-16. Bass, J.M., and (axby, A. ʹͲͳͻ. ǲTailoring Product Ownership in Large-Scale Agile Projects: Managing Scale, Distance, and Governance,ǳ IEEE Software 36(2), pp. 58-63.

Bateson, G., 1972. Steps to an Ecology of Mind. New York: Ballantine. Batra, D., Vandermeer, D., and Dutta, K. ʹͲͳͳ. ǲExtending Agile Principles to Larger, Dynamic Software Projects: A Theoretical Assessment,ǳ Journal of Database Management, 22(4), pp. 73-92.

Batra, D., Xia, W., Vandermeer, D., and Dutta, K. ʹͲͳͲ. ǲBalancing Agile and Structured Development Approaches to Successfully Manage Large Distributed Software Projects: A Case Study from the Cruise Line)ndustry,ǳ Communications of the Association

for Information Systems 27(1), pp. 379-394.

Beck, K. ͳͻͻͻ. ǲEmbracing Change with Extreme Programming,ǳ Computer 32(10), pp. 70-77. Beck, K. and Boehm, B. ʹͲͲ͵. ǲAgility through discipline: A Debate,ǳ IEEE Software 36(6), pp. 44-46

Berger, H., and Beynon-Davies, P. ʹͲͲͻ. ǲThe utility of rapid application development in large-scale, complex projects,ǳ Information

Systems Journal 19, pp. 549-570. Berntzen, M., (oda, R., Moe, N.B. and Stray, V. ʹͲʹʹ. ǲA taxonomy of inter-team coordination mechanisms in large-scale agile,ǳ IEEE

Transactions on Software Engineering 49(2), pp. 699-718. Bick, S., Scheerer, A., and Spohrer, K. ʹͲͳ͸. ǲ)nter-team coordination in large agile software development settings: Five ways of practicing agile at scale,ǳ Proceedings of the Scientific Workshop Proceedings of XP2016, p. 4. ACM. Bick, S., Spohrer, K., (oda, R., Scheerer, A., and (einzl, A. ʹͲͳͺ. ǲCoordination Challenges in Large-Scale Software Development: A Case Study of Planning Misalignment in (ybrid Settings,ǳ IEEE Transactions on Software Engineering 44(10), pp. 932-950

Bjarnason, E., Wnuk, K., and Regnell, B. ʹͲͳͳ. ǲA Case Study on Benefits and Side Effects of Agile Practices in Large-Scale Requirements Engineering,ǳ Proceedings of the 1st Workshop on Agile Requirements Engineering. Boehm, B. ʹͲͲʹ. ǲGet ready for agile methods, with care,ǳ IEEE Computer 35(1), pp. 64-69 Boehm, B. and Turner, R. ʹͲͲ͵. ǲUsing Risk to Balance Agile and Plan-Driven Methods,ǳ IEEE Computer 36(6), pp. 57-66 Booch, G. ʹͲͳͷ. ǲKeynote at the ͵͹th)nternational Conference on Software Engineering: The Future of Software Engineering,ǳ
Available at: https://www.youtube.com/watch?v=h1TGJJ-F-fE Cao, L., Mohan, K., Xu, P., and Ramesh, B. ʹͲͲͶ. ǲ(ow Extreme Does Extreme Programming (ave to Be? Adapting XP Practices to
Large-Scale Projects,ǳ Proceedings of the Hawaii International Conference on System Sciences, R.H. Sprague Jr (ed.), Big Island,
HI., pp. 1335-1344. Cho, J., ʹͲͲͻ. ǲA hybrid software development method for large-scale projects: rational unified process with scrum,ǳ Issues in

Information Systems 10(2), pp.340-348. Cho, J., Kim, Y., Olsen, D. ʹͲͲ͸. ǲA Case Study on the Applicability and Effectiveness of Scrum Software Development in Mission-
Critical and Large-Scale Projects,ǳ Proceedings of the Americas Conference on Information Systems. Paper 445. Conboy, K. ʹͲͲͻ. ǲAgility from First Principles: Reconstructing the Concept of Agility in)nformation Systems Development,ǳ
Information Systems Research 20(3), pp. 329-354.

