
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Anne Mosvold Ørke

Giving the Police a Head Start

Norwegian Named Entity Recognition Dataset
and Model Development for Investigative
Purposes

Master’s thesis in Information Security (MIS)
Supervisor: Kyle Porter
Co-supervisor: Katrin Franke
August 2023

Anne Mosvold Ørke

Giving the Police a Head Start

Norwegian Named Entity Recognition Dataset and
Model Development for Investigative Purposes

Master’s thesis in Information Security (MIS)
Supervisor: Kyle Porter
Co-supervisor: Katrin Franke
August 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Giving the Police a Head Start: Norwegian Named
Entity Recognition Dataset and Model

Development for Investigative Purposes

Anne Mosvold Ørke

CC-BY 2023/08/01

Preface

First of all, I want to thank my supervisor Kyle Porter for all the help, support,
guidance and understanding. I also want to thank my co-supervisor Katrin Franke
for her support.

In addition I would like to thank Mads Skipanes for good input to the thesis and
an interesting discussion about the topic.

Anne Mosvold Ørke

iii

Abstract

Almost everyone owns digital devices, and digital evidence have become an im-
portant part of investigations. The large amount of digital devices and evidence
needing to be examined and analyzed leads to the digital forensics backlog, which
can cause delays and challenges in investigations. There exists Named Entity Re-
cognition (NER) models for investigative purposes in other languages and there
are Norwegian NER models, but there has not been done any research on a Norwe-
gian NER model for investigative purposes. To help mitigate this problem for the
Norwegian Police we propose a Norwegian NER model for investigative purposes.

We have collected and annotated domain specific Wikipedia articles and have
created a dataset that can be used to train a NER model for investigative purposes
in Norwegian. We have annotated the dataset with both general and investigative
labels. During different experiments with fine-tuning a BERT based Norwegian
Natural Language Processing (NLP) model, we found an optimized model which
achieved good results. Our optimized model achieved a precision of 0.904, a re-
call of 0.908 and a F1-score of 0.906. The entity type with the highest score is
vehicle, one of the domain specific entity types, with a F1-score of 0.973. 4 of the
entity types achieved F1-score over 0.9 and 7 achieved F1-score over 0.79. When
comparing the results of our model with other models, both models of investig-
ative purposes in other languages and a Norwegian general model, we saw that
our model performs as well as these models.

We were able to provide a proof of concept demonstrating that creating a Nor-
wegian NER model for investigative purposes is possible. In a real world scenario,
such a model should be trained on real investigation data. A NER model can not
be a 100% relied on, but it still has the potential to be a great tool for the police
and could help investigators save a lot of time.

v

Sammendrag

Nesten alle eier digitale enheter og digitale bevis har blitt en viktig del av etterfor-
skninger. Den store mengden med digitale enheter og bevis som må undersøkes
fører til et etterslep, som igjen kan føre til forsinkelser og utfordringer for etterfor-
skerne. Det har blitt laget Navngitt Enhetsgjenkjenning-modeller (NER) til bruk
i etterforskning for andre språk og det har blitt laget norske NER-modeller, men
det er ikke gjort noe forskning på norske NER-modeller til bruk i etterforskning.
For å prøve å løse dette problemet for det norske politiet foreslår vi en norsk NER-
modell til bruk i etterforskning.

Vi har samlet inn og annotert Wikipedia artikler relatert til kriminalitet og har
laget et datasett som kan brukes til å trene en NER-modell for norsk som kan
brukes i etterforskninger. Vi har annotert datasettet med både generelle etiketter
og etiketter spesifikke for etterforskning. Gjennom forskjellige eksperimenter med
å finjustere en BERT-basert norsk NLP-modell (Naturlig Språkprosessering) fant vi
en optimalisert modell som fikk gode resultater. Modellen vår fikk en presisjon på
0.904, en dekning på 0.908 og en F1-score på 0.906. Enhetstypen som gjorde det
best var kjøretøy, som er en av de spesifikke etikettene for etterforskning, som
fikk en F1-score på 0.973. 4 av enhetstypene fikk en F1-score på over 0.9 og 7 av
dem oppnådde en F1-score over 0.79. Når vi sammenlignet vår modell med andre
modeller, både modeller til bruk i etterforskninger for andre språk og en norsk
generell modell, så vi at vår modell gjorde det like bra som disse modellene.

Vi klarte å lage et konseptbevis for at det er mulig å lage en norsk NER-modell
til bruk i etterforskning. For å bruke modellen i faktiske etterforskninger burde
modellen være trent på reelle etterforskningdata. Man kan ikke stole 100% på
en NER-modell, men den har fortsatt potensialet til å bli et verdifullt verktøy for
politiet og den kan hjelpe etterforskere med å spare mye tid.

vii

Contents

Preface . iii
Abstract . v
Sammendrag . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
1 Introduction . 1

1.1 Background and Motivation . 1
1.2 Research Questions . 3
1.3 Contributions . 4
1.4 Thesis structure . 4

2 Background . 7
2.1 Neural Networks . 7
2.2 NLP . 7

2.2.1 NER . 8
2.2.2 Transformers . 10
2.2.3 Language Models . 11

2.3 Norwegian Dependency Treebank . 13
2.4 Evaluation metrics . 14

3 Related Work . 15
3.1 Artificial Intelligence and Machine Learning in Investigations 15

3.1.1 Natural Language Processing 16
3.1.2 Named Entity Recognition . 16

3.2 Norwegian Named Entity Recognition 19
4 Methodology . 21

4.1 Dataset . 21
4.1.1 Entity types . 21
4.1.2 Annotation Style . 23
4.1.3 Creating and Annotating The Dataset 23

4.2 Fine-tuning Model . 30
5 Results . 33
6 Discussion . 39

ix

x AMØ: Norwegian NER for Investigative Purposes

6.1 Answering Research Question 1: Creating a NER Model 39
6.2 Answering Research Question 2: Performance 39
6.3 Dataset . 42
6.4 Limitations . 44

6.4.1 Legal and Ethical Considerations 46
6.5 Nynorsk and Other Languages . 47

7 Conclusion . 49
7.1 Future Work . 49

Bibliography . 51
A Sikt Application Assessment . 57
B Scraping Script . 61
C Annotation Script . 63
D Split Script . 65
E Training Script . 67
F Performance Script . 81

Figures

2.1 Neural Network . 8
2.2 NER example . 8
2.3 IOB2 . 10
2.4 Transformers architecture . 11
2.5 F1-score formula . 14

3.1 Information Extraction System . 18

4.1 Methodology . 21
4.2 Annotation example . 27
4.3 Training illustration . 29

5.1 Epoch evaluation . 35

xi

Tables

4.1 Crime type distribution in dataset . 24
4.2 Distribution of entity types . 28
4.3 Size of dataset . 28

5.1 F1-score on different amounts of training and test data - 1 33
5.2 F1-score on different amounts of training and test data - 2 34
5.3 Distribution of files . 34
5.4 F1-score on different amounts of training data and same test data - 1 34
5.5 F1-score on different amounts of training data and same test data - 2 34
5.6 Performance on different amounts of training data and same test

data . 35
5.7 F1-score on different number of epochs - 1 37
5.8 F1-score on different number of epochs - 2 37
5.9 Performance on different number of epochs 37
5.10 Performance with different learning rates 38
5.11 Performance of final model . 38

6.1 Performance comparisons . 41

xiii

Code Listings

4.1 Collect and structure Wikipedia files 25
4.2 Initial annotation and structure data 26
4.3 Splitting the data in train, validation and test 29
4.4 Excerpt of training script . 31

B.1 Scraping Script . 61

C.1 Annotation Script . 63

D.1 Split Script . 65

E.1 Training Script . 67

F.1 Performance Script . 81

xv

Acronyms

AI Artificial Intelligence. 2, 7, 11, 15, 47

BERT Bidirectional Encoder Representations from Transformers. v, 9, 12, 13, 18,
30, 40–42, 49

BiLSTM Bidirectional Long Short-Term Memory. 20

BIOLU Beginning-Inside-Outside-Last-Unit. 9

CNN Convolutional Neural Network. 20

CRF Conditional Random Fields. 9, 17, 19, 20, 41

DL Deep Learning. 7

ELMo Embeddings from Language Model. 13

EU Europeian Union. 47

IOB Inside-Outside-Beginning. xi, 9, 10, 19, 23, 25

IOBE Inside-Outside-Beginning-End. 9

IOBES Inside-Outside-Beginning-End-Start. 9, 20

IOBS Inside-Outside-Beginning-Start. 9, 23

LDA Latent Dirichlet Allocation. 16

LSI Latent Semantic Indexing. 16

LSTM Long Short-Term Memory. 9, 10, 19

LSTM-CRF Long Short-Term Memory and Conditional Random Field. 9, 19, 40

ML Machine Learning. 2, 7, 9, 14, 15, 47

MLM Masked Language Modeling. 12

xvii

xviii AMØ: Norwegian NER for Investigative Purposes

NDT Norwegian Dependency Treebank. ix, 13, 19, 20

NER Named Entity Recognition. v, ix–xi, 2–5, 7–9, 11–21, 23, 25, 26, 30, 39–50

NLN National Library of Norway. 13

NLP Natural Language Processing. v, ix, 2, 7, 12, 13, 15, 16, 19, 30

NoTraM Norwegian Transformer Model. 13, 30

NSP Next Sentence Prediction. 12

POS Part-of-Speech Tagging. 8, 12, 13, 16, 30

ReLU Rectified Linear Unit. 10

SVM Support Vector Machine. 9, 16, 18

Chapter 1

Introduction

1.1 Background and Motivation

More and more of the world’s population now owns digital devices, and a lot of
people own more than one. This, alongside increased storage capacities, leads to
a lot of digital evidence in investigations which needs to be examined to identify
potential evidence. Digital evidence is gathered in all kinds of investigations and
can, as all other kinds of evidence, lead to major breakthroughs in an investigation
[1].

Investigators collect a lot of different types of digital evidence, like text, mes-
sages, images, and videos [1]. This can be gathered from a large variety of devices,
for instance smartphones, laptops, social media and smartwatches. Lately the
amount of collected digital evidence in investigations have increased, in addition
digital devices and evidence that needs examining is collected in a lot more cases
[2]. This results in a large amount of evidence that needs to be examined. Di-
gital forensics, examining and analyzing all the digital evidence, can be very time
consuming and take a long time. Digital Forensics Laboratories therefore have a
hard time keeping up with all the digital evidence that needs examination. This
leads to the digital forensics backlog, where devices and evidence are waiting to be
examined and analyzed. The digital forensics backlog could further cause delays
in investigations [3].

If investigations are slowed down it can potentially result in harmful con-
sequences. Casey et al. [3] discusses that criminals might get time to commit more
crimes or hide additional evidence before the investigators find them. In addition
they discuss that it might be more difficult for the investigators to perform in-
terviews with suspects if they do not have access to all the evidence. It might be
harder to design interrogating questions and the suspect might easier confess if
conclusive evidence is presented. Digital devices can also contain time-sensitive
evidence which can help prevent additional harmful crime. Casey et al. [3] also
discusses that if the investigators do not get access to this evidence in time, people
might get hurt. Getting access to all evidence early in the investigation could help
the investigators to locate additional important evidence before it gets deleted or

1

2 AMØ: Norwegian NER for Investigative Purposes

lost. If someone is falsely accused it can cause a lot of harm to them if evidence
is not examined in time and they are not acquitted. Their reputation might be
harmed, they might lose their job and lose contact with friends and family [3].

In a perfect world the investigators should examine all the gathered evidence.
But with the time limitations they have, going through all the evidence could lead
to the examination being done in a rush, which again can lead to mistakes or
compromised evidence. If the investigators on the other hand do not go through
all the evidence it may lead to the most valuable evidence not being found. There
is therefore a need for a method to help examining evidence more efficiently [3].
Both Scanlon [2] and Casey et al. [3] discuss methods that can be used to deal
with the digital forensics backlog. But even with these methods there is a need for
more ways to make examining and analyzing digital evidence more efficient.

The digital forensics backlog can be seen as a big data problem, and Artificial
Intelligence (AI) can often be used to solve these kinds of problems. Du et al. [4]
have looked at different AI approaches in digital forensics. Among other things,
they look at file fragment classification and a data mining and ML approach to
prioritize devices. They also look at using AI for encrypted evidence and evidence
reconstruction. For classifying file fragments, one approach that is discussed is
using Natural Language Processing (NLP). NLP is a subfield of AI that processes
human language and includes both speech and text [5].

Named Entity Recognition (NER) is a subfield of NLP, which according to Mo-
hit [6] is "the problem of locating and categorizing important nouns and proper
nouns in a text". A NER model will identify and classify different kinds of nouns
and proper nouns, like names and locations. This can be of great value in an in-
vestigation to locate interesting words and phrases in text without explicit need
of a keyword list, or prior knowledge of specifics of the case. Investigators often
encounter large amounts of texts which are infeasible to examine thoroughly. The
current approach to finding relevant information in text without reading through
everything is keyword and regex searches. But in many cases the investigators
may not have the necessary knowledge and information that is needed to know
what they should search for [7]. NER is a ML approach to solve this problem,
which can identify possibly valuable and relevant information without having to
explicitly search for it.

Chau et al. [8] and Wu et al. [9] have looked at using NER for investigative
purposes and they have achieved promising results. Jørgensen et al. [10] have
published a dataset and created a model for Norwegian NER, but as of now there
are no Norwegian NER models for investigative purposes. Using NER could be
very valuable for the Norwegian Police and it could help make processing text in
investigations more efficient. Since it does not exist any model for this specific
domain in Norwegian, the police will have to create their own annotated dataset
and train their own model if they are interested in using NER in their investiga-
tions. Since such a model would need to be trained on real forensic data, which
can not be published publicly due to privacy concerns, the police need to create
the model themselves. But it would still be of great value for the police if there

Chapter 1: Introduction 3

existed a proof of concept which could show them if it is possible to create an
efficient model and how that could be done. We are therefore doing research in
a similar domain, but will less sensitive data, which still has the potential to be
applicable to the police and serve as a proof of concept.

Using NER in investigations could be very useful for investigators and help in
different ways. Chau et al. [8] looks at using NER to find valuable entities in police
narrative reports, which can be used for further analyses in an investigation or for
crime pattern recognition to avoid future incidents. Wu et al. [9] created a NER
model for use in public opinion monitoring to help law enforcement alert about
crimes before they happen. When it is not feasible to read through all the evidence,
NER can help to identify valuable and important evidence in large amounts of text.
It can extract words from the texts, which then also can be a possible means of
triage. The extracted words can give an indication to which texts could contain
valuable evidence.

Being able to use NER to prioritize the evidence and be more efficient in find-
ing conclusive evidence could be very valuable and useful for law enforcement and
digital forensics laboratories and it could help them to reduce the digital forensics
backlog. Getting rid of the digital forensics backlog and speeding up investiga-
tions could help avoid the harmful consequences of a delayed investigations and
is of great benefit for both the law enforcement, the investigators and the general
public.

A NER model can be used on both collected evidence, on reports and tran-
scribed interviews. By identifying the named entities in the texts it can help the in-
vestigators to find important parts faster. Instead of reading through the whole text
to see if it mentions something important they can look at the identified named
entities. It could be very valuable if the investigators have collected a large amount
of text messages to be able to automatically check if there is any mentions of for
instance drugs or weapons. If they are for instance looking for a car in relation
to a crime they are trying to solve, it would be very valuable to be able to extract
any mentions of specific cars from the text they have available without having to
read through everything. A NER model could be a great tool for investigators to
locate where interesting information can be found in the evidence and texts they
have, and hence help them to prioritize the evidence. A NER model could also be
used for tasks such as crime detection and prevention such as in Wu et al. [9].

1.2 Research Questions

Using a NER model in investigations could be very interesting for the Norwegian
Police. There are already NER models for investigative purposes and Norwegian
NER models, but there have not yet been created a Norwegian NER model for
investigative purposes. The purpose of this research project is to create such a
model. We also want to look at what performance we can achieve. We therefore
have the research questions:

4 AMØ: Norwegian NER for Investigative Purposes

1. How can we develop a Norwegian NER model fine-tuned for investigation,
with the restriction of using open-source data?

2. What kind of precision, recall and F1-score could such a model acheive and
how does it compare with the state-of-the-art Norwegian NER model trained
for general purposes and NER models created for investigative purposes in
other languages?

1.3 Contributions

The contributions of this master thesis is a dataset and fine-tuned Norwegian NER
model for investigative purpose. We have also done experiment on what kind of
performance the model can achieve. Before we created the dataset we first needed
to define the labels we were going to use, which means what categories of words
the NER model is going to classify. We talked to an investigator and consulted
literature to figure out what labels were most reasonable to use. We then created
a dataset with crime related text collected from Wikipedia and added the general
and investigative NER labels, before we fine-tuned a pretrained model with the
domain specific dataset we created. We have quantitatively evaluated the model
and measured the precision, recall and F1-score and were able to create a model
with good performance. Our model achieved scores as well as other NER models
for investigative purposes and the Norwegian NER models. The best F1-score we
achieved for the different entity types were 0.973 for vehicle and 0.949 for person.
To other entity types also got a F1-score over 0.9 and 4 more got a F1-score over
0.79. The overall performance our model achieved was a precision of 0.904, a
recall of 0.908 and a F1-score of 0.906. The equivalent Norwegian NER model,
with just general entity types, got a F1-score of 0.91. This is a little bit higher than
our score, but for the different entity types our model performed better on some
of them. When it comes to other domain specific NER models our model performs
better than several of them.

