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A proposal for leaky 
integrate‑and‑fire 
neurons by domain walls 
in antiferromagnetic insulators
Verena Brehm 1,3*, Johannes W. Austefjord 1,3, Serban Lepadatu 2 & Alireza Qaiumzadeh 1

Brain‑inspired neuromorphic computing is a promising path towards next generation analogue 
computers that are fundamentally different compared to the conventional von Neumann architecture. 
One model for neuromorphic computing that can mimic the human brain behavior are spiking neural 
networks (SNNs), of which one of the most successful is the leaky integrate‑and‑fire (LIF) model. Since 
conventional complementary metal‑oxide‑semiconductor (CMOS) devices are not meant for modelling 
neural networks and are energy inefficient in network applications, recently the focus shifted towards 
spintronic‑based neural networks. In this work, using the advantage of antiferromagnetic insulators, 
we propose a non‑volatile magnonic neuron that could be the building block of a LIF spiking 
neuronal network. In our proposal, an antiferromagnetic domain wall in the presence of a magnetic 
anisotropy gradient mimics a biological neuron with leaky, integrating, and firing properties. This 
single neuron is controlled by polarized antiferromagnetic magnons, activated by either a magnetic 
field pulse or a spin transfer torque mechanism, and has properties similar to biological neurons, 
namely latency, refraction, bursting and inhibition. We argue that this proposed single neuron, based 
on antiferromagnetic domain walls, is faster and has more functionalities compared to previously 
proposed neurons based on ferromagnetic systems.

Modern electronic digital computers are designed based on the so called von Neumann computing architecture. 
They rely on central processing units (CPU), built upon complementary metal-oxide-semiconductor (CMOS) 
 transistors1. In contrast to that, inspired by the human brain and its complex neural network, novel energy effi-
cient analogue computing architectures with strongly interconnected processing elements have been proposed 
that lead to the emerging technology of neuromorphic computing and  engineering2–5.

The conventional CPU-based von Neumann computing architecture is faster than the current state of the 
art neuromorphic computing, but the latter potentially can solve computationally intensive tasks, like speech 
and character recognition, while offers a more energy efficient data  processing6. To achieve even higher energy 
efficiency as well as faster data processing in neuromorphic computing architecture, it was proposed very recently 
that neuromorphic principles may be implemented in spintronic-based nanodevices. This leads to the emerging 
field of the neuromorphic spintronics7. In spintronic-based nanotechnology, the intrinsic spin angular momen-
tum of electrons, rather than their charge, may be used for data storage and processing. The magnetic insulators 
that host magnons and various topological magnetic textures are key ingredients for efficient data processing 
and information  storage8. Consequently, ubiquitous Joule heating arising from electron scatterings in metals 
and semiconductors is avoided in insulators. Consequently, several ferromagnetic-based LIF neurons for SNN 
networks have already been  proposed9–11. However, recent theoretical and experimental advances in spintronics 
have shown that antiferromagnetic (AFM) systems have even much more advantages compared to their ferro-
magnetic (FM)  counterparts12. The absence of parasitic stray fields, operating at THz frequencies in contrast to 
GHz in FM systems, existence of opposite chiralities of magnons, and the abundance of room temperature AFM 
materials in nature, make AFM-based spintronics as a highly promising candidate for the hardware implementa-
tion of the next generation of ultrafast, low-energy-cost, and miniaturized non-volatile neuromorphic  chips13–16.
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Spiking neural networks (SNNs) are a class of neuromorphic computing architecture that mimic human 
neural  networks17. One of the most successful spiking neural network models is the leaky integrate-and-fire 
(LIF)  model18. This model resembles the spiking behavior of a neuron at the onset of critical accumulating 
stimuli and its slow decay to the equilibrium state until the next  spike19. LIF may be used as the building block 
of neuromorphic  chips20.

In this paper, we propose a non-volatile AFM-based single neuron with leaky integrate-and-fire properties 
that may be the building block for a LIF spiking neural network. The state of this neuron is encoded in the posi-
tion of a domain wall (DW), which is controlled by AFM magnons. Leaky behavior is ensured by a nonuniform 
magnetic anisotropy profile, while there is no standby leakage in the neuron.

Theory of neural networks
In this section, we briefly summarize the key elements and ingredients of SNN and LIF single neuron models. 
In the next sections, we show our proposed single neuron has similar characteristic.

