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a b s t r a c t 

Vessel-shaped fish cages are promising large aquaculture structures developed in recent years, with an 

overall length of nearly 400 m. In this paper, a coupled hydroelasticity model of a vessel-shaped fish cage 

is used to calculate the motion and structural response in the time domain. First, the floating body of the 

cage is discretized into a multimodule system to calculate the frequency-domain hydrodynamic loads. 

Then, the multimodule system is connected by equivalent elastic beams to consider the hydroelastic be- 

havior in the time domain. The hydrodynamic loads of the multimodule system are transformed from the 

frequency-domain loads. Moreover, based on the velocity field transfer functions and the motion of the 

multimodule system, coupling wave fields considering incident, diffraction and radiation waves are built 

and used to calculate the loads on the net and steel frame. By iterating the motion response of the multi- 

module system and the hydrodynamic loads on the net and steel frame in the time domain, the balanced 

hydroelasticity response of the whole cage is finally obtained. The results show that the hydroelasticity 

effects have a significant influence on the vertical displacement and cross-sectional load effects of the 

vessel-shaped fish cage. 

© 2023 Shanghai Jiaotong University. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Generally, traditional fish cages are used in nearshore seas and 

re small. The most widely used gravity cage, for example, mainly 

ncludes flexible nets and circular floating collars made of high 

ensity polyethylene (HDPE). The diameter of the floating collar is 

enerally only 20–80 m [1] . Gravity cages have problems with net 

eformation due to strong waves and currents, and floating collars 

hat may cause twisting problems [2] . In addition, pollution in the 

earshore sea and the demand for high-quality fish products [3–

] have prompted the steady development of aquaculture in the 

eep sea [6] . To meet the needs of high-quality and green fisheries 

3–5] , various types of deep-sea aquaculture structures have been 

eveloped. Vessel-shaped fish cages are a new type of very large 

quaculture structure designed for the open sea, that combines a 

ery large floating body and aquaculture nets [1] . The robust and 
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arge steel structure can effectively adapt to the extreme environ- 

ent in the open sea. 

The floating body of a vessel-shaped fish cage, which is hun- 

reds of meters long, is a typical ultralong floating structure, and 

he study of the hydroelasticity response is necessary. For very 

arge floating structures, the hydroelasticity theories in the fre- 

uency domain, including the direct method [7] and the modal su- 

erposition approach [ 8 , 9 ], are widely used [ 10 , 11 ]. However, these

heories are generally restricted to steady-state processes. For hy- 

roelasticity theories in the time domain, two approaches have 

een developed [12] , namely, the direct time integration method 

nd the Fourier transform method based on Cummins’ equation. 

he former method is time-consuming, and is suitable for strongly 

onlinear problems. The latter is suitable for weakly nonlinear hy- 

roelasticity problems and is computational efficient [13] . Based 

n the potential flow theory and Cummins’ equations, Wei et al. 

14] first discretized a continuous floating structure into multi- 

odules connected by elastic beam elements, and then proposed a 

ime-domain hydroelastic method for very large floating structures 

n inhomogeneous waves. 
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Fig. 1. Model of the vessel-shaped fish cage. 
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Table 1 

Geometry and material parameters of the vessel-shaped fish cage. 

Parameters Unit Value 

Floating-body length, L F m 385 

Floating-body breadth, B F m 60 

Floating-body height/draft, T F m 20 

Size, D 1 m 5 

Size, D 2 m 8 

Size, D 3 m 4 

Main 

steel 

structure 

Young’s modulus, E S GPa 206 

Poisson’s ratio, μ – 0.3 

Density, ρS kg/m 

3 7850 

Diameter, B 1 m 1 

Diameter, B 2 m 2 

Section size, B 3 m 2 × 1 

Section size, B 4 m 1.5 × 1.5 

Net Side length, B N m 45 

Net depth, H N m 40 

Twine diameter, D N mm 5 

Twine length, L N mm 50 

Young’s modulus, E N GPa 113 

Solidity ratio – 0.19 
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The hydroelasticity response of the frames/collars and net of 

sh cages has been widely studied. Fu et al. [15] adopted an ex- 

ended 3D hydroelasticity theory in the frequency domain to pre- 

ict the dynamic response of 5 × 2 floating collars in regular 

aves. Li et al. [16] used beam elements and truss elements to 

imulate the hydroelastic response of an elastic floating collar and 

 flexible net, respectively, in a finite element model. Hu et al. 

17] studied the hydrodynamic response of a gravity fish cage un- 

er wave-current conditions considering the hydroelasticity of the 

et and floating collars, and found that much higher mode or- 

ers are excited when the significant wave height increases. Based 

n potential flow theory and dynamic cable theory, Ma et al. 

18] studied the hydrodynamic response of a vessel-shaped fish 

age with three rigid floating bodies connected by hinge joints. 

dditionally, the connecting loads between different floating bod- 

es were also studied. However, the influence of nets and slender 

rames has not been considered. For the vessel-shaped fish cage, 

he hydrodynamic response has been studied recently, with the 

oating body of the fish cage usually regarded as a 6 °degree-of- 

reedom (DOF) rigid body [19–21] , but the hydroelasticity of the 

oating body was not considered. Nevertheless, the hydroelasticity 

f a very large floating structure might be important [14] , and the 

ffects on the wave field and hydrodynamic load on the net should 

e analyzed. 