1.4 Thesis structure

The thesis is structured in the following chapters:

Introduction The introduction chapter gives an introduction of the problem and
topic. The research questions and the contribution are also introduced.

Background This chapter consists of the background theory that is needed to
understand the research that has been done, like NER and Transformers.

Related Work Related work reviews the research that has already been done on
the area, including NER for investigative purposes in other languages and
Norwegian NER models.

Chapter 1: Introduction 5

Methodology The methodology chapters presents the methods we used and how
we created the dataset and trained the model. It reviews all the parts of the
process and also how we evaluated the model.

Results This chapter presents the results from the experiments we did with the
dataset and model we created.

Discussion The discussion chapter discusses the results and compares it to other
similar research. It also looks at how a Norwegian NER model for investig-
ative purposes could be used and what limitations it has. This chapter also
suggests future work and answers the research questions.

Conclusion The last chapter concludes the research.

Appendix This chapter contains additional documents, like the full scripts that
have been used.

Chapter 2

Background

This chapter will go over the background theory that is needed to understand this
master thesis. It will first cover some general concepts like Neural Networks and
Natural Language Processing (NLP), before it goes into Named Entity Recognition
(NER), Transformers and language models. It also covers evaluation metrics.

2.1 Neural Networks

Neural networks is a very popular method for ML. Neural networks can learn
from input data and can then be used to perform tasks, both for classification and
regression. A neural network consists of nodes, also referred to as a neuron, and
links. The nodes are connected by directed links and each link has a weight. The
neural networks are arranged in layers and nodes in one layer receives input from
nodes in the previous layer. The layers between the input and output layer are
called hidden layers, and a neural network can have multiple hidden layers [11].
Most standard neural networks only have 2 or 3 hidden layers, but some have
up to 150 hidden layers and they are called deep neural networks. Deep neural
networks are considered Deep Learning (DL) [12]. Each node in the network will
compute the weighted sum of the input to the node and then use an activation
function to compute the output of the node. The output layer will compute the
final output of the neural network. To train a neural network, the error in the
output is used to back-propagate through the network and compute new weights.
When sending input into a neural network, the neural network will give an output
with the predicted value for regression or the probability of the instance belonging
to the different classes for classification [11]. Figure 2.1 shows a simple illustration
of a neural network.

2.2 NLP

NLP is the part of AI that regards processing natural human language. It re-
gards both text and speech and uses linguistics, statistics, ML and DL to create

7

8 AMØ: Norwegian NER for Investigative Purposes

Figure 2.1: Simple illustration of a neural network

Figure 2.2: Example of NER tags on a sentence

algorithms and models that can perform a variety of tasks, like machine trans-
lation, Part-of-Speech Tagging (POS) and NER [5][13]. According to Ukwen and
Karabatak [5] NLP "allows us to understand the structure and meaning of natural
human language by analyzing different aspects of grammar, semantics, pragmat-
ics, and morphology".

2.2.1 NER

Named Entity Recognition (NER) is a subfield of NLP that regards identifying
different entities in a text. The entities can for instance be person, location and
organization. Given a set of labels or categories, the goal of a NER model is to
categorize each word in a text with the correct label/category [6]. Figure 2.2
shows an example of NER applied to a sentence.

There are different approaches to NER. The most basic approach is lexical
lookup, where lexicons are created with the most popular entities. Phrases are
then compared with the entities in the lexicon. The lexical lookup approach will
find every occurrence of a phrase in the lexicon, but will not be able to recognize
new entities. Other methods are therefore needed. A lot of systems uses more
than one approach [8]. For some time, the most popular approach was rule-based,
which can work well for small domains. The rule-based approach is based on some
rules and a lexicon which determines if a text phrase is a named entity or not.
The rules tells the system how to identify named entities, like that a capitalized
first name and a capitalized last name is a person. This approach works well with
few entity types, but does not scale to many entity types and is not as good with
unstructured text.

Chapter 2: Background 9

When more and more data became available, a statistical approach became
more popular. The statistical approach is based on annotated training data, where
the training data is labeled with the corresponding entity type. A statistical model
is then used to find the probability of the text phrase being specific entity types
[6][8].

The last approach is Machine Learning (ML), where there is no need to create
any lexicon or rules. This has become the most used technique when it comes to
NER. Instead of creating rules manually, which still might not be able to detect all
named entities, ML algorithms will use training examples to learn how to detect
all named entities in the best way possible. There exists a lot of different machine
learning algorithms, and a lot of them can be used for NER [8][14]. This includes,
among others, decision trees, Support Vector Machine (SVM) and neural net-
works [14]. Newer methods that can be used for NER is Long Short-Term Memory
(LSTM), Conditional Random Fields (CRF) and the combined method Long Short-
Term Memory and Conditional Random Field (LSTM-CRF), which are also neural
architectures. Recently Transformers and Bidirectional Encoder Representations
from Transformers (BERT) have become very popular. All these methods need
training data [15].

The preferred algorithm to use for NER can be different based on what the goal
is. Some algorithms are often more popular than others, and this changes over
time [8] Today Transformers and BERT are some of the most popular approaches
to use for NER [16][17].

Annotation styles

When creating datasets for training NER models, a way to identify which words or
phrases are a named entity is needed. There exists multiple annotation styles for
this. The annotations are added to each word, or token, in the dataset to indicate
if it is a part of a named entity or not. The most basic annotation style is Inside-
Outside-Beginning (IOB), but there exists many other variations. With the IOB
annotation style a B-label is added to the token if it is the start of a named entity
and the previous token have the same entity type but is not a part of the same
entity. The I-label is used on tokens that are a part of a named entity and is not
tagged with a B-label. The O-label identifies tokens that is not part of a named
entity [18]. How the O-label is used can be seen in Figure 2.3.

The Inside-Outside-Beginning-End-Start (IOBES) annotation style have the
same I, O and B labels, but in addition they have the E and the S labels. The
E-label is the end-token of an entity with multiple words, while the S-label is used
on entities with only one token. This style is sometimes also called Beginning-
Inside-Outside-Last-Unit (BIOLU), where the L is the last token in a entity and U
stands for unit length entities. There also exists IOB variations with just the E-
label, Inside-Outside-Beginning-End (IOBE), and just the S-label, Inside-Outside-
Beginning-Start (IOBS) [10].

Some NER models is trained with the IOB2 style, which is very similar to the

10 AMØ: Norwegian NER for Investigative Purposes

Figure 2.3: Example of a sentence annotated with the IOB2 style

IOB style. The only difference is that for all named entities, the first token in the
named entity is tagged with the B-label [10]. An example of a sentence annotated
with the IOB2 style is provided in Figure 2.3.

2.2.2 Transformers

For a long time recurrent neural networks and LSTM were the standard approaches
for processing language [19]. Vaswani et al. [19] proposed a new architecture, the
Transformer, which is more computational efficient and have improved perform-
ance. The Transformer architecture uses an encoder-decoder structure, like a lot
of other models. In a encoder-decoder structure, the encoder encodes the input,
assigns numbers to the words, before the decoder decodes the input into an output
value, transform the numbers back to words. Both the encoder and the decoder
uses fully connected self-attention layers, where all nodes in one layer is connec-
ted to all nodes in the next layer. Attention is a mechanism that allows the model
to learn which input is most important.

The encoder in the Transformer architecture has 6 layers. Each of the layers
consists of a self-attention mechanism and a feed-forward network. The decoder
also has 6 layers, with a self-attention mechanism, a feed-forward network and
mechanism that does multi-head attention on the output from the encoder. The
attention functions computes an output based on the weighted sum of values in
a set of key-value pairs. The weights are based on a compatibility function, a
function that computes the probability different outputs, of a query and a cor-
responding key. In the encoder the self-attention layer uses the output from the
previous layer in the attention function. The self-attention layer in the decoder is
a bit different from the one in the encoder. It is modified to make sure that the
predictions only rely on the output from the positions up to the current position in
the sequence of text. The feed-forward networks in the encoder and the decoder
is fully connected. Two linear transformations and a Rectified Linear Unit (ReLU)
activation is applied to all the positions in the sequence [19]. An illustration of
the Transformers architecture is provided in Figure 2.4.

The advantages of the self-attention layers in this architecture is that the com-
putational complexity is lower than with other methods. In addition a lot more
computation can be parallelized. The translation models Vaswani et al. [19] cre-
ated and tested performed a lot better then previous models. They also tested if
the Transformer architecture could be used for other tasks than translation and
they achieved good performance on that as well [19].

After the creation of the new Transformer architecture, this has been a very
popular approach for NLP and is widely used for all NLP tasks. It has a lot of

Chapter 2: Background 11

Figure 2.4: An illustration of the Transformers architecture, which shows the
encoder and the decoder with the attention functions. Yuening Jia[20], CC BY-SA
3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

advantages, like efficient training and it is scaling well, and in addition it works
well with long sequences. The Transformer architecture is also beneficial for pre-
training. Pretraining means that models are trained on a general dataset which
can then be easily further trained, fine-tuned, to specific tasks with good perform-
ance. A pretrained model can be fine-tuned to a lot of different tasks, like text
classification, translation and NER [16].

Wolf et al. [16] created a library in Huggingface, an AI community, called
Transformers, where the Transformer architecture is implemented and pretrained
models are available.

2.2.3 Language Models

According to Kapronczay [21] a language model is "a probability distribution over
words or word sequences". These probabilities say something about how likely it
is that this word fits into the sentence based on the data the language model is
trained on. Language models are used to process language and gives an under-
standing of the natural way language is used that makes machines able to do a lot

12 AMØ: Norwegian NER for Investigative Purposes

of different tasks in NLP [21]. These tasks includes for instance translation, POS,
answering questions and NER.

In traditional language models, which are unidirectional, the probability of a
word is dependent on the previous words in the sequence. This is not always a
good solution, since the context of a word is often understood by the next words
in the sequence. In addition this approach is not as well suited for fine-tuning and
it is not very scalable [21][17].

New bidirectional language models have been proposed that take both the
previous and next words in the sequence into consideration. These are masked
language models. Masked language models will mask some of the words in the
input randomly, before it predicts those words. It is trained to predict the masked
words by taking the context of the words before and after into account. These
kinds of models is fitting for tasks where the context is important, like NER and
translation, since it looks at the words in both directions. The traditional unidirec-
tional language models on the other hand is more fitting for tasks where text is
generated, since it there is no words after the current to take into consideration
[17][22].

BERT

Devlin et al. [17] discusses that the unidirectional language models have limita-
tions when it comes to pretrained models. As previously mentioned it is sometimes
important to take the context in both directions in the sequence into considera-
tion. They therefore present a new language representation model called Bidirec-
tional Encoder Representations from Transformers (BERT), which is a masked
and bidirectional language model. BERT is pretrained on unlabeled data. All the
parameters in the pretrained model can then be fine-tuned with labeled data to be
fitted to different tasks. The architecture behind BERT is based on the Transformer
architecture Vaswani et al. [19] proposed. According to Devlin et al. [17]"BERT’s
model architecture is a multi-layer bidirectional Transformer encoder". There are
mainly two BERT models, BERTBASE and BERTLARGE. The BERTBASE model has 12
layers, while the BERTLARGE model has 24 layers.

The input to BERT models may be either just one sentence or two sentences,
making it able to perform a large variety of tasks [17].

When Devlin et al. [17] pretrained the BERT model, they pretrained it on
two unsupervised tasks, Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP). The MLM part is the reason that BERT is bidirectional and is
done by randomly masking 15% of the input. The model will then predict the
masked input. Many NLP tasks deals with the relationship between sentences. By
just using MLM the relationship between sentences is not captured. Therefore it
is also pretrained on NSP. Two sentences is then used as input, together with a
label that says if the second sentence follows the first sentence or not. For 50% of
the dataset the sentences follow each other. BERT is trained on BookCorpus [23]
and Wikipedia articles [17].

Chapter 2: Background 13

Because of the Transformer architecture, BERT can easily be fine-tuned to a
lot of different tasks, and because of the way it is pretrained it can be fine-tuned to
tasks regarding both single sentences and pairs of sentences. In the process of fine-
tuning, all the parameters are modified to fit the specific task by sending in inputs
and outputs for the specific task into the model. Since the BERT model is already
pretrained, fine-tuning it for specific tasks do not require a lot of computational
resources [17].

Devlin et al. [17] tested BERT on 11 different tasks. They fine-tuned BERT for
different tasks and tested the performance of the fine-tuned model. In all cases
the BERT model performs better than previously tested models.

Norwegian Language Models

Kummervold et al. [24], with the project Norwegian Transformer Model (No-
TraM), created BERT-based pretrained language models in Norwegian. They used
texts from the National Library of Norway (NLN) to create a large Norwegian
corpus. The corpus they created consisted of both the written variations of Norw-
gian, 83% Bokmål and 12% Nynorsk, and has 109GB of Norwegian text. As Devlin
et al. [17] did, Kummervold et al. [24] also used masked language modeling to
train their model. They wanted to create a model that could be fined-tuned to
all kinds of tasks for Norwegian. The model they created, called nb-bert-base,1

outperformed existing models [24].
Kutuzov et al. [25] have also created a Norwegian language model based on

BERT, called NorBERT. They used news texts and Wikipedia texts, in total around
2 billion tokens and the model they created were a joint model for Bokmål and
Nynorsk. They also created two models based on Embeddings from Language
Model (ELMo), which uses embedding and vectors, which had sligthly lower per-
formance, while the computational time was a lot lower in terms of training. The
NorBERT model was tested on different NLP tasks and compared to among others
the nb-bert-base model. There is not very much difference in the scores and dif-
ferent models performs better for different tasks. While NorBERT performs best
on sentiment analysis, nb-bert-base performs best on POS and NER [25].

2.3 Norwegian Dependency Treebank

For some NLP tasks, like POS, the syntactic and semantic of a sentence is needed.
A treebank is a corpus that has annotated syntactic or semantic information. Sol-
berg et al. [26] created a treebank for Norwegian called Norwegian Dependency
Treebank (NDT). The NDT includes both Bokmål and Nynorsk, and it has 311 000
tokens in Bokmål and 303 000 tokens in Nynorsk. The corpus consists of different
types of text, like government reports and blogs, but it mostly consists of news-
paper text. The treebank have been annotated with morphological and syntactic
information [26].

1https://huggingface.co/NbAiLab/nb-bert-base

14 AMØ: Norwegian NER for Investigative Purposes

2.4 Evaluation metrics

Precision, recall and F1-score are the standard evaluation metrics to use for clas-
sification tasks, especially when the data is imbalanced between positive and neg-
ative samples, and a lot of the research that is discussed in Section 3 uses these
metrics. Precision tells how precise a model is. In a binary classification prob-
lem with the classes positive and negative, precision calculates how many of the
predicted positives are actually positive. In a multiclass classification problem it
calculates how many of the predicted instances of a class is classified correctly.
Precision is very useful in situations where classifying an instance as the wrong
class is harmful [27].

Recall regards if the model is able to capture all the instances of a class. It
calculates how many instances of an entity the model classified correctly. This
means how many of the actual positives the model classifies as positive. This is
valuable when it is important to detect every instance of an entity [27].

Accuracy is often used as a evaluation metric, but in situations where there
are large differences between the number of instances in each class, like it is in
NER, the F1-score is a more fitting metric. The F1-score is a combination of the
precision and recall and the formula is shown in Figure 2.5 [27]. These metrics
gives a good overview of the performance of a ML classification model and gives
a good basis for discussing how suited the model is for the problem at hand.

Figure 2.5: Formula for F1-score

Chapter 3

Related Work

The related work chapter goes over what research is alredy done in the field. We
first look at some more general research on using AI and NLP in investigations,
before we look at previous research on using NER for investigative purposes. Lastly
we look at research done on Norwegian NER.

3.1 Artificial Intelligence and Machine Learning in Invest-
igations

AI can be very useful for law enforcement and can help mitigate the digital forensics
backlog. There are a lot of different use cases for AI and ML in investigations and
various methods can be used to make investigation more efficient. Garfinkel et al.
[28] proposed a solution for using classification to determine the ownership of
data when examining storage media. Marturana et al. [29] researched a method
to prioritize mobile devices in an investigation and figure out if they contained
evidence that a specific crime had been committed. They tried out different clas-
sification algorithms and different scenarios. The classification algorithms they
did experiments on were Bayesian Networks, Decision Tree and Locally Weighted
Learning. They then tested them with different quantities of training data and
different test approaches, like k-folds cross-validation and a separate test set. The
different scenarios achieved varying results, where one algorithm performed bet-
ter in one scenario while another performed better in another, but the results still
showed promise in the approach. Encrypted evidence can be a substantial chal-
lenge in investigations. AI can be used to retrieving the cryptographic key and
learning valuable information about the data without decrypting it [4]. Khan et
al. [30] researched a method for reconstructing the timeline of an event based on
activities on a file system. This is done with artificial neural networks. Images can
be very valuable in investigations and it has been done research on using AI to
both identify objects in images and detect forged images [4]. All these methods
could help investigators save a lot of time.

15

16 AMØ: Norwegian NER for Investigative Purposes

3.1.1 Natural Language Processing

NLP can also be very useful in investigations and there have been done some
research on this. Fitzgerald et al. [31] used NLP techniques for file fragment clas-
sification using Support Vector Machine (SVM). File fragment classification can
be very useful for carving, or reassembling, files that are not stored on the same
place on a hard drive.1

Multiple researchers have looked at using topic modeling techniques in in-
vestigations. Du et al. [32] created a model based on Latent Semantic Indexing
(LSI) and WordNet to find emails with interesting content. WordNet is a lexical
database, while LSI is an indexing model which finds topics in documents. Topic
modeling is something that can be used in investigations to find relevant doc-
uments in the evidence by identifying the topics in documents. Waal et al. [33]
used a Latent Dirichlet Allocation (LDA) model to do this and concluded that topic
modeling can be very useful for identifying the context of documents.

