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Abstract

We apply the framework of curvature to the recently derived quasiclassical Usadel

equation for an antiferromagnet-superconductor system. The addition of curvature

makes it so we can tune the triplet generation by adjusting the physical parameters

of the system. We transform the antiferromagnetic Usadel equation into describing

a curvilinear system, which we then use to look at the case of a 1D wire with and

without torsion. The main result is a Riccati parametrization of the Usadel equation

for antiferromagnets along a curved 1D wire. We also look at the weak proximity

equations for the system, and use numerical methods to solve for the density of

states and magnetization in the antiferromagnet. The weak proximity equations

showed that we needed torsion, in the form of a nanowire helix, in order to get

mixing between the singlet and triplet states. In addition, no spin-orbit coupling

was needed for mixing to occur when looking at the nanowire helix. Finally, looking

at the density of states and magnetization of the electrons in the antiferromagnet

indicated that there exist an optimal relationship between the antiferromagnetic

exchange energy and the physical parameters of the system for generating triplet

components and increased magnetization.
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Sammendrag

Vi legger til krumming i den nylig utledede kvasiklassiske Usadel-ligningen for et

antiferromagnet-superleder-system. Tillegget av krumning gjør det mulig å justere

triplett generasjon ved å endre de fysiske parameterne i systemet. Vi transformerer

den antiferromagnetiske Usadel-ligningen til å kunne beskrive et krummet system,

som vi deretter bruker til å se p̊a en 1D-ledning med og uten torsjon. Hovedresultatet

er en Riccati-parametrisering av Usadel-ligningen for antiferromagneter langs en

krummet 1D-ledning. Vi ser ogs̊a p̊a de svake proksimitetsligningene for systemet,

og bruker numeriske metoder for å undersøketilstandstettheten og magnetiseringen

i antiferromagneten. De svake proximitetsligningene viste at vi trengte torsjon i

nanotr̊aden i form av en helix for å oppn̊a en miksing mellom singlett- og triplett-

tilstandene. I tillegg var det ikke nødvendig med spinn-bane-kobling for at miksingen

skulle skje n̊ar vi s̊a p̊a helixen. Til slutt viste tilstandstettheten og magnetiseringen

til elektronene i antiferromagneten at det eksisterer et optimalt forhold mellom den

antiferromagnetiske utvekslingsfeltstyrken og de fysiske parameterne i systemet med

tanke p̊a å generere triplett komponenter og sterk magnetisering.

2



Preface

This document was submitted as a master thesis in physics at the Norwegian Univer-

sity of Science and Technology, under supervision of Sol H. Jacobsen. The duration

of the masters program was two years, and consists of 60 ECTS-credits.

First of all, I would like to thank my supervisor Sol H. Jacobsen. I appreciate the

time you have spend helping me with the ins and outs of curved superconductors. I

would also like to thank Tancredi Salamone for all your guidance, and that you have

always been available to ask for help. I am also grateful to Henning Hugdal, Alv

Skarpeid and Morten Amundsen for being able to take part in the weekly curvature

meetings, where I have learned a lot.

Lastly, I would like to thank my partner Johanne. Without your help I would

not be where I am today.

3



Contents

Contents

1 Notation and Units 6

2 Introduction 7

2.1 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Christoffel Symbols . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Curvilinear Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Antiferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Mixed Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Notation for Integrals Using Products . . . . . . . . . . . . . . . . . . 19

2.8 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Green’s Functions 22

3.1 Green’s Function in the Mixed Representation . . . . . . . . . . . . . 23

4 Quasiclassical Approximation 25

5 Usadel Equation 27

5.1 Time evolution of the Green’s function . . . . . . . . . . . . . . . . . 28

5.2 Quantum Transport equation . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Quasiclassical transport equation . . . . . . . . . . . . . . . . . . . . 30

5.4 Diffusive Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Usadel Equation for Antiferromagnetic metals 34

6.1 Imputity Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Extracting the Conduction Band . . . . . . . . . . . . . . . . . . . . 38

6.3 Quasiclassical Green’s function . . . . . . . . . . . . . . . . . . . . . 39

6.4 Diffusive Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.5 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Spin-orbit coupling as a result of curvature 43

8 Usadel Equation for Antiferromagnets in Curvilinear Coordinates 46

9 Nanowire Arc 48

9.0.1 Curvilinear Pauli Matrices . . . . . . . . . . . . . . . . . . . . 48

9.1 Nanowire Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4



Contents

9.1.1 Curvilinear Pauli Matrices with tortion . . . . . . . . . . . . . 50

10 Parametrization 51

11 Weak Proximity Limit 55

11.1 Helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12 Density of States 61

13 Magnetization 66

14 Summary and Outlook 71

Appendices 77

A Riccati Parametrization of Antiferromagnetic Term 77

5



1 Notation and Units

1 Notation and Units

Vectors will be denoted with a bold font, e.g. r. Covariant, contravariant and

physical vector components will be denoted by xi, xi, x(i), respectively, where a

physical vector means a vector defined in a specific basis, like v(i) for the component

of a Cartesian vector in the êi-direction. If it is stated which basis the vector is

defined in, physical vector components are implied so we will drop the parenthesis

notation.

Matrices will in general be denoted by capital letters, e.g A,B, .... If it is not

clear if the capital letters are matrices or not, we will denote them with a bold font

similar to vectors. We will use the notation · if we want to specify that we have

a 2 × 2 matrix in spin-space. ·̂ will be used for matrices in 4 × 4 Nambu particle-

hole space and ·̌ will be used for 8 × 8 matrices in Keldysh space. If a matrix

sum or product is taken with non-matching dimensions, is should be interpreted

as taking the Kronecker product between the matrix with the smallest dimension

and the appropriate identity matrix before multiplication. For example, we have

ǍB + Ĉ = Ǎ(Î ⊗ B) + (I ⊗ Ĉ). i denotes the complex number, i =
√
−1, and

we write complex conjugation as (a + ib)∗ = (a − ib). Matrix transposition will be

written as MT and Hermitian conjugation as ψ†.

xi will be used to specify both the position and time coordinate, e.g. f(xi) ≡
f(ti, ri). The Pauli matrices, σi, in spin space are defined by:

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.1)

We can combine the last three Pauli matrices into a vector called the Pauli vector,

defined as σ ≡ σ1êx + σ2êy + σ3êy. Note that one should not confuse the notation

used for unit vectors, êi, with the notation for 4 × 4 matrices. The Pauli matrices

in Nambu space are defined in exactly the same way, and will be denoted by τi.

τ̂z = diag(1, 1,−1,−1) is the 4 × 4 extension of τz, with similar definitions for the

rest of the Pauli matrices. We will also use σ to denote spin of a particle with spin

σ, ψσ. It should be clear from the context if we are talking about spin or the Pauli

matrices.

The commutator of two operators or matrices are defined as [A,B] = AB−BA,

while the anticommutator is defined as {A,B} = AB+BA.

Partial differentiation will be written with the shorthand ∂if ≡ ∂f
∂i
, and the

gradient is ∇ ≡ ∂xêx + ∂yêy + ∂zêz.

The function Θ(t1−t2) is the Heaviside step function, δ(t1−t2) is the Dirac delta
function, and δij is the Kronecker delta. We will also write δ(x−x′) ≡ δ(r−r′)δ(t−t′).

In this thesis, we will use natural units where

ℏ = c = ϵ0 = µ0 = kB = 1, (1.2)

where ℏ is the reduced Planck constant, c is the speed of light, ϵ0 is the vacuum

permittivity, µ0 is the permeability and kB is the Boltzmann constant. Using these
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2 Introduction

units where physical constants are chosen as the fundamental scales of the corre-

sponding physical quantities has the advantage of making the notation easier, while

still conserving the physics in the equations [1].

2 Introduction

As the technology in the world continues to evolve, so does the energy requirements.

Increased interest in e.g. cryptocurrencies have raised the energy consumption in

the world dramatically. For instance, the energy consumption of mining Bitcoins

alone is estimated in 2023 to be 134.15 TWH/y, about 0.6% of the worlds total

energy consumption [2]. This is comparable to the yearly consumption of countries

such as Norway and Pakistan [3]. Finding a way to make computer components

more energetically efficient could therefore help reduce the worlds emissions, as many

processes producing power emits pollution. This is where the use of superconductors

comes in. One of the fundamental properties of superconductors is that currents may

flow without resistance. This means that, unlike traditional conductors like copper

or other metals, superconducting materials can carry electrical current with almost

no energy lost to heat due to the resistance in the material. This could result in

significantly reduced energy consumption.

Superconductivity emerges due to the formation of bound states of electrons,

known as Cooper pairs [4]. These electrons usually have opposite momentum and

spin. In addition to reducing the energy needed to run different components, the

spin of the quasiparticles in the superconductor can be used as information carriers.