In the present study, a numerical method is proposed to eval- 

ate the hydroelastic responses of a vessel-shaped fish cage under 

oupling waves. First, the continuous floating body is discretized 

nto a rigid multimodule system for multibody hydrodynamic anal- 

sis in the frequency domain, and the transfer functions of the 

ave excitation force considering the interactions between differ- 

nt modules and the velocity field transfer function induced by the 

iffraction and radiation waves in the frequency domain are solved 

ia potential flow theory. Then, in the time-domain calculation, 

he rigid modules are connected by the equivalent beams, which 

re determined by the cross-sectional parameters of the original 

ain steel structure. The hydrodynamic loads of the floating body 

re transformed from the frequency domain solution. The nets and 

he steel frames are divided into different blocks and subsequently 

oupled to the corresponding rigid module to transfer the hydro- 

ynamic loads on the slender members, which are calculated by a 

orison equation. Finally, an iterative method [22] is applied to 

btain the balanced motion of the multimodule system and the 

ydrodynamic loads on the nets and the steel frames. The verti- 

al displacements, cross-sectional bending moment and shear force 

f the coupled hydroelasticity model are analyzed, and the results 

how that the effects of hydroelasticity of the vessel-shaped fish 

age are prominent. 
419 
. Numerical model of the vessel-shaped fish cage 

Fig. 1 shows the model of the vessel-shaped fish cage, which 

onsists of the main steel structure (a floating body and steel 

rames, shown in blue and orange in Fig. 1 , respectively) and flex- 

ble nets in red. Six large aquaculture cages are distributed along 

he x -axis and connected to the frames. Table 1 [ 19 , 20 ] shows the

ain parameters of the cage. The origin of the global coordinate 

ystem oxyz is located at the still water surface coincident with 

he center of the bow of the floating body. 

. Theoretical background 

.1. Motion equation of the floating body 

.1.1. Motion equation of a multimodule system in the frequency 

omain 

The continuous floating body is discretized into a multimodule 

ystem including N modules, and local coordinate systems are es- 

ablished for each module, as shown in Fig. 2 . The multimodule 

ystem has N modules. Considering the hydrodynamic interactions 

etween different modules, the potential flow theory is used to 

btain the wave excitation force transfer function, as well as the 

dded mass A ( ω) and damping C ( ω) of the multimodule system. 
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Fig. 2. Coordinate system of the multimodule system. 
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The motion equation of the multimodule system in the fre- 

uency domain can be expressed as: 
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(1

here ω is the wave frequency, M 

( n ) 
F 

and K 

( n ) 
F 

are the mass and 

ydrostatic restoring stiffness matrix of module n ( n = 1,…, N ), re-

pectively; A 

( nm ) and C 

( nm ) represent the added mass and damp- 

ng matrix of module n induced by the motion of module m ( n, 

 = 1,…, N ), respectively; and M 

( n ) 
F 

, K 

( n ) 
F 

, A 

( nm ) and C 

( nm ) are all

 × 6 matrices. F̄ ( n ) 
W 

and ū 

( n ) 
F 

(6 × 1 matrices with complex form) 

re the first-order wave excitation force and displacement of mod- 

le n ( n = 1, …, N ), respectively. The symbol - denotes a parameter

n the frequency domain. 

For simplicity, Eq. (1) can be rewritten as: 

−ω 

2 (M F + A ) 6 N×6 N − iωC 6 N×6 N + (K F ) 6 N×6 N 

]
( ̄u F ) 6 N×1 = ( ̄F W 

) 6 N×1 

(2) 

here M F and K F represent the mass and hydrostatic restoring 

tiffness matrix of multimodule system, respectively; A and C are 

he added mass and damping matrix of multimodule system, re- 

pectively; M F , K F , A and C are all 6 N × 6 N matrices. F̄ W 

and

¯  (6 N × 1 matrices) are the first-order wave excitation force and 
F 

420
isplacement matrices of the multimodule system in the frequency 

omain, respectively. 

.1.2. Motion equation of the equivalent structural model in the time 

omain 

In the time-domain calculation, the discretized modules, which 

re used for hydrodynamic load modeling, are connected by Euler–

ernoulli beams, as shown in Fig. 3 . The equivalent beam serves 

s a backbone to which the rigid modules are attached. There are 

 -1 beam elements for the multimodule system with N modules. 

n the equivalent structural model, the rigid module n is modeled 

s node n , and the wave excitation force and radiation forces of 

odule n are applied to the corresponding node n . The centroid of 

ach module is located at the same height and on the x -axis of the

oating body, which also coincides with the equivalent beam. 

Under a regular wave, the corresponding time-domain equation 

f Eq. (2) considering the structural stiffness of elastic beams can 

e written as: 
 

 

 

 

 

( M F + A ) 6 N×6 N { ̈u F (t) } 6 N×1 + C 6 N×6 N ̇  u F (t) 6 N×1 

+ ( K F + K S ) 6 N×6 N u F (t) 6 N×1 = F W 

(t) 6 N×1 

F W 

(t) 6 N×1 = 

[
F ( 

1 ) 
W 

(t) 6 ×1 F ( 
2 ) 

W 

(t) 6 ×1 · · · F ( 
N ) 

W 

(t) 6 ×1 

]T 

(3) 

here M F , K F and K S represent the mass matrix, hydrostatic restor- 

ng stiffness matrix and structural stiffness of the elastic beams, 

espectively; A and C are the added mass and damping matrix, re- 

pectively; and they are all 6 N × 6 N matrices. F W 

( t ) (a 6 N × 1

atrix) is the first-order wave excitation force in the time domain; 

 

( i ) 
W 

( t ) (a 6 × 1 matrix) is the first-order wave excitation force of

odule i ( i = 1, …, N ), as determined by F̄ ( i ) 
W 

in Eq. (1) ; and u F ( t ),

˙  F ( t ) and ü F ( t ) (6 N × 1 matrices) represent the displacement, ve-

ocity and acceleration of multimodule system in the time domain, 

espectively. 