Spiking neural networks. A SNN takes the inspiration of human brain activity into computer science one 
step further than other models of artificial neural networks, like feedforward neural  networks21. Information 
in this model is encoded as spike trains; c.f., binary information coding, used in conventional computers. The 
network has an explicit time dependency and the system is event-driven.

We first give a brief mathematical description of the SNN model. A generic spiking neuron � is represented 
in Fig. 1. Let V be a finite set of spiking neurons, connected by a set of E ⊆ V × V  synapses. For each synapse 
�i, j� ∈ E between presynaptic neuron j and postsynaptic neuron i there is associated a response function ǫij and 
a weight wij . The state variable of ith neuron, ui(t) , is then given  by18,21,

Here u0 is the equilibrium potential, i.e. the value of ui(t) when no stimuli has affected the neuron and t(f )j  indi-
cates the firing times, where f is the label of each spike. In general the firing time t = t

(f )
i  of a neuron i is set when 

ui(t) reaches a threshold value uthreshold,

where sgn(x) is the sign function and ǫij(t − t
(f )
j ) determines the response for postsynaptic neuron i from stimuli 

from presynaptic neuron j. Once a spike is initiated, ui(t) is immediately reset to u0 . Equation (1) can therefore 
be used to model a human neuron: after the action potential in a neuron has been raised and neurotransmitters 
have been transferred, it relaxes back to its ground state until the next activation happens.

It is worth noting that Eq. (1) assumes no time delay as signals travel the synapses. This could easily be added 
with a delay time for each  synapse23.

Leaky integrate‑and‑fire neurons. The rather general Eq. (1) can be used to model a variety of neuron 
models. LIF models are one of the most prominent neuron  types18. It can be modelled by a resistor-capacitor 
circuit (RC) circuit as shown in Fig. 2. The neuron voltage corresponds to the capacitor voltage ui(t) . The LIF 
model is described by a differential equation,

(1)ui(t) = δ(t − t
(f )
i )+

∑

j

∑

f

wijǫij(t − t
(f )
j )+ u0.

(2)
ui(t) = uthreshold ∧ sgn(ui(t)− u0)

dui(t)

dt
> 0

=⇒ t = t
(f )
i ,

Figure 1.  Schematic of a spiking neural  network22. A LIF neuron � receives input spikes from several 
presynaptic neurons. In the present work, we model � by an AFM DW. The spike trains are multiplied by 
weights wi and merged before they get sent into � . A non-linear function determines whether the neuron should 
fire as a consequence of stimuli from its synapses.
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where τ = RC is the time constant of the RC circuit, and R and C are the resistance and capacitance of the resistor 
and capacitor, respectively. The incoming current Ii(t) is,

The weights wij determine the connection strength from presynaptic neuron j to postsynaptic neuron i. The sum 
∑

f  is over all presynaptic spike times (f).
The purpose of the LIF model is to describe how the spiking neuron � behaves as a function of external 

stimuli, or captures the dynamics of the ǫij response function in Eq. (1). The LIF model has a memory of previous 
inputs Ii(t) , stored on the capacitor. The resistor ensures that this memory only is short term. As before, a spike 
is fired when ui(t) reaches a threshold value by Eq. (2). A generalization to a non-linear leaky integrate-and-fire 
model gives

where the functions F(ui) and G(ui) are arbitrary functions. It is worth noting that Eq. (1) describes ui(t) as a 
function of time since the last input, while Eqs. (3) and (5) are implicit equations.

Non‑volatile spintronic‑based LIF neurons
In this section, we introduce our proposal of a non-volatile LIF neuron, implemented with a magnetic DW in an 
AFM insulator with orthorhombic (or biaxial) magnetic symmetry. Although, for computational convenience, 
we have chosen toy model parameters, see Table 1, it can be shown that the functionality of the proposed AFM-
based neuron is robust against specific material parameters or different system sizes and is scalable by tuning the 
excitation amplitude and duration. In addition to showing the scalability and robustness of our results, we present 
the result of micromagnetic simulations with material parameters of hematite in the Supplementary Information.