Not all combinations of spins for the quasiparticles are ideal to use as information

carriers. Looking at a superconductor-ferromagnet (SF) system, one problem arises

when we consider how the spin of the Cooper pairs interact with the magnetic

field. When we put a superconductor in contact with another material, we get a

phenomenon known as the proximity effect [5–8]. Here, the superconducting Cooper

pairs may leak into the material, and thus influence its properties. This effect in a SF

system is complicated with the fact that magnetic fields will tend to align spins, and

thus break up the Cooper pairs. Spin singlets |↑↓⟩−|↓↑⟩, and the triplet component

|↑↓⟩ + |↓↑⟩ will therefore decay over a short distance. However, if we where to

generate triplet components with finite total spins (|↑↑⟩, |↓↓⟩), these can penetrate

the ferromagnet over a much longer distance [9–11]. These triplets are known as long

range triplets (LRTs), while the triplet decaying over a short distance are known as

short range triplet (SRT). Since the LRTs also have a finite spin direction, they can

be used to represent 0- or 1-bit in a computer.

It is known that generation of LRTs happens in the presence of magnetic inho-

mogeneities [12–14]. Another possible source of LRT generation can happen in the

presence of spin-orbit coupling (SOC) [9, 15]. Recent studies have also shown how

a SF structure with a curved ferromagnet gives rise to SOC, which can be used to

tune the triplet generation inside the ferromagnet [16, 17].

7



2 Introduction

The deformation of the material due to bending leads to an additional potential

in the material, which for small strains is assumed to be linear in strain [18, 19].

The potential leads to an electric field, which in turn couples to an electron’s spin

via the Zeeman coupling, leading to an effective spin-orbit coupling. By tuning the

curvature of the ferromagnet, one can then adjust the amount of LRTs generated in

the system. A possible application of this system could be to use it as a spin logical

gate. Using a SFS Josephson junction, one could have a system where singlets and

SRTs would not pass through the junction, while the LRTs would. This could then

be encoded as 1 when a current passes through, and 0 when no current passes. This

would allow for superconductors to be used for transferring information with zero

resistance inside a computer.

Recently, Fyhn et.al. developed a method for using the quasiclassical framework

to derive an equation of motion for an antiferromagnet-superconductor (AF-S) bi-

layer. [20] Antiferromagnets have many important advantages over ferromagnets

in the context of spintronics, like being more stable and impervious to external

magnetic fields while creating negligible magnetic stray fields of their own [21]. This

makes them less intrusive to neighboring components, which is important if we want

to use antiferromagnets in spintronics systems. Another advantage of antiferromag-

nets is the fact that their resonance frequency is of the order of terahertz, which

allows for fast information processing [22, 23]. This is in comparison to ferromag-

nets, which have resonance frequencies of the order of gigahertz [24]. The fact that

the derivation for the equation of motion for the AF-S system performed by Fyhn

et.al. uses the same theoretical framework as for curved SF systems, allows for

the possibility of looking at the effects of a curved antiferromagnet using the same

framework. Spin transport have been shown to be long range in antiferromagnets

[25], and it will therefore be interesting to see how the effect of curvature will affect

these processes.

2.1 Superconductivity

Superconductivity is a quantum phenomenon observed in some materials at suf-

ficiently low temperatures, and is characterized by having the ability to conduct

electric currents without any resistance and excluding external magnetic fields. Su-

perconductivity was discovered in 1911 by Heike Kamerlingh Onnes [26], but it took

many years for the phenomena to be explained. The most used and successful theory

to describe superconductors in the BCS theory, named after the creators Bardeen,

Cooper and Schrieffer [27]. BSC theory is founded on the idea of Cooper pairs,

which is a quasiparticle consisting of pairs of electrons. These pairs form due to

an attractive interactions between the electrons, which for most superconductors

is mediated by phonons. Superconductivity appears when an attractive interaction

works on an ensemble of electron, making it a many-body quantum effect. The over-

all angular momenta of the Cooper pairs have to bee antisymmetric. This means

8



2 Introduction

we can have Cooper pairs with an odd spin state (singlet) and even spatial part,

known as a s-wave superconductor, or an even spin state (triplet) and odd spatial

part, known as a p-wave superconductor [28, 29].

One important parameter when discussing superconductivity is the mean field,

or order parameter. Consider ψ̂σ(r, t) as the operator annihilating an electron with

spin σ at position r and time t. The order parameter is then defined as

∆(r, t) = λ⟨ψ̂↑(r, t)ψ̂↓(r, t)⟩, (2.1)

where ⟨...⟩ denotes a statistical average, and λ > 0 is the effective coupling con-

stant of the electron-phonon-electron attractive interaction. In general, the order

parameter is a complex function, ∆ = |∆|eiφ, where the norm |∆| describes the

size of the superconducting gap, and φ describes the superconducting phase. When

only considering a single superconductor, which will be the case in this thesis, the

superconducting phase is not of importance. One can then perform a U(1) gauge

transformation in order to cancel the superconducting phase from the equations. We

will therefore assume a gauge where ∆ is real. Note that for systems with multiple

superconductors, such as for the Josephson junction, the superconducting phase is

of great importance, and will dictate the transport properties.

2.2 Quantum Mechanics

The building block of elementary quantum mechanics is the wave function, φ. The

wave function is most often represented as a ket vector |φ⟩ in Hilbert space, along

with its Hermitian conjugate, the bra vector ⟨φ|. The wave function is a representa-

tion of the state of a physical system, and can be used to find different observables.

All physical observables of the system can be represented in terms of some Hermi-

tian operator A, which acts on the wave function. These operators, along with the

wave function, can be used to find the expectation value of physical observables. If

a system is prepared in a state |φ⟩ at time zero, the observable corresponding to the

operator A will, at time t, have the expectation value given by:

⟨A⟩ = ⟨φ|eiHtAe−iHt|φ⟩ , (2.2)

where H is the Hamiltonian operator of the system. The time evolution operator

e±iHt connects the states and measurements defined at different times. Usually, we

absorb the time evolution operator into either the states, observables, or both:

• Schrödinger picture. Here we absorb the time evolution operator into

the states, e−iHt |φ⟩ ≡ |φ(t)⟩. The expectation value then becomes ⟨A⟩ =

⟨φ(t)|A|φ(t)⟩. The time evolution of these states must satisfy the Schrödinger

equation:

i
d

dt
|φ(t)⟩ = H |φ(t)⟩ . (2.3)

9



2 Introduction

• Heisenberg Picture. In this case, we absorb the time evolution operator

into the operators, eiHtAe−iHt ≡ A(t). The time evolution of these operators

satisfy the Heisenberg equation:

i
d

dt
A(t) = [A(t), H]. (2.4)

Note that if the operator A has an explicit time-dependence, we need to add

a term i∂tA to the right hand side of the equation.

• Interaction Picture. Here we have some of the time evolution in the op-

erators, and some in the states. If we split the Hamiltonian into two parts,

H0 and Hi, we can define the time dependent states as eiH0te−iHt |φ⟩ ≡ |φ(t)⟩
and operators as eiH0tAe−iH0t ≡ A(t). The states then follow a Schrödinger

equation, while the operators follow a Heisenberg equation:

i
d

dt
|φ(t)⟩ = Hi |φ(t)⟩ , i

d

dt
A(t) = [A(t), H0]. (2.5)

2.2.1 Second Quantization

The systems we will look at will contain a large number of particles. A more con-

venient way to describe many-particle systems than what was discussed above, is

to use the second quantization formalism. Here, fields are thought of as field op-

erators just like e.g. position and momentum are thought of as operators in the

first quantization formalism. We introduce a creation field operator ψ†
σ(r, t) that

creates an electron with spin σ at position r and time t, and an annihilation field

operator ψσ(r, t) that destroys the same electron. These field operators act on a

state in Fock-space, which is a combination of many single particle states given by

|r1σ1, r2σ2, ..., rnσn⟩ = |r1σ1⟩ ⊗ ...⊗ |rnσn⟩. Many-particle states can be created by

operating with the field operators onto a special vacuum state, |0, 0, ..., 0⟩ ≡ |0⟩,
which contains zero electrons:

|r1σ1, r2σ2, . . . , rnσn⟩ = ψ†
σ1
(r1, t) |0, r2σ2, . . . , rnσn⟩

= . . . = ψ†
σ1
(r1, t) . . . ψ

†
σn
(rn, t) |0⟩ .

(2.6)

The electron field operators satisfies the following fermionic anticommutation rela-

tions:

{ψ†
σ(r, t), ψ

†
σ′(r

′, t)} = 0, (2.7a)

{ψσ(r, t), ψ
†
σ′(r

′, t)} = δσσ′δ(r− r′)δ(t− t′), (2.7b)

{ψσ(r, t), ψσ′(r′, t)} = 0. (2.7c)

We would like a way to relate the non-interacting Hamiltonian of a single particle in

the first quantization formalism to the equivalent non-interaction Hamiltonian for a

many-particle system in the second quantization formalism. This relation is given

by:

H0 =

∫
d3r
∑
σ

ψ†
σ(r, t)H0ψσ(r, t), (2.8)

10



2 Introduction

where H0 is the non-interacting Hamiltonian for a single particle in the first quan-

tization formalism, and H0 is the corresponding many-particle Hamiltonian in the

second quantization formalism.