Under irregular waves, the radiation forces in the time domain 

an generally be calculated by the convolution term [14] . In this 

aper, the radiation forces of the floating body in irregular waves 
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Fig. 3. Equivalent elastic model. 

a

v

d  

r

(

w  

m  

t

(  

t  

A

fi  

i{

w

i  

a

a

e  

ζ
t  

p

r

u

S

w

h

(

(  

c

f⎧⎨
⎩
w

(  

n

n

a  

θ

f

a  

w

t

w

t

r

i

u

(

e

s

t⎧⎨
⎩
w

v

re calculated by the state space method, which is essentially de- 

eloped from the convolution term [ 22 , 23 ]. Therefore, the time- 

omain equation based on the state-space method [ 22 , 23 ], can be

ewritten as: 

 

M F + A (∞ ) ) 6 N×6 N { ̈u F (t) } 6 N×1 + ( K F + K S ) 6 N×6 N u F (t) 6 N×1 

+ z Rad (t) 6 N×1 = F W 

(t) 6 N×1 (4) 

here A( ∞ ) (a 6 N × 6 N matrix)is the infinite frequency added

ass and z Rad ( t ) (a 6 N × 1 matrix) refers to the radiation force

hat accounts for only the frequency-dependent terms [ 22 , 23 ]. 

1) wave excitation force. As shown in Fig. 3 , the external loads of

he module n act on the n -th node of the equivalent elastic beam.

iry wave theory is used in this study. Under a regular wave, the 

rst-order wave excitation force F ( n ) 
W 

( t ) of module n ( n = 1, …, N )

n Eq. (3) can be expressed in the time domain as: 
 

F (n ) 
W 

(t) 6 ×1 = 

[
F (n ) 

W 1 
(t) F (n ) 

W 2 
(t) · · · F (n ) 

W 6 
(t) 

]T 

F (n ) 
W j 

(t) = ζA 

∣∣F̄ (n ) 
W j 

∣∣ cos 
(
ωt + θ (n ) 

j 
− (kx cos ϕ + ky sin ϕ) 

) (5) 

here F ( n ) 
W j 

( t ) is the first-order wave excitation force of module n 

n the j -th ( j = 1, 2, …, 6) DOF. | ̄F ( n ) 
W j 

| and θ ( n ) 
j 

are respectively the

mplitude of the first-order wave excitation force transfer function 

nd the phase angle between the wave excitation force and wave 

levation in the j -th ( j = 1, 2, …, 6) DOF of module n . In addition,

A refers to the amplitude of the regular wave at frequency ω, k is 

he wavenumber, ϕ is the wave angle, and kx cos ϕ + ky sin ϕ is the

osition phase. 

Irregular waves can be considered a superposition of a series of 

egular wave components. In this study, the JONSWAP spectrum is 

sed: 

(ω) = 319 . 34 

(H S ) 
2 

T 4 
P 
ω 

5 

{
− 1948 

(T 
P 
ω) 

4 

}
γ

exp 

[
− (0 . 159 T 

P 
ω−1) 2 

2 σ2 

]
(6) 

here T P is the spectral peak period, H S is the significant wave 

eight, ω is the wave frequency, γ is the spectral peak parameter 

set as 3.3 in this study), and σ is the spectral width parameter. 
421 
Under irregular waves, the wave excitation forces on module n 

 n = 1, …, N ) in Eq. (4) can be considered a superposition of ex-

itation forces under a series of regular wave components. These 

orces can be expressed in the time-domain as: 

 

 

 

F (n ) 
W 

(t) 6 ×1 = 

[
F (n ) 

W 1 
(t) F (n ) 

W 2 
(t) · · · F (n ) 

W 6 
(t) 

]T 

F (n ) 
W j 

(t) = 

M ∑ 

l 

ζAl 

∣∣F̄ (n ) 
W l j 

∣∣ cos 
(
ω l t + θ (n ) 

l j 
+ ε l −(k l x cos ϕ + k l y sin ϕ) 

)
(7) 

here F ( n ) 
W 

( t ) is the first-order wave excitation force of module n 

 n = 1, …, N ) under irregular waves, the subscript l is the frequency

umber at wave frequency ω l for irregular waves, M is the total 

umber of regular wave components used in the irregular wave, 

nd ω l refers to the L -th ( l = 1, …, M ) wave frequency. | ̄F ( n ) 
W l j 

| and

( n ) 
l j 

are the amplitude of the first-order wave excitation force trans- 

er function and the phase angle between the wave excitation force 

nd wave elevation in the j -th ( j = 1, 2, …, 6) DOF of module n at

ave frequency ω l , respectively, ζ Al and k l refer to the wave ampli- 

ude and wavenumber at wave frequency ω l , respectively, ϕ is the 

ave angle, k l x cos ϕ+ k l y sin ϕ and εl denote the position phase and 

he random phase angle of wave elevation at wave frequency ω l , 

espectively, ζ Al can be determined by ζ Al = 

√ 

2 S ( ω l )
ω , where S 

s the wave spectrum in Eq. (6) , and 
ω is the frequency interval 

sed in the irregular wave. 

2) structural stiffness matrix of the equivalent structural model. To 

nsure that the deformation of the equivalent elastic beam is con- 

istent with that of the original steel structure, the beam parame- 

ers need to meet the following criteria [24] : 
 

 

 

E e A e = E r A r 

E e I Mye = E r I Myr 

E e I Mze = E r I Mzr 

(8) 

here E, A, I My and I Mz are the elastic moduls, cross-sectional area, 

ertical inertia moment, and transverse inertia moment, respec- 
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ively; E e A e , E e I Mye and E e I Mze represent the axial stiffness, vertical

ending stiffness and transverse bending stiffness of the equivalent 

tructural beam, respectively; and E r A r , E r I Myr and E r I Mzr represent 

he axial stiffness, vertical bending stiffness and transverse bend- 

ng stiffness of the original steel structure, respectively. The sub- 

cripts e and r denote the parameters of the equivalent structural 

eam and the continuous floating body, respectively. 