When it comes to mobile forensics, O’Day and Calix [34] created, and made
publicly available, a text message corpus. The idea is that it can be used to develop
NLP techniques that can be used to analyze messages on phones and on social
media in an investigation. They also tested the corpus with a Naïve Bayes classifier
to detect messages that were drug related [34].

A lot of interesting and relevant information can be found on social media
and this information can be very valuable in an investigation. Keretna et al. [35]
proposed a method for extracting features about writing style, with a POS tagger,
to authenticate accounts on social media. Lau et al. [36] also looked at using NLP
methods to analyze social media data. They created a supervised network mining
method to detect cybercriminal networks on social media. Another research that
has seen the importance of social media and online communication is the work of
Sun et al. [37]. They created a digital investigation platform that used both unsu-
pervised and supervised NLP methods to analyze messages and communication,
and assist investigations. Their solution first takes in data from a communication
network and represents it as a graph with individuals as vertices and messages as
edges. Topic modeling is done on the messages before a classification algorithm is
used to determine if something criminal is happening. The platform they created
performs better than existing solutions with a F1-score of 0.65. Existing solutions
only has a F1-score of 0.59. The precision of this system is 0.83, while existing
solutions only achieves 0.58.

3.1.2 Named Entity Recognition

Earlier research has studied the application of NER for investigative purposes.
Chau et al. [8]made a named entity extractor based on neural networks. They saw
a need for more efficient methods to extract important and valuable information

1File carving is the process of reassembling computer files from fragments in the absence of
filesystem metadata.

Chapter 3: Related Work 17

from police narrative reports and that the method could be used for crime pattern
recognition as well. The system they created consists of three parts:

Noun Phraser The first part is a noun phraser which extracts the noun phrases
that are later candidates for named entities.

Finite State Machine The next part is a finite state machine. The finite state ma-
chine does lexical lookup on the found noun phrases, and the word before
and after. Then the phrases gets a score based on if a match is found.

Neural Network The last part is a neural network which then predicts the entity
type of the noun phrases.

To figure out which entity types would be most useful in an investigation Chau
et al. [8] talked to detectives and analysts at the Tucson Police Department. The
entities they then concluded on using were person, address, vehicle, narcotic drug
and personal property. The lexicons were also created mainly with data from the
Tucson Police Department.

To test the system Chau et al. [8] did experiments on police narrative reports
from the Phoenix Police Department. Since the data were real data it was quite
noisy and had a lot of typos, which potentially make the extraction more difficult
and lead to lower performance, but it also allowed them to test the system on
actual data and it would give a more realistic performance measure. The results
they got shows that the system is quite good at extraction people and drugs. For the
person entity they got a precision of 0.741 and a recall of 0.734. When it comes
to drugs they got a precision of 0.854 and a recall of 0.779. The vehicle entity
type was not tested since there was not enough occurrences of it in the test data.
The address and personal property entities had precision and recall around 0.5.
One reason address got such low performance is that the researcher later found
that there was an error in the lexicons. For the personal property entity the low
performance was expected since it can include a lot of different objects and is
therefore hard to identity.

Yang and Chow [7] also saw that there was a need for a more efficient way
to extract valuable information from large amounts of text in investigations. They
saw that the methods used in investigations, like keyword searches, have some
downsides. To do a keyword search you first need to know what keywords to
search for and in addition it might be more matches to the keywords than the
investigators are able to efficiently go through. They therefore looked at creating
an information extraction system to be used in investigations, which can extract
knowledge and data from text. It consists of two parts. The first part is NER, which
identifies people, organizations and locations. The next part is relation extraction.
In investigations there is often a large amount of data, and it can then be valuable
to find relations between the found named entities.

The NER part combines a rule-based and a machine learning approach to NER
by using the results from both approaches. The machine learning part is a CRF

18 AMØ: Norwegian NER for Investigative Purposes

Figure 3.1: Illustration of the information extraction system from Rodrigues et
al. [39].

model. The relation extraction phase of the system is a modified Apriori algorithm
that finds relations in data. To test the system Yang and Chow [7] annotated a
cleaned dataset created by Klimt and Yang [38] which consists of about 200,000
emails. The NER part of the system got a F1-score of over 0.82 for all the entity
types, and the organization entity got the highest F1-score with 0.91.

Other researchers have also looked at using NER in an information extraction
system for investigations, like Rodrigues et al. [39]. They propose an information
extraction system to be used in investigations to analyze text and extract inform-
ation from text, that consists of 9 steps. An illustration of the 9 steps is provided
in Figure 3.1. Step 5 in the system is NER. The system has multiple NER models
and which one to use in each case is chosen in step 4. The models are trained on
different languages and are able to identify different entity types. There is also a
multilingual model. All the models are based on BERT. After NER is performed in
step 5, the extracted entities will be used to create a graph of relations. Rodrigues
et al. [39] trained multiple NER models. In their experiments they trained mod-
els in English and Portuguese, and trained models on different datasets and on
different BERT variations. The best F1-score they got on English was 0.91 and on
Portuguese it was 0.9. When Devlin et al. [17] did experiments with NER on the
BERT model they achieved F1-scores of around 0.95. Getting a score of 0.91 on a
domain specific NER model is therefore quite good.

There has also been proposed a NER model for crime by Shabat et al. [40].
They saw that there can be a lot of interesting and valuable information in media
channels, which could result in a lot of text in investigations that is time consum-
ing and difficult to analyze manually. They therefore proposed a crime domain
specific NER system. To create the dataset to train their model they used manu-
ally annotated data from the Malaysian National News Agency (BERNAMA). The
articles that regarded crimes were annotated with the entities weapon, location
and nationality. To test their dataset they used both a SVM classifier and a Naïve
Bayes algorithm and did 10-fold cross-validation on both. The SVM performed
best and got a F1-score of 0.91 for weapons, 0.96 for nationality and 0.89 for loc-
ation. SVM is better for datasets with a lot of features and will therefore probably

Chapter 3: Related Work 19

work better than the Naïve Bayes algorithm with this type of problem [40].
Wu et al. [9] saw that a lot of crimes were planned using social media and

looked at using Chinese NER to detect this and alert the law enforcement before
the crime occurs. The corpus they used had a normal part and a specialized crime
part. They used four entity types, person, location, organization and crime and
tagged the corpus with the IOB2 tagging style. They used a LSTM-CRF model
to do experiments on the created corpus. This is a model that combines a LSTM
model and CRF model. The LSTM model is a type of neural network that works
especially well for sequential data, like a sentence. The CRF part is an effective
way to label serialized data. The LSTM-CRF model was in these experiments used
to find the probability of the target classes.

The results Wu et al. [9] achieved were quite good. When they tested on just
the normal part of the corpus they got a precision of 0.904, a recall of 0.863 and
a F1-score of 0.883. When also testing on the crime part they got a little lower
score. The precision was then 0.876, the recall 0.832 and the F1-score 0.852. The
reason for this difference is that the normal part of the corpus is a lot bigger than
the crime part of the corpus. The crime part on the other hand is smaller, and has
therefore lower performance. Another problem is that the model is trained only
on the one crime entity and not other crime-related entities. This might lead to
text related to crime not being identified.

3.2 Norwegian Named Entity Recognition

Even though Norwegian is a low resource language, which means that there have
not been done as much research on NLP in this language and that not as much
data exists to do research on, Norwegian NER models have been developed [41].
Jørgensen et al. [10] created the first publicly available dataset for Norwegian
NER, called NorNE. It is based on NDT, where named entity annotations are added
on top of the existing dataset. The NorNE dataset consists of 8 different entity
types:

• Person (PER)
• Organization (ORG)
• Location (LOC)
• Geo-Political Entity (GPE)

The geo-political entity consists of two categories:

◦ Geo-Political Entity with locative sense (GPE_LOC)
◦ Geo-Political Entity with organizational sense (GPE_ORG)

• Product (PROD)
• Event (EVT)
• Derived (DRV)

The NorNE dataset was annotated by two linguists, who had to agree on all
annotations. The linguists first did a round of annotation to train before they an-

20 AMØ: Norwegian NER for Investigative Purposes

notated the dataset properly. Needing to agree on all annotations they had to
discuss disagreements, but they had a F1-score of 0.915 on initial agreements.
The entities they disagreed the most on was the GPE entities. They had a hard
time to distinguish between the the GPE_LOC and GPE_ORG entities and between
the LOC and ORG entities and the two GPE categories. This led to Jørgensen et
al. [10] doing experiments on different label sets. They did experiments on three
different label sets, one with all 8 entity types, one with just the general GPE type
and one without the GPE entity types.

Jørgensen et al. [10] trained NER models on both the written standards of
Norwegian, Bokmål and Nynorsk. They trained one model on just Bokmål text,
one on just Nynorsk text and one on both.

To test the NER dataset they created, Jørgensen et al. [10] used a frame-
work which combines a Convolutional Neural Network (CNN), a Bidirectional
Long Short-Term Memory (BiLSTM) and a CRF inference layer, called NCRF++.
After running experiments on different label sets and also on different annotations
styles, they found that they achieved the best results when using the IOBES an-
notation style in combination with only using the GPE entity, and not the GPE_ORG
and GPE_LOC entities. They then got a F1-score of 0.923. All the combinations of
label sets and annotation styles got a F1-score over 0.9. Jørgensen et al. [10] also
did experiments to compare the Bokmål, Nynorsk and the joint model. The ex-
periments show that the model trained on both Bokmål and Nynorsk performs
very well on both Bokmål and Nynorsk text, and this means that it is only neces-
sary to maintain one joint Norwegian model and not one for Bokmål and one for
Nynorsk.

Other researchers have also looked into a Norwegian NER model. Johansen
[42] also created a NER model and looked at combining a Bokmål and Nynorsk
model. Johansen [42] used the entity types location, miscellaneous, organizations
and people. A converted version of the NDT [26] was used and proper nouns
were tagged with the corresponding entity. Only tagging words already classified
as proper nouns in the NDT might lead to some words are not being tagged as
the correct entity. The IOBES annotation style was used to tag the proper nouns.
When doing experiments on the created dataset Johansen [42] achieved a F1-
score of 0.867 on the combined model. The reason this score is lower than what
Jørgensen et al. [10] achieved, in addition to only tagging already classified proper
nouns, could be that the dataset is tagged by only one annotator one time, while
Jørgensen et al. [10] used two annotators in two rounds. It could also be because
other and fewer entity types were used.

Johannessen et al. [43] have worked on NER models for the mainland scand-
inavian languages, Norwegian, Swedish and Danish. Another Norwegian corpus
annotated with NER was created, based mainly on magazines and news, but it
was never made publicly available due to copyright restrictions.

Chapter 4

Methodology

This chapters goes over the methodology of the project, which includes making de-
cisions, collecting and annotating data and fine-tuning models. Figure 4.1 shows
the overall methodology.

4.1 Dataset

4.1.1 Entity types

In order to create a NER model we needed a dataset to train it on, but before doing
that we had to decide on which entity types to use. Other Norwegian NER models
only have a general set of entity types, but we also needed some investigative do-
main specific entity types. Even though the domain specific entity types are most
important and will give most value in an investigation, the general entity types,
like person, location and organization, can also be valuable. In the NER model
Jørgensen et al. [10] created and published they used the general entity types
person, organization, location, geo-political entity with locative sense, geo-political
entity with organizational sense, product, event and derived. We used their general
entity types as a starting point. Jørgensen et al. [10] did experiments with omitting
the geo-political entity type and just using the location and organization types, and
that gave better performance than using the geo-political entity type. In addition
we did not see the need for a geo-political entity type when using NER for invest-
igative purposes. This is because in an investigation it is more important to know

Figure 4.1: Methodology

21

22 AMØ: Norwegian NER for Investigative Purposes

if an entity is a location or an organization. We therefore omitted the geo-politcal
entity type in our work. We did also not use the derived entity type, which are not
named entities, but are derived from named entities. The derived entity type is not
often used and it will give little additional value to investigators since this entity
type does not say anything about the phrases in this category. We therefore used
the general entity types:

Person (PER) People or fictional charachters.

Location (LOC) All types of geographical locations. Cities, addresses, hospitals...

Organization (ORG) Groups of people, like firms, musical groups, organizations...

Product (PROD) This includes products, but also tv shows, laws and other pro-
duced objects.

Event (EVT) Events, like wars and festivals. Criminal cases, like the "NOKAS rob-
bery", is also categorized as an event.

When it comes do the domain specific entity types we mainly looked at related
work to see which entity types could be useful. When creating their NER model
for investigative purposes, Chau et al. [8] used the domain specific entity types
vehicle, narcotic drug and personal property. To figure out which entity types to
use they talked to real investigators and analysts, and they therefor got a good
insight in what entity types are useful in investigations. We have therefore chosen
to use all those entities. In their research, Shabat et al. [40] used the entity types
nationality, weapons and location. While the weapon entity can be very useful in
investigations, we have chosen to not use the nationality entity due to ethical and
privacy concerns. Ku et al. [44] also identified weapons in their work.

An entity type that has not been seen in any research, but that we still decided
to use is an entity type called relation. The relation entity type is used on words
that describe relations between people, like brother, mother, girlfriend etc. When
looking at the data that was going to be used in the dataset, we early saw that a lot
of people were mentioned only in the context of their relation to someone else,
like "Her mother found the knife under the bed". The mother can here be very
useful for investigators. In evidence, like text messages, investigators might often
encounter text where people are mentioned only by their relations to someone.
The relation entity type can therefore be very useful in investigations.

The domain specific entity types we used was then:

Vehicle (VHC) Vehicle includes cars and other means of transport, like airplanes
and boats. Both vehicles that are named with brand and model, and specific
types of vehicles, like getaway car, is annotated in this category.

Narcotic drug (DRG) Every type of narcotic drug.

Personal property (PRT) Every kind of object that is possessed by someone and
does not belong to any of the other entity types.

Chapter 4: Methodology 23

Weapon (WPN) Both weapon names and weapon types is included here. Every-
day objects that are used as weapons, like knife, does also belong to this
entity type.

Relation (REL) Every relation between individual, both social and family rela-
tions.

During the process of choosing entity types we were able to have a discus-
sion with an investigator about what entity types could be valuable and how a
NER model could be used in investigations. This discussion confirmed the entity
types we had already looked at. One key takeaway from the conversation is that
the cases the police handles are very different from each other. There is no com-
monalities that will be important in every type of case and what information is
valuable for the investigators varies. It is therefore important to make a model
that is as general as possible. In addition the investigator told us that the people
entity type are always interesting in an investigation. This all means that the gen-
eral entity types we have chosen to include, especially person names, could be
valuable in investigations. Personal property was the entity type we were most un-
certain if would add any value to the investigators. The investigator we talked to
pointed out that weapons and vehicles might not be interesting in every case. In
some cases a jacket or a pen might be of importance. We therefore chose to also
use the personal property entity types to be able to identify any object that may be
of interest.

4.1.2 Annotation Style

Before starting to work on the data we needed to decide on which annotation
style to use. Jørgensen et al. [10] did experiments with different annotation styles.
They acheived the best performance for the entity types we are going to use with
the IOBS annotation style, even though there was not much difference in the
performance. The IOBS style acheived a F1-score of 0.919, while the IOB style
got 0.91. Even though IOBS acheived the best performance, we decided to use
the IOB2 annotation style. This is because the NorNE dataset Jørgensen et al.
[10] published is annotated with the IOB2 style. Annotating our whole dataset
manually would be very time consuming and we therefore used the NER model
Jørgensen et al. [10] trained to annotate the general entity types for us, before
we manually verified the annotations. It was therefore convenient to use the same
annotation style as their model and we therefore chose the IOB2 style.

4.1.3 Creating and Annotating The Dataset

We wanted to be able to publish and share the dataset and model we were going
to create. Real investigation data are not publicly available and contain a lot of
sensitive and personal data. We could therefore not use real investigation data,
even though that would have given us a better and more accurate model. The

24 AMØ: Norwegian NER for Investigative Purposes

Table 4.1: Distribution of crime types in the collected articles

Crime Type Number of articles

Murder 77
Serial Killers 14

Drugs 12
Terror 18

Disappearances 8
Robbery 15
Other 35

Total 179

model would then have been trained on the same kind of data that it was going
to be used on and that would give a model that performed better. Since this is not
possible for our project we needed to find other data. To look into if it is possible to
train a Norwegian NER model for investigative purposes we need domain specific
data that contains the entity types we are going to use in the model. We therefore
chose to use Norwegian Wikipedia articles regarding or related to crime. This is
publicly available, but still domain specific.

Before collecting the data we sent a request to Sikt to make sure everything is
done according to GDPR. The application was approved, but there are significant
limitations to how we can share the data. The assessment we got on our applica-
tion can be seen in Appendix A. The data we collect contains personal information
and we can therefore not distribute the data as we want. The collected data can
not be published or shared, even though it is publicly available. This means that
we can not share and publish the dataset and the model as we originally wanted,
but we still had to make the model with Wikipedia data, since we do not have
access to real investigation data.

To find relevant Norwegian Wikipedia articles related to crime we first found
articles about well known cases in Norway, like "NOKAS-ranet" (NOKAS robbery),
"Orderud-saken" (Orderud case) and "Terrorangrepene i Norge 2011" (2011 Nor-
way attacks). From these articles we followed hyperlinks and category references
to locate other articles. We collected articles about cases in both Norway and
other countries, as long as the article was writtem in Norwegian. Most articles
in our dataset is about murders, but there are also articles about other crimes,
like robbery, terror, drugs and disappearances. In total we collected 179 articles.
The distribution of the crime types in the articles are shown in Table 4.1. The other
category consists of all the articles that does not fit into any of the other categories
and includes among others articles regarding espionage, abuse and fraud.