2.3 Tensors

In this thesis, we will work with curved geometries. It will therefore be convenient

to introduce tensors in order to rewrite relevant equations from Cartesian to curved

coordinates. In this section we will summarize the most important points for under-

standing the notation used in this thesis. For a more detailed review, see e.g. [30,

31].

In physics, we use coordinates to describe where physical objects are and how

they change. We do this by assigning them a value based on where they are relative

to a given coordinate system. For instance, we could use a Cartesian coordinate

system to describe the motion of a particle in three dimensions, or a spherical

coordinate system to describe a particle moving in some circular motion. While

the unit vectors used to describe the different coordinate systems are different, the

objects they describe move along the same line regardless of the choice of coordinate

system. This is where the use of tensors comes inn. Using tensors, we can express

equations using notation that is invariant with respect to a change of coordinates.

This will become useful later when we want to rewrite equations like the Usadel

equation from Cartesian to curved coordinates.

To describe what a tensor is, we have to describe how they change. First, consider

a scalar such as the distance between two points in Euclidean space. For a number

λ to be a scalar, it has to remain unaffected if we transform from, say, coordinates

(x, y, z) to (x′, y′, z′):

λ = λ′, (2.9)

where we use the notation λ ≡ λ(x, y, z) and λ′ ≡ λ(x′, y′, z′). This statement uses

how they transform under a change of coordinate systems to formally define what

it means for a quantity to be a scalar. In contrast to scalars, vectors are often

described as ”arrows” that carry information about a magnitude and a direction.

The length and magnitude of the vector is independent of any coordinate system,

but we can use coordinates to describe the orientation and scaling of the vector along

the coordinate axes. Since coordinate systems can change, equations that contains

vectors must in some way contain information about how they would behave if we

where to change coordinate systems. The next step up from a vector is a tensor,

which is described as a mathematical object that is independent of a specific basis,

and is defined by how it changes under a transformation of coordinates. Tensors

are usually classified by its rank, and can be described by N rank numbers. A rank 0

tensor can be described with N0 = 1 number, and can therefore be represented by a

scalar. A rank 1 tensor can be described by N numbers, and can be represented by

a vector. Furthermore, a rank 2 tensor can be represented by N2 numbers, which is

11



2 Introduction

equivalent to a matrix. Note that even though a vector and a matrix can be used to

represent a rank 1 and 2 tensor, not all vectors or matrices are tensors. For instance,

since we need N2 numbers to describe a rank 2 tensor, only square matrices can be

used as a representation.

The rank of a tensor appears in the number of indices needed to describe the

object. For instance, a rank 1 tensor is written as Ai or B
i. The placement of the

index is important as it determines how the tensors transform. Ai with a lowered

index is called a covariant vector, and is said to transform covariantly. Bi with a

raised index is called a contravariant vector, and transforms contravariantly. Under

a change of coordinate x→ x′ they transform as:

A′
i =

∂xj

∂x′i
Aj, (2.10)

B′i =
∂x′i

∂xj
Bj, (2.11)

where we use Einstein summation convention for summation over each index re-

peated twice in a product. A general tensor of rank k+ l with k raised and l lowered

indices Ti1...il
j1...jk transforms as a product of l covariant and k contravariant vectors:

T ′
i1...il

j1...jk =
∂xm1

∂x′i1
...
∂xml

∂x′il
∂x′j1

∂xn1
...
∂x′jk

∂xnl
Tm1...ml

n1...nk . (2.12)

The reason we need two different types of vectors is because different physical quan-

tities changes in different ways when we transform coordinate systems. For instance,

if we where to change the units of a coordinate system from meters to centimeters,

we would divide the scale of the coordinate axes by 100, so 1m would now corre-

spond to 1cm. The components of e.g. a velocity vector would however change by

being multiplied by 100. This change is the inverse of the change for the coordinate

axes, and is what happens to a contravariant vector. A gradient with respect to

position, for example, has units of distance−1, and changes in the same way as the

coordinate axes. This is what happens to a covariant vector.

2.3.1 The Metric Tensor

We will now look at an important tensor called the metric tensor. Let us consider

the displacement vector dr, measured in units of length. In Cartesian coordinates,

it is given as

dr = dx êx + dy êy + dz êz, (2.13)

while in spherical coordinates it is given as

dr = dρ êρ + ρ dθ êθ + ρ sin(θ) dϕ êϕ. (2.14)

We can now generalize the differential coordinate displacement for an arbitrary

coordinate system by introducing scale factors hi

dr =
∑
i

hi dx
i êi. (2.15)

12



2 Introduction

Since dr is given in units of length, the scaling factors hi makes sure that each coor-

dinate displacement dxi has the correct unit of length. The differential coordinate

displacement squared is found by taking the scalar product with itself:

(dr)2 =
∑
i,j

hihj êi · êj dxi dxj = ηij dx
i dxj , (2.16)

where

ηij = hihj êi · êj (2.17)

is defined as the covariant form of the metric tensor (remember the summation

convention). If we now consider the examples given in equations (2.13) and (2.14),

we may write the metric tensor as a square matrix:

ηCartesian
ij =

1 0 0

0 1 0

0 0 1

 , ηSphericalij =

1 0 0

0 ρ2 0

0 0 ρ2 sin2(θ)

 . (2.18)

Note that if the coordinate systems are orthogonal, then êi · êj = δij and the metric

tensor is thus diagonal. One important fact is that the covariant and contravariant

metric tensor is the inverse of each other, η−1
ij = ηij. A fundamental property of the

metric tensor is that we can use it to convert between covariant and contravariant

vectors:

Ai = ηijA
j, Ai = ηijAj. (2.19)

This is also the case for a general tensor:

Ti1...in−1

k
in+1...im

j1...jl = ηkinTi1...tm
j1...jl ,

Ti1...im
j1...jn−1

k
jn+1...jl = ηkjnTi1...tm

j1...jl .
(2.20)

Finally, when we refer to a physical vector, we mean a vector defined in a given

basis, e.g. Cartesian or spherical, and is denoted A(i). This is in contrast to the

more general covariant/contravariant vectors which are independent of a basis.

2.3.2 Christoffel Symbols

In the later chapters, we will see that we will end up working with derivatives.

We therefore have to look at the transformation properties of the derivative of

covariant/contravariant tensors. Consider a contravariant vector xi in a coordinate

system S that we want to transform to a primed coordinate system S ′. We would

then use equation (2.11) and write:

x′i =
∂x′i

∂xj
xj (2.21)

We can then find the transformation rule for the derivative of a covariant vector by

differentiating this equation by some scalar t:

dx′i

dt
=
∂x′i

∂xj
dxj

dt
+ xj

d

dt

(
∂x′i

∂xj

)
=
∂x′i

∂xj
dxj

dt
+ xj

∂2x′i

∂xj∂xk
dxk

dt
(2.22)
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The first term is what we would expect if we where to just replace B in equation

(2.11) with the derivative of a contravariant vector dxj / dt. If we only had this term,

the derivative of the contravariant vector would follow the transformation rule for

it to also be a tensor. However, as we can see, we also have a second term involving

second derivatives. Ordinary derivatives of tensors are therefore not necessarily

tensors, since they do not generally follow definition (2.11). In order to make the

derivative have a proper contravariant transformation, we redefine the derivative

operator in such a way that this additional second derivative term cancels, which will

then preserve the tensorial nature of the transformation. This redefined derivative

is called the coordinate covariant derivative, denoted by D, first introduced by Ricci

and Levi-Civita in 1900 [32]. The coordinate covariant derivative of a contravariant

vector Aj with respect to a coordinate xi is defined as

DiA
j = ∂iA

j + Γj
ikA

k, (2.23)

where Γj
ik is known as the Christoffel symbol or the affine connection and is related

to the metric tensor in the way that

Γk
ij =

1

2
ηkl(∂jηli + ∂iηlj − ∂lηij). (2.24)

The Christoffel symbol ensures that the coordinate covariant derivative of a tensor

remains a tensor, but it is not itself a tensor. Terms including derivatives, such as

for the Usadel equation in section 8, will include this coordinate covariant derivative.

The coordinate covariant derivative of a covariant vectors is defined similarly, but

with a minus sign instead of a plus sign

DiAj = ∂iAj − Γj
ikAk. (2.25)

2.4 Curvilinear Coordinates

In later chapters, we will look at how a curved material changes the singlet and triplet

generation of Cooper pairs inside a S-AF system. For this, it will be convenient to

use curvilinear coordinates, which is beneficial when looking at systems with curved

symmetries. Curvilinear coordinate systems are characterized by the fact that the

coordinate lines may be curved, and the direction of the basis vectors can change

depending on the point you look at. Examples of such coordinate systems are

spherical and cylindrical coordinates. This section is based on section 3.1 in the

thesis by M. Svendsen [30].