AFM model. We consider a generic two-sublattice AFM insulator nanoribbon, with orthorhombic magnetic 
structure, modelled by the following potential-energy density for each sublattice,

where i  = j ∈ {A, B} refer to two AFM sublattices. Within a micromagnetic  framework24,25, all magnetic con-
tributions in a unit cell with volume V0 are averaged to a macrospin magnetic moment M , with a saturation 
magnetization value Ms = |M| . The unit vector of magnetization direction is m = M/Ms . A and Ah parameterize 
the AFM exchange stiffness and the homogeneous Heisenberg exchange interaction, respectively, Keasy (hard) > 0 
parameterizes single ion easy (hard) axis anisotropy energy along the eeasy (hard) direction, H is the applied mag-
netic field, D is the strength of the inhomogeneous bulk-type Dzyaloshinskii–Morya interaction (DMI) while 
Dh is the homogeneous DMI along the direction dh with a sublattice-dependent sign ηA(B) = +(−)1.

We assume the AFM insulator supports a rigid magnetic domain wall (DW) that connects two uniform AFM 
domains, see Fig. 3. Within the collective coordinate  approximation26, the position of the DW center is considered 
as a dynamical variable XDW . In order to control the equilibrium position of DW center, the spatial profile of the 

(3)τ
dui

dt
= −ui(t)+ RIi(t),

(4)Ii(t) =
∑

j

wij

∑

f

δ(t − t
(f )
j ).

(5)τ
dui

dt
= F(ui)+ G(ui)Ii(t),

(6)Ui(mi ,∇mi; r) = A(∇mi)
2 + 4Ahmi ·mj − µ0Msmi ·H − Keasy(mi · eeasy)

2 + Khard(mi · ehard)
2

(7)+ Dmi · (∇ ×mi)+ ηi
Dh

2
dh ×mj ,

Figure 2.  Leaky integrate-and-fire  circuit18. A capacitor, C, and a resistor, R, are connected in parallel. The 
voltage over the capacitor u(t) integrates the current input, while it leaks to ground. When u(t) reaches a 
threshold value, a switch controlling the input wire is flipped, stopping new currents into the system for a 
refractory period. During the refractory period charge is completely depleted from the capacitor.
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anisotropy energy density K can be tuned by electric field via voltage-controlled magnetic anisotropy (VCMA) 
 effect27–31 or strain-induced magnetic  anisotropy32–37. We model a spatially varying anisotropy as,

where Lx is the length of the AFM nanoribbon along the x-direction. This magnetic anisotropy profile creates a 
magnetic potential well along the x-direction with a minimum value K0 at X0 that can be engineered. The AFM 
DW is at its minimum energy if the DW center is placed at this minimum X0 . If there is no spatial dependent 
magnetic anisotropy, the system has translation invariance and AFM DWs have no preferred equilibrium posi-
tion. In our simulations, without loss of generality, we set X0 = 2Lx/3.

The spatial dependent of K(x) ensures that the AFM DW always relaxes back toward its ground-state posi-
tion X0 in the absence of stimuli, giving the neuron a leaky behavior. Due to this anisotropy profile, the system 
is also non-volatile in the sense that the ground state of the neuron is stable. Therefore there is not much standby 
leakage power in contrast to common CMOS-based neurons.

AFM DWs as LIF neurons. Our proposed system is schematically presented in Fig. 3. It consists of an 
AFM insulator stripe, an injector (modelling the receptor of a human neuron) that excites magnons in the AFM 
insulator via either a circularly polarized magnetic field pulse or current-induced (anomalous) spin Hall torque 
 mechanism38,39, and a detector (modelling the transmitter). The detector measures the passing DW via inverse 
(anomalous) spin Hall effect of the injected spin-pumping  signal38–42. In a series of neuron networks, this detec-
tor or transmitter must be connected to the injector or receptor of the following neuron. At a given set of mate-
rial parameters and excitation strength, the position of the detector determines the neuron threshold potential.

(8)K(x) = K0

[

1

Lx
(x − X0)

2 + 1

]

,

Table 1.  Numerical parameters used for micromagnetic simulations. The according effective field strength for 
exchange, easy (hard) anisotropy, and DMI are µ0Hexchange = 400 T , µ0Heasy (hard) = 20(10)T and HDMI = 0
–0.25 T , respectively.