Conboy, K. and Carroll, N. 2019. ǲImplementing Large-Scale Agile Frameworks: Challenges and Recommendations,ǳ IEEE Software

36(2), pp. 44-50. Costa, N., Santos, N., Ferreira, N., and Machado, R.J. ʹͲͳͶ. ǲDelivering User Stories for)mplementing Logical Software Architectures by Multiple Scrum Teams,ǳ Proceedings of the 14th International Conference on Computational Science and Its Applications,

LNCS 8581. Springer Verlag, pp. 747-762.

Crowston, K. Chudoba, K., Watson-Manheim, M.B, and Rahmati, P. ʹͲͳ͸. ǲ)nter-team coordination in large-scale agile development:
A test of organizational discontinuity theory,ǳ Proceedings of the Scientific Workshop Proceedings of XP2016, pp. 1-5. Cusumano, M.A. and Selby, R.W. ͳͻͻ͹. ǲ(ow Microsoft builds software,ǳ Communications of the ACM 40(6), pp. 53-61.

Deemer, P., Benefield, G., Larman, C., Vodde, B., 2010. The scrum primer. Available at
http://www.goodagile.com/scrumprimer/scrumprimer.pdf Dikert, K., Paasivaara, M. and Lassenius, C. ʹͲͳ͸. ǲChallenges and success factors for large-scale agile transformations: A systematic literature review,ǳ Journal of Systems and Software 119, pp. 87-108

ACM Trans. Softw. Eng. Methodol.

Dingsøyr, T., Bjørnson, F. O., Schrof, J., and Sporsem, T. 2023. "A longitudinal explanatory case study of coordination in a very large
development programme: the impact of transitioning from a first- to a second-generation large-scale agile development
method," Empirical Software Engineering 28(1), pp. 1-49.

Dingsøyr, T., Falessi, D., and Power, K. 2019. "Agile Development at Scale: The Next Frontier," IEEE Software 36(2), pp. 30-38.

Dingsøyr, T., Fægri, T., and Itkonen, J. 2014. ǲWhat)s Large in Large-Scale? A Taxonomy of Scale for Agile Software Development,ǳ
in: Product-Focused Software Process Improvement, LNCS 8892, A. Jedlitschka, P. Kuvaja, M. Kuhrmann, T. Männistö, J. Münch
and M. Raatikainen (eds.). Springer International Publishing, pp. 273-276. Dingsøyr, T., Moe, N. B., Fægri, T. E., and Seim, E.A. ʹͲͳͺ. ǲExploring Software Development at the Very Large-Scale: A Revelatory
Case Study and Research Agenda for Agile Method Adaptation,ǳ Empirical Software Engineering 23, pp. 490-520.

Dingsøyr, T, Rolland, K, Moe, N, and Seim, E. 2017. ǲCoordination in multi-team programmes: An investigation of the group mode in
large-scale agile software development,ǳ Procedia Computer Science 121, pp. 123–128.

Dittrich, Y., Michelsen, C. B., Tell, P., Lous, P., and Ebdrup, A., "Exploring the evolution of software practices," in Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering, 2020, pp. 493-504.

Edison, H., Wang, X., and K., C. 2021. "Comparing Methods for Large-Scale Agile Software Development: A Systematic Literature
Review," IEEE Transactions on Software Engineering 48(8), pp. 2709-2731

Eckstein, J. ʹͲͳ͸. ǲSociocracy – An Organization Model for Large-Scale Agile Development,ǳ Proceedings of XP2016 Workshops,
Edinburgh, Scotland, UK.

Elshamy, A., and Elssamadisy, A. 2006. "Divide after You Conquer: An Agile Software Development Practice for Large Projects,"
Proceedings of the 7th International Conference on Extreme Programming and Agile Processes in Software Engineering, XP

2006, LNCS 4044. Oulu, Finland: Springer Verlag.

Elshamy, A., and Elssamadisy, A. 2007. "Applying Agile to Large Projects: New Agile Software Development Practices for Large
Projects," Proceedings of the 8th International Conference on Agile Processes in Software Engineering and eXtreme

Programming, XP 2007, LNCS 4536. Como, Italy: Springer, pp. 46-53. Ernst, N.A., Murphy, G.C. ʹͲͳʹ. ǲCase studies in just-in-time requirements analysis,ǳ Proceedings of the Second IEEE International

Workshop on Empirical Requirements Engineering, pp. 25–32. Fægri, T.E., and Moe, N.B. ʹͲͳͷ. ǲRe-conceptualizing requirements engineering: Findings from a large-scale, agile project,ǳ
Proceedings of XP 2015 Workshops, Helsinki, Finland. Farjoun, M., ʹͲͳͲ. ǲBeyond dualism: Stability and change as a duality,ǳ Academy of Management Review (35:2), pp.202-225.