Our system will be defined by a set of orthogonal basis vectors N̂ (s), T̂ (s) and

B̂(s) in the normal, tangential and binormal direction respectively. This is a general

orthogonal curvilinear coordinate system, defined on the curved structure as shown

in figure 1. Here, s is the distance along the arclength from a reference point to the

point we are interested in. Since the direction of the basis vectors are functions of

the arclength parameter, they will point in different directions depending on which

point on the surface we look at.
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Figure 1: Figure showing the curvilinear coordinate system. It is described by an

arclength s measured from some reference point and a set of orthogonal unit vectors

N̂ (s), T̂ (s) and B̂(s) normal, tangential and binormal to the curved nanostructure,

respectively. The radius at the arclength point s is given by R = 1
κ(s)

, where κ(s) is

the curvature.

When deriving the different relations for the system, we will start by assuming

that the binormal unit vector is independent on the arclength s, i.e. no torsion.

Later we will look at the case with torsion included. We will also assume that the

structure in the plane follows a differentiable curve, so we can parameterize the

surface in terms of the arclength coordinate s and the binormal coordinate b as

r(s, b) = ξ(s)+bB̂(s). Here ξ(s) is the parametrization of the differentiable curve in

the plane of curvature, along the arclength s. Similarly, the three-dimensional space

around the surface R can be parametrized using the normal unit vector, normal

coordinate n and the parametrization of the surface:

R(s, n, b) = r(s, b) + nN̂ (s). (2.26)

The unit vectors N̂ , T̂ and B̂ are connected through the Frenet-Serret formulas

[17, 30]. In the case of no torsion, these relations are∂sT̂ (s)

∂sN̂ (s)

∂sB̂(s)

 =

 0 κ(s) 0

−κ(s) 0 0

0 0 0


T̂ (s)

N̂ (s)

B̂(s)

 , (2.27)

where κ(s) = 1
R
is the curvature at at the arclength point s with radius R. We can

now write the total differential displacement of the space R as:

dR(s, n, b) = ∂sR(s, n, b) + ∂nR(s, n, b) + ∂bR(s, n, b)

= (1− κ(s)n)dsT̂ (s) + dnN̂ (s) + dbB̂(s) =
∑
i

hidq
iê(i)(s),

(2.28)

where we have used the fact that ∂sξ(s) = T̂ from the definition of the derivative.

In the last line of the equation, we have written the total differential displacement

like we did in equation (2.15), where qi are the curvilinear coordinates, ê(i)(s) are

the curvilinear unit vectors, and the scale factors are given as

hT = 1− κ(s)n, hN = 1, hB = 1. (2.29)
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We can now find the metric tensor for the system by taking the square of the total

differential difference in equation (2.28)

(dR(s, n, b))2 =
∑
i,j

hihj ê(i) · ê(j)dqidqj = ηijdq
idqj, (2.30)

where we use the Einstein summation convention in the last equality, and the fact

that the basis vectors of the curved system are orthogonal to write the metric tensor

as ηij = hihjδij. Using the expressions for the scale factors hi we found above,

we can write the metric tensor for our curvilinear coordinate system as a diagonal

matrix:

ηij =

H(s, n)2 0 0

0 1 0

0 0 1

 , (2.31)

where we defined the scale factor

H(s, n) = 1− κ(s)n. (2.32)

Later, we will see how this scale factor appear in equations like the Usadel equation.

In the following sections we would like to take the covariant derivative of the

Usadel equation. To be able to do this, we need to find the expressions for the

Christoffel symbols used in the covariant derivative. The Christoffel symbols are

related to the metric tensor through equation (2.24)

Γk
ij =

1

2
ηkk(∂jηki + ∂iηkj − ∂kηij), (2.33)

where we have set l = k since the curvilinear metric is diagonal. Most of the

components are zero, but the four non-zero components are given as:

Γs
ss =

1

H(s, n)
∂sH(s, n), (2.34a)

Γn
ss = −H(s, n)∂nH(s, n), (2.34b)

Γs
ns = Γs

sn =
1

H(s, n)
∂nH(s, n). (2.34c)

Note that the elements in the matrix (2.31) are labeled such that element ηss is the

upper left element, ηnn the center element, and ηbb the lower right element.

2.4.1 Torsion

In the case where we include torsion, the Frenet-Serret-type equations are given as∂sT̂ (s)

∂sN̂ (s)

∂sB̂(s)

 =

 0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0


T̂ (s)

N̂ (s)

B̂(s)

 , (2.35)

where κ(s) and τ(s) denotes the curvature and torsion of the space curve, respec-

tively [33]. For a 1D-line, the inclusion of both torsion and curvature would turn it
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into a helix. In the case where τ → 0, we get the system described above. Here the

torsion is given by τ and the curvature κ.

The metric tensor for the curvilinear coordinate system with torsion is given as

[33]

ηij =

H(s, n)2 + τ(s)2(n2 + b2) −τ(s)b τ(s)n

−τ(s)b 1 0

τ(s)n 0 1

 . (2.36)

2.5 Antiferromagnetism

Antiferromagnets are a type of magnetic material where the magnetic moments of

the individual particles are aligned in opposite directions, which creates a pattern

of alternating up and down spins as is seen in figure 2. The total magnetization

of the antiferromagnet can either be zero when the total net spin is zero, or it can

have a small net magnetization in one direction. This can happen if the magnetic

moment is stronger in one direction, or if there are more particles with one type of

spin direction. Usually, one can construct the lattice of an antiferromagnet with a

unit cell consisting of two points, one for each spin direction. The lattice therefore

consists of two sublattices, where each sublattice contains only points with the same

spin direction.

Figure 2: Figure showing a typical unit cell for an antiferromagnetic lattice with

up and down spins. xn is the distance between the unit cells, and δ is the distance

between the nearest neighbor lattice cites.

There are different combination of alternating spins that will give us an anti-

ferromagnet. In 3D-space, there are three different ways to structure the spins to

achieve this, if we consider the spins on a square lattice, as is seen in figure 3. These

are the A-, C-, and G type antiferromagnets. If we want to end up with a spin chain

in 1D-space, we need to cleave these 3D-structures into 2D, and then finally into

1D. Cleaving the antiferromagnetic structures in figure 3, we end up with the 2D

planes in figure 4, which we can then cleave into the 1D chains in figure 5.
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G A C

Figure 3: Different spin structures for a 3D square lattice.

Figure 4: Different spin structures for a 2D square lattice.

Figure 5: Different spin structures for a 1 lattice chain.

The spin direction is also determined by what direction is most energy efficient

to point in. An example which will be relevant for later is the ground state in

an antiferromagnetic helix with magnetic dipolar interaction. Here, we get two

cases depending on the strength of the curvature and torsion of the helix [34]. The

Néel vector is a vector pointing in the direction of the magnetic moment of the

antiferromagnet. For this system it is determined by the geometrical parameters

curvature and torsion. The first case is the homogeneous state, which is the case

when the Néel vector stays at a fixed angle. Here, he Néel vector tilts at an angle ψ

away from the binormal unit vector êB of the helix. The second case is the periodic

state, which is the case when the Néel vector rotates. Here, the Néel vector oscillates

almost uniformly in the plane perpendicular to the helix axis, with a small oscillation

in the binormal direction. These two cases are illustrated in figure 6. It is worth

noting that ref. [34] models the Curvilinear antiferromagnet as a classical spin chain

with nearest-neighbor exchange and dipolar interaction, which is different form the
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model we will use in section 6 when deriving the antiferromagnetic Usadel equation.

Figure 6: Figure taken from [34]. Schematics of the (a, b) homogeneous and (b, c)

periodic states for an antiferromagnetic helix with magnetic dipolar interaction in

the TNB reference frame. (a, c) Bloch spheres illustrate the trajectories of the Néel

vector n.

2.6 Mixed Representation

In future calculations, it will be useful to use a center off mass and relative represen-

tation for the position and time coordinates. To achieve this we do a transformation

to the mixed or Wigner representation, given by the following relations:

r = r1 − r2, R =
1

2
(r1 + r2), (2.37)

t = t1 − t2, T =
1

2
(t1 + t2). (2.38)

The time and spatial derivatives in the mixed representation are then given by [35]:

∂

∂t1
=

1

2

∂

∂T
+
∂

∂t
,

∂

∂t2
=

1

2

∂

∂T
− ∂

∂t
, (2.39)

∇1 =
1

2
∇R +∇r, ∇2 =

1

2
∇R −∇r, (2.40)

∇2
1 =

1

4
∇2

R +∇r · ∇R +∇2
r, ∇2

2 =
1

4
∇2

R −∇r · ∇R +∇2
r, (2.41)

where ∇i operates on particle i.