Quantity Value Unit

Length of AFM ( Lx) 500 nm

Width of AFM ( Ly) 20 nm

Height of AFM ( Lz) 4 nm

Simulation cell size 4 nm

Inhomogeneous exchange stiffness (A) 1 pJ m−1

Homogeneous exchange energy ( Ah) −200 kJ m−3

Easy-axis anisotropy energy ( Keasy) 20 kJ m−3

Hard-axis anisotropy energy ( Khard) 10 kJm−3

Characteristic length scale 
(

�easy =
√

A/2Keasy

)

7 nm

Characteristic length scale 
(

�hard =
√
A/2Khard

)

5 nm

Saturation magnetization ( Ms) 2.1 kAm−1

Gilbert damping parameter ( α) 0.002 1

Inhomogeneous bulk DMI (D) 0–250 µJ m−2

Homogeneous DMI ( Dh) 2 kJm−3

Applied magnetic field frequency ( ω) 62.5 rad ps−1

Figure 3.  Schematic setup of the AFM-based single neuron proposal in the IP geometry. There are two 
domains in the AFM stripe, represented by the Néel vectors in blue and red. The two domains are connected by 
a DW texture in turquoise. On top of the AFM stripe, an injector is placed at the left side as a source of magnons 
and two detectors are placed right and left of the equilibrium position of the DW, the latter shown by X0.
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AFM DWs are 1D particle-like magnetic solitons that connect two magnetic domains in magnetic materi-
als. It was recently shown that the position of a DW in an AFM insulator is controllable through magnon–DW 
 interactions43. The position of AFM DW may be used as a state variable for the LIF neuron, u(t) −→ XDW

44.
In the following, two generic magnetic geometries for possible implementation of LIF neurons are inves-

tigated and compared, which we will call in-plane (IP) and out-of-plane (OOP), referring to their magnetic 
ground-state orientation.

In order to model these two magnetic states using the potential energy density expression given by Eq. (6), 
we set eeasy = êx and ehard = êz in IP case, while for OOP, we set eeasy = êz and ehard = êx . Therefore, in the IP 
geometry, the magnetic ground state lies along the direction of magnon propagation, i.e., the x axis, while in the 
OOP geometry, the magnetic ground state is normal to the direction of magnon propagation. In both cases, we 
assume the homogeneous DM vector lies parallel to the hard axis, dh ‖ ehard.

Equation of motions for AFM systems. The dynamics of the normalized sublattice magnetic moments 
mi∈{A, B}(r, t) , in finite temperature, is given by the coupled stochastic Landau–Lifshitz–Gilbert (sLLG) equations,

with the electron gyromagnetic ratio γe , the vacuum permeability µ0 , and the Gilbert damping constant α . The 
sublattice-dependent effective magnetic field HHHi = −(µ0Ms)

−1δU/δmi , is given by the functional derivative of 
the total potential energy U[mA,mB; r, t] =

∫

dr
∑

i Ui(mi ,∇mi; r, t) . The current-induced spin transfer torque 
and magnetic field torque are denoted by T in the sLLG equation. T(r, t) is finite only in the injector region and 
during the excitation period.

Finite temperature dynamics is captured by adding an uncorrelated white noise term in the LLG equations 
as an effective stochastic magnetic field H th , derived by the fluctuation-dissipation  theorem24. It consists of a 
normalized Gaussian distribution that is scaled with the prefactor ξth =

√

2αkBT
γeµ0MsV�t  , containing the thermal 

energy kBT , with the Boltzmann constant kB , the cell size volume V and the time step of the simulation �t . This 
prefactor corresponds to 1/σ in the standard definition of a Gauss distribution. The time step of the simulation 
is set to �t = 2 fs at zero temperature and �t = 1 fs at finite temperature.

In general, spin pumping effect enhances the local Gilbert damping at injector and detector  regions45. In our 
simulations, we have ignored this small spin-pumping-induced damping  enhancement46.

To solve coupled sLLG equations for our AFM system, we use the software Boris Computational spintronics25. 
The list of parameters, used in the micromagnetic simulations, is given in the Table 1.

Results
In this section, we characterize our proposed non-volatile AFM-based LIF neuron. As we mentioned earlier, AFM 
DWs are displaced by AFM magnons that can be generated by either magnetic field pulses or by (anomalous) spin 
Hall torque. First, as a proof of concept of AFM-based neurons, we study the interaction between monochromatic 
magnons, excited by a magnetic field pulse, and AFM DWs at zero temperature. Since all-electric control of 
neurons is the technologically relevant case, in the second part of this section, we show that our proposed single 
neuron may indeed work by spin Hall torque at finite temperature.

Magnon‑induced AFM DW motion by magnetic fields. Magnetic field pulses may excite monochro-
matic AFM magnons with certain polarizations. It was theoretically shown that these AFM magnons can dis-
place AFM textures in opposite directions depending on their polarizations, values of DMI, and the Gilbert 
damping  parameter43,47,48.