Dividing the cross-section into k subsections, the i th ( i = 1,…, 

 ) subsection can contribute to the axial stiffness, vertical bending 

tiffness and transverse bending stiffness of the cross-section. Con- 

iderating the parallel axis theorem, the stiffness of the equivalent 

eams can be determined by revising Eq. (8) : 

 

 

 

 

 

 

 

 

 

 

 

 

 

E e A e = 

k ∑ 

i =1 

E r A ri 

E e I Mye = 

k ∑ 

i =1 

E r 
(
I Myi + A ri h 

2 
yi 

)
E e I Mze = 

k ∑ 

i =1 

E r 
(
I Mzi + A ri h 

2 
zi 

)
(9) 

here A ri is the area of the i th subsection, I Myi and I Mzi are the

ertical inertia moment, and transverse inertia moment of the i th 

ubsection, respectively, h yi is the vertical distance between the i 

h subsection centroid and the y -axis, and h zi is the vertical dis- 

ance between the i th subsection centroid and the z -axis. The tor- 

ional stiffness relating with the rotation and torsional moment 

eeds to be determined by a numerical method for the relevant 

rame structure. However, the case considered in this study does 

ot involve torsional response. 

Combined with the axial stiffness, bending stiffness and tor- 

ional rigidity, the element stiffness matrix k 

n of the equivalent 

lastic beam n in the local coordinate system can be obtained [25] : 

 

n = 

[
k 

n 
n,n k 

n 
n,n +1 

k 

n 
n +1 ,n k 

n 
n +1 ,n +1 

]
(10) 

here k 

n is a 12 ×12 matrix, and k 

q 
n,m 

is a 6 × 6 matrix determined

y the beam parameters in Eq. (8) , the superscript q is the beam

lement number ( q = 1, …, N -1), the subscript n is the first node of

eam element q and the subscript m is the second node of beam 

lement q ( n, m = 1, …, N ). 

By overlaying the element matrix in Eq. (10) , the structural 

tiffness matrix of the equivalent elastic beam in Eqs. (3) and 

4) can be expressed as: 

 S = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

k 

1 
1 , 1 

·
k 

n −1 
n,n + k 

n 
n,n k 

n 
n,n +1 

k 

n 
n +1 ,n k 

n 
n +1 ,n +1 + k 

n +1 
n +1 ,n +1 

·
k 

N−1 
N,N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(11) 

.2. Loads on the nets and frames 

The nets and the frames are typical slender structures, and the 

ydrodynamic loads can be solved by the Morison equation, where 

he velocities are determined by the coupling wave fields including 

he incident, diffraction and radiation waves. 

.2.1. Velocity field considering diffraction and radiation waves 

The multimodule system can generate diffraction and radiation 

aves. Under a regular wave with a wave amplitude of ζ Al , the wa- 

er particle velocity v in the coupling wave fields can be expressed 
l 

422 
s follows: 

 l = v Il + v Dl + v Rl = 

[
v Il −x v Il −y v Il −z 

]T 

+ 

[
v Dl −x v Dl −y v lD −z 

]T + 

[
v Rl −x v Rl −y v Rl −z 

]T 

= 

[ 

ζAl | v Il −x | cos ( ω l t + ε l + θIl −x ) 

ζAl 

∣∣v Il −y 

∣∣cos 
(
ω l t + ε l + θIl −y 

)
ζAl | v Il −z | cos ( ω l t + ε l + θIl −z ) 

] 

+ 

[ 

ζAl | v Dl −x | cos ( ω l t + ε l + θDl −x ) 

ζAl 

∣∣v Dl −y 

∣∣cos 
(
ω l t + ε l + θDl −y 

)
ζAl | v Dl −z | cos ( ω l t + ε l + θDl −z ) 

] 

+ 

⎡ 

⎣ 

∑ N 
n =1 

∑ 6 
j=1 u 

( n ) 
Rlj 

·
∣∣v ( n ) 

Rlj −x 

∣∣cos 
(
ω l t + ε l + θ ( n ) 

Rlj −x 
+ δ( n ) 

Rlj 

)
∑ N 

n =1 

∑ 6 
j=1 u 

( n ) 
Rlj 

·
∣∣v ( n ) 

Rlj −y 

∣∣cos 
(
ω l t + ε l + θ ( n ) 

Rlj −y 
+ δ( n ) 

Rlj 

)
∑ N 

n =1 

∑ 6 
j=1 u 

( n ) 
Rlj 

·
∣∣v ( n ) 

Rlj −z 

∣∣cos 
(
ω l t + ε l + θ ( n ) 

Rlj −z 
+ δ( n ) 

Rlj 

)
⎤ 

⎦ 

(12) 