Farmer, M. 2ͲͲͶ. ǲDecisionSpace)nfrastructure: Agile Development in a Large, Distributed Team,ǳ Proceedings of the Agile

Development Conference, IEEE Computer Society.

Fitzgerald, B., "Formalized systems development methodologies: a critical perspective," Information Systems Journal 6(1), pp. 3-23,
1996. Fitzgerald, B., Stol, K.J., O'Sullivan, R., and O'Brien, D. ʹͲͳ͵. ǲScaling Agile Methods to Regulated Environments: An)ndustry Case Study,ǳ Proceedings of the International Conference on Software Engineering. San Francisco, CA, USA. Fowler, M., and (ighsmith, J. ʹͲͲͳ. ǲThe Agile Manifesto,ǳ Software Development, 9(8), pp. 28-35.

Fruhling, A. and De Vreede, G.J. 2006. ǲField Experiences with eXtreme Programming: Developing an Emergency Response System,ǳ
Journal of Management Information Systems 22(4), pp. 39-68.

Giddens, A. 1979. Central Problems in Social Theory: Action, Structure and Contradictions in Social Analysis, Berkeley, CA: University
of California Press. Goh, J.C.L., Pan, S.L., and Zuo, M. ʹͲͳ͵. ǲDeveloping the Agile IS Development Practices in Large-Scale IT Projects: The Trust-Mediated Organizational Controls and)T Project Team Capabilities Perspectives,ǳ Journal of the Association for Information

Systems 14(12), pp. 722-756.

Gregory, P., Barroca, L., Sharp, (., Deshpande, A., and Taylor, K. ʹͲͳ͸. ǲThe Challenges That Challenge: Engaging with Agile Practitionersǯ Concerns,ǳ Information and Software Technology 77, pp. 92-104. Gunyho, G., and Gutiérrez Plaza, J. ʹͲͳͳ. ǲEvolution of Longer-Term Planning in a Large Scale Agile Project - F-Secure's Experience,ǳ
in: Lecture Notes in Business Information Processing. pp. 306-315.

Gupta, R, Manikreddy, P. and Arya, K. 2017. ǲPragmatic Scrum Transformation: Challenges, Practices & Impacts During the Journey
A case study in a multi-location legacy software product development team,ǳ Proceedings of the 10th Innovations in Software

Engineering Conference pp. 147-156.

Gustavsson, T., 2017. Assigned roles for Inter-team coordination in Large-Scale Agile Development: a literature review. Proceedings

of the XP2017 Scientific Workshops, pp. 15. ACM. Gustavsson, T. ʹͲͳͺ. ǲ)mpacts on team performance in large-scale agile software development,ǳ Proceedings of the 17th Business

Informatics Research Short Papers, BIR-WS 2018, pp. 421-431, CEUR-WS. (annay, J.E., and Benestad, (.C. ʹͲͳͲ. ǲPerceived Productivity Threats in Large Agile Development Projects,ǳ Proceedings of the 4th

International Symposium on Empirical Software Engineering and Measurement, Bolzano-Bozen.

Hanssen, G, Wedzinga, G and Stupid. M. ʹͲͳ͹. ǲAn Assessment of Avionics Software Development Practice: Justifications for an
Agile Development Processǳ. International Conference on Agile Software Development, Springer.

ACM Trans. Softw. Eng. Methodol.

Heikkilä, V.T., Paasivaara, M., and Lassenius, C. ʹͲͳ͵a. ǲScrumbut, but Does)t Matter? A Mixed-Method Study of the Planning
Process of a Multi-Team Scrum Organization,ǳ Proceedings of the ACM / IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM 2013, Baltimore, MD, pp. 85-94.

Heikkilä, V.T., Paasivaara, M., Lassenius, C., and Engblom, C. 2013b. ǲContinuous Release Planning in a Large-Scale Scrum Development Organization at Ericsson,ǳ Proceedings XP 2013, LNBIP 149, pp. 195-209.

Hilt, M. J., Wagner, D., Osterlehner, V., and Kampker, A. 2016. ǲAgile Predevelopment of Production Technologies for Electric Energy
Systems – A Case Study in the Automotive)ndustry.ǳ Procedia CIRP 50, 88-93.