In this part, first, we demonstrate the control of the AFM DW in our setup. To do so, a four-stage protocol is 
run, see Table 2: In the first excitation stage, a small amplitude transverse magnetic field pulse with circular polari-
zation is applied in the injector region to excite the AFM magnon eigenmodes in the magnetic layer. Afterwards, 
the magnetic field pulse is turned off and the system may relax back to its ground state in the first relaxation 
stage. Then, in the second excitation stage, the magnetic field pulse is applied again but with the opposite helicity. 
Finally, it is turned off again in the second relaxation stage. In Fig. 4, we present snapshots of magnon-induced 
AFM DW motion in an IP geometry for one excitation followed by one relaxation stage: while the magnetic field 
is turned on, the AFM DW travels from its equilibrium position (Fig. 4a) towards the left (Fig. 4b,c). Once the 

(9)
∂mi

∂t
= −|γe|µ0mi × (HHHi +HHH

th
i )+ αmi ×

∂mi

∂t
+ T(r, t),

Table 2.  Four-stage protocol for magnon-induced DW movement, induced by a transverse magnetic field 
pulse.

Stage Magnetic Field Pulse Polarization

Excitation 1 H IP(t) = (0,H0 cosωt,H0 sinωt)
HOOP(t) = (H0 cosωt,H0 sinωt, 0)

�

Relaxation 1 H0 = 0 –

Excitation 2 H IP(t) = (0,H0 sinωt,H0 cosωt)
HOOP(t) = (H0 sinωt,H0 cosωt, 0)

�

Relaxation 2 H0 = 0 –
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magnetic field is turned off, it relaxes back toward its equilibrium position (Fig. 4d,e). AFM-DW motion shows 
an inertial behavior. When the magnonic forces exerted on the AFM DW vanish, the AFM DW continues to 
move, until the Gilbert-damping-induced dissipative force stops it and consequently the attractive potential of 
the magnetic anisotropy pulls it back towards its equilibrium position. This inertial behavior can be seen as a 
slight overshooting in the DW trajectories presented in Figs. 5, 6 and 749,50.

By tuning the excitation strength and the distance of the detector from the magnetic anisotropy minimum, 
one can set the threshold for the firing mechanism. Depending on the strength of the DMI D, the DW surface 
can be tilted. This DMI-induced tilting was also reported in ferromagnetic  DWs51.

Direction and amplitude of the DW displacement. In this part, we show that the movement of AFM 
DWs can be controlled by demand, which makes them more flexible than their ferromagnetic counterpart. 
Besides the excitation strength (here the magnetic field strength), the magnon polarization, and the inhomo-
geneous DMI strength have a major impact on the DW displacement. In Fig. 5 the trajectory of the AFM DW 
center in the IP geometry (Fig. 5a) and OOP (Fig. 5b) is shown during the four-stage protocol, see Table 2. The 
orange areas in the plots sketch when and where the magnetic field pulse is applied while arrows indicate the 
helicity of the magnetic field pulse. The color map refers to the strength of the inhomogeneous bulk DMI, start-
ing from dark blue for D = 0 and increasing over green to yellow for D = 250µJ m−2 ( D = 200µJ m−2 ) for the 

Figure 4.  Snapshots of all-magnonic DW motion through an AFM-based neuron in the IP configuration 
with magnetic field pulse excitation. In (a), the DW is at equilibrium position XDW = X0 , set by the magnetic 
anisotropy profile. Once a left-handed magnetic field pulse with strength H0 is turned on, left-handed AFM 
magnons are excited at the injector. As a result, the DW moves towards the magnon source, panels (b) and 
(c). After switching the magnetic field off, the DW relaxes back to its equilibrium position, panels (d) and (e). 
The illustrated movement corresponds to the first excitation stage followed by the first relaxation stage in our 
protocol. We set D = 150µJ m−2 in this case.