To efficiently collect the Wikipedia articles we used Requests1 and Beautiful

1https://pypi.org/project/requests/

Chapter 4: Methodology 25

Code listing 4.1: Script to collect and structure Wikipedia files

article_file = open(’articles.txt’, ’r’)

articles = article_file.read()

article_list = articles.split(’\n’)

for article in article_list:
if not article == ’’:

page = requests.get(article)
soup = BeautifulSoup(page.content, ’lxml’)
p_list = soup.find_all(’p’)
full_text = ’’
for p in p_list:

p_text = p.get_text().replace(’\n’, ’’)
p_text = re.sub(’\[[0-9]+\]’, ’’, p_text)
full_text += ’␣’ + p_text

with open(’articles.csv’, ’a’, newline=’’) as file:
writer = csv.writer(file)
writer.writerow([soup.find(’h1’).get_text(), full_text])

Soup,2 a webscraping library. This made it easy to efficiently extract and structure
the content from the Wikipedia articles. Some parts of the Wikipedia articles are
not relevant for our work and Beautiful Soup allowed us to extract only the relev-
ant text and not headlines, references and footnotes. We created a script that first
uses Requests to scrape the Wikipedia articles. The links to the Wikipedia articles
that were going to be used were listed in a text document that our script read
from. Beautiful Soup was then used to find all the paragraphs of the Wikipedia
articles. The script removes the citations in the text and finally adds all the articles
to a csv file. Code listing 4.1 shows an excerpt of this script and Appendix B shows
the whole script.

To be able to fine-tune a NER model we needed to annotate the dataset with
the correct labels. To do this manually would be very time consuming. Jørgensen
et al. [10] have published a Norwegian NER model, which we therefore used to
do some of the annotating for us. Their NER model, nb-bert-base-ner,3 uses the
IOB2 annotating style and annotates the general entity types we use. The model
also annotates the geo-political entity type and the derived entity type which we
are not going to use, but we changed those when manually annotating later.

We created a script, based on a tutorial on Huggingface4 that reads the csv
files with the articles and sends each sentence in the articles through the nb-bert-
base-ner model. Code Listing 4.2 shows an excerpt of the script and Appendix
C provides the whole script. The script also structures each sentence and writes
the sentence and the annotations to a json file. It creates one file per article. The

2https://www.crummy.com/software/BeautifulSoup/bs4/doc/
3https://huggingface.co/NbAiLab/nb-bert-base-ner
4https://huggingface.co/NbAiLab/nb-bert-base-ner

26 AMØ: Norwegian NER for Investigative Purposes

Code listing 4.2: Script to do initial annotation and structure data in json files

tokenizer = AutoTokenizer.from_pretrained("NbAiLab/nb-bert-base-ner",
model_max_length=512)

model = AutoModelForTokenClassification.from_pretrained("NbAiLab/nb-bert-base-ner")

ner = pipeline("ner", model=model, tokenizer=tokenizer)

with open("beautifulSoup/articles.csv", "r") as file:
csvreader = csv.reader(file)
next(csvreader)
for row in csvreader:

file = open(’files/’+row[0]+’.json’, ’a’)
sentences = row[1].split(’.’)
for sentence in sentences:

if len(sentence) <= 512:
ner_result = ner(sentence)
[...creating the sentence object...]
ner_tags = []
for word in tokens:

ner_match = list(filter(lambda j: j[’word’] == word, ner_result))
if len(ner_match) > 0:

ner_tags.append(ner_match[0][’entity’])
else:

ner_tags.append("O")
sentence_object["ner_tags"] = ner_tags
json_object = json.dumps(sentence_object, indent=6, ensure_ascii=False)
file.write(json_object)

structure of the json file is based on the structure of the NorNE dataset5 that
Jørgensen et al. [10] created and published which the nb-bert-base-ner is fine-
tuned on. We did not do a lot of preprocessing on the data. This is because it will
not harm the model if there is some noise in the data, this will just be labeled with
the "O" tag, outside named entity. In addition there will be noise in real data, so
the model will be more robust if it is trained on noisy data.

After the nb-bert-base-ner model annotated some of the named entities for
us, we went through the files manually. This had two purposes. The first purpose
was to check that all the annotations from the nb-bert-base-ner was correct and
to add annotations that were missing. Even though this model performs well it is
not perfect. Foreign names and places are not as easyily detected as Norwegian
names. We therefore had to add some of the general entity annotations manually.
We also had to change all the geo-political annotations to location and organization
annotations, and remove or replace the derived annotations. The second purpose
was to add the domain specific entity types. All these annotations needed to be ad-
ded manually. One annotator went through all the files one time and checked and
labeled all the named entities. The distribution of named entities in the dataset
can be seen in Table 4.2. An example of an annotated sentence, as in the dataset,
can be seen in Figure 4.2.

When fine-tuning the NER model we needed a training dataset and a valid-

5https://huggingface.co/datasets/NbAiLab/norne

Chapter 4: Methodology 27

Figure 4.2: Annotation of the sentence "Ola Nordmann and his brother were
arrested for robbing a bank in Oslo with a revolver, it was also found cocain in
his jacket"

28 AMØ: Norwegian NER for Investigative Purposes

Table 4.2: Distribution of entity types in the full dataset

Entity Type Tokens

PER 7779
LOC 3499
ORG 3775

PROD 929
EVT 548
VHC 122
DRG 51
PRT 402
WPN 442
REL 824

Table 4.3: Dataset size

Model Articles Sentences Named Entity Domain Specific
Tokens Named Entity Tokens

Model 1 41 2890 5195 302
Model 2 75 4806 8930 926
Model 3 107 6769 12723 1243
Model 4 145 8444 15761 1533
Model 5 179 9874 18371 1841

ation dataset. We also wanted a separate test dataset so that we could test the
model on unseen data. We therefore created a script that takes all the annotated
files and split them up in a train, validation and test dataset. The script also joins
all the files for each dataset. Code Listing 4.3 shows the main parts of this script.
Appendix D provides the whole script. After running this script we therefore ended
up with one training file, one validation file and one test file. 70% of the original
dataset was used for training, 20% for validation and 10% was used for testing.

To see how our model improved with more training data, we did not fine-tune
our model with all the collected data initially. We scraped and annotated just a
small part of all the Wikipedia data first and then fine-tuned a model with that
data. Then we scraped and annotated some more articles and included them in
the dataset before we fine-tuned a new model. This was done 5 times and the
amount of data each of these 5 models were trained on can be seen in Table 4.3.
An illustration of how we trained multiple models with different amounts of data
and how we split the data into training, validation and testing sets is provided in
Figure 4.3a.

Chapter 4: Methodology 29

Code listing 4.3: Script to split the annotated data in train, validation and test
files

files = os.listdir(’files’)
random.seed(42)
random.shuffle(files)

train_files, validation_files, test_files = np.split(files,
[int(len(files)*0.7), int(len(files)*0.9)])

overview_file = open(’data/overview.txt’, ’w’)

def list_in_overview(files, title):
overview_file.write(’\n’+title+’\n’)
for file in files:

overview_file.write(file+’\n’)

def merge_files(files, file_name):
all_sentences = []
for file in files:

file = open(’files/’+file, ’r’)
all_sentences.extend(json.load(file))

merged_file = open(’data/’+file_name+’.json’, ’w’)
json_objects = json.dumps(all_sentences, indent=6, ensure_ascii=False)
merged_file.write(json_objects)

(a) First round of training (b) Second round of training

Figure 4.3: Illustrations of the training proccess.

30 AMØ: Norwegian NER for Investigative Purposes

4.2 Fine-tuning Model

We decided that we wanted to fine-tune a pretrained model instead of training a
model from scratch. When fine-tuning a pretrained model we could use a smal-
ler dataset than we would have needed to train a model from scratch, which is
very fitting for this project. When we are using a smaller dataset, that also means
that training the model will take less computational resources and be less time
consuming. For the police it would also be beneficial to fine-tune an already pre-
trained model since they then could achieve good results with less data and in
shorter time. They would also need fewer resources.

As mentioned in Section 2.2.2, the Transformer architecture has become very
popular for NLP tasks. BERT, mentioned in Section 2.2.3, which are based on the
Transformers architecture, have also become very popular and shows promising
results. We will therefore fine-tune a BERT based model. The model we used is
the nb-bert-base model.6 This model is part of the NoTraM project7 created by
the National Library of Norway. The NoTraM project aims to create a Norwegian
corpus and transformer-based models for Norwegian. They have done tests on
their nb-bert-base model, which performed very good with an F1-score of 0.987
on POS tagging and 0.9 on NER [24].

Huggingface,8 which is also mentioned in Section 2.2.2 has also become very
popular and the model we used is available in the Huggingface repository. We
therefore used the Huggingface repository and the Huggingface libraries to fine-
tune our model. Huggingface has a script for fine-tuning models for token clas-
sification tasks, which includes Named Entity Recognition. We used this script9

with some minor modifications to fine-tune our model. The same script can also
be used to compute the overall performance of the model when tested on the test
dataset. The part of the script that does the actual fine-tuning is provided in Code
Listing 4.4. The whole script is provided in Appendix E.

When we started to fine-tune our models we first fine-tuned the 5 models
described in Table 4.3. We did this to be able to compare how the models performs
with different amounts of training data. The randomly done split into training,
validation and test data lead to these models being tested on different test data
and the comparison was therefore not that accurate. After training these models,
we therefore wanted to repeat the training and testing, but this time with the
same and unseen data in the test set for all 5 models. We did this by using the test
set from Model 5, which was randomly chosen, and deleted the data from this
test set from the training and validation sets in the first 4 models. We then had a
large test set with unseen data common for all 5 models. When we split the data
this time we used 80% of the remaining data for training and 20% for validation.
After training these models we tested all five models on the large unseen test set

6https://huggingface.co/NbAiLab/nb-bert-base
7https://github.com/NBAiLab/notram
8https://huggingface.co
9https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-

classification

Chapter 4: Methodology 31

Code listing 4.4: Excerpt from script that fine-tunes the model

The original file is modified
Copyright 2020 The HuggingFace Team All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Training
if training_args.do_train:

checkpoint = None
if training_args.resume_from_checkpoint is not None:

checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:

checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
trainer.save_model() # Saves the tokenizer too for easy upload

max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not
None else len(train_dataset)

)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))

trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()

32 AMØ: Norwegian NER for Investigative Purposes

and obtained comparable results. An illustration of how this was done can be seen
in Figure 4.3b.

After annotating all the data and fine-tuning the last model on all the data
we did some brief experiments to discover the optimal hyperparameters, such as
number of epochs and learning rate. Epochs is the number of times the algorithm
should go through the training set and train the model. This is important to not
over- or underfit the model. All the models up to this were trained with 3 epochs
as this was the default in the script we used. Deciding on the optimal number of
epochs will give the best possible performance for the model and make it more
fit for encountering unseen data. Devlin et al. [17] states that when fine-tuning
BERT the optimal number of epochs is 2, 3 or 4 for a lot of different tasks. We
therefore chose to train models with epochs from 1 to 10, to see how the F1-score
and loss of the models changes. These models were trained, validated and tested
with all the 179 articles.

The learning rate tells how much the model should change in each iteration.
Devlin et al. [17] suggests the learning rates 5e-5, 3e-5 and 2e-5. The previous
models were all trained with a learning rate of 5e-5, since that was the default in
the script we used. After concluding on the optimal number of epochs we trained
two new models with the two other suggested learning rates and the optimal
number of epochs.

For all the models we trained we tested it on an unseen test dataset and com-
puted the precision, recall and F1 score. In addition to the overall performance
we wanted to see how the models performed on the different entity types. This
showed us which entity types the model recognized easiest and what kind of data
were missing from the dataset. To do this we used seqeval, which is a Python
framework that evaluated the performance of different labels in token classifica-
tion tasks [45]. We used the Evaluate library1011 from Huggingface to compute
the performance. The script we used to compute the performance is provided in
Appendix F.

10https://huggingface.co/spaces/evaluate-metric/seqeval
11https://huggingface.co/docs/evaluate/index

Chapter 5

Results

The dataset we created was tested in a couple of different ways. First, all the
models were tested as they were created and they were then tested on different
data and different amounts of data. The results from these tests can be seen in
Table 5.1 and 5.2.

When training a model with more data, the performance should in theory
be better, but Table 5.1 and 5.2 shows that the performance of the models varies
and sometimes are lower with more data. The data in the test set were in this case
quite small for the first models and there were few domain specific named entities.
There were for instance no occurrences of narcotic drug in the first test set and
only 2 instances of vehicles for the second model. This, in addition to the models
being tested on different data makes this approach not suitable for comparing the
performance of the models. Figure 5.3 shows the number of files each model was
initially trained, validated and tested on.

After training new models and leaving out a larger common unseen test data-
set for all the models we got results better suited for comparison. All the models
were then tested on 18 articles with a total of 1153 sentences. The test data in-
cluded 2207 named entities, where 221 were domain specific. The F1-score from
these tests on all the different entities can be seen in Table 5.4 and 5.5, and the
precision, recall and F1 score of each model can be seen in Table 5.6.

In Table 5.4, 5.5 and Table 5.6 it can be seen that the performance of the

Table 5.1: F1-score of models with different amount of training and different test
data

Model PER LOC ORG PROD EVT

Model 1 1.0 0.927 0.896 0.5 0.75
Model 2 0.995 0.935 0.915 0.455 0.80
Model 3 0.959 0.882 0.794 0.833 0.870
Model 4 0.983 0.943 0.899 0.818 0.943
Model 5 0.949 0.935 0.842 0.667 0.793

33

34 AMØ: Norwegian NER for Investigative Purposes

Table 5.2: F1-score of models with different amount of training data and different
test data

Model VHC DRG PRT WPN REL Total

Model 1 1.0 - 0.5 1.0 1.0 0.916
Model 2 0.666 0.0 0.333 1.0 0.933 0.921
Model 3 1.0 0.615 0.5 1.0 0.930 0.883
Model 4 0.970 0.6 0.647 0.927 0.955 0.939
Model 5 0.973 0.640 0.693 0.851 0.930 0.906

Table 5.3: The distribution of files in the different models

Model Training Validation Test

Model 1 28 8 5
Model 2 52 15 8
Model 3 74 22 11
Model 4 101 29 15
Model 5 125 36 18

Table 5.4: F1-score of models with different amount of training data, but a com-
mon test set. All trained with 3 epochs

Model PER LOC ORG PROD EVT

Model 1 0.938 0.917 0.782 494 0.737
Model 2 0.943 0.943 0.822 0.659 0.641
Model 3 0.948 0.930 0.815 0.6 0.852
Model 4 0.940 0.936 0.813 0.602 0.719
Model 5 0.949 0.935 0.842 0.667 0.793

Table 5.5: F1-score of models with different amount of training data, but a com-
mon test set. All trained with 3 epochs

Model VHC DRG PRT WPN REL Total

Model 1 0.944 0.667 0.575 0.875 0.907 0.876
Model 2 0.971 0.692 0.548 0.845 0.899 0.893
Model 3 0.971 0.786 0.619 0.907 0.928 0.897
Model 4 0.941 0.640 0.676 0.863 0.923 0.893
Model 5 0.973 0.640 0.693 0.851 0.930 0.906

Chapter 5: Results 35

Table 5.6: Performance of models with different amount of training data and
same test data

Model Precision Recall F1-score

1 0.871 0.881 0.876
2 0.887 0.899 0.893
3 0.887 0.907 0.897
4 0.888 0.898 0.893
5 0.904 0.908 0.906

(a) F1 (b) Loss

Figure 5.1: F1 and loss when testing models trained with different number of
epochs

models gets better when more data is used for training.
When doing experiments to find the optimal number of epochs for training we

measured the F1-score of the individual entity types, in addition to the overall F1-
score, precision, recall and loss. The training, validation and test data for Model
5 from Table 5.4 and 5.5 where used when trying out different epochs. The F1-
score of the individual entity types can be seen in Table 5.7 and 5.8, and the overall
precision and recall in Table 5.9. The F1-score and loss have been plotted in the
graphs in Figure 5.1. This is done so that we easily can see how the F1-score and
loss changes when the number of epochs increases. Loss measures the error of the
model.

When deciding on a optimal number of epochs the F1-score and loss measures
are reasonable to use. We see in Figure 5.1a, that shows the F1-score on the test
data, that this score is best with 3, 8 and 9 epochs. The same can be seen in Table
5.7 and 5.8, and Table 5.9, the performance is best with 3, 8 and 9 epoch. When
looking at the loss on the test data, which shows the error of the model, in Figure
5.1b, we see that the loss goes up when using more than 3 epochs. We therefore
decided that the optimal number of epochs for us to use is 3. This also fits the
suggestion given by the creators of BERT [17].

After deciding on using 3 epochs we did experiments with the learning rate.
The performance of the models trained with different learning rates can be seen

36 AMØ: Norwegian NER for Investigative Purposes

in Table 5.10. The table shows that there is not a lot of difference, but that the best
learning rate is 5e-5. This means that the optimal model for us to use is the model
that is created with all the 179 articles, minus the test data, trained with 3 epochs
and a learning rate of 5e-5. This model is trained on 125 articles and validated
with 36 articles. Training this model took 2 minutes and 24 seconds. Detailed
performance of this model can be seen in Table 5.11. When doing experiments on
this model it was tested on 18 articles.