Hobbs, B., and Petit, Y. 2017. ǲAgile methods on large projects in large organizations,ǳ Project Management Journal 48(3), 3-19. (oda, R., and Murugesan, L.K. ʹͲͳ͸. ǲMulti-level agile project management challenges: A self-organizing team perspective,ǳ Journal

of Systems and Software 117, pp. 245-257. (oda, R., Noble, J., and Marshall, S. ʹͲͳ͵. ǲSelf-Organizing Roles on Agile Software Development Teams,ǳ IEEE Transactions on

Software Engineering 39(3), pp. 422-444.

Humphrey, W. S. 1989. Managing the software process. Addison-Wesley Longman Publishing Co., Inc.

Jackson, W. A. ͳͻͻͻ. ǲDualism, Duality and the Complexity of Economic)nstitutions,ǳ International Journal of Social Economics

26(4), pp. 545-558. Jørgensen, M. ʹͲͳͻ. ǲRelationships Between Project Size, Agile Practices, and Successful Software Development: Results and Analysis,ǳ IEEE Software 36(2), pp. 39-43. Kähkönen, T. ʹͲͲͶ. ǲAgile Methods for Large Organizations - Building Communities of Practice,ǳ Proceedings of the Agile

Development Conference, ADC 2004, Salt Lake City, UT, pp. 2-10. Kettunen, P. and Laanti, M. ʹͲͲͺ. ǲCombining Agile Software Projects and Large-scale Organizational Agility,ǳ Software Process

Improvement and Practice 13(2), pp. 183-193.

Kitchenham, B.A. and Charters, S. 2007. Guidelines for performing Systematic Literature Reviews in Software Engineering, EBSE
Technical Report EBSE-2007-01, Version 2.3 Ktata, O., and Lévesque, G. ʹͲͲͻ. ǲAgile development:)ssues and avenues requiring a substantial enhancement of the business perspective in large projects,ǳ Proceedings of the 2nd Canadian Conference on Computer Science and Software Engineering , pp.
59-66

Kuhrmann, M., Diebold, P., Munch, J., Tell, P., Trektere, K., McCaffery, F., Garousi, V., Felderer, M., Linssen, O., Hanser, E. and Prause, C.R., ʹͲͳͺ. ǲ(ybrid software development approaches in practice: a European perspective,ǳ IEEE Software 36(4), pp.20-31.

Kuhrmann, M., Tell, P., Hebig, R., Klunder, J., Munch, Linssen, J.O., Pfahl, D., Felderer, M., Prause, C., Macdonell, S., Nakatumba-
Nabende, J., Raffo, D., Beecham, S., Tuzun, E., Lopez, G., Paez, N., Fontdevila, D., Licorish, S., Kupper, S., Ruhe, G., Knauss, E.,
Ozcan-Top, O., Clarke, P., Mc Caffery, F.H., Genero, M., Vizcaino, A., Piattini, M., Kalinowski, M., Conte, T., Prikladnicki, R.,
Krusche, S., Coskuncay, A., Scott, E., Calefato, F., Pimonova, S., Pfeiffer, R.-H., Schultz, U.P., Heldal, R., Fazal-Baqaie, M., Anslow,
C., Nayebi, M., Schneider, K., Sauer, S., Winkler, D., Biffl, S., Bastarrica, C., Richardson,). ʹͲʹͳ. ǲWhat Makes Agile Software
Development Agile,ǳ IEEE Transactions on Software Engineering 48, pp. 3523-3539. Laanti, M. ʹͲͲͺ. ǲ)mplementing Program Model with Agile Principles in a Large Software Development Organization,ǳ Proceedings

of the Annual IEEE International Computer Software and Applications Conference, pp. 1383-1391. Laanti, M. ʹͲͳ͹. ǲAgile transformation model for large software development organizations,ǳ Proceedings of the XP2017 p. 19. ACM.

Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., and Stahl, D. ʹͲͳ͵. ǲThe impact of agile principles and practices on large-scale software development projects,ǳ Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, pp. 348-356. Langley, A. ͳͻͻͻ. ǲStrategies for theorizing from process data,ǳ Academy of Management Review 24(4), pp. 691–710.

Langley, A., Smallman, C., Tsoukas, H. and Van de Ven, A.H., 2013. ǲProcess studies of change in organization and management: Unveiling temporality, activity, and flow,ǳ Academy of Management Journal, 56(1), pp.1-13.