here v Il , v Dl and v Rl are the velocities induced by the incident, 

iffraction and radiation waves, respectively; ωl is the wave fre- 

uency; v Il-k , v Dl-k and v Rl-k are the velocity components of v Il , v Dl 

nd v Rl in the k -direction ( k = x, y, z ), respectively; ζ Al is the wave

mplitude at wave frequency ωl ; θ Il-x , θDl-x , θRl-x are the phase 

ngles between the wave elevation and velocity transfer function 

f the incident, diffraction and radiation waves in the x direction 

t wave frequency ωl , respectively; the superscript n denotes the 

odule order ( n = 1, 2, …, N ), where N is the number of the mod-

les; the subscript l is the wave frequency order; the subscripts x, 

 and z denote the component of the parameter in the x, y and 

 directions, respectively; the subscripts I, D and R denote the pa- 

ameters of the incident, diffraction and radiation waves, respec- 

ively; the symbol | | denotes the amplitude of the parameter; j 

epresents the DOF ( j = 1, …, 6); v Il , v Dl, v Rl are the water particle

elocities induced by the incident, diffraction and radiation waves, 

espectively; v̄ Il-x is the component of the velocity transfer func- 

ion induced by the incident wave in the x direction, | ̄v Il-x | repre- 

ents the amplitude of v̄ Il-x ; and ū ( n ) 
Rl j 

and δ( n ) 
Rl j 

are the motion am- 

litude and the phase angle of the module n between the velocity 

eld transfer function and motion of floating module n in the j -th 

 j = 1, …, 6) direction at wave frequency ω l , respectively. Similar

o the above parameters in x direction, the other parameters in the 

quation represents the corresponding parameters in the y and z 

irections, respectively, and εl denotes the random phase angle of 

he wave elevation at wave frequency ω l . 

Based on the linear superposition assumption, the water parti- 

le velocity in the velocity field considering diffraction and radia- 

ion waves under irregular waves can be expressed as follows: 

 irre = 

M ∑ 

l 

v l (13) 

here v irre is the water particle velocity under irregular waves, M 

s the total number of regular wave components used in the irreg- 

lar wave, and the amplitude of the regular wave component ζ Al 

an be determined by the wave spectrum S ( ω), ζ Al = 

√ 

2 S ( ω l )
ω . 

.2.2. Hydrodynamic loads on the net and frame 

The nets are simulated by truss elements, and the frames are 

imulated by beam elements [22] . The hydrodynamic load on the 

rame and net twine per unit length df (t) can be calculated by the 

orison equation: 

f (t) = C D 
1 

2 

ρd | v n (t) − ˙ u 

n (t) | ( v n (t) − ˙ u 

n (t) ) + ρC M 

πd 2 

4 

˙ v n (t) 

−ρ(C M 

− 1) 
πd 2 

4 

ü 

n (t) , f or f rame (14) 

f (t) = C D 
1 

ρd | v n (t) − ˙ u 

n (t) | ( v n (t) − ˙ u 

n (t) ) , f or net 

2 
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Fig. 4. Coupling model of the wetted part of the fish cage. 
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here d is the equivalent diameter; v n and ˙ u n are the normal com- 

onents of the velocity of the water particle and the element, re- 

pectively; ˙ v n and ü n denote the normal components of the accel- 

ration of the water particle and the element, respectively; and C D 
nd C M 

are the drag and inertial coefficients, respectively. For the 

et element, the inertial force term is neglected [26] . For the beam 

lement, the drag coefficients for circular and rectangular cross- 

ections are equal to 1.0 and 2.0, respectively. The inertial coeffi- 

ient is set to 2.0 [27] . For the truss element, the effective outer 

iameters of the horizontal net and vertical net are 0.4 m and 

.9 m, respectively, which ensures the hydrodynamic loads on all 

he truss elements are equal to that on the real fish net. 

.3. Hydroelasticity analysis method of the vessel-shaped fish cage 

.3.1. Motion equation of the coupled hydroelastic model 

As shown in Fig. 1 , the net is connected to the steel frame by

inged connectors. Then the loads on the nets and the steel frames 

re transferred to the equivalent elastic beam by master-slave con- 

traints between each module and the corresponding nodes of the 

teel frames. Finally, the net and steel frames are coupled with the 

otion response of the equivalent elastic beam, and consequently 

he coupled hydroelastic model of the vessel-shaped fish cage is 

hus established, as shown in Fig. 4 . When considering the contri- 

ution of the net and the steel frames, the motion equation of the 

oupled cage model can be written as: 

 

 

 

[ M H ] 6 N×6 N { ̈u F ( t ) } 6 N×1 + [ K H ] 6 N×6 N { u F ( t ) } 6 N×1 = { F All ( t ) } 6 N×1 

F All ( t ) = F E ( t ) + F N ( t ) + F S ( t ) 

F E ( t ) = F W 

( t ) − z Rad ( t ) − K F u F ( t ) − A(∞ ) ̈u F ( t ) 

(15) 

here M H and K H (6 N × 6 N matrices) are the mass matrix 

nd structural stiffness matrix considering the contribution of steel 

rames, respectively; u F and ü F (6 N × 1 matrices) represent the 

isplacement and acceleration, respectively. F All is the external 

orce, F N is the contribution of the net loads, and F S is the con-

ribution of the steel frame hydrodynamics. F E represents the ex- 

ernal loads on the floating body, including the wave excitation 

orce F W 

, the radiation force z Rad accounting for the frequency- 

ependent terms only, the hydrostatic restoring force K H u F and the 

orce induced by the infinite-frequency added mass term A( ∞ ) ̈u F , 

ll of which are 6 N × 1 matrices. 

In this paper, the wave excitation force is applied to the corre- 

ponding nodes of the equivalent model of the floating body, and 

he velocity field induced by the incident and diffraction waves is 

pplied to the net and the steel frames. The motion response is 
423
ielded by solving the coupled equation of Eq. (15) . Then, the am- 

litude and phase angle of the motion for every module can be 

etermined by applying the fast Fourier transform (FFT). Subse- 

uently, the coupling wave fields including incident, diffraction and 

adiation waves are established based on Eq. (11) , and the updated 

otion response can be obtained by solving Eq. (15) . Therefore, a 

umerical iteration method is established. In the ( j + 1) th iteration, 

he obtained 

j + 1 ū F is compared with 

j ū F obtained in the last iter- 

tion. For each module, if || j + 1 ū 

( n ) 
F 

- j ū 

( n ) 
F 

|| ≤ε || j ū 

( n ) 
F 

|| at any wave 

requency, the iterative process is terminated. Here, the constant ε
s set to 0.05 [22] . 