The performance varies a lot between the different entity types. The entity
type with the lowest performance is narcotic drug. The reason for this is that this
entity type has a lot fewer occurrences in the dataset than the others, with only
51 tokens. Personal property also has low performance, even though there are
a lot of occurrences of this entity type in the dataset. This comes from that the
personal property entity types includes a lot of different phrases where there is
no coherence in the syntax and semantics, it could be any kind of object that is
owned by someone. This makes it difficult to annotate and also difficult for the
model to detect. The product entity type has even more occurrences in the dataset,
but also have low performance, due to the same reasons. For product there is also
no coherence in syntax and semantic.

Vehicle has the second fewest occurrences in the dataset, but still has good per-
formance. This could be because there is some coherence in the syntax, context or
semantic for these entities or because some words is repeated in many of the entity
phrases. It would be reasonable to believe that more occurrences in the dataset
would lead to better performance, but we can see from Table 4.2 and Table 5.11
that this is not the case for multiple of the entity types. This means that how well
the model recognizes different entity types also depends on other factors. These
factors could be syntax, context and semantic, in addition to repetition of specific
words. For instance the relation entity type only includes specific words, like "mor"
(mother), "sønn" (son) and "kjæreste" (boyfriend/girlfriend). This makes it easier
for the model to recognize these entities.

Chapter 5: Results 37

Table 5.7: F1-score of model 5 with different numbers of epochs

Epochs PER LOC ORG PROD EVT

1 0.943 0.916 0.816 0.575 0.746
2 0.938 0.922 0.817 0.563 0.754
3 0.949 0.935 0.842 0.667 0.793
4 0.950 0.937 0.844 0.595 0.767
5 0.948 0.928 0.835 0.643 0.780
6 0.941 0.935 0.840 0.652 0.767
7 0.951 0.927 0.816 0.625 0.842
8 0.950 0.935 0.849 0.659 0.721
9 0.949 0.945 0.852 0.650 0.738
10 0.947 0.933 0.817 0.587 0.697

Table 5.8: F1-score of model 5 with different numbers of epochs

Epochs VHC DRG PRT WPN REL Total

1 0.919 0.615 0.675 0.860 0.933 0.891
2 0.973 0.640 0.700 0.907 0.938 0.891
3 0.973 0.640 0.693 0.851 0.930 0.906
4 0.944 0.640 0.684 0.891 0.914 0.904
5 0.941 0.640 0.676 0.882 0.920 0.902
6 0.941 0.640 0.693 0.882 0.927 0.901
7 0.919 0.692 0.623 0.882 0.920 0.90
8 0.944 0.640 0.687 0.894 0.927 0.907
9 0.944 0.786 0.711 0.894 0.919 0.910
10 0.909 0.692 0.706 0.872 0.931 0.898

Table 5.9: Performance of model 5 with different numbers of epochs

Epochs Precision Recall F1-score

1 0.882 0.90 0.891
2 0.881 0.902 0.891
3 0.904 0.908 0.906
4 0.899 0.909 0.904
5 0.901 0.902 0.902
6 0.895 0.907 0.901
7 0.896 0.902 0.90
8 0.906 0.908 0.907
9 0.907 0.913 0.910
10 0.894 0.902 0.898

38 AMØ: Norwegian NER for Investigative Purposes

Table 5.10: Performance of model 5 with different learning rate

Learning Rate Precision Recall F1-score Loss

5e-5 0.904 0.908 0.906 0.070
3e-5 0.898 0.904 0.901 0.075
2e-5 0.892 0.910 0.901 0.076

Table 5.11: Precision, recall and F1-score of each entity type with optimal hyper-
parameters, model 5 with 3 epochs and a learning rate of 5e-5

Entity Type Precision Recall F1-score

PER 0.966 0.932 0.949
LOC 0.925 0.944 0.935
ORG 0.810 0.876 0.842

PROD 0.609 0.739 0.667
EVT 0.742 0.852 0.793
VHC 0.947 1.0 0.973
DRG 1.0 0.471 0.640
PRT 0.605 0.813 0.693
WPN 0.909 0.8 0.851
REL 0.952 0.909 0.930

Total 0.904 0.908 0.906

Chapter 6

Discussion

The discussion will answer the research questions, look at the performance of the
model, and the dataset and disadvantages with the how the dataset is created. It
will also look at limitations with our model and how to deal with other languages.

6.1 Answering Research Question 1: Creating a NER Model

Research question 1, How can we develop a Norwegian NER model fine-tuned for
investigation, with the restriction of using open-source data?, is partly answered in
Chapter 4, which explains how such a model can be created. We have shown that
it is possible to create a Norwegian NER model for investigative purposes with
open-source data and how it could be done.

6.2 Answering Research Question 2: Performance

We now consider how our research have answered our research questions. Re-
search question 2, What kind of precision, recall and F1-score could such a model
achieve and how does it compare with the state-of-the-art Norwegian NER model
trained for general purposes and NER models created for investigative purposes in
other languages?, deals with the performance of the model we have created. The
performance of the model is quite good. Chau et al. [8] also created a NER model
for investigative purposes and used the entity types person, address, narcotic drug
and personal property. Our model performed better than their model on most of
the entity types. A table with comparisons of the F1-score of our model with other
models for each entity type is provided in Table 6.1. For the person entity they
achieved a precision of 0.741 and a recall of 0.734, while we got 0.966 and 0.932.
Address and location are quite similarly entity types, our model would be able to
identify addresses as locations, and it is therefore reasonable to compare them. On
their model they got a precision of 0.596 and a recall of 0.514, while our model
achieved a precision of 0.925 and a recall of 0.944. Our personal property entity
type did not perform as well as other entity types, but got a precision and recall of

39

40 AMØ: Norwegian NER for Investigative Purposes

0.605 and 0.813. This was still a lot better than the model Chau et al. [8] created,
which got 0.468 and 0.478. Our model achieved perfect precision for narcotic
drug, while the other model only got a precision of 0.779. On the other hand, our
model only got a recall of 0.471 compared to 0.779 for the other model. Overall
the other model therefore performed better on narcotic drugs. One reason for the
difference in performance could be the architecture of the models. Our model is
a BERT based model, while their system consists of a noun phraser, a finite state
machine and a neural network. The number of occurrences of the different entity
types probably also affect the performance. Our dataset only contained 51 occur-
rences of narcotic drug, while Chau et al. [8] had 252 occurrences in their dataset.
On the other hand they only had 62 occurrences of address, while we had 3499
occurrences of location. From this we can see that the number of occurrences of a
entity type in the dataset affect the performance of the model significantly. Gen-
erally, the model Chau et al. [8] created was trained on a small dataset, so we can
see that the size of the dataset affects the performance.

Neither models did perform very well on the personal property entity type.
In our dataset the personal property entity type had around the same number of
occurrences as the weapon entity type, which got a significant higher score. This
points to that the number of occurrences is not the reason for the low performance
in this case. The reason that personal property has low performance is the indis-
tinct definition of the entity type. The entity type consists of any type of physical
object that someone owns and can therefore include a lot of different things, like
phones, pens and furniture. Chau et al. [8] also reported this. In addition there
is no consistency in the words, like capital letters in the start of the word, and
little syntactic and semantic similarity. This also made it difficult to annotate this
entity type. The annotation of this entity type might therefore be inconsistent and
words might not be annotated correctly. That will also affect the performance of
the model.

The NER model Wu et al. [9] created to fight crime does not have any of
the same domain specific entity types as our model, but we can still compare
the overall performance. Our model got a precision of 0.904, a recall of 0.908
and a F1-score of 0.906. Their model got a precision of 0.876, a recall of 0.832
and a F1-score of 0.852. Wu et al. [9] had a larger dataset, but the reason that
our model performed better might be the architecture of the model. Their model
were a LSTM-CRF, while we used the new and popular BERT architecture, which
has been reported to have very good performance.

Shabat et al. [40] trained two NER models to use for investigative purposes
that had weapons and location as entity types. The weapon entity type got a F1-
score of 0.911 and 0.867, while the location entity type got a score of 0.893
and 0.787. For the same entity types our model achieved a F1-score of 0.851 for
weapon and 0.935 for location. Our model performed a little better on location,
but a bit lower on weapon. Shabat et al. [40] used a larger dataset, with 500 news
articles about crime. They therefore probably have more occurrences of weapons
and were able to get a better score. For location on the other hand, we had a

Chapter 6: Discussion 41

Table 6.1: F1-score of different models on the different entity types

Entity Our Chau Shabat Shabat Yang Rodrigues Jørgensen
Type Model et al. et al. et al. and et al. et al.

[8] [40] [40] Chow [39] [10]
SVM NB [7]

PER 0.949 0.737 - - 0.88 0.92 0.98
LOC 0.935 0.5521 0.893 0.877 0.82 0.946 0.907
ORG 0.842 - - - 0.91 0.741 0.901

PROD 0.667 - - - - - 0.822
EVT 0.793 - - - - - 0.640
VHC 0.973 - - - - - -
DRG 0.640 0.815 - - - - -
PRT 0.693 0.473 - - - - -
WPN 0.851 - 0.912 0.867 - - -
REL 0.930 - - - - - -

1 This model is only tested on address.

lot of occurrences in our dataset, even though our dataset is quite small, and we
therefore were able to get good scores for this entity type.

Our model performs better than the NER part of the information extraction
system Yang and Chow [7] created on two of the entity types both models uses. On
person names our model got a F1-score of 0.949, while their system got 0.88 and
for locations our model achieved a F1-score of 0.935, while their model got 0.82.
For organizations our model got a F1-score of 0.842, while their model achieved
0.91. The reason that our model performed worse on organizations might be the
number of occurrences of this entity type, Yang and Chow [7] used a larger dataset
than we did and might therefore have more occurrences of it. The reason our
model performed better on the other entity types might be the architecture of the
model. Our model is BERT based, which is very popular and shows great promise,
while they used a CRF model.

The NER part of the system Rodrigues et al. [39] created got quite similar F1-
scores as we did for person and location, person a litter lower and location a little
higher. But for organization they achieved significantly lower score. Rodrigues et
al. [39] also used a BERT based model in their experiments, so the architecture
of the models is not the reason for the difference here. The reason the models
performs so differently on organization is therefore probably due to the dataset
and the occurrences of this entity type.

Comparing our model to the Norwegian NER model created by Jørgensen et al.
[10], we can see that out model performed very well. Their model, with just gen-
eral entity types, achieved a F1-score of at best 0.923. This was with another an-
notation style than we used and with different general entity types. In this model
they used a general geo-political entity type. The F1-score they achieved when us-

42 AMØ: Norwegian NER for Investigative Purposes

ing the same annotation style as we did and the same set of general entity types
were 0.91, which is not a lot higher than our F1-score of 0.906. This shows that
it is possible to train a NER model for investigative purposes also for Norwegian.
Even when we added a lot of new entity types, the performance did not drop very
much. The reason for the small drop with new entity types, is that there are fewer
occurrences of these entity types in the dataset and it is therefore more difficult
to get good performance on those.

When it comes to the different entity types in the model Jørgensen et al. [10]
created compared to our model we can see in Table 6.1 that our model performs
best on some entity types and their performs better on others. Our model performs
better on location and event, while their models performs best on person, organiz-
ation and product. The reason for this could be the difference in the distribution
of the different entity types in the dataset. Jørgensen et al. [10] had for instance
very few occurrences of the event type in their dataset, while we had a lot more,
and this can be seen in the comparison.

When the creators of BERT did experiments with NER in English they got a
F1-score of 0.95 [17]. Our model have slightly lower performance, but it is not
fine-tuned on a lot of data. The results we got shows great promise and with
more data and more occurrences of domain specific entities it is possible to create
a Norwegian NER model for investigative purposes with very good performance.

To create a good model both precision and recall is important, but in differ-
ent situations one might be more important than the other. High recall will lead
to few false negatives. In a NER system, a high recall means that there are few
occurrences of an entity type that is not recognized. It also means that the false
positives, phrases recognized as an entity type it does not belong to, will be higher.
As Lillis and Scanlon [46] discusses, this is preferable in a investigation context.
Missing some important evidence is more harmful than identifying content that
is not important.

When looking at the results of our model we can see that for some entity types
the precision is higher, and for some entity types the recall is higher, even though
there is not much differences. Both the overall precision and recall is quite good,
but the recall is a bit higher, which is fitting for a NER model that is going to be
used in investigations.

When training a model it can be difficult to know what to do to increase the
recall other than training on more data. Increasing the amount of occurrences of
the different entity types will increase both the precision and recall. When experi-
menting with different data and hyperparameters the importance of recall can be
kept in mind and a model with the best recall can be chosen.

6.3 Dataset

The dataset we have created is not perfect. We have used Wikipedia articles and we
are therefore limited to what exists on Wikipedia in Norwegian and what we were
able to find. We used category pages on Wikipedia to find articles about different

Chapter 6: Discussion 43

types of crime, but the distribution of topics in the Wikipedia articles could have
been a lot better. We can see from Table 4.1 in Section 4.1.3 that there are most
murder cases in our dataset. This is because that is what we found the most of on
Wikipedia. Having most murder cases is not an accurate representation of the real
world. Murders happen, but it is not the crime that happens most often. There
are more robberies and drug cases. Economic crime and fraud are also greatly
represented in the society, but our dataset only contains 3 such cases. Cybercrime
is also becoming more and more widespread, but we only found 1 such case. When
the model is trained on mostly murder cases it will also perform best on murder
cases. We want it to perform well on all types of cases, and it should therefore
ideally be trained on the same amount of cases of each type or a representative
distribution of types.

The most important thing is that the model is trained on enough instances
of named entities. We can see in Table 4.2 in Section 4.1.3 that we have a lot of
instances of most of the general entity types. For the domain specific entity types
on the other hand, we have a lot fewer instances. This affects the performance of
these entities as we can see in Table 5.11 in Section 5. Person names, with 7779
tokens, performs a lot better than narcotic drug, with 52 tokens. We saw during
the annotation process that many of the articles related to crime on Wikipedia still
did not contain a lot of the domain specific entity types. That made it difficult to
create a dataset with many instances of these entity types. The solution then was
to annotate a lot of articles to still get a fair amount of named entities. But the
amount of narcotic drug entities is still way too low.

After consulting the literature on the subject and talking to an investigator
we decided on the domain specific entity types vehicle, narcotic drug, personal
property, weapon and relation. In most cases these entity types, in addition to the
general ones, will be sufficient. In a murder case the weapon is important and in
a robbery the escape vehicle might be important. In other cases, like for instance
economic crime and cybercrime, these entities are not as important. In these cases
other things might be important, like amounts of money or computer systems, but
we do not have any entity types that captures this. That will make the model less
valuable in these kinds of cases. If the Norwegian Police chooses to work further
on a NER model to be used in investigations they should look into if there are any
additional entity types that would be valuable for them.

Another issue with the dataset we created is that it is only annotated by one
untrained annotator. Ideally the dataset should have been annotated by two an-
notators. There should in addition have been created a thorough guideline on how
the data should be annotated. It should consist of guidelines on what each entity
type should include and how to differentiate between for instance location and
organizations for schools. This would have made the annotations more concise,
which again would create a better model with better performance.

Some of the entity types were difficult to annotate, like personal property, loc-
ation and organization, which affected the performance of these entity types. Per-
sonal property, as discussed in Section 5, Section 6.2 and Section 6.4 could be a lot

44 AMØ: Norwegian NER for Investigative Purposes

of different things and it was often difficult to decide if something were a personal
property or not. It was also often difficult to distinguish between location and or-
ganization for some tokens. This was especially difficult for schools and countries.
We decided to not use the geo-political entity type, but only location and organiza-
tion, and this was one of the causes for this difficulty. The difficulty of annotating
these types lead to an inconsistency in the annotations in the dataset, which again
lead to poorer performance. Having a thorough guideline for annotations and us-
ing two annotators would solve at least part of this problem.

6.4 Limitations

The NER model we have trained is trained on Wikipedia articles related to crime.
Even though we get good performance when we test our model, it would probably
not work as well in an actual investigation and with actual forensic data. This is
because our data is not domain specific enough, there is a lot of difference between
real investigative data and Wikipedia articles. Wikipedia articles gives structured
summaries of cases, while real investigative data will be unstructured data from
different sources. Our model could still bring value to an investigation and could
be able to detect a lot of named entities, but a model that is trained on real forensic
data will probably perform a lot better. If the Norwegian Police want to use a
NER model in their work, they should therefore train their own model on real
investigative data. We have shown that our approach for fine-tuning a Norwegian
NER model works very well and achieves very good performance. The Norwegian
Police could therefore use the same approach, just with their own data.

If the Norwegian Police created their own model with real forensic data the
problem with the distribution of different crime types discussed in Section 6.3
would be solved. When using their own data the police would get a model that is
trained on a representative distribution of case types, since it is actual cases the
police have worked with. The distribution of data in the dataset will therefore be
close to the real world. The same goes for the occurrences of named entities in
the dataset. The data will be from actual cases which will have many occurrences
of the domain specific entity types.

Even the best NER models are not able to get a perfect performance and recog-
nize every named entity. In an investigation this can be crucial. If the investigators
rely fully on the NER model and the model does not recognize everything, import-
ant evidence might not be found. It is therefore important to have a human in the
loop, to make sure that important evidence is not overlooked. Machine learning
models, like NER, could be a great tool in investigations, but it could never be
100% relied on. It is always possible that something important is missed. A hu-
man should therefore make sure that important evidence is not missed. Fabien et
al. [47] also reports on the importance of this.