Figure 5.  DMI-dependent all-magnonic AFM DW movement. Left- and right-handed AFM magnons are 
excited with polarized magnetic field pulses, see the orange area. In the IP geometry (a) the direction and 
amplitude of the DW motion can be tuned by DMI strength and the chirality of the excited magnons. However, 
the direction of AFM DW motion in the OOP geometry (b) is independent of the magnon chirality. The 
strength of DMI is encoded by colors, from lowest D = 0 in blue to highest in yellow, see the insets. In the 
insets, the maximal displacements of AFM DWs, Xmax

DW  , are shown for each excitation stage (crosses for the first 
and points for the second excitation stage).
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IP (OOP) geometry. Every single line represents one DW trajectory at a given set of parameters. For example, at 
an intermediate DMI strength, the dark green curve in the IP case (Fig. 5a), the DW moves towards the injec-
tor during the first excitation stage (0–25 ps), then relaxes back to equilibrium position (35–50 ps), and in the 
second excitation stage with opposite helicity the AFM DW is pushed away from the injector (50–75 ps) before 
relaxing back to the equilibrium position again.

The first difference between the two cases is the polarization dependency of AFM DW motion. The displace-
ment of an AFM DW in the OOP geometry is insensitive to the polarization of the excited AFM magnons, while 
the displacement of an AFM DW in the IP case is polarization dependent.

Figure 5 shows that in the OOP geometry, only the strength of the inhomogeneous DMI determines the direc-
tion of the DW motion, but in the IP geometry, both the strength of the inhomogeneous DMI and the chirality 
of the excited magnons set the direction of AFM DW displacement.

Figure 6.  Leaky integrate-and-fire behavior of the all-magnonic AFM DW motion in the IP geometry with 
a DMI strength of D = 150µJ m−2 . (a) The integration of three separate pulses, denoted by orange areas, 
provides enough energy to pull the DW away from its equilibrium position, denoted by the gray dashed line, to 
the detector, denoted by the blue area. This is the realization of the integrate-and-fire characteristic of the LIF 
model. During the inter-pulse intervals, the DW undergoes relaxation towards its equilibrium position, thereby 
exhibiting the leaky property. After the last pulse, the AFM DW relaxes back to the equilibrium position. (b) An 
impulse-like signal is fired when the DW passes the detector at t=25 ps. This spike, generated when the synaptic 
inputs to the neuron reach a certain threshold value, represents the neuron action potential.

Figure 7.  Electrical control of the AFM DW motion in the IP geometry. The orange areas depict the injector 
region that excites magnons via spin transfer torque pulses with two opposite spin torques, indicated by the 
arrow directions, at a finite temperature. Each trajectory is computed from an ensemble average over 60 
realizations, and the uncertainty environment represents the standard deviation of the ensemble average. The 
equilibrium position of DW at X0 is denoted by a horizontal gray dashed line.
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The amplitude and direction of the maximum displacement of the AFM DW center, Xmax
DW  , show a complicated 

relation with inhomogeneous DMI strength, see the insets in Fig. 5a,b. Recent theoretical studies have shown 
that, in the presence of an inhomogeneous DMI, several torques and forces act on the AFM DW, and thus the 
competition between them determines the direction and amplitude of the DW  displacement43.

LIF behavior of AFM DWs. As we discussed earlier, biological neurons have LIF characteristics: if the input 
signal (or the sum of input spikes) reaches a threshold, the neuron fires, and then relaxes back to its ground state. 
In this part, we demonstrate that our proposed setup indeed can mimic the LIF behavior. In Fig. 6a the time-
dependent AFM DW position in the IP geometry is shown, excited with three successive short magnetic field 
pulses. One single pulse is not strong enough to move the AFM DW to the detector while three pulses can move 
the DW toward the detector, where it triggers a spike in the read-out (see Fig. 6b, more explanation in the next 
section). This is a demonstration of the integrative-and-fire behavior of our proposed non-volatile spintronic-
based neuron. The leaky nature of the neuron becomes evident as the DW reverts towards its equilibrium posi-
tion, influenced by the magnetic anisotropy profile, in the absence of the stimulating signal.

Electrical readout of the AFM DW position. A detector on top of the AFM stripe measures the passing 
of the AFM DW by converting the spin-pumping signal, induced by AFM DW dynamics, to an electric voltage 
via either the inverse spin Hall  effect52 or recently discovered the inverse anomalous spin Hall  effect39. In the 
former case, the detector is a nonmagnetic heavy metal and can only measure the component of spin-pumping 
signal parallel to the interface. In the latter case, the detector is a ferromagnetic metal with a strong spin-orbit 
coupling that can measure different components of the spin-pumping signal.