.3.2. Procedures of the hydroelasticity analysis 

Fig. 5 shows the flowchart of the hydroelasticity analysis of the 

essel-shaped fish cage: First, the transfer functions of the wave 

xcitation force of the multimodule system and the velocity field 

nduced by diffraction and radiation waves in the frequency do- 

ain are solved by potential flow theory. In the time-domain, the 

ave excitation force of the multimodule system is transformed 

rom the frequency domain results, and the radiation forces are 

alculated by applying the added mass and damping directly or the 

tate-space method. Subsequently, the coupling wave fields acting 

n the nets and the steel frames are constructed by the transfer 

unctions of the velocity field, wave amplitudes and multimodule 

otion response, where the radiation wave contribution to the ve- 

ocity field is jointly generated by each module of the multimodule 

ystem and can be determined by an iterative method. Then, the 

quivalent structural model is established by elastic beams, which 

re determined by the original steel structure. The nets and the 

teel frames are divided into different blocks, and then coupled to 

he corresponding equivalent beams by master-slave constraints. In 

his way, the coupled hydroelasticity analysis method of the vessel- 

haped fish cage is established. The numerical analysis is mainly 

arried out with ABAQUS software secondary development, and 

he accuracy of the calculation method has been validated [ 22 , 28 ]. 

. Numerical results 

.1. Numerical validation 

.1.1. Validation of the equivalent structural model 

According to a precalculation, the natural frequencies of the 

igid modes (heave, pitch and roll displacements) are 0.029, 0.032 

nd 0.089 Hz, and the natural frequencies of the first three dry 

exible modes (they are all vertical bending modes) are 0.228, 

.533 and 0.825 Hz, respectively. The natural frequencies of the 

quivalent model and the original steel structure are consistent. To 
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Fig. 5. Flowchart of the hydroelasticity response analysis of the vessel-shaped fish cage. 
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Fig. 6. (a) Load condition and (b) deformation result of the original steel structure model and the equivalent elastic beam in the z direction. 

Fig. 7. Time series of the vertical displacements in the wave period 15.8 s and wave height 4 m. 

Fig. 8. Time series of the vertical displacement at a wave height 19.2 m and wave period 15.8 s. 
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alidate the accuracy of the equivalent structural model, the de- 

ormation of the original steel structure model and the equivalent 

lastic beam in the z direction is compared. As shown in Fig. 6 , the

ertical deformations at different cross-sections are consistent un- 

er the two different models, which indicates that the equivalent 

arameters are correct. 
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.1.2. Validation of the motion response 

The radiation force of the floating body under regular waves 

an be calculated by directly applying added mass and damping to 

he multimodule system, and the radiation force can be calculated 

y the state-space method under irregular waves (this method can 

lso be used under regular waves). To validate the accuracy of 
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Fig. 9. Time series of the cross-sectional shear force at a wave height 19.2 m and wave period 15.8 s. 

Fig. 10. Time series of the cross-sectional vertical bending moment at a wave height 19.2 m and wave period 15.8 s. 
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he state space method, the heave motion responses obtained by 

hese two different methods are compared, as shown in Fig. 7 . 

he wave height, wave period and wave direction are 4 m, 15.8 s 

nd 180 deg, respectively. The heave motion obtained by the state- 

pace method matches very well with that transferred from mass 

nd damping directly. 
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.2. Results under regular waves 

.2.1. Time series of the main structure response 

In this paper, only the wave direction of 180 deg is used 

ue to the single point mooring system. Furthermore, due to 

he lack of detailed information, the vessel-shaped fish cage is 
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Fig. 11. Time series of the twine tension for a wave height of 19.2 m. (a) Twine tension at the cage bow. (b) Twine tension at the cage midship. (c) Twine tension at the 

cage stern. 

s

s  

t

e

c

p

t

p

t

l

q

m

s

a

m

t

s

till a simplified model. The cross-sectional stiffness of the main 

teel structure is set to K 0 in this section. Fig. 8 shows the

ime series of the vertical displacement of the cage under the 

lastic model and rigid main structure (rigid model). The verti- 

al motion of the rigid model decreases to some extent com- 

ared with that of the elastic model. With increasing x / L (from 

he cage bow to the cage stern), the difference in vertical dis- 

lacement between the two model results decreases gradually, and 

hey are almost identical at x / L = 0.94. Under the same external 
427 
oads, the elastic model produces elastic deformation and subse- 

uently leads to a more significant motion response than the rigid 

odel. 

Fig. 9 and Fig. 10 show the time series of the cross-sectional 

hear force and vertical bending moment under the elastic model 

nd rigid model, respectively. When the main structure is a rigid 

odel, the cross-sectional load effect increases significantly. For 

he shear force, the increase at the cross-section near the cage 

tern is more pronounced. For the vertical bending moment, the 
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Fig. 12. (a) Vertical displacement amplitude at different cross-sections and (b) vertical elastic deformation under smaller cross-sectional stiffness. 
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nfluence of the rigid model shows the trend of “increasing and 

hen decreasing” from the cage bow to the cage stern. 

.2.2. Effects of elasticity of the main structure on the net twine 

ension 

To study the effect of elasticity on the net twine tension, the 

ross-sectional stiffness (namely, K0 ) used above is set as the ref- 

rence in this section. 

Fig. 11 shows the time series of the twine tension of the hori- 

ontal net element near the water surface at the cage bow, mid- 

hip and stern. At the above three positions, the magnitude of 

he twine tension is not sensitive to the cross-sectional stiffnesses. 

ompared with the twine tension of the rigid model, the results 

or a smaller cross-sectional stiffness are slightly larger. This is be- 

ause the motion response under a small stiffness is more promi- 

ent, and the hydrodynamic loads on the net are larger. Overall, 

he elasticity of the main steel structure has a limited influence on 

he net twine tension. 