The NER model could be a great tool, but as it can not be relied a 100% on,
it might not identify everything it should and it might classify tokens incorrect.
Just looking at the identified entities without looking at the context might also

Chapter 6: Discussion 45

be harmful. It might lead the investigators to people that does not actually have
anything to do with the case and distract them from the actual important parts of
the evidence. Parts of texts that does not contain any named entities, and words
and phrases that are named entities, might also be important in an investigation.
Relying too much on a NER model will then result in important evidence not being
found.

The goal of a NER model is that it should be able to recognize new and unseen
words. Our model recognizes a lot of new and unseen words and phrases, but it
is not able to regonize everything. When it comes to the general entity types, they
are often easier to identify since the entity type can be recognized by semantic,
syntax or grammar. There is also more occurrences of these entity types in the
dataset, which also makes the model better at recognizing them.

With the domain specific entity types on the other hand there is not as much
characteristics to recognize them by. The context might help to recognize them,
but the way the words are written are very similar for a car and a drug. Neither
have capital letters in the start or anything other that identify the entity type. The
same goes for the rest of the domain specific entity types. The personal property
entity also could include a lot of these types, both a car and a weapon is most
often a personal property, but we want the model to recognize that these specific
personal properties belongs to a different entity type. Some of the domain specific
entity types only includes a limited number of different words. There are a lim-
ited amount of different car brands, drug types, weapons and relations between
people. With enough training data, the model will then still be able to identify
the named entities because it has seen the words before. It might also be able to
capture variations of the words and preceding and following words in a phrase.

For the personal property entity type the goal is that the model is able to
identify personal properties based on the context. In addition it should be trained
on enough data, so that it is able to identify if the words belong to any of the other
domain specific entity types that are also personal properties or if it belong to the
general personal property entity type.

Based on the performance of the model it looks like the model especially needs
to be trained on more occurrences of narcotic drug, but also on weapon. It also
looks like the model still has not learned to identify and differentiate on personal
property. The recall is not so bad, so it recognizes most of the personal property
entities, but the precision is only 0.605. This means that it classifies a lot more
tokens as personal properties than it should. These tokens could both be other do-
main specific entities or not a named entity at all. One reason for this could be the
difficulty of annotating this entity type. It could be that some personal properties
are not classified correctly in the dataset and that the model here performs better
than the human annotator. If this is not the case, the model needs to be trained
on more occurrences of personal properties.

There is a great disadvantage with entity types that are recognized mostly
based on already seen occurrences and not on context, syntax, semantic and gram-
mar. New drugs emerge from time to time, and the NER model might then not be

46 AMØ: Norwegian NER for Investigative Purposes

able to recognize them and identity them as the correct entity type. The same
goes for vehicles and weapons. To be able to recognize new types of drugs and
weapons we need a model that can recognize these entities only based on the con-
text. Hopefully, a model that are trained on a large amount of real investigative
data could be better at recognizing domain specific entity types based on context.

Another factor that might make it difficult to get good performance in an in-
vestigative setting and make it hard to recognize and identify all named entities
is that texts from evidence might include dialects, slang, typos, words in other
languages and different ways of writing. These words might be harder to identify
and a lot of unseen words might not be recognized as named entities. Our model
would probably not perform very well on dialects and slang, even though it might
recognize some entities based on context. If the model were trained on real data
the other hand, it would have been trained on dialects and slang and would there-
fore also be able to recognize these in unseen data. This shows the importance of
training the model on the same kind of text that the model is going to be used on.
The model might still encounter new slang words from time to time that it is not
able to recognize.

We saw during the process of annotating the data, that the nb-bert-base-ner
model doing the initial annotation for us, performed very poorly on unusual and
foreign names. This is probably because there are few of these names in the train-
ing data so the model is not able to recognize them. In our training data there are
more foreign and unusual names and our models therefore performs very well
on people names. Training the model on real data instead of Wikipedia data will
probably make the model even better at recognizing foreign and unusual names
since it then is trained on a large diversity of names from real cases.

One way to deal with the issue of new kinds of drugs, new slang words and
unusual names not being recognized is continuous training. This means that the
model is trained more than once. The models is initially trained on a lot of data.
When new data is then collected the model could be fine-tuned on this data as
well. If new drugs, slang or dialects are then encountered, the model could be
trained on this data, and it will be better at recognizing this type of text next time
it encounters it. This is a great advantage, but it also requires additional resources.
In addition to the human in the loop that makes sure that the model does not miss
anything important, someone now needs to annotate all the new data and train
a new model. There is also a risk of overfitting the model, so it also has to be
checked that the performance of the models is not reduced. Training the model
and checking the performance could be automated, but a human still needs to
annotate the data.

6.4.1 Legal and Ethical Considerations

Before training their own model, the Norwegian Police needs to look into the legal
aspect of using real investigation data to train a NER model and make sure that
everything is done according to current laws and regulations. Investigation data

Chapter 6: Discussion 47

contains a lot of personal and sensitive information and it needs to be checked out
if it is legal to train a ML model with this data. There might be laws and rules about
how long the police is allowed to store data from closed cases and what they can
use it for. It therefore needs to be checked if it is legal to train a NER model with
this data. After a model is trained there is no way to deduce the data the model
is trained on, so it is a possibility to train the model and then delete the training
data. In that case, when training new models, previous models should be saved
in case some of the new data that is used for training decreases the performance
and it is needed to go back to a previous version of the model.

The police also have to be careful about how they use the model. ML models
could be biased and it is therefore important to be careful when using it. It should
be used in an ethical and fair way. Zardiashvili et al. [48] discusses the ethics of
using AI in the Dutch police. They find 6 requirements for using AI in an ethical
way:

Accountability Someone needs to be held accountable for what the AI system
does.

Transparency How much transparency, and about what and to whom, have to
be discussed and planned.

Privacy and Data Protection The privacy of people needs to be considered when
using AI in police work.

Fairness and Inclusivity It has to be made sure the the AI systems works in a
fair way. A biased system might lead to discriminatory treatment towards
groups in the population.

Human Autonomy and Agency An AI system is not perfect and humans should
still be able to make decisions freely.

(Socio-technical) Robustness and Safety When developing AI systems that are
going to be used in the police the risks and benefits that it comes with needs
to be taken into consideration and the systems needs to be robust and safe
to use.

The Europeian Union (EU) have proposed a law on AI and the use of AI, the
AI Act, which are especially compliant for high risk systems. The police have to
make sure that their use is compliant with this law [49].

6.5 Nynorsk and Other Languages

Real investigation data could contain a mix of languages and our model would not
be able to recognize named entities in other languages. One way to deal with this
model is to create a multilingual model that is trained on multiple languages, but
this could demand a lot more resources. As already mentioned, the police should

48 AMØ: Norwegian NER for Investigative Purposes

use real investigation data if they if choose to create a NER model. Using real
investigation data will also help with this problem, since the data the model is
trained on then contains a mix of different languages, and also the languages the
police most often encounters. The same also goes for the other written language
of Norwegian, Nynorsk.

Chapter 7

Conclusion

The police in general, and more specifically the Norwegian Police, is facing a chal-
lenge with the digital forensics backlog and the large amount of digital devices
that needs to be examined in investigations. All the text that these devices contain
is time consuming to read through, and the police could benefit from a tool that
could help them locate important content. Our research have created a proof of
concept for a Norwegian NER model for investigative purposes. Using Wikipedia
data we were able to create a domain specific NER model by fine-tuning a BERT
model. We fine-tuned the model on Wikipedia data we annotated with general
and domain specific entity types, like person, drugs, weapons and relations. After
doing experiments with different amounts of training data and different hyper-
paramteres we ended up with our optimized model. This model achieved good
results and performs as well as both other NER models created for investigat-
ive purposes for other languages and the state-of-the-art general Norwegian NER
models. Our model achieved a precision of 0.904, a recall of 0.908 and a F1-score
of 0.906. The entity type with the highest score was vehicle, with a F1-score of
0.973. Of the domain specific entity types weapon and relation also had good per-
formance with F1-scores of 0.851 and 0.930.

Our model is still not perfect, but a good proof of concept. It shows that the
police could create their own NER model for use in investigations and that they
could achieve fairly good results with not too much data. To get a model that
performs well on every entity type, they need to train their model on a sufficient
amount of occurrences of each entity type, but using real investigation data for
training could solve this problem. No matter how good performance they are able
to achieve, the model will not be perfect, and in an investigation there is a lot at
stake. It is therefore important to be careful when using the model and always
have a human in the loop.

7.1 Future Work

The investigator we talked to said that it might be difficult to create a NER model
that could detect all interesting entities and that detecting weapons and drugs is

49

50 AMØ: Norwegian NER for Investigative Purposes

not always relevant. Humans on the other hand is always interesting. In addition
the relations humans have to objects, places, organizations and other people could
be very relevant and interesting in investigations. It could therefore be valuable to
look into creating a information extraction system for Norwegian investigations
in the future.

Both Rodrigues et al. [39] and Yang and Chow [7] created information ex-
traction system to use in investigation. They both created systems that were go-
ing to help investigators by locating interesting entities and also finding relations
between the entities. Both systems have a NER system that first extract named
entities before different relation extraction approaches were used to find the re-
lations. Yang and Chow [7] uses a classic Apriori algorithm to extract relations
while Rodrigues et al. [39] uses supervised learning models. Both methods finds
relations between the entities, just in different ways. In future research on creat-
ing an information extraction system for investigations in Norwegian, it should be
looked into which method is more favorable to use.

Extracting relations in addition to just the named entities could be of great
value in an investigation and further help the investigators to find interesting
evidence and clues. If the investigators finds an entity of interest they can use the
extracted relations to figure out where to look for further evidence and valuable
information. This could help them save a lot of time.

Another thing that could be interesting to look at in the future, which the in-
vestigator we talked to pointed out, is to create a system that could take input data
to help the model find interesting and relevant data. In an investigation where
there is already some central objects, locations or persons, it would be interest-
ing to see how a system could use that as input data to get different results. The
system could then extract information that are related to the input data, which
the investigators already know is important. Such a system could help the invest-
igators quicker locate important evidence compared to a regular NER system or
an information extraction system, but it requires that some entities are already
known to be of importance. An optimal solution could be to create a system that
works both with and without input data.

When talking to the investigator we were reminded that the cases the police
investigate are very different. There are different things that are important in a
murder case and in a fraud case. It is therefore difficult to create a general NER
model that works well and brings value in all investigations. A solution could be
to create different models for different types of cases. Each model could then be
trained on data from just the types of cases it is going to be used on and this
will probably increase the performance of the models and make them good at
detecting interesting entities in all types of cases. On the other hand, this would
lead to more work when creating and training the models.

Bibliography

[1] A. Årnes, Digital Forensics. Wiley, 2018.

[2] M. Scanlon, ‘Battling the digital forensic backlog through data deduplica-
tion,’ Aug. 2016. DOI: 10.1109/INTECH.2016.7845139.

[3] E. Casey, M. Ferraro and L. Nguyen, ‘Investigation delayed is justice denied:
Proposals for expediting forensic examinations of digital evidence,’ Journal
of forensic sciences, vol. 54, pp. 1353–64, Sep. 2009. DOI: 10.1111/j.1556-
4029.2009.01150.x.

[4] X. Du, C. Hargreaves, J. Sheppard, F. Anda, A. Sayakkara, N.-A. Le-Khac and
M. Scanlon, ‘SoK: Exploring the State of the Art and the Future Potential of
Artificial Intelligence in Digital Forensic Investigation,’ in The 13th Interna-
tional Workshop on Digital Forensics (WSDF), held at the 15th International
Conference on Availability, Reliability and Security (ARES), ser. ARES ’20,
Dublin, Ireland: ACM, Aug. 2020.

[5] D. O. Ukwen and M. Karabatak, ‘Review of nlp-based systems in digital
forensics and cybersecurity,’ in 2021 9th International Symposium on Digital
Forensics and Security (ISDFS), 2021, pp. 1–9. DOI: 10.1109/ISDFS52919.
2021.9486354.

[6] B. Mohit, ‘Named entity recognition,’ in Natural Language Processing of
Semitic Languages, I. Zitouni, Ed., Springer, USA, 2014, ISBN: 978-3642453571.

[7] M. Yang and K.-P. Chow, ‘An information extraction framework for digital
forensic investigations,’ in Advances in Digital Forensics XI, G. Peterson and
S. Shenoi, Eds., Cham: Springer International Publishing, 2015, pp. 61–76,
ISBN: 978-3-319-24123-4.

[8] M. Chau, J. J. Xu and H. Chen, ‘Extracting meaningful entities from police
narrative reports,’ in Proceedings of the 2002 Annual National Conference on
Digital Government Research, Digital Government Society of North America,
2002.

[9] W. Wu, K.-P. Chow, Y. Mai and J. Zhang, ‘Public opinion monitoring for
proactive crime detection using named entity recognition,’ in Advances in
Digital Forensics XVI, G. Peterson and S. Shenoi, Eds., Cham: Springer In-
ternational Publishing, 2020, pp. 203–214, ISBN: 978-3-030-56223-6.

51

https://doi.org/10.1109/INTECH.2016.7845139
https://doi.org/10.1111/j.1556-4029.2009.01150.x
https://doi.org/10.1111/j.1556-4029.2009.01150.x
https://doi.org/10.1109/ISDFS52919.2021.9486354
https://doi.org/10.1109/ISDFS52919.2021.9486354

52 AMØ: Norwegian NER for Investigative Purposes

[10] F. Jørgensen, T. Aasmoe, A.-S. Ruud Husevåg, L. Øvrelid and E. Velldal,
‘NorNE: Annotating named entities for Norwegian,’ English, in Proceed-
ings of the Twelfth Language Resources and Evaluation Conference, Marseille,
France: European Language Resources Association, May 2020, pp. 4547–
4556, ISBN: 979-10-95546-34-4. [Online]. Available: https://aclanthology.
org/2020.lrec-1.559.

[11] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edi-
tion. Pearson, 2009, pp. 727–737, ISBN: 978-0136042594.

[12] MathWorks. ‘What is deep learning? 3 things you need to know.’ (), [On-
line]. Available: https://se.mathworks.com/discovery/deep-learning.
html (visited on 01/06/2023).

[13] P. M. Nadkarni, L. Ohno-Machado and W. W. Chapman, ‘Natural language
processing: an introduction,’ Journal of the American Medical Informatics
Association, vol. 18, no. 5, pp. 544–551, Sep. 2011, ISSN: 1067-5027. DOI:
10.1136/amiajnl-2011-000464. eprint: https://academic.oup.com/
jamia/article-pdf/18/5/544/5962687/18-5-544.pdf. [Online]. Avail-
able: https://doi.org/10.1136/amiajnl-2011-000464.

[14] D. Nadeau and S. Sekine, ‘A survey of named entity recognition and classi-
fication,’ Lingvisticae Investigationes, vol. 30, Aug. 2007. DOI: 10.1075/li.
30.1.03nad.

[15] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami and C. Dyer,
Neural architectures for named entity recognition, 2016. arXiv: 1603.01360
[cs.CL].

[16] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C.
Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest
and A. Rush, ‘Transformers: State-of-the-art natural language processing,’
in Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, Online: Association for Compu-
tational Linguistics, Oct. 2020, pp. 38–45. DOI: 10.18653/v1/2020.emnlp-
demos.6. [Online]. Available: https://aclanthology.org/2020.emnlp-
demos.6.

[17] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018. DOI: 10.48550/
ARXIV.1810.04805. [Online]. Available: https://arxiv.org/abs/1810.
04805.

[18] N. Reimers and I. Gurevych, Optimal hyperparameters for deep lstm-networks
for sequence labeling tasks, 2017. arXiv: 1707.06799 [cs.CL].

https://aclanthology.org/2020.lrec-1.559
https://aclanthology.org/2020.lrec-1.559
https://se.mathworks.com/discovery/deep-learning.html
https://se.mathworks.com/discovery/deep-learning.html
https://doi.org/10.1136/amiajnl-2011-000464
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://academic.oup.com/jamia/article-pdf/18/5/544/5962687/18-5-544.pdf
https://doi.org/10.1136/amiajnl-2011-000464
https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.1075/li.30.1.03nad
https://arxiv.org/abs/1603.01360
https://arxiv.org/abs/1603.01360
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1707.06799

Bibliography 53

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser and I. Polosukhin, ‘Attention is all you need,’ in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan and R. Garnett, Eds., vol. 30, Curran As-
sociates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf.

[20] Y. Jia, ‘Attention mechanism in machine translation,’ Journal of Physics:
Conference Series, vol. 1314, p. 012 186, Oct. 2019. DOI: 10.1088/1742-
6596/1314/1/012186.

[21] M. Kapronczay. ‘A beginner’s guide to language models.’ (), [Online]. Avail-
able: https://builtin.com/data-science/beginners-guide-language-
models (visited on 08/06/2023).

[22] Scaler. ‘Masked language modeling in bert.’ (), [Online]. Available: https:
//www.scaler.com/topics/nlp/masked-language-model-explained/
(visited on 12/06/2023).

[23] Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba
and S. Fidler, ‘Aligning books and movies: Towards story-like visual ex-
planations by watching movies and reading books,’ 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 19–27, 2015.

[24] P. E. Kummervold, J. De la Rosa, F. Wetjen and S. A. Brygfjeld, ‘Operation-
alizing a national digital library: The case for a Norwegian transformer
model,’ in Proceedings of the 23rd Nordic Conference on Computational Lin-
guistics (NoDaLiDa), Reykjavik, Iceland (Online): Linköping University Elec-
tronic Press, Sweden, 2021, pp. 20–29. [Online]. Available: https : / /
aclanthology.org/2021.nodalida-main.3.