Leffingwell, D. 2016. SAFe 4.0 Reference Guide: Scaled Agile Framework for Lean Software and Systems Engineering. Addison-Wesley
Professional.

Lincoln, Y., and Guba, E. G. 1985. Naturalistic inquiry. Newbury Park, CA: Sage.

Lindsjørn, Y., Bergersen, G. R., Dingsøyr, T., and Sjøberg, D.I.K. 2018. ǲTeamwork Quality and Team Performance: Exploring Differences Between Small and Large Agile Projects,ǳ Proceedings of XP2018, Porto, Portugal, pp. 267-274.

Martini, A. Pareto, L., and Bosch, J. ʹͲͳ͵. ǲ)mproving Businesses Success by Managing)nteractions among Agile Teams in Large
Organizations,ǳ Proceedings of the International Conference on Software Business (ICSOB), LNBIP 150, pp. 60-72.

Maruping, L.M., Venkatesh, V. and Agarwal, R., ʹͲͲͻ. ǲA control theory perspective on agile methodology use and changing user requirements,ǳ Information Systems Research 20(3), pp. 377-399.

McCaffery, F., Lepmets, M., Trektere, K., Özcan-Top, O., and Pikkarainen, M. ʹͲͳ͸. ǲAgile medical device software development:)ntroducing agile practices into MDevSP)CE,ǳ International Journal on Advances in Life Sciences, 8(1-2), pp. 133-142.

Miles, M.B., and Huberman, A.M. 1994. Qualitative Data Analysis: An Expanded Sourcebook, (2nd ed.). Sage.

Mintzberg, H (1979) The Structuring of Organisations. Prentice-Hall, Englewood Cliffs, NJ. Moe, N.B., Dingsøyr, T. and Rolland, K. ʹͲͳͺ. ǲTo schedule or not to schedule? An investigation of meetings as an inter-team

ACM Trans. Softw. Eng. Methodol.

coordination mechanism in large-scale agile software development,ǳ International Journal of Information Systems and Project

Management 6(3), pp. 45-59. Moe, N.B., Šmite, D., Šblis, A., Börjesson, A.L., and Andréasson, P. ʹͲͳͶ. ǲNetworking in a Large-Scale Distributed Agile Project,ǳ
Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement.

Naur, P., and Randell, B. (Eds.) (1968) Software Engineering: A Report on a Conference Sponsored by the NATO Science Committee.
Brussels: Scientific Affairs Division, NATO Nerur, S., Cannon, A., Balijepally, V., and Bond, P. ʹͲͳͲ. ǲTowards an understanding of the conceptual underpinnings of agile development methodologies,ǳ in Agile Software Development, T. Dingsøyr, T. Dybå, and N. B. Moe, Eds., ed Berlin Heidelberg:
Springer, pp. 15-29. Nerur, S., Mahapatra, R., and Mangalaraj, G. ʹͲͲͷ. ǲChallenges of Migrating to Agile Methodologies,ǳ Communications of the ACM
48(5), pp. 72 - 78.

Newman, M., and Robey, D. 1992. A social process model of user-analyst relationships. MIS Quarterly 16(2), pp. 249-266.

Nowell, L. S., Norris, J. M., White, D. E., and Moules, N. J. 2017. ǲThematic analysis: Striving to meet the trustworthiness criteria,ǳ
International journal of qualitative methods 16(1). Nyfjord, J., Baathallath, S., and Kjellin, (. ʹͲͳͶ. ǲConventions for Coordinating Large Agile Projects,ǳ Proceedings of XP 2014

Workshops, LNBIP 199, pp. 58-72.

Paasivaara, M., Durasiewicz, S., and Lassenius, C. ʹͲͲͺ. ǲDistributed Agile Development: Using Scrum in a Large Project,ǳ
Proceedings of the IEEE International Conference on Global Software Engineering, pp. 87-95, IEEE Computer Society. Paasivaara, M., and Lassenius, C. ʹͲͳͳ. ǲScaling Scrum in a Large Distributed Project,ǳ Proceedings of the International Symposium

on Empirical Software Engineering and Measurement. Paasivaara, M., and Lassenius, C. ʹͲͳͶ. ǲCommunities of Practice in a Large Distributed Agile Software Development
Organization—Case Ericsson,ǳ Information and Software Technology 56(12), pp. 1556-1577. Paasivaara, M., and Lassenius, C. ʹͲͳ͸. ǲScaling Scrum in a Large Globally Distributed Organization: A Case Study,ǳ Proceedings of

IEEE 11th International Conference on Global Software Engineering, pp. 74-83, IEEE Computer Society. Paasivaara, M and Lassenius, C. ʹͲͳͻ. ǲEmpower Your Agile Organization: Community-Based Decision Making in Large-Scale Agile Development at Ericsson,ǳ IEEE Software 36(2), pp. 64-69.