2.7 Notation for Integrals Using Products

We will now define a useful product known as the bullet product that will simplify

further calculations. This product is defined by

A(x1, x2) •B(x2, x3) =

∫
d4x2A(x1, x2)B(x2, x3), (2.42)

where A and B are functions that depend on at least one common spacetime coor-

dinate. If A or B is a function of only one or zero spacetime coordinates, A • B is

interpreted as an ordinary matrix product AB with no integral present.
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We can also express the bullet product using mixed coordinates, in addition to

Fourier transforming the center of mass time T and position R into energy ε and

momentum p, respectively. The bullet product then becomes [36]

A •B = exp

{
i

2
(∂Aε ∂

B
T − ∂AT ∂

B
ε )

}
exp

{
i

2
(∇A

R∇B
p −∇A

p∇B
R)

}
·

A(R,p, ε, T )B(R,p, ε, T ),

(2.43)

where the notation ∇A
R, ∂

A
t means we differentiate with respect to R and t, only

affecting the function A.

Next we introduce another convenient product known as a ring product. This

product only consist of the energy/time differentials from the bullet product. We

define it as:

A ◦B = exp

{
i

2
(∂Aε ∂

B
T − ∂AT ∂

B
ε )

}
A(R,p, ε, T )B(R,p, ε, T ). (2.44)

We can then write the bullet product as:

A •B = exp

{
i

2
(∇A

R∇B
p −∇A

p∇B
R)

}
A(R,p, ε, T ) ◦B(R,p, ε, T ). (2.45)

In the stationary limit where ∂T = 0, the ring product reduces to ordinary matrix

multiplication. We have the following commutation relations for the bullet- and ring

product:

[A,B]• ≡ A •B −B • A, [A,B]◦ ≡ A ◦B −B ◦ A, (2.46)

{A,B}• ≡ A •B +B • A, {A,B}◦ ≡ A ◦B +B ◦ A (2.47)

If the spatial variation of A and B is small, then the gradient expressions in

equation (2.45) are also small. We can then linearize the exponential function in

the expression:

A •B ≈ A ◦B +
i

2

(
(∇RA) ◦ (∇pB)− (∇pA) ◦ (∇RB)

)
. (2.48)

This is known as the gradient approximation. Using this, we can write the commu-

tator for the bullet product as:

[A,B]• = [A,B]◦ +
i

2

({
(∇RA) ◦ (∇pB)

}
−
{
(∇pA) ◦ (∇RB)

})
. (2.49)

These approximations will be useful when we later look at the Quasiclassical ap-

proximation in section 4.

2.8 Structure

The goal of this thesis is to derive the Usadel equation for an antiferromagnet-

superconductor system in curvilinear coordinates. We then want to look at the case

of a 1D nanowire and helix, and solve them numerically in order to investigate the

density of states and magnetization of the electrons in the curved antiferromagnet.
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The beginning of the thesis will be used for studying the equation of motion

for the Green’s function of the system for both an SF system and an AF-S system.

Section 3 gives an overview of the Green’s function, and how we can write it in

the mixed representation, while section 4 introduces the quasiclassical approxima-

tion which will be used to simplify the Green’s functions of the system. Section

5 summarizes the derivation of the Usadel equation for a SF system, following the

derivation of J.A. Ouassou [37]. The aim of this section is to make the following

derivation of the Usadel equation for antiferromagnets easier, as the steps taken in

the two derivations are similar but a bit easier to follow in the SF case. Section

6 gives a summary of the derivation of the Usadel equation for an AF-S system,

following the work done by Fyhn et.al. [20].

Sections 7 and 8 will look at how curvature can result in effective SOC, which

will be inserted in the Usadel equation to look at how it behaves for a curved system.

In section 9 we will apply the Usadel equation for curved systems we found in the

previous section to the case of a 1D nanowire arch curved in the form of a portion

of a circle, and a 1D helix. Here, we will also derive the Pauli matrices in the

curvilinear basis, both with and without torsion.

In section 10 we will use the Riccati parametrization on the curvilinear Usadel

equation found in the previous section, which we will use in section 11 to look

at the weak proximity equations for both the case with and without torsion. In

sections 12 and 13 we will look at the numerical results for the density of states

and magnetization of the electrons in the system, using the Riccati parametrized

equations found in section 10. All numerical modeling and plots thereof are provided

by Tancredi Salamone, who collaborated on this work in conjunction with his PhD

degree [38]. Finally, in section 14 we will summarize the main results, as well as

look at possible continuations of the work preformed in this thesis.
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3 Green’s Functions

In this section we will look at Green’s functions, and how we can combine them into

a 8× 8 Green’s function matrix in Keldysh space which can be used to describe the

motion of electrons in a system.

In many particle physics, a Green’s function Gσ1σ2(r1, t1, r2, t2) tells us something

about the probability amplitude of a particle with spin σ1 at position r1 at time t1

moving to position r2 at time t2 with spin σ2. There are several ways to define these

Green’s functions. One way to define a non-equilibrium Green’s function is to use

[39]:

Gσ1σ2(x1, x2) ≡ −i ⟨n|Tψσ1(x1)ψ
†
σ2
(x2) |n⟩ , (3.1)

where σj is the spin of particle j, xj the spacetime coordinate, ψ̂j the fermionic

annihilation operator (ψ†
j is then the creation operator), |n⟩ the quantum state of

the system, and T the time ordering operator defined as:

−iTψσ(r, t)ψ
†
σ′(r

′, t′) ≡
{

−iψσ(r, t)ψ
†
σ′(r′, t′), t′ < t

iψ†
σ′(r′, t′)ψσ(r, t), t′ > t

. (3.2)

The time ordering operator has the effect of ordering the product in chronological

order, such that the operator with the largest time dependence is on the left. Here

we will use the three Green’s functions from the Keldysh definitions:

GR
σ1σ2

(x1, x2) ≡ −i⟨{ψσ1(x1), ψ
†
σ2
(x2)}⟩Θ(t1 − t2), (3.3)

GA
σ1σ2

(x1, x2) ≡ +i⟨{ψσ1(x1), ψ
†
σ2
(x2)}⟩Θ(t2 − t1), (3.4)

GK
σ1σ2

(x1, x2) ≡ −i⟨[ψσ1(x1), ψ
†
σ2
(x2)]⟩. (3.5)

By looking at the definitions, we see that the retarded Green’s function GR only exists

for t1 > t2, which means that the creation ψ†
σ2
(x2) of the electron at x2 happens before

the annihilation ψσ1(x1) of the electron at x1. For the advanced Green’s function

GA it is the opposite, so we have annihilation before creation. We can therefore

interpret these Green’s functions as GR describing the flow of electrons, while GA

describes the flow of holes. The Keldysh Green’s function GK is special in that it

is the only one of the Green’s functions that contains information about the system

in non-equilibrium [40]. Note that the retarded and advanced Green’s function uses

anticommutators, while the the Keldysh Green’s function uses a commutator.

We will also use the anomalous Green’s function, which describes correlations

between particles at different points in spacetime:

FR
σ1σ2

(x1, x2) ≡ −i⟨{ψσ1(x1), ψσ2(x2)}⟩Θ(t1 − t2), (3.6)

FA
σ1σ2

(x1, x2) ≡ +i⟨{ψσ1(x1), ψσ2(x2)}⟩Θ(t2 − t1), (3.7)

FK
σ1σ2

(x1, x2) ≡ −i⟨[ψσ1(x1), ψσ2(x2)]⟩. (3.8)

In order to more easily keep track of the different spin-dependent Green’s func-

tions defined above, we combine them to form 2× 2 matrices in spin space:

GR ≡

(
GR

↑↑ GR
↑↓

GR
↓↑ GR

↓↓

)
. (3.9)
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The rest of the Green’s functions and anomalous Green’s functions are collected

the same way. We can further combine the Green’s function into 4× 4 matrices in

particle-hole Nambu space:

ĜR ≡

[
GR FR

FR∗
GR∗

]
, ĜA ≡

[
GA FA

FA∗
GA∗

]
, ĜK ≡

[
GK FK

−FK∗ −GK∗

]
.

(3.10)

Note the minus signs in the last row of ĜK , which comes from the fact that the

Keldysh Green’s functions are defined in terms of commutators instead of anticom-

mutators, as is the case for the rest of the Green’s functions. Finally, we can combine

all of the Green’s functions into a 8× 8 matrix in Keldysh space:

Ǧ ≡

[
ĜR ĜK

0 ĜA

]
. (3.11)

Most physical observables of interest in superconductor-ferromagnetic (SF) systems

or superconductor-antiferromagnetic (S-AF) systems, such as the density of states

and magnetization, can be described by this Green’s function matrix.

In equilibrium, the three non-zero components of the Green’s function matrix in

Keldysh space are related to each other [41]

ĜA = −τz(ĜR)τz, (3.12a)

ĜK = (ĜR − ĜA) tanh (
βε

2
), (3.12b)

where β = 1/T is the inverse temperature. We can therefore determine the complete

8× 8 matrix by only considering only the retarded component.