[25] A. Kutuzov, J. Barnes, E. Velldal, L. Øvrelid and S. Oepen, ‘Large-scale con-
textualised language modelling for Norwegian,’ in Proceedings of the 23rd
Nordic Conference on Computational Linguistics (NoDaLiDa), Reykjavik, Ice-
land (Online): Linköping University Electronic Press, Sweden, May 2021,
pp. 30–40. [Online]. Available: https://aclanthology.org/2021.nodalida-
main.4.

[26] P. E. Solberg, A. Skjærholt, L. Øvrelid, K. Hagen and J. B. Johannessen, ‘The
Norwegian dependency treebank,’ in Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Ice-
land: European Language Resources Association (ELRA), May 2014, pp. 789–
795. [Online]. Available: http://www.lrec- conf.org/proceedings/
lrec2014/pdf/303_Paper.pdf.

[27] K. P. Shung. ‘Accuracy, precision, recall or f1?’ (2018), [Online]. Available:
https://towardsdatascience.com/accuracy-precision-recall-or-
f1-331fb37c5cb9 (visited on 31/05/2023).

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1088/1742-6596/1314/1/012186
https://doi.org/10.1088/1742-6596/1314/1/012186
https://builtin.com/data-science/beginners-guide-language-models
https://builtin.com/data-science/beginners-guide-language-models
https://www.scaler.com/topics/nlp/masked-language-model-explained/
https://www.scaler.com/topics/nlp/masked-language-model-explained/
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.4
https://aclanthology.org/2021.nodalida-main.4
http://www.lrec-conf.org/proceedings/lrec2014/pdf/303_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/303_Paper.pdf
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

54 AMØ: Norwegian NER for Investigative Purposes

[28] S. L. Garfinkel, A. Parker-Wood, D. Huynh and J. Migletz, ‘An automated
solution to the multiuser carved data ascription problem,’ IEEE Transactions
on Information Forensics and Security, vol. 5, no. 4, pp. 868–882, 2010. DOI:
10.1109/TIFS.2010.2060484.

[29] F. Marturana, G. Me, R. Berte and S. Tacconi, ‘A quantitative approach to
triaging in mobile forensics,’ in 2011IEEE 10th International Conference
on Trust, Security and Privacy in Computing and Communications, 2011,
pp. 582–588. DOI: 10.1109/TrustCom.2011.75.

[30] M. Khan, C. Chatwin and R. Young, ‘A framework for post-event timeline
reconstruction using neural networks,’ Digital Investigation, vol. 4, no. 3,
pp. 146–157, 2007, ISSN: 1742-2876. DOI: https://doi.org/10.1016/
j.diin.2007.11.001. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1742287607000837.

[31] S. Fitzgerald, G. Mathews, C. Morris and O. Zhulyn, ‘Using nlp techniques
for file fragment classification,’ Digital Investigation, vol. 9, S44–S49, 2012,
The Proceedings of the Twelfth Annual DFRWS Conference, ISSN: 1742-
2876. DOI: https://doi.org/10.1016/j.diin.2012.05.008. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1742287612000333.

[32] L. Du, H. Jin, O. de Vel and N. Liu, ‘A latent semantic indexing and wordnet
based information retrieval model for digital forensics,’ in 2008 IEEE Inter-
national Conference on Intelligence and Security Informatics, 2008, pp. 70–
75. DOI: 10.1109/ISI.2008.4565032.

[33] A. de Waal, J. Venter and E. Barnard, ‘Applying topic modeling to forensic
data,’ vol. 285, Jan. 2008, ISBN: 978-0-387-84926-3. DOI: 10.1007/978-
0-387-84927-0_10.

[34] D. R. O’Day and R. A. Calix, ‘Text message corpus: Applying natural lan-
guage processing to mobile device forensics,’ in 2013 IEEE International
Conference on Multimedia and Expo Workshops (ICMEW), 2013, pp. 1–6.
DOI: 10.1109/ICMEW.2013.6618380.

[35] S. Keretna, A. Hossny and D. Creighton, ‘Recognising user identity in twitter
social networks via text mining,’ in 2013 IEEE International Conference on
Systems, Man, and Cybernetics, 2013, pp. 3079–3082. DOI: 10.1109/SMC.
2013.525.

[36] R. Y. Lau, Y. Xia and Y. Ye, ‘A probabilistic generative model for mining
cybercriminal networks from online social media,’ IEEE Computational In-
telligence Magazine, vol. 9, no. 1, pp. 31–43, 2014. DOI: 10.1109/MCI.
2013.2291689.

[37] D. Sun, X. Zhang, K.-K. R. Choo, L. Hu and F. Wang, ‘Nlp-based digital
forensic investigation platform for online communications,’ Computers Se-
curity, vol. 104, p. 102 210, Jan. 2021. DOI: 10.1016/j.cose.2021.102210.

https://doi.org/10.1109/TIFS.2010.2060484
https://doi.org/10.1109/TrustCom.2011.75
https://doi.org/https://doi.org/10.1016/j.diin.2007.11.001
https://doi.org/https://doi.org/10.1016/j.diin.2007.11.001
https://www.sciencedirect.com/science/article/pii/S1742287607000837
https://www.sciencedirect.com/science/article/pii/S1742287607000837
https://doi.org/https://doi.org/10.1016/j.diin.2012.05.008
https://www.sciencedirect.com/science/article/pii/S1742287612000333
https://www.sciencedirect.com/science/article/pii/S1742287612000333
https://doi.org/10.1109/ISI.2008.4565032
https://doi.org/10.1007/978-0-387-84927-0_10
https://doi.org/10.1007/978-0-387-84927-0_10
https://doi.org/10.1109/ICMEW.2013.6618380
https://doi.org/10.1109/SMC.2013.525
https://doi.org/10.1109/SMC.2013.525
https://doi.org/10.1109/MCI.2013.2291689
https://doi.org/10.1109/MCI.2013.2291689
https://doi.org/10.1016/j.cose.2021.102210

Bibliography 55

[38] B. Klimt and Y. Yang, ‘Introducing the enron corpus,’ in International Con-
ference on Email and Anti-Spam, 2004.

[39] F. B. Rodrigues, W. F. Giozza, R. de Oliveira Albuquerque and L. J. García
Villalba, ‘Natural language processing applied to forensics information ex-
traction with transformers and graph visualization,’ IEEE Transactions on
Computational Social Systems, pp. 1–17, 2022. DOI: 10.1109/TCSS.2022.
3159677.

[40] H. Shabat, N. Omar and K. Rahem, ‘Named entity recognition in crime
using machine learning approach,’ Dec. 2014, pp. 280–288, ISBN: 978-3-
319-12843-6. DOI: 10.1007/978-3-319-12844-3_24.

[41] P. Kummervold, F. Wetjen and J. de la Rosa, ‘The Norwegian colossal corpus:
A text corpus for training large Norwegian language models,’ in Proceedings
of the Thirteenth Language Resources and Evaluation Conference, Marseille,
France: European Language Resources Association, Jun. 2022, pp. 3852–
3860. [Online]. Available: https://aclanthology.org/2022.lrec-1.
410.

[42] B. Johansen, ‘Named-entity recognition for Norwegian,’ in Proceedings of
the 22nd Nordic Conference on Computational Linguistics, Turku, Finland:
Linköping University Electronic Press, Sep. 2019, pp. 222–231. [Online].
Available: https://aclanthology.org/W19-6123.

[43] J. Johannessen, K. Hagen, Å. Haaland, A. Jónsdottir, A. Nøklestad, D. Kokkina-
kis, P. Meurer, E. Bick and D. Hansen, ‘Named entity recognition for the
mainland scandinavian languages,’ Literary and Linguistic Computing, vol. 20,
Feb. 2005. DOI: 10.1093/llc/fqh045.

[44] C.-H. Ku, A. Iriberri and G. Leroy, ‘Crime information extraction from police
and witness narrative reports,’ Jun. 2008, pp. 193–198, ISBN: 978-1-4244-
1977-7. DOI: 10.1109/THS.2008.4534448.

[45] H. Nakayama, seqeval: A python framework for sequence labeling evaluation,
Software available from https://github.com/chakki-works/seqeval, 2018.
[Online]. Available: https://github.com/chakki-works/seqeval.

[46] D. Lillis and M. Scanlon, ‘On the benefits of information retrieval and in-
formation extraction techniques applied to digital forensics,’ in Jan. 2016,
vol. 393, pp. 641–647, ISBN: 978-981-10-1535-9. DOI: 10.1007/978-981-
10-1536-6_83.

[47] M. Fabien, S. Parida, P. Motlicek, D. Zhu, A. Krishnan and H. H. Nguyen,
‘ROXANNE Research Platform: Automate Criminal Investigations,’ in Proc.
Interspeech 2021, 2021, pp. 962–964.

[48] L. Zardiashvili, J. Bieger, F. Dechesne and V. Dignum, ‘Ai ethics for law en-
forcement: A study into requirements for responsible use of ai at the dutch
police,’ Delphi - Interdisciplinary Review of Emerging Technologies, vol. 2,
pp. 179–185, 4 2019. DOI: 10.21552/delphi/2019/4/7.

https://doi.org/10.1109/TCSS.2022.3159677
https://doi.org/10.1109/TCSS.2022.3159677
https://doi.org/10.1007/978-3-319-12844-3_24
https://aclanthology.org/2022.lrec-1.410
https://aclanthology.org/2022.lrec-1.410
https://aclanthology.org/W19-6123
https://doi.org/10.1093/llc/fqh045
https://doi.org/10.1109/THS.2008.4534448
https://github.com/chakki-works/seqeval
https://doi.org/10.1007/978-981-10-1536-6_83
https://doi.org/10.1007/978-981-10-1536-6_83
https://doi.org/10.21552/delphi/2019/4/7

56 AMØ: Norwegian NER for Investigative Purposes

[49] T. A. Act. ‘The artificial intelligence act.’ (), [Online]. Available: https:
//artificialintelligenceact.eu (visited on 12/07/2023).

https://artificialintelligenceact.eu
https://artificialintelligenceact.eu

Appendix A

Sikt Application Assessment

The assessment of our Sikt application:

57

58 AMØ: Norwegian NER for Investigative Purposes

Chapter A: Sikt Application Assessment 59

Appendix B

Scraping Script

Code listing B.1: Script to collect and structure Wikipedia files

from bs4 import BeautifulSoup
import requests
import csv
import re

article_file = open(’articles.txt’, ’r’)

articles = article_file.read()

article_list = articles.split(’\n’)

with open(’articles.csv’, ’w’, newline=’’) as file:
writer = csv.writer(file)
writer.writerow(["Title", "Text"])

for article in article_list:
if not article == ’’:

page = requests.get(article)
soup = BeautifulSoup(page.content, ’lxml’)
p_list = soup.find_all(’p’)
full_text = ’’
for p in p_list:

p_text = p.get_text().replace(’\n’, ’’)
p_text = re.sub(’\[[0-9]+\]’, ’’, p_text)
full_text += ’␣’ + p_text

with open(’articles.csv’, ’a’, newline=’’) as file:
writer = csv.writer(file)
writer.writerow([soup.find(’h1’).get_text(), full_text])

61

Appendix C

Annotation Script

Code listing C.1: Script to do initial annotation and structure data in json files

#https://huggingface.co/NbAiLab/nb-bert-base-ner

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import csv
import re
import json

tokenizer = AutoTokenizer.from_pretrained("NbAiLab/nb-bert-base-ner",
model_max_length=512)

model = AutoModelForTokenClassification.from_pretrained("NbAiLab/nb-bert-base-ner")

ner = pipeline("ner", model=model, tokenizer=tokenizer)

with open("beautifulSoup/articles.csv", "r") as file:
csvreader = csv.reader(file)
next(csvreader)
for row in csvreader:

file = open(’files/’+row[0]+’.json’, ’w’)
file = open(’files/’+row[0]+’.json’, ’a’)
file.write(’[’)
sentences = row[1].split(’.’)
idx = 1
for sentence in sentences:

if len(sentence) <= 512:
ner_result = ner(sentence)
sentence_object = {}
sentence_object["idx"] = str(idx)
idx += 1
sentence_object["lang"] = "bokmaal"
sentence_object["text"] = sentence
tokens = re.split(’([^a-zA-Z0-9\’\-æøåÆ Å])’, sentence)
tokens = [char for char in tokens if char != ’␣’]
tokens = [char for char in tokens if char != ’’]
sentence_object["tokens"] = tokens
lemmas = [word.lower() for word in tokens]
sentence_object["lemmas"] = lemmas
ner_tags = []
for word in tokens:

ner_match = list(filter(lambda j: j[’word’] == word, ner_result))

63

64 AMØ: Norwegian NER for Investigative Purposes

if len(ner_match) > 0:
ner_tags.append(ner_match[0][’entity’])

else:
ner_tags.append("O")

sentence_object["ner_tags"] = ner_tags
json_object = json.dumps(sentence_object, indent=6, ensure_ascii=False)
file.write(json_object)
file.write(’,’)

else:
print(sentence)
print("Sentence␣too␣long")

file = open(’files/’+row[0]+’.json’, ’rb+’)
file.seek(-1, 2)
file.truncate()
file = open(’files/’+row[0]+’.json’, ’a’)
file.write(’]’)

Appendix D

Split Script

Code listing D.1: Script to split the annotated data in train, validation and test
files

import os
import json
import random
import numpy as np

files = os.listdir(’files’)
random.seed(42)
random.shuffle(files)

train_files, validation_files, test_files = np.split(files,
[int(len(files)*0.7), int(len(files)*0.9)])

overview_file = open(’data/overview.txt’, ’w’)

def list_in_overview(files, title):
overview_file.write(’\n’+title+’\n’)
for file in files:

overview_file.write(file+’\n’)

def merge_files(files, file_name):
all_sentences = []
for file in files:

file = open(’files/’+file, ’r’)
all_sentences.extend(json.load(file))

merged_file = open(’data/’+file_name+’.json’, ’w’)
json_objects = json.dumps(all_sentences, indent=6, ensure_ascii=False)
merged_file.write(json_objects)

merge_files(train_files, ’train’)
merge_files(validation_files, ’val’)
merge_files(test_files, ’test’)

list_in_overview(train_files, ’train’)
list_in_overview(validation_files, ’val’)
list_in_overview(test_files, ’test’)

65

Appendix E

Training Script

Code listing E.1: Script to fine-tune and test the model

#!/usr/bin/env python
coding=utf-8

The original file is modified
Copyright 2020 The HuggingFace Team All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
Fine-tuning the library models for token classification.
"""
You can also adapt this script on your own token classification task and datasets.
Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

import datasets
import evaluate
import numpy as np
from datasets import ClassLabel, load_dataset

import transformers
from transformers import (

AutoConfig,
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,

67

68 AMØ: Norwegian NER for Investigative Purposes

HfArgumentParser,
PretrainedConfig,
PreTrainedTokenizerFast,
Trainer,
TrainingArguments,
set_seed,

)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version

Will error if the minimal version of
Transformers is not installed. Remove at your own risks.
check_min_version("4.27.0.dev0")

require_version(
"datasets>=1.8.0",
"To␣fix:␣pip␣install␣-r␣examples/pytorch/token-classification/requirements.txt")

logger = logging.getLogger(__name__)

@dataclass
class ModelArguments:

"""
Arguments pertaining to which model/config/tokenizer
we are going to fine-tune from.
"""

model_name_or_path: str = field(
metadata={

"help": (
"Path␣to␣pretrained␣model␣or␣model␣identifier␣"
"from␣huggingface.co/models")}

)
config_name: Optional[str] = field(

default=None,
metadata={

"help": (
"Pretrained␣config␣name␣or␣path␣if␣not␣the␣same␣"
"as␣model_name")}

)
tokenizer_name: Optional[str] = field(

default=None,
metadata={

"help": (
"Pretrained␣tokenizer␣name␣or␣path␣if␣not␣the␣same␣"
"as␣model_name")}

)
cache_dir: Optional[str] = field(

default=None,
metadata={

"help": (
"Where␣do␣you␣want␣to␣store␣the␣pretrained␣models␣"
"downloaded␣from␣huggingface.co")},

)
model_revision: str = field(

default="main",
metadata={

Chapter E: Training Script 69

"help": (
"The␣specific␣model␣version␣to␣use␣(can␣be␣a␣"
"branch␣name,␣tag␣name␣or␣commit␣id).")},

)
use_auth_token: bool = field(

default=False,
metadata={

"help": (
"Will␣use␣the␣token␣generated␣when␣running␣"
"‘huggingface-cli␣login‘␣(necessary␣to␣use␣this␣script␣"
"with␣private␣models)."