.2.3. Effects of the elasticity of the main structure 

For a more comprehensive analysis of the characteristics of the 

ross-sectional response, the cross-sectional stiffness (namely, K ) 

f the main structure is changed by modifying the material elas- 

ic modulus, and the variation range of K is very large (although 

his seems difficult to achieve in reality). In this study, 6 differ- 

nt stiffnesses are used. Fig. 12 (a) shows the vertical displace- 

ent amplitude at different cross-sections. With increasing x / L , 

he vertical displacement amplitude first increases and then de- 

reases for smaller cross-sectional stiffnesses ( K / K0 < 1). With in- 

reasing cross-sectional stiffness, the vertical displacement ampli- 

ude gradually decreases and reaches a steady state. This is because 

ith the increase of cross-sectional stiffness, the contribution of 

he elastic deformation to the vertical motion response gradually 

ecreases until it stabilizes to the rigid motion of the rigid model. 

t this time (steady state), the vertical displacement decreases 

inearly along the x -axis (from the cage bow to the cage stern). 

ig. 12 ( b ) shows the vertical elastic deformation under smaller 

ross-sectional stiffness. In the case of a smaller cross-sectional 

tiffness (such as K / K0 = 0.01), the elastic deformation presents a 

rend of "increasing and then decreasing" along the x -axis, which 

s consistent with the elastic deformation of the conventional hull 

long the x -axis. With increasing cross-sectional stiffness, the dis- 

lacement amplitude decreases. When K / K0 = 0.01, the displace- 

ent amplitude is 5.3 m, and the displacement amplitude at the 

ame cross-section is only 3.2 m when K / K0 = 1. In addition, the dis-
428 
lacement amplitude at some cross-sections is almost twice that 

f the rigid model displacement when K / K0 = 0.01. This means that 

he vertical displacements of the cross-sections are very sensitive 

o the cross-sectional stiffness. 

Fig. 13 and Fig. 14 respectively show the amplitude of the cross- 

ectional shear force and bending moment amplitude of the elas- 

icity contribution at different cross-sectional stiffnesses. With in- 

reasing cross-sectional stiffness, the amplitudes of the shear force 

nd bending moment increase sharply. As the stiffness continues 

o increase, the cross-sectional load effect stabilizes to a steady 

tate. The increase in the cross-sectional load effect caused by the 

igid model is substantial. At a stiffness of K / K0 = 0.01, the maxi-

um shear force and bending moment amplitudes are 1.0e6 N and 

.0e8 N ·m, while the amplitudes are 1.3e6 N and 2.4e8 N ·m at a

tiffness of K / K0 = 1, and the latter is 1.3 times and 2.4 times that

f the former, respectively. This indicates that reducing the cross- 

ectional stiffness can significantly reduce the cross-sectional load 

ffect of the cage. 

.2.4. Results under different wave frequencies and wave heights 

In this study, 4 different wave frequencies and 4 different wave 

eights are used, and the discrete results are obtained under these 

ave cases. Fig. 15 shows the vertical motion amplitudes of the 

essel-shaped fish cage at different cross-sections. As the wave 

requency increases, the vertical motion amplitude of the cross- 

ections near the cage bow ( x / L < 0.55) increases first and then de-

reases, while that of other cross-sections decreases. When the 

ave wavelength is equal to or slightly greater than the cage 

ength, the vertical displacement is larger. The vertical motion am- 

litude increases gradually with increasing wave height. With in- 

reasing x / L , the vertical motion amplitude gradually decreases; 

hat is, the vertical motion response from the cage bow to the cage 

tern gradually decreases. 

Fig. 16 and Fig. 17 show the load effects on the cross-sections 

nder different wave frequencies and wave heights, respectively. As 

he wave frequency increases, the cross-sectional shear force and 

ending moment gradually increase overall, but the results at some 

ross-sections have a maximum value at 0.4 rad/s, and the wave- 

ength at 0.4 rad/s is close to the cage length. Taking the vertical 

ending moment as an example, the natural frequency of the first 

rder vertical bending mode is 0.228 Hz, so the bending moment 

radually increases as the wave frequency gradually approaches 

he natural frequency. The cross-sectional shear force and bending 

oment increase with increasing wave height, which is consistent 

ith expectations. 
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Fig. 13. (a) Shear force amplitude at different cross-sections and (b) shear force amplitude under smaller cross-sectional stiffness. 

Fig. 14. (a) Vertical bending moment amplitude at different cross-sections and (b) vertical bending moment amplitude under smaller cross-sectional stiffnesses. 

Fig. 15. Vertical displacement amplitude in different wave cases. (a) Results for different frequencies. (b) Results for different wave heights. 
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.3. Results of different modules for the regular waves 

To improve computing efficiency, the number of modules of 

he discretized multimodule system can be appropriately reduced. 

ig. 18 shows the results under different numbers of modules. The 
429 
eduction in the numbers of modules slightly reduces the vertical 

isplacement amplitude of the cross-section. Compared with the 

esult under seven modules, the vertical displacement amplitude 

ecreases by 9% on average in the four-module model, while the 

hear force amplitude changes by 12% on average. The error is due 
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Fig. 16. Cross-sectional force amplitude for different wave frequencies and a wave height of 19.2 m. 

(a) Shear force. (b) Vertical bending moment. 

Fig. 17. Cross-sectional force amplitude at different wave heights at a wave frequency of 0.4 rad/s: (a) shear force and (b) vertical bending moment. 