3.1 Green’s Function in the Mixed Representation

It will be convenient for us to represent the Greens functions in the mixed represen-

tation discussed in section 2.6. We will use this representation when we look at the

equations of motion for the Green’s function. By using the relations defined in equa-

tion (2.37) and (2.38), we can write the Green’s function in the mixed representation

as:

Ǧ(r1, t1, r2, t2) = Ǧ(R− r/2, T − t/2,R+ r/2, T + t/2). (3.13)

We will now simplify this notation by writing:

Ǧ(R− r/2, T − t/2,R+ r/2, T + t/2) ≡ Ǧ′(R, T, r, t) ≡ Ǧ(R, T, r, t). (3.14)

We will use the same notation Ǧ for the Green’s function in both the normal and

mixed representation. These are not necessarily the same function, but we will write

them the same to simplify the notation.

Next we will use a Fourier-transformation to transform from the relative coordi-

nates r, t to p, ϵ, where p is the momentum of the particle, and ϵ is the energy of

the particle. We then get:

Ǧ(R, T,p, ϵ) =

∫
dt eiϵt

∫
d3r e−ip·rǦ(R, T, r, t). (3.15)
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3 Green’s Functions

The mixed representation will allow us to integrate out the rapidly oscillating part

of the Green’s functions, as we will see later in section 4.
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4 Quasiclassical Approximation

In this section we will look at the quasiclassical approximation, which we will use to

transform the full Green’s functions of the system into functions that describe only

the most relevant parts of the system.

The Green function behaves like a wavepacket with a part that varies rapidly

in terms of the relative coordinate r on a length scale of the Fermi-wavelength λF ,

and an envelope part which varies in terms of the center of mass coordinate R on

other characteristic length scales of the system. The envelope part contains useful

information about how different parts of the system influence physical observables,

and it is therefore desirable to only deal with this part. The superconducting coher-

ence length of the Cooper pairs is much larger than the Fermi-wavelength, λF ≪ ξs,

so one can average over the quickly oscillating part, which averages out the rela-

tive coordinate [42]. This is known as the gradient expansion, and is equivalent to

assuming that all length scales of the system must be much larger than λF . This

is the starting point of the quasiclassical approximation. The key aspect of the

quasiclassical approximation is that we only consider momenta of the order of the

Fermi-momentum, and therefore confine all physical quantities to the Fermi-surface

[42]. We may therefore think of constraining the quasiparticle momentum to the

Fermi-surface by considering the Green function

Ǧ(R,p, ε, T ) → δ(ϵp)ǧ(R, p̂F , ε, T ), (4.1)

where the delta-function is the part that constrains the momentum onto the Fermi-

surface, p̂F is the direction of the momentum vector at the Fermi-surface and ϵp =
p2

2m
− µ is the kinetic energy relative to the Fermi-level µ. Based on this, we define

the quasiclassical Green function as [35]:

ǧ(R, p̂F , ε, T ) =
i

π

∫
dϵp Ǧ(R,p, ε, T ). (4.2)

Equation (4.2) does not determine ǧ uniquely. We also need the normalization

condition [43]

ǧ ◦ ǧ = 1. (4.3)

In this thesis, we will work with systems in equilibrium. In that case, we see from

equation (2.44) that the ring product reduces to an ordinary matrix multiplication

ǧ2 = 1. (4.4)

This normalization condition will be sufficient for the systems in this thesis.

Similar to equation (3.11), the quasiclassical Green’s function can be expressed

in matrix form as

ǧ =

(
ĝA ĝK

0 ĝR

)
, (4.5)
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4 Quasiclassical Approximation

where ĝR, ĝA, and ĝK are the retarded, advanced and Keldysh quasiclassical Green’s

functions respectively in 4× 4 Nambu space:

ĝR ≡

[
gR fR

−fR∗ −gR∗

]
, ĜA ≡

[
gA fA

−fA∗ −gA∗

]
, ĜK ≡

[
gK fK

fK∗
gK

∗

]
.

(4.6)

Looking more closely at e.g. the retarded component, we see that the elements are

not entirely independent, but can be expressed as

ĝR =

[
gR(R,+ε) fR(R,+ε)

−fR∗
(R,−ε) −gR∗

(R,−ε).

]
(4.7)

The reason for the different sign of the energy in the last row can be seen when we

Fourier-transform from regular to mixed coordinates. Taking the Fourier transfor-

mation of G(R, T, r, t), from equation (3.15) gives∫
dt d3r ei(ϵt−p·r)G(R, T, r, t) = G(R, T,p, ϵ). (4.8)

Meanwhile, taking the Fourier transformation of G∗(R, T, r, t) gives∫
dt d3r ei(ϵt−p·r)G(R, T, r, t)∗ =

(∫
dt d3r e−i(ϵt−p·r)G(R, T, r, t)

)∗

= G∗(R, T,−p,−ϵ).
(4.9)

Applying equation (4.2) on the two Green’s functions, and noting the extra factor i,

we end up with the energy dependence given in equation (4.7). A similar derivation

can be done for the anomalous part f . The matrix in equation (4.7) can be rewritten

by introducing the tilde conjugation

gR∗(R,−ε) ≡ g̃R(R,+ε). (4.10)

The quasiclassical Green’s function matrix can then be written as

ĝR =

[
gR(R,+ε) fR(R,+ε)

−f̃R(R,+ε) −g̃R(R,+ε)

]
. (4.11)

Furthermore, the normalization condition ǧ2 = 1 relates the g components to the f

components,

gg − ff̃ = 1, gf − fg̃ = 0. (4.12)

26



5 Usadel Equation

5 Usadel Equation

In this section we want to summarize the derivation of the Usadel equation for

diffusive transport in a straight SF heterostructure. The Usadel equation is the

equation of motion for the Green’s functions of the system, and it describes how the

charge carriers propagate through the materials. The reason for deriving the Usadel

equation for a straight SF system is that it will hopefully make the derivation for

antiferromagnetic materials easier to follow, as the steps taken in the two derivations

are similar, but differs in complexity.

This section is a summary of the derivation in [44]. We want to find an equation

of motion for the electron field described by the Green’s function Gσσ′(x, x′). To

find this, we first need an expression for the Hamiltonian of the system, which we

will use to find the time evolution of the electron field operator ψσ(x) using the

Heisenberg equation (2.4)

i∂tψσ(x) = [ψσ(x),H], i∂tψ
†
σ(x) = [ψ†

σ(x),H]. (5.1)

We want the Hamiltonian H describing our system to have properties describing

impurities, superconductivity and ferromagnetism. We will therefore end up with a

Hamiltonian of the form

H = H0 +H∆ +Hh +Hsf +Himp, (5.2)

where:

• H0 describes the non-interacting part of the system.

• H∆ describes superconductivity, which is zero inside the ferromagnet and non-

zero in the superconductor.

• Hh describes ferromagnetism, which is zero inside the superconductor, and

non-zero inside the ferromagnet.

• Hsf describes spin-flip scattering on magnetic impurities.

• Himp describes scattering on non-magnetic impurities.

For a derivation of each term, see [44]. This Hamiltonian is more general than the

one we will need for our systems. We will not include magnetic impurities in the

systems we will look at later for the antiferromagnet, but we include the spin-flip

term in this derivation because, as we will see in section 6, this term will be similar

to the term we get from the antiferromagnet. The time evolution of ψσ(x) can now

be found by inserting this Hamiltonian H into equation (5.1), and is given as

i∂tψσ(x) = P (x)ψσ(x) +
∑
σ′

Qσσ′(x)ψσ′(x) +
∑
σ′

Rσσ′(x)ψ†
σ′(x), (5.3a)

−i∂tψ†
σ(x) = ψ†

σ(x)P (x) +
∑
σ′

ψ†
σ′(x)Q

†
σ′σ(x)−

∑
σ′

ψσ′(x)Rσ′σ(x), (5.3b)
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where we have defined the following operators:

P (x) ≡ eφ(x)− µ+ Vimp(x), (5.4)

Q(x) ≡ − 1

2m
∇̃2 − h(x) · σ + Vsf (r)s(x) · σ, (5.5)

R(x) ≡ ∆(x)iσ2. (5.6)

Here, e < 0 is the electron charge, φ(x) is the scalar field, ∇̃ = ∇ − ieA(x) is

the gauge covariant derivative with vector field A(x), µ the chemical potential,

Vimp(x) the background field representing the non-magnetic impurities, h(x) the

magnetization, s(x) the impurity spin field, Vsf (r) the scattering potential between

magnetic impurities, and ∆(x) the superconducting band gap. Note that Q and Q†

differs in that the former contains ∇̃2 = (∇− iA)2, while the latter ∇̃2† = (∇+ iA)2

since A is Hermitian. One should also interpret Q† as operating on ψ†
σ′(x) from the

right. Finally, note that R† = RT = −R.