The interfacial spin accumulation that arises from the DW-dynamics-induced spin-pumping, is given  by40,53,

where G↑↓
r  is the real part of the spin mixing  conductance45 and 〈. . .〉 denotes spatial average over the detector 

interface region. In the present calculations, we have ignored the contribution of the imaginary part of the spin 
mixing conductance in the total spin accumulation. This latter is sensitive to the quality of interfaces and is neg-
ligible at disordered  interfaces40. In the Supplementary Information, we demonstrate that the contribution of the 
imaginary part of the spin mixing conductance to the spin pumping signal in our setup is in general negligible.

In Fig. 6b, the temporal evolution of the spin accumulation signal µx(t) is presented for the IP geometry. 
In this example, as shown in Fig. 6a and described in the previous section, an AFM DW is pulled towards the 
detector with several small pulses. At the detector, the spin-pumping signal Eq. (10) is recorded over time. We 
subtract the background signal caused by the pumped magnons to find the filtered spin pumping signal arising 
from the AFM DW dynamics (blue curve). This signal clearly shows a maximum at around t = 15 ps , which is 
when the AFM DW reaches the detector.

Magnon‑induced AFM‑DW motion by spin hall torque. Depending on the application, it might be 
an advantage to have an artificial single neuron that operates only electrically. To show our proposed setup 
has also all-electrical functionality, we replace the incident magnetic field pulse with a spin torque that results 
from a current-induced (anomalous) spin Hall torque in a non magnetic (magnetic) heavy-metal lead on top 
of the AFM at finite temperature. Through the (anomalous) spin Hall effect, a charge current in the injector is 
converted to a spin accumulation at the interface of the heavy metal and the AFM insulator. A nonequilibrium 
spin density with spin angular momentum along the easy-axis anisotropy may excite incoherent magnons in the 
AFM insulator via an interfacial spin transfer torque at finite  temperature38,54. The chirality of excited magnons 
is controlled by the charge current direction and consequently the sign of the spin transfer torque.

Figure 7 represents the displacement of an AFM DW in the IP geometry. Similar to the four-stage protocol 
used before, we run the following stages: After initialization of the DW in its equilibrium position X0 , the spin 
transfer torque is turned on for 25 ps as the first excitation stage, and then turned off for the first relaxation 
stage. In Fig. 7 we see that the time interval between turning on the injector and the DW motion is much bigger 
compared to the previous case, where magnons were excited by a magnetic field, see Fig. 5. This is because the 
spin transfer torque excitation mechanism needs time to build up enough magnons in the system.

In the second excitation stage, we change the sign of the spin accumulation and thus spin transfer torque 
in the injector, which is equivalent to reversing the direction of the charge current in the heavy metal layer. In 
Fig. 7, three AFM DW trajectories for different inhomogeneous DMI strengths are shown. Since temperature 
is finite and thus the time-evolution is non-deterministic, we perform an ensemble average for each AFM DW 
trajectory. The uncertainty environment for each line represents the standard deviation of the ensemble aver-
age. In the absence of DMI (black line), the direction of spin accumulation does not have an impact on the DW 
motion direction and the DW is pulled towards the injector in both cases. This is consistent with our previous 
result for magnon-induced by magnetic field case in which the direction of AFM DW motion was polarization 
independent in the absence of inhomogeneous DMI. Turning the DMI on, however, leads to polarization-
dependent DW motion.

Dynamical control of biologically realistic characteristics. Recently, an artificial neuron based on 
AFM auto-oscillators was  proposed55 and it was shown that this neuron owns some main ingredients of biologi-
cal neurons. In this subsection, we assess how our proposed neurons which are based on AFM DWs, intrinsically 

(10)µ(t) := G↑↓
r

〈

∑

i=A, B

(

mi(t, r)× ṁi(t, r)
)

〉

,
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resemble some biological neurons characteristics, namely latency, bursting, inhibition, and refraction. We argue 
these features can be dynamically tuned in our proposed model.

Neuronal response latency. Latency describes the delay time between the excitation and the  firing56. In our 
proposed setup, this is the time between the excitation of magnons at the injector, and the read-out of the AFM-
DW-induced spikes in the detector. This time is dependent on the excitation strength, the anisotropy profile, the 
distance of the detector and injector, and the material parameters. Thus, it can be tuned. In Figs. 5, 6 and 7, one 
can see the delay between the onset of the excitation (time window of excitation indicated by orange areas) and 
the DW movement.