Paasivaara, M., Lassenius, C., and (eikkilä, V.T. ʹͲͳʹ. ǲ)nter-Team Coordination in Large-Scale Globally Distributed Scrum: Do
Scrum-of-Scrums Really Work?ǳ Proceedings of the 6th ACM-IEEE International Symposium on Empirical Software Engineering

and Measurement, ESEM 2012, Lund, pp. 235-238. Pawlowski, S.D., and Robey, D. ʹͲͲͶ. ǲBridging User Organizations: Knowledge Brokering and the Work of)nformation Technology Professionals,ǳ MIS Quarterly 28(4), pp. 645-672.

Petersen, K. and Wohlin, C. 2010 The effect of moving from a plan-driven to an incremental software development approach with
agile practices: An industrial case study. Empirical Software Engineering 15, pp. 654-693.

Putta, A., Paasivaara, M. and Lassenius, C., 2018. ǲBenefits and challenges of adopting the scaled agile framework ȋSAFeȌ: preliminary results from a multivocal literature review,ǳ Proceedings of the International Conference on Product-Focused

Software Process Improvement, pp. 334-351, Springer, Cham.

Qureshi, M.R.J. ʹͲͳʹ. ǲAgile software development methodology for medium and large projects,ǳ IET Software 6(4), pp. 358-363.

Ramesh, B., Mohan, K., and Cao, L. 2012. Ambidexterity in agile distributed development: an empirical investigation. Information

Systems Research 23(2), pp. 323-339. Read, A., and Briggs, R.O. ʹͲͳʹ. ǲThe Many Lives of an Agile Story: Design Processes, Design Products, and Understandings in a
Large-Scale Agile Development Project,ǳ Proceedings of the 45th Hawaii International Conference on System Sciences, Maui, HI,
USA.

Rolland, K.H., Fitzgerald, B., Dingsøyr, T., and Stol, K.-J. ʹͲͳ͸. ǲProblematizing Agile in the Large: Alternative Assumptions for Large-Scale Agile Development,ǳ Proceedings of the International Conference on Information Systems, Dublin, Ireland. Rolland, K.(., Ghinea, G., and Gronli, T. ʹͲͳͷ. ǲAmbidextrous Enterprise Architecting: Betting on the Future and (acking Path-Dependencies,ǳ Proceedings of the European Conference on Information Systems.

Rolland, K.H., Mikkelsen, V., and Næss, A. 2016. ǲTailoring Agile in the Large: Experience and Reflections from a Large-Scale Agile Software Development Project,ǳ Proceedings XP 2016, LNBIP 251, pp. 244-251.

Runeson, P. and Höst, M., "Guidelines for conducting and reporting case study research in software engineering," Empirical

Software Engineering 14, pp. 131-164, 2009. Russo, D. ʹͲʹͳ. ǲThe Agile success model: a mixed-methods study of a large-scale agile transformation,ǳ ACM Transactions on

Software Engineering and Methodology 30(4), pp. 1-46. Sabherwal, R., (irschheim, R. and Goles, T., ʹͲͲͳ. ǲThe dynamics of alignment:)nsights from a punctuated equilibrium model ,ǳ
Organization science, 12(2), pp.179-197. Šāblis, A., and Šmite, D. ʹͲͳ͸. ǲAgile Teams in Large-Scale Distributed Context:)solated or Connected?ǳ Proceedings of the Scientific

Workshop Proceedings of XP2016 p. 10. ACM. Schwaber, K. ʹͲͳ͵. ǲunSAFe at Any Speed. Ken Schwaberǯs Blog: Telling it like it is,ǳ

ACM Trans. Softw. Eng. Methodol.

https://kenschwaber.wordpress.com/2013/08/06/unsafe-atany-speed/ (Accessed 7 Jun 2019)

Scheerer, A., and Kude, T. 2014. Exploring coordination in large-scale agile software development: A multiteam systems
perspective. Thirty Fifth International Conference on Information Systems, Auckland, New Zealand.

Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M. and Olsson, H. H. 2014. Technical dependency challenges in large-
scale agile software development. In Proceedings of the International Conference on Agile Software Development: Agile

Processes in Software Engineering and Extreme Programming (Rome, Italy). Springer. Šmite, D., Moe, N. B., Levinta, G., and Floryan, M. ʹͲͳͻ. ǲSpotify Guilds: (ow to Succeed with Knowledge Sharing in Large-Scale Agile Organizations,ǳ IEEE Software 36(2), pp. 51-57. Søvik, (. and Forfang, M. ʹͲͳͲ, ǲTech Challenges in a Large-Scale Agile Project,ǳ Proceedings XP2010, LNBIP 48, pp. 353-361.

State of Agile, State of Agile Report 2022 16th Annual State of Agile Report, https://stateofagile.com/#

Stålhane, T., Myklebust, T., and Hanssen, G.K. 2012. ǲThe Application of Safe Scrum to)EC͸ͳͷͲͺ Certifiable Software,ǳ Proceedings

of the 11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and

Reliability Conference, Helsinki, Finland. Stettina, C. J., and Smit, M.N. ʹͲͳ͸. ǲTeam portfolio scrum: an action research on multitasking in multi-project scrum teams,ǳ
Proceedings of the International Conference on Agile Software Development, pp. 79-91, Springer, Cham.

Sundararajan, S., Bhasi, M., and Vijayaraghavan, P.K. ʹͲͳͶ. ǲCase Study on Risk Management Practice in Large Offshore-Outsourced Agile Software Projects,ǳ IET Software 8(6), pp. 245-257. Taylor, T, and Standish, T. ȋͳͻͺʹȌ ǲ)nitial thoughts on rapid prototyping techniques,ǳ ACM SIGSOFT Software Engineering Notes
7(5), pp. 160-166 Tessem, B. and Maurer, F. ʹͲͲ͹. ǲJob satisfaction and motivation in a large agile team,ǳ Proceedings of the International Conference

on Extreme Programming and Agile Processes in Software Engineering, pp. 54-61. Uludağ, Ö., Kleehaus, M. Ercelik, S. and Matthes, F. ʹͲͳͻ. ǲUsing Social Network Analysis to)nvestigate the Collaboration Between
Architects and Agile Teams: A Case Study of a Large-Scale Agile Development Program in a German Consumer Electronics Company,ǳ Proceedings of XP2019, LNBIP 355, pp. 137-153. van Waardenburg, G. and van Vliet, (. ʹͲͳ͵. ǲWhen agile meets the enterprise,ǳ Information and Software Technology 55, pp. 2154-
2171.

Vidgen, R., and Wang, X. 2009. ǲCoevolving Systems and the Organization of Agile Software Development,ǳ Information Systems

Research 20(3). Vinekar, V., Slinkman, C. W., and Nerur, S. ʹͲͲ͸. ǲCan agile and traditional systems development approaches coexist? An ambidextrous view,ǳ Information Systems Management 23(3), pp. 31–42.

Vlietland, J., van Vliet, H. 2015. ǲTowards a governance framework for chains of scrum teamsǳ. Information and Software

Technology 57, 52–65.

Wale-Kolade, AY. ʹͲͳͷ. ǲ)ntegrating usability work into a large inter-organisational agile development project: Tactics developed by usability designers,ǳ Journal of Systems and Software (100), pp. 54-66. Weiss, S. K., and Brune, P. ʹͲͳ͹. ǲCrossing the Boundaries–Agile Methods in Large-Scale, Plan-Driven Organizations: A Case Study from the Financial Services)ndustry,ǳ Proceedings of the International Conference on Advanced Information Systems

Engineering, pp. 380-393. Springer, Cham. West, D., Gilpin, M., Grant, T. and Anderson, A., ʹͲͳͳ. ǲWater-scrum-fall is the reality of agile for most organizations today,ǳ
Forrester Research, July 26 2011. Williams, L., and Cockburn, A. ʹͲͲ͵. ǲAgile Software Development:)tǯs About Feedback and Change,ǳ IEEE Computer 36(6), pp. 39-
43. Zheng, Y., Venter, W. and Cornford, T. ʹͲͳͳ. ǲCollective agility, paradox and organizational improvisation: the development of a particle physics grid,ǳ Information Systems Journal 21(4), pp. 303-333.