5.1 Time evolution of the Green’s function

The time evolution of the Green’s function is found by differentiating the definition

of the Retarded Green’s function in equation (3.3) with respect to t and t′

i∂tG
R
σσ′(x, x′) = −i

〈{
i∂tψσ(x), ψ

†
σ′(x

′)
}〉

Θ(t− t′) + δσσ′δ(x− x′), (5.7)

i∂′tG
R
σσ′(x, x′) = −i

〈{
ψσ(x), i∂t′ψ

†
σ′(x

′)
}〉

Θ(t− t′)− δσσ′δ(x− x′), (5.8)

where Θ(t − t′) is the unit step function. Inserting the equations in (5.3) into the

above equation, we get:

i∂tG
R
σσ′ = PGR

σσ′ +
∑
σ′′

Qσσ′′GR
σ′′σ′ −

∑
σ′′

Rσσ′′FR∗

σ′′σ′ + δσσ′δ(x− x′), (5.9)

−i∂t′GR
σσ′ = GR

σσ′P ′ +
∑
σ′′

GR
σσ′′Q

′†
σ′′σ′ −

∑
σ′′

FR
σσ′′R′

σ′′σ′ + δσσ′δ(x− x′), (5.10)

where we used that Fσσ′ = Fσ′σ. We also suppressed the spacetime coordinates

of the functions. All the Green’s functions should be interpreted as depending on

both primed and unprimed coordinates, while P , Q, and R depend on unprimed

coordinates, and P ′, Q′, and R′ depend on primed coordinates. We can now express

equations (5.9) and (5.10) in matrix form in 4 × 4 Nambu space, by also deriving

equations of motions for the retarded anomalous Green’s function FR and FR∗ like

we did for equations (5.9) and (5.10). We then end up with two equations in Nambu

space

i∂t

[
GR FR

−FR∗ −GR∗

]
=

[
P +Q −R

−R P +Q∗

][
GR FR

FR∗
GR∗

]
+ δ(x− x′), (5.11)

−i∂t′
[
GR −FR

FR∗ −GR∗

]
=

[
GR FR

FR∗
GR∗

][
P ′ +Q′† −R′

−R′ P ′ +Q′T

]
+ δ(x− x′). (5.12)
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Comparing these to the definition of ĜR in (3.10), we see that we can write these

equations in terms of ĜR

i(τ 3 ⊗ σ0)(∂tĜ
R) = HĜR + δ(x− x′), (5.13)

−i(∂t′ĜR)(τ 3 ⊗ σ0) = ĜRH
′
+ δ(x− x′), (5.14)

where we define

H ≡

[
P +Q −R

−R P +Q∗

]
, H ≡

[
P ′ +Q′† −R′

−R′ P ′ +Q′T

]
. (5.15)

The equations of motion for ĜA and ĜK are derived in a similar way, and are

respectively given as

i(τ 3 ⊗ σ0)(∂tĜ
A) = HĜA + δ(x− x′), (5.16)

−i(∂t′ĜA)(τ 3 ⊗ σ0) = ĜAH
′
+ δ(x− x′), (5.17)

i(τ 3 ⊗ σ0)(∂tĜ
K) = HĜK , (5.18)

−i(∂t′ĜK)(τ 3 ⊗ σ0) = ĜKH
′
. (5.19)

Note how we do not get a Dirac delta in the equation for GK , as it has no step

function in its definition (3.5). Finally, we use definition (3.11) to combine the

equations for ĜR, ĜA and ĜK into two matrix equations in 8 × 8 Keldysh space

that cover all of the Green’s functions

i(τ 3 ⊗ σ0)(∂tǦ) = HǦ+ δ(x− x′), (5.20)

−i(∂t′Ǧ)(τ 3 ⊗ σ0) = ǦH
′
+ δ(x− x′). (5.21)

5.2 Quantum Transport equation

The next step in the derivation of the Usadel equation is to attempt to combine

equations (5.20) and (5.21) into a single transport equation, described by the Hamil-

tonian in equation (5.2). Note that we now switch from using primed coordinates

(r, t), (r′, t′) to numbered coordinates (r1, t1), (r2, t2) to avoid confusion when we

introduce the mixed variables (R, T ), (r, t). We start by subtracting equation (5.21)

from (5.20):

i(τ 3 ⊗ σ0)(∂t1Ǧ) + i(∂t2Ǧ)(τ
3 ⊗ σ0) = H1Ǧ(x1, x2)− Ǧ(x1, x2)H̄2. (5.22)

If we now transform into relative coordinates (as discussed in section 2.6), con-

sider the contribution from each term in (5.22) separately and introduce bullet-

commutators and -anticommutators, we end up with the exact transport equation

for the system [44]

p

m

(
∇rǦ− i

[
Â, Ǧ

]
•

)
=

i
[
ϵ(τ 3 ⊗ σ0) + ∆(τ 1 ⊗ iσ2) + h · σ̂ − eφ− Vimp − Vsfs · σ̂, Ǧ

]
•

+
1

4m

({
∇r · Â, Ǧ

}
• +

{
Â, Ǧ

}
•

)
− i

2m

[
Â2, Ǧ

]
•.

(5.23)
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Here we defined the matrices

Â =

(
A 0

0 −A∗

)
, σ̂ =

(
σ 0

0 −σ∗

)
, (5.24)

related by the equation

Â = (eA+wσ̂)(τ 3 ⊗ σ0), (5.25)

where w(r, t) is a matrix that describes the linearized interaction between the spin

and momentum, and we inserted the expressions for P , Q and R in equations (5.4)

- (5.6). One should note that no approximations were used in the calculation of

this transport equation, which means that inaccuracies are due to assumptions and

approximations related to the Hamiltonian itself.

5.3 Quasiclassical transport equation

Even though the transport equation (5.23) is exact, it can be difficult to work with

in practical situations. This is in part due to the infinite series of differentiations

with respect to position, time, energy and momentum found in the bullet prod-

ucts. Therefore, we now want to apply different approximations to find transport

equations which are easier to work with. To start off, we want to apply the quasiclas-

sical approximation, discussed in section 4, where we replace the Green’s function

Ǧ(R, T,p, ε) → ǧ(R, T, p̂F , ε), where ǧ is the quasiclassical Green’s function. This

works because in most systems of interest, the characteristic length L of the system

is much bigger than the Fermi-wavelength λF . We can therefore expand the trans-

port equation in terms of the parameter η ≡ λF/L, and only keep leading orders

of η. It then turns out that we can discard the second line of the exact transport

equation (5.23), as it is of order η2 while the rest is of order η.

Next, we would like to reduce the bullet products to simpler ring products. Since

∇R ∼ 1/L and ∇p ∼ λF we see that the gradient expansion (2.49) of the bullet

product is equivalent to an expansion in η. This means that to leading order in

η, we can discard everything except the zeroth order term of the expansion. This

allows us to replace the bullet products with ring products.

We will also assume that the background field A is independent of center-off-

mass time T . This implies that the left-hand side of equation (5.23) further reduces

to a normal commutator, and can then be written as a covariant derivative of the

Green’s function, where the covariant derivative in this context is defined as

∇̃Ǧ ≡ ∇RǦ− i
[
Â, Ǧ

]
. (5.26)

Performing the approximations discussed above, along with replacing p/m with

the Fermi velocity vF and replacing Ǧ(R, T,p, ε) with the quasiclassical Green’s

function ǧ(R, p̂, ε, T ), we obtain the quasiclassical transport equation for the system

vF · ∇̃ǧ = i
[
ϵ(τ 3 ⊗ σ0) + ∆(τ 1 ⊗ iσ2) + h · σ̂ − eφ− Vimp − Vsfs · σ̂, ǧ

]
◦. (5.27)
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5 Usadel Equation

This is also known as the Eilenberger equation. This result is a lot simpler to work

with than the transport equation (5.23) as we have discarded multiple terms, in

addition to not having an infinite series of differentiations in the bullet commutator.

Moreover, since the quasiclassical Green’s function is dependent on the direction of

p, and not it’s magnitude, there is one less degree of freedom to worry about.

5.4 Diffusive Limit

The final step in the derivation of the Usadel equation is to consider dirty materials,

i.e. materials with a high concentration of non-magnetic impurities and thus a short

mean free path. This means that Vimp will be the dominant term in the Eilenberger

equation. Our goal in this section will be to first expand the Green’s function in

terms of its isotropic and anisotropic part. We will then find that we can write

the anisotropic part in terms of the isotropic part, and we can thus focus on the

equation that gives us a solution for only the isotropic part. This equation will be

the Usadel equation.