)
},

)
ignore_mismatched_sizes: bool = field(

default=False,
metadata={

"help": (
"Will␣enable␣to␣load␣a␣pretrained␣model␣whose␣"
"head␣dimensions␣are␣different.")},

)

@dataclass
class DataTrainingArguments:

"""
Arguments pertaining to what data we are going
to input our model for training and eval.
"""

task_name: Optional[str] = field(
default="ner",
metadata={"help": "The␣name␣of␣the␣task␣(ner,␣pos...)."})

dataset_name: Optional[str] = field(
default=None,
metadata={

"help":
"The␣name␣of␣the␣dataset␣to␣use␣(via␣the␣datasets␣library)."}

)
dataset_config_name: Optional[str] = field(

default=None,
metadata={

"help": (
"The␣configuration␣name␣of␣the␣dataset␣"
"to␣use␣(via␣the␣datasets␣library).")}

)
train_file: Optional[str] = field(

default=None,
metadata={

"help":
"The␣input␣training␣data␣file␣(a␣csv␣or␣JSON␣file)."}

)
validation_file: Optional[str] = field(

default=None,
metadata={

"help": (
"An␣optional␣input␣evaluation␣data␣file␣to␣"
"evaluate␣on␣(a␣csv␣or␣JSON␣file).")},

)
test_file: Optional[str] = field(

70 AMØ: Norwegian NER for Investigative Purposes

default=None,
metadata={

"help": (
"An␣optional␣input␣test␣data␣file␣to␣"
"predict␣on␣(a␣csv␣or␣JSON␣file).")},

)
text_column_name: Optional[str] = field(

default=None,
metadata={

"help": (
"The␣column␣name␣of␣text␣to␣input␣in␣the␣"
"file␣(a␣csv␣or␣JSON␣file).")}

)
label_column_name: Optional[str] = field(

default=None,
metadata={

"help": (
"The␣column␣name␣of␣label␣to␣input␣in␣the␣"
"file␣(a␣csv␣or␣JSON␣file).")}

)
overwrite_cache: bool = field(

default=False,
metadata={

"help":
"Overwrite␣the␣cached␣training␣and␣evaluation␣sets"}

)
preprocessing_num_workers: Optional[int] = field(

default=None,
metadata={

"help":
"The␣number␣of␣processes␣to␣use␣for␣the␣preprocessing."},

)
max_seq_length: int = field(

default=None,
metadata={

"help": (
"The␣maximum␣total␣input␣sequence␣length␣after␣"
"tokenization.␣If␣set,␣sequences␣longer␣than␣"
"this␣will␣be␣truncated,␣sequences␣shorter␣will␣be␣padded."

)
},

)
pad_to_max_length: bool = field(

default=False,
metadata={

"help": (
"Whether␣to␣pad␣all␣samples␣to␣model␣maximum␣sentence␣length.␣"
"If␣False,␣will␣pad␣the␣samples␣dynamically␣"
"when␣batching␣to␣the␣maximum␣length␣in␣the␣batch.␣More␣"
"efficient␣on␣GPU␣but␣very␣bad␣for␣TPU."

)
},

)
max_train_samples: Optional[int] = field(

default=None,
metadata={

"help": (
"For␣debugging␣purposes␣or␣quicker␣training,␣"
"truncate␣the␣number␣of␣training␣examples␣to␣this␣"
"value␣if␣set."

Chapter E: Training Script 71

)
},

)
max_eval_samples: Optional[int] = field(

default=None,
metadata={

"help": (
"For␣debugging␣purposes␣or␣quicker␣training,␣"
"truncate␣the␣number␣of␣evaluation␣examples␣to␣this␣"
"value␣if␣set."

)
},

)
max_predict_samples: Optional[int] = field(

default=None,
metadata={

"help": (
"For␣debugging␣purposes␣or␣quicker␣training,␣"
"truncate␣the␣number␣of␣prediction␣examples␣to␣this␣"
"value␣if␣set."

)
},

)
label_all_tokens: bool = field(

default=False,
metadata={

"help": (
"Whether␣to␣put␣the␣label␣for␣one␣word␣on␣all␣"
"tokens␣of␣generated␣by␣that␣word␣or␣just␣on␣the␣"
"one␣(in␣which␣case␣the␣other␣tokens␣will␣"
"have␣a␣padding␣index)."

)
},

)
return_entity_level_metrics: bool = field(

default=False,
metadata={

"help": (
"Whether␣to␣return␣all␣the␣entity␣levels␣during␣"
"evaluation␣or␣just␣the␣overall␣ones.")},

)

def __post_init__(self):
if (self.dataset_name is None and self.train_file is None
and self.validation_file is None):

raise ValueError("Need␣either␣a␣dataset␣name␣or␣a␣"
"training/validation␣file.")

else:
if self.train_file is not None:

extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], ("‘train_file‘␣should␣"

"be␣a␣csv␣or␣a␣json␣file.")
if self.validation_file is not None:

extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], ("‘validation_file‘␣should␣"

"be␣a␣csv␣or␣a␣json␣file.")
self.task_name = self.task_name.lower()

def main():

72 AMØ: Norwegian NER for Investigative Purposes

See all possible arguments in src/transformers/training_args.py
or by passing the --help flag to this script.
We now keep distinct sets of args, for a cleaner separation of concerns.

parser = HfArgumentParser((ModelArguments, DataTrainingArguments,
TrainingArguments))

if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
If we pass only one argument to the script
and it’s the path to a json file,
let’s parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(

json_file=os.path.abspath(sys.argv[1]))
else:

model_args, data_args, training_args = parser.parse_args_into_dataclasses()

Sending telemetry. Tracking the example usage helps us
better allocate resources to maintain them. The
information sent is the one passed as arguments along
with your Python/PyTorch versions.
send_example_telemetry("run_ner", model_args, data_args)

Setup logging
logging.basicConfig(

format="%(asctime)s␣-␣%(levelname)s␣-␣%(name)s␣-␣%(message)s",
datefmt="%m/%d/%Y␣%H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],

)

log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()

Log on each process the small summary:
logger.warning(

f"Process␣rank:␣{training_args.local_rank}"
+ f"device:␣{training_args.device},␣n_gpu:␣{training_args.n_gpu}"
+ f"distributed␣training:␣{bool(training_args.local_rank␣!=␣-1)}"
+ f"16-bits␣training:␣{training_args.fp16}"

)
logger.info(f"Training/evaluation␣parameters␣{training_args}")

Detecting last checkpoint.
last_checkpoint = None
if (os.path.isdir(training_args.output_dir) and training_args.do_train

and not training_args.overwrite_output_dir):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if (last_checkpoint is None and

len(os.listdir(training_args.output_dir)) > 0):
raise ValueError(

f"Output␣directory␣({training_args.output_dir})␣"
"already␣exists␣and␣is␣not␣empty.␣"
"Use␣--overwrite_output_dir␣to␣overcome."

)
elif (last_checkpoint is not None and

training_args.resume_from_checkpoint is None):
logger.info(

f"Checkpoint␣detected,␣resuming␣training␣at␣{last_checkpoint}.␣"

Chapter E: Training Script 73

"To␣avoid␣this␣behavior,␣change␣"
"the␣‘--output_dir‘␣or␣add␣‘--overwrite_output_dir‘␣"
"to␣train␣from␣scratch."

)

Set seed before initializing model.
set_seed(training_args.seed)

Get the datasets: you can either provide your
own CSV/JSON/TXT training and evaluation files (see below)
or just provide the name of one of the public
datasets available on the hub at https://huggingface.co/datasets/
(the dataset will be downloaded automatically from the datasets Hub).
#
For CSV/JSON files, this script will use the
column called ’text’ or the first column if no column called
’text’ is found. You can easily tweak this behavior (see below).
#
In distributed training, the load_dataset function
guarantee that only one local process can concurrently
download the dataset.
if data_args.dataset_name is not None:

Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(

data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,

)
else:

data_files = {}
if data_args.train_file is not None:

data_files["train"] = data_args.train_file
if data_args.validation_file is not None:

data_files["validation"] = data_args.validation_file
if data_args.test_file is not None:

data_files["test"] = data_args.test_file
extension = data_args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files,

cache_dir=model_args.cache_dir)
See more about loading any type of standard or custom dataset
(from files, python dict, pandas DataFrame, etc) at
https://huggingface.co/docs/datasets/loading_datasets.html.
if training_args.do_train:

column_names = raw_datasets["train"].column_names
features = raw_datasets["train"].features

else:
column_names = raw_datasets["validation"].column_names
features = raw_datasets["validation"].features

if data_args.text_column_name is not None:
text_column_name = data_args.text_column_name

elif "tokens" in column_names:
text_column_name = "tokens"

else:
text_column_name = column_names[0]

if data_args.label_column_name is not None:
label_column_name = data_args.label_column_name

elif f"{data_args.task_name}_tags" in column_names:

74 AMØ: Norwegian NER for Investigative Purposes

label_column_name = f"{data_args.task_name}_tags"
else:

label_column_name = column_names[1]

In the event the labels are not a ‘Sequence[ClassLabel]‘,
we will need to go through the dataset to get the
unique labels.
def get_label_list(labels):

unique_labels = set()
for label in labels:

unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list

If the labels are of type ClassLabel, they are already integers
and we have the map stored somewhere.
Otherwise, we have to get the list of labels manually.

#labels_are_int = isinstance(features[label_column_name].feature, ClassLabel)

#if labels_are_int:
label_list = features[label_column_name].feature.names
label_to_id = {i: i for i in range(len(label_list))}
#else:
label_list = get_label_list(raw_datasets["train"][label_column_name])
label_to_id = {l: i for i, l in enumerate(label_list)}

print(label_to_id)
print(get_label_list(raw_datasets["validation"][label_column_name]))

num_labels = len(label_list)

Load pretrained model and tokenizer
#
Distributed training:
The .from_pretrained methods guarantee that only one local
process can concurrently
download model & vocab.
config = AutoConfig.from_pretrained(

(model_args.config_name if model_args.config_name
else model_args.model_name_or_path),
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,

)

tokenizer_name_or_path = (model_args.tokenizer_name if model_args.tokenizer_name
else model_args.model_name_or_path)

if config.model_type in {"bloom", "gpt2", "roberta"}:
tokenizer = AutoTokenizer.from_pretrained(

tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
add_prefix_space=True,

)

Chapter E: Training Script 75

else:
tokenizer = AutoTokenizer.from_pretrained(

tokenizer_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,

)

model = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,

)

Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):

raise ValueError(
"This␣example␣script␣only␣works␣for␣models␣that␣have␣a␣"
"fast␣tokenizer.␣Checkout␣the␣big␣table␣of␣models␣at"
"␣https://huggingface.co/transformers/index.html#supported-frameworks␣"
"to␣find␣the␣model␣types␣that␣meet"
"␣this␣requirement"

)

Model has labels -> use them.
if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id:

if list(sorted(model.config.label2id.keys())) == list(sorted(label_list)):
Reorganize ‘label_list‘ to match the ordering of the model.
label_list = [model.config.id2label[i] for i in range(num_labels)]
label_to_id = {l: i for i, l in enumerate(label_list)}

else:
logger.warning(

"Your␣model␣seems␣to␣have␣been␣trained␣with␣labels,␣but␣they␣"
"don’t␣match␣the␣dataset:␣",
f"model␣labels:␣{list(sorted(model.config.label2id.keys()))},␣"
"dataset␣labels:"
f"␣{list(sorted(label_list))}.\nIgnoring␣"
"the␣model␣labels␣as␣a␣result.",

)

Set the correspondences label/ID inside the model config
model.config.label2id = {l: i for i, l in enumerate(label_list)}
model.config.id2label = {i: l for i, l in enumerate(label_list)}

Map that sends B-Xxx label to its I-Xxx counterpart
b_to_i_label = []
for idx, label in enumerate(label_list):

if label.startswith("B-") and label.replace("B-", "I-") in label_list:
b_to_i_label.append(label_list.index(label.replace("B-", "I-")))

else:
b_to_i_label.append(idx)

Preprocessing the dataset
Padding strategy
padding = "max_length" if data_args.pad_to_max_length else False

76 AMØ: Norwegian NER for Investigative Purposes

Tokenize all texts and align the labels with them.
def tokenize_and_align_labels(examples):

tokenized_inputs = tokenizer(
examples[text_column_name],
padding=padding,
truncation=True,
max_length=data_args.max_seq_length,
We use this argument because the texts in our dataset
are lists of words (with a label for each word).
is_split_into_words=True,

)

labels = []
for i, label in enumerate(examples[label_column_name]):

word_ids = tokenized_inputs.word_ids(batch_index=i)
previous_word_idx = None
label_ids = []
for word_idx in word_ids:

Special tokens have a word id that is None. We set
the label to -100 so they are automatically
ignored in the loss function.
if word_idx is None:

label_ids.append(-100)
We set the label for the first token of each word.
elif word_idx != previous_word_idx:

if not label[word_idx] in label_to_id:
print("Label␣" + label[word_idx]

+ "␣is␣not␣in␣training␣data")
label_ids.append(label_to_id[’O’])

else:
label_ids.append(label_to_id[label[word_idx]])

For the other tokens in a word, we set the label to
either the current label or -100, depending on
the label_all_tokens flag.
else:

if data_args.label_all_tokens:
label_ids.append(b_to_i_label[label_to_id[label[word_idx]]])

else:
label_ids.append(-100)

previous_word_idx = word_idx

labels.append(label_ids)
tokenized_inputs["labels"] = labels
print(tokenized_inputs[0])
return tokenized_inputs

if training_args.do_train:
if "train" not in raw_datasets:

raise ValueError("--do_train␣requires␣a␣train␣dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:

max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))

with training_args.main_process_first(
desc="train␣dataset␣map␣pre-processing"):
train_dataset = train_dataset.map(

Chapter E: Training Script 77

tokenize_and_align_labels,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running␣tokenizer␣on␣train␣dataset",

)

if training_args.do_eval:
if "validation" not in raw_datasets:

raise ValueError("--do_eval␣requires␣a␣validation␣dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:

max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))

with training_args.main_process_first(
desc="validation␣dataset␣map␣pre-processing"):
eval_dataset = eval_dataset.map(

tokenize_and_align_labels,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running␣tokenizer␣on␣validation␣dataset",

)

if training_args.do_predict:
if "test" not in raw_datasets:

raise ValueError("--do_predict␣requires␣a␣test␣dataset")
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:

max_predict_samples = min(len(predict_dataset),
data_args.max_predict_samples)

predict_dataset = predict_dataset.select(range(max_predict_samples))
with training_args.main_process_first(

desc="prediction␣dataset␣map␣pre-processing"):
predict_dataset = predict_dataset.map(

tokenize_and_align_labels,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running␣tokenizer␣on␣prediction␣dataset",

)

Data collator
data_collator = DataCollatorForTokenClassification(

tokenizer,
pad_to_multiple_of=8 if training_args.fp16 else None)

Metrics
metric = evaluate.load("seqeval")

def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)

Remove ignored index (special tokens)
true_predictions = [

[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)

]
true_labels = [

78 AMØ: Norwegian NER for Investigative Purposes

[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)

]

results = metric.compute(
predictions=true_predictions,
references=true_labels)

if data_args.return_entity_level_metrics:
Unpack nested dictionaries
final_results = {}
for key, value in results.items():

if isinstance(value, dict):
for n, v in value.items():

final_results[f"{key}_{n}"] = v
else:

final_results[key] = value
return final_results

else:
return {

"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],

}

Initialize our Trainer
trainer = Trainer(

model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,

)

Training
if training_args.do_train:

checkpoint = None
if training_args.resume_from_checkpoint is not None:

checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:

checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
trainer.save_model() # Saves the tokenizer too for easy upload

max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None
else len(train_dataset)

)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))

trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()

Evaluation
if training_args.do_eval:

logger.info("***␣Evaluate␣***")

Chapter E: Training Script 79

metrics = trainer.evaluate()

max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None
else len(eval_dataset)

)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)

Predict
if training_args.do_predict:

logger.info("***␣Predict␣***")

predictions, labels, metrics = trainer.predict(
predict_dataset,
metric_key_prefix="predict")

predictions = np.argmax(predictions, axis=2)

Remove ignored index (special tokens)
true_predictions = [

[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)

]

trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)

Save predictions
output_predictions_file = os.path.join(

training_args.output_dir, "predictions.txt"
)

if trainer.is_world_process_zero():
with open(output_predictions_file, "w") as writer:

for prediction in true_predictions:
writer.write("␣".join(prediction) + "\n")

kwargs = {"finetuned_from": model_args.model_name_or_path,
"tasks": "token-classification"}

if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:

kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = (f"{data_args.dataset_name}␣"
+ f"{data_args.dataset_config_name}")

else:
kwargs["dataset"] = data_args.dataset_name

if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)

else:
trainer.create_model_card(**kwargs)

def _mp_fn(index):
For xla_spawn (TPUs)
main()

80 AMØ: Norwegian NER for Investigative Purposes

if __name__ == "__main__":
main()

Appendix F

Performance Script

Code listing F.1: Script that computes the performance of the individual entity
tytpes

import itertools
import evaluate
import json
from sklearn import metrics

prediction_file = open(’result-model_5_20/predictions.txt’, ’r’)

predictions = prediction_file.read()

predictions = predictions.split(’\n’)

predictions = list(map(lambda p: p.split(’␣’), predictions))

true_file = open(’data/test_5.json’)

true_data = json.load(true_file)

true = []

for sentence in true_data:
true.append(sentence[’ner_tags’])

predictions = list(filter(lambda p: p != [’’], predictions))
true = list(filter(lambda t: t != [], true))

for i in range(len(true)):
if not len(true[i]) == len(predictions[i]):

print(true[i])

seqeval = evaluate.load(’seqeval’)
results = seqeval.compute(predictions=predictions, references=true)

print(results)

81

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Introduction
	Background and Motivation
	Research Questions
	Contributions
	Thesis structure

	Background
	Neural Networks
	nlp
	ner
	Transformers
	Language Models

	ndt
	Evaluation metrics

	Related Work
	Artificial Intelligence and Machine Learning in Investigations
	Natural Language Processing
	Named Entity Recognition

	Norwegian Named Entity Recognition

	Methodology
	Dataset
	Entity types
	Annotation Style
	Creating and Annotating The Dataset

	Fine-tuning Model

	Results
	Discussion
	Answering Research Question 1: Creating a ner Model
	Answering Research Question 2: Performance
	Dataset
	Limitations
	Legal and Ethical Considerations

	Nynorsk and Other Languages

	Conclusion
	Future Work

	Bibliography
	Sikt Application Assessment
	Scraping Script
	Annotation Script
	Split Script
	Training Script
	Performance Script