Burst firing. This is a dynamic state that happens when the input of neuron (or excitation strength) exceeds 
a certain threshold and, as a consequence, more than just one signal is  fired57. In our system, this may happen 
when the DW is moved to greater distances from equilibrium compared to the detector distance. Then, it will 
pass underneath the detector twice, each time triggering an output signal. An example is shown in Fig. 8, where 
the detector is placed closer to the equilibrium position compared to the case shown in section “LIF behavior of 
AFM DWs”. Like the latency, the bursting threshold is dependent on excitation strength, the magnetic anisotroy 
profile, detector distance and material parameters. In Fig. 8b, an additional signal present at around 12 ps when 
DW passes the detector. We attribute this signal to the magnon emission by DW  motion58,59.

Absolute refractory period.  The refractory period is the time that a neuron needs to relax back into the resting 
state from which it can fire  again56. In our system, the refractory period is non-zero if the DW passes the detector 
position (which happens in the case of bursting described before). Then, it has to relax back towards the equilib-
rium position before being able to fire again.

Neural inhibition. – Biological neurons can exert inhibitory control over their connected neurons. Inhibitory 
neurons modulate the firing behavior of other neurons, signaling them to refrain from  firing60. In the network 
structure, inhibition corresponds to negative  weights61. In our proposal, negative weights can be achieved by 
placing a detector to the left and right of the equilibrium position of the DW. As demonstrated in Figs. 5a and 
7, the helicity of the applied magnetic field and the direction of the spin torque control the direction of the DW 
displacement, determine whether the signal is detected at the left or right detector during spike readout. Subse-
quently, it becomes feasible to attribute a positive weight to one of the readout signals and a negative weight to 
the other. Consequently, upon integration into the subsequent layer, these weights correspond to the helicity or 
spin torque direction. Thus, during the integration of pulses in the next neuron, competing forces can act on the 
DW. An example is shown in Fig. 9 where one of the tree excitation pulses has opposite chirality and thus pushes 
the DW away from the detector. To the best of knowledge, inhibition has not been incorporated in FM DW-
based neurons thus far. However, as demonstrated in our proposal, the chirality of magnons in AFM systems 
represents a crucial degree of freedom that enables this particular feature of biological neurons.

Figure 8.  Bursting behavior in the IP geometry with a DMI strength of D = 150µJ m−2 . (a) A longer magnon 
excitation, here by a magnetic field, provides enough energy to pull the AFM-DW away from its equilibrium 
position, denoted by the gray dashed line, and passes the detector, denoted by the blue area. (b) An impulse-like 
signal with opposite polarity is fired each time the AFM-DW passes the detector in opposite directions.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13404  | https://doi.org/10.1038/s41598-023-40575-x

www.nature.com/scientificreports/

Suggested network structure. In this article, a detailed study of an AFM-based single neuron was con-
ducted, focusing on the demonstration of its LIF properties. Although further implementations extend beyond 
the scope of this work, a brief outlook will be provided on the construction of a SNN using the proposed neurons.

As explained in section “Spiking neural networks”, the input to each neuron involves the accumulation of 
multiple spike trains. In our system, this process is modeled using pulses of either a magnetic field or an electric 
current-induced SHE. Within the neuron, the integration of incoming pulses may or may not lead to a spiking 
event. The output is an electrical readout of the spiking event, which is subsequently forwarded to the next layer. 
To facilitate network training, incoming signals can be scaled with trainable weights, denoted as wi , see Fig. 1. 
In our system, the amplitude of these weights corresponds to the excitation strength and/or duration, while 
the sign can be set by evaluating which detector reads out the spike. If the weight is negative, in the subsequent 
neuron, magnons of opposite chirality are excited by reversing the helicity of the magnetic field or the current 
direction respectively.

Summary and concluding remarks
In this paper, we have proposed a non-volatile, low-energy cost, and fast operating single neuron, which is 
based on a DW texture in an AFM insulator with an anisotropy gradient. Our proposed AFM-based neuron 
shows a leaky integrated-fire behavior, which can model a biological neuron. This single neuron is activated by 
AFM magnons, which can be excited at the source region by either a magnetic field pulse or spin transfer torque 
mechanism. The source region that injects magnons into the system resembles a dendrite in a nerve cell. Our 
proposed AFM-based single neuron can have two detectors, which makes it possible to model inhibition feature 
of biological neurons. The detectors act as transmitters, resembling synaptic terminals of neurons, and will be 
connected to neighboring neurons. In general, one can replace the AFM DW in our setup with topologically 
stable AFM skyrmions as well. Synchronization and functionality of the connected single neurons remain as 
an important open question that should be explored further theoretically and experimentally in next studies.
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