Fig. 18. Results under different number of modules. (a) Vertical displacement. (b) Cross-sectional shear force (default global stiffness K0 ). 
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o the difference in the number of modules and missing part of 

he characteristics of the main steel structure. However, the overall 

rend is consistent with the results under the seven-module model. 

o improve the calculation efficiency, the hydroelastic analysis un- 

er irregular waves in Section 4.4 is calculated by the four-module 
odel. p

430 
.4. Results under irregular waves 

In this section, the time series and the short-term extreme 

alue of the response on the vessel-shaped fish cage is analyzed 

nder irregular waves. The significant wave height and the peak 

eriod are 10.4 m and 15.7 s, respectively. To eliminate the tran- 
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Fig. 19. Time series of the vertical displacement at x / L = 0.5 under irregular waves (default global stiffness K0 ). 

Fig. 20. Vertical displacement statistical results of different cross-sections under irregular waves (default global stiffness K0 ). 

Fig. 21. Time series of the cross-sectional shear force at x / L = 0.5 under irregular waves (default global stiffness K0 ). 
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Fig. 22. Time series of the cross-sectional vertical bending moment at x / L = 0.5 under irregular waves (default global stiffness K0 ). 

Fig. 23. The statistical results of cross-sectional load effects under irregular waves (default global stiffness K0 ). (a) Shear force. (b) Vertical bending moment. 
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ient effect, the duration of the simulation is set to 110 0 0s, and

00 s time series are omitted to eliminate the transient effect. The 

esponse is assumed to satisfy the Weibull distribution [29] , and 

he 99% fractile estimate value is chosen as the estimated extreme 

alue [30] . In this section, only one seed is used for each irregular

ave case. The identical wave elevation time series for the com- 

arison between the elastic and rigid models is used, therefore, the 

ncertainty due to limited sampled size does not affect the com- 

arison. In this section, the cross-sectional stiffness of the elastic 

odel is the default global stiffness K0 . 

.4.1. Motion response 

Fig. 19 shows the time series of the vertical displacement at 

 / L = 0.5 under irregular waves. The same wave elevation series 

s used for the elastic model and the rigid model. The motion re- 

ponse of the rigid model is reduced under irregular waves, which 

s consistent with the results under regular waves. In addition, 

here is a main response period of 35 s, which is caused by the 

atural frequency of heave displacement. Fig. 20 shows the verti- 

al displacement statistical results of different cross-sections under 

rregular waves. The extreme value and root mean square (RMS) 

alue of the cross-section vertical displacement from the cage bow 

o the cage stern decrease gradually. The vertical displacement un- 

er the rigid model decreases prominently, and the average de- 

rease in the extreme value and RMS values reaches 33% and 23%, 

espectively. On the one hand, the mooring system at the cage bow 

enerates an additional force on the cage bow, on the other hand, 

he nets at the cage stern have a damping effect on the vertical 

isplacement. Therefore, the motion response of the cage is similar 

o a beam with an elastic support at the stern and a concentrated 

orce at the bow. 

.4.2. Cross-sectional load effect 

Fig. 21 and Fig. 22 show the time series of the cross-sectional 

oad effects at x / L = 0.5 under irregular waves. The cross-sectional 

oad effect under the rigid model changes prominently compared 

ith that under the elastic model. Fig. 23 shows the load effect 

tatistical results of different cross-sections under irregular waves. 

ompared with the shear force under the elastic model, the shear 

orce under the rigid model increases slightly, and the average re- 

uction in the maximum and RMS values is only 11% and 9%, 

espectively. For the bending moment, the average reduction of 

he maximum and RMS values under the rigid model is 41% and 

0%, respectively. On the whole, the cross-sectional load effect un- 

er the rigid model is significantly larger than that of the elastic 

odel, which is consistent with the results under regular waves. 

. Conclusion 

In this paper, a novel time-domain method used in hydroe- 

astic analysis of a vessel-shaped fish cage is proposed. First, the 

ontinuous floating body is discretized into a rigid multimodule 

ystem connected by equivalent elastic beams, and the hydrody- 

amic loads on the rigid multimodule, which are transformed from 

requency-domain load coefficients, are applied to the correspond- 

ng nodes of the equivalent elastic beams. The coupling wave fields 

ncluding the incident, diffraction and radiation waves are built, 

nd then the hydrodynamic loads on the net and frame are cal- 

ulated by the Morison equation. The model of the flexible net 

nd steel frame are coupled with the equivalent elastic beams by 

aster-slave constraints, and subsequently, the coupled hydroelas- 

ic model including the floating body, net and steel frame is es- 

ablished. Then, the coupling effect can be achieved through mul- 

iple numerical iterations. Finally, the hydroelastic response of the 

essel-shaped fish cage under coupling wave fields is analyzed, and 

he following conclusions are reached. 
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1) The vertical displacement of the cage decreases significantly 

under the rigid model at different cross-sections. With increas- 

ing x / L , the difference in vertical displacements under the elas- 

tic and rigid models decreases gradually. The cross-sectional 

shear force and vertical bending moment under the rigid model 

are larger than those under the elastic model. Therefore, the 

results of the rigid model are conservative; however, from the 

perspective of cost control, the elastic model can eliminate the 

structural redundancy and thus reduce the cost. 

2) With increasing cross-sectional stiffness, the vertical displace- 

ment of the cage gradually decreases and eventually stabilizes. 

The cross-sectional shear force and vertical bending moment 

increase significantly to constant values with decreasing stiff- 

ness. Overall, the cross-sectional stiffness has a limited influ- 

ence on the net twine tension. 

3) Suitably reducing the number of multimodules improves the 

computational efficiency and maintains the overall accuracy of 

the hydroelastic response. By using the fewer-module model to 

calculate the hydroelastic response of the cage under irregu- 

lar waves, the motion response and cross-sectional load effects 

of the rigid model change significantly compared with those of 

the elastic model. 
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