As mentioned, Vimp will be the dominant term in the Eilenberger equation. In

such systems, there will be a high frequency of random scattering events due to

the increased concentration of impurities. This will make it equally probable for

electrons to be scattered in any direction, and since the Green’s function tells us

something about the probability amplitude of a particle moving from one place to

another, we can expect that the Green’s function should be nearly isotropic. This

suggests that we can approximate the Green’s function by a first-order expansion in

terms of its isotropic and anisotropic part:

ǧ(R, T, p̂F , ϵ) ≈ ǧs(R, T, ϵ) + p̂F · ǧp(R, T, ϵ). (5.28)

The s-wave component ǧs is the isotropic part of the Green’s function, while ǧp is

the p-wave component that describes the linearized anisotropy with respect to the

transport direction given by p̂F . We may also rewrite the impurity and spin-flip

potentials for dirty materials as

Vimp ≈ − i

2τ0
⟨ǧ⟩, Vsfs · σ ≈ − i

2τs
(τ 3 ⊗ σ0)⟨ǧ⟩(τ 3 ⊗ σ0). (5.29)

Here, τ0 is the momentum relaxation time, τs is the spin relaxation time, and the

angle brackets ⟨ǧ⟩ denotes an average of angles over the Fermi surface, which we

can write as ⟨ǧ⟩ ≡
∫
dΩp̂ ǧ/4π where dΩ ≡ sin θ dθ dϕ. Expanding ⟨ǧ⟩ in terms of

the expansion given in equation (5.28) gives

⟨ǧ⟩ ≈ ⟨ǧs⟩+ ⟨p̂F · ǧp⟩ = ⟨ǧs⟩ (5.30)

since p̂F has unit length for all angles. If we insert equation (5.30) into equation

(5.29), we get that the impurity potentials can be written as:

Vimp ≈ − i

2τ0
ǧs, Vsfs · σ ≈ − i

2τs
(τ 3 ⊗ σ0)ǧs(τ

3 ⊗ σ0). (5.31)
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Inserting equations (5.28) and (5.31) into the Eilenberger equation (5.27), rewriting

the Fermi velocity as vF p̂F and averaging it over the Fermi surface, we get

1

3
vF ∇̃·ǧp = i

[
ϵ(τ 3⊗σ0)+∆(τ 1⊗iσ2)+h·σ̂−eφ+ i

2τs
(τ 3⊗σ0)ǧs(τ

3⊗σ0), ǧs
]
◦. (5.32)

Next we want to find a relation between the anisotropic part ǧp and the isotropic part

ǧs. This is done by looking at the equation we get when we multiply the Eilenberger

equation (5.27) with p̂F before averaging over the Fermi surface, but after inserting

equations (5.28) and (5.31). This equation, along with the normalization condition

ǧ ◦ ǧ = 1 of the quasiclassical function, gives the relation

ǧp = −τ0vF ǧs ◦ ∇̃ǧs. (5.33)

From this equation we see that we can find a solution for the anisotropic ǧp if we

manage to solve the transport equation for the isotropic component ǧs. We can

therefore insert the above relation into equation (5.32) to get a diffusion equation

for the isotropic Green’s function ǧs:

iD∇̃ · (ǧs ◦ ∇̃ǧs) =[
ϵ(τ 3 ⊗ σ0) + ∆(τ 1 ⊗ iσ2) + h · σ̂ − eφ+

i

2τs
(τ 3 ⊗ σ0)ǧs(τ

3 ⊗ σ0), ǧs
]
◦,

(5.34)

where D ≡ 1
3
τ0v

2
F . This equation is known as the Usadel equation, and is the

transport equation of the quasiclassical Green’s functions of the system. Note how

we have reduced an equation for ǧ(R, T, p̂F , ϵ) into an equation for only the isotropic

part ǧs(R, T, ϵ).

5.5 Equilibrium

The final limit we will look at is when the system is in equilibrium. In this limit,

the Green’s functions becomes a time independent quantity ǧs(R, ε), and the ring

commutator in the Usadel equation (5.34) reduce to a ordinary commutator. Also,

eφ is just a scalar in this limit, so it drops out of the equation. Finally one can

also show, by considering their definitions, that the retarded, advanced and Keldysh

component are, in equilibrium, related by

ǧA = −(τ 3 ⊗ σ0)ǧR†(τ 3 ⊗ σ0), ǧK = (ǧR − ǧA) tanh(ε/2T ), (5.35)

where T is the temperature of the system. This means that it is sufficient to only

solve e.g. the 4× 4 retarded component in equilibrium. The Usadel equation is now

iD∇̃ · (ĝRs ◦ ∇̃ĝRs ) =[
ϵ(τ 3 ⊗ σ0) + ∆(τ 1 ⊗ iσ2) + h · σ̂ +

i

2τs
(τ 3 ⊗ σ0)ĝRs (τ

3 ⊗ σ0), ĝRs
]
.

(5.36)

If we want to compare this Usadel equation with the one we get when we solve

for antiferromagnetic materials, we should restrict our attention to a 1D SF bilayer.
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In this case, we assume that the dynamics are effectively one-dimensional and ignore

spin-flip scattering processes. In this case, the Usadel equation is given as

iD∇̃ · (ĝRs ◦ ∇̃ĝRs ) =
[
ϵ(τ 3 ⊗ σ0) + ∆(τ 1 ⊗ iσ2) + h · σ̂, ĝRs

]
. (5.37)

These are the same conditions we use for the antiferromagnet, except we have an

antiferromagnet instead of a ferromagnet. However, we will see that the term we

get from the antiferromagnetic part of the Usadel equation looks similar to the term

we got from the spin-flip magnetic impurities.

In order to get a unique solution for the Usadel equation, we need to include a set

of boundary conditions that describe the interactions between the interfaces of the

materials. One set of boundary conditions we can use are the Kuprianov-Lukichev

boundary conditions, valid in the dirty limit and for weak transmission regime [45]

ĝRs,j∇̃ĝRs,j =
1

2Ljζj

[
ĝRs,1, ĝ

R
s,2

]
(5.38)

where the label j denotes the material j, Lj is the length of material j, and ζj =
RB

Rj

is the ratio between the barrier resistance RB and the bulk resistance in material j,

Rj
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6 Usadel Equation for Antiferromagnetic metals

Antiferromagnets are materials where the magnetic moment of the atoms align in a

regular pattern, pointing in opposite directions. This creates a pattern of alternating

up and down spins, in contrast to the ferromagnet discussed in section 5, where the

spins point in the same direction. In this section, we will summarize the main steps

of the derivation of the Usadel equation for an antiferromagnetic metal, following

Fyhn et.al [20]. In later sections, we will also transform the Usadel equation for

antiferromagnets into a curved system, and look at the weak proximity effect for

such a system.

Consider a bilayer consisting of two materials labeled L (left) and R (right),

connected through a tunneling contact. The Hamiltonian is given by

H(t) = HL(t) +HR(t) +HT . (6.1)

We also have

Hα =
∑

n,m∈Aα

cα†n [Hα
0 (t) + V α(t)]nmc

α
m, (6.2)

where α ∈ {L,R} denotes the material and Aα is the set of unit cells in material

α. The hopping parameter, tα, chemical potential, µα, and the exchange energy Jα

between localized spins and conducting electrons are all collected inHα
0 . V

α contains

all additional effects that may be present in the model, such as superconductivity,

external spin-splitting fields, spacial geometry, etc.

Since V α determines and confines the spatial geometry, we can simplify the sum

in equation (6.2) by letting the lattice Aα run to infinity in all directions, such that

Aα = Z3, where Z is the set of integers. We can do this since the potential V α

makes the extra points outside of Aα included in Z3 zero. This makes the sum in

equation (6.2) easier to work with.

In this derivation, we will use a square lattice, where each unit cell is labeled by

the 3-tuple n, and contains one orbital associated with the A-sublattice at position

xα
n and one orbital associated with the B-sublattice at position xα

n + δα, as is seen

in figure 2. δα is therefore the nearest neighbor displacement vector in material

α. For example, the unit cell (1, 1, 1) means we are looking at the unit cell where

the A-sublattice is located at xα
(1,1,1) and the B-sublattice at xα

(1,1,1) + δα. The

antiferromagnet will have alternating spins on the different sublattices, e.g. spin up

on A and spin down on B.

The annihilation operators at the A- and B-sublattice are denoted as cαnAσ and

cαnBσ, respectively, where σ denotes the spin at unit cell n in material α. We then

define

cα†n = (cα†nA↑ cα†nA↓ cα†nB↑ cα†nB↓ cαnA↓ − cαnA↑ cαnB↓ − cαnB↑) (6.3)

as a 1 × 8 matrix vector. Furthermore, we only include nearest neighbor hopping,

and assume this hopping is only between two different sublattices. Finally, the spin

space is rotated such that the Néel vector is always parallel to the z-axis.
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Because the lattice used in this section contains two sublattices, and each sublat-

tice can have either spin up or down, the dimension of the Green’s functions will be

different than the ones discussed in section 3. The retarded, advanced and Keldysh

Green’s functions are defined as

ĜR,αβ
nm (t1, t2) = −iτz⟨

{
cαn(t1), c

β†
m (t2)

}
⟩Θ(t1 − t2), (6.4a)

ĜA,αβ
nm (t1, t2) = +iτz⟨

{
cαn(t1), c

β†
m (t2)

}
⟩Θ(t2 − t1), (6.4b)

ĜK,αβ
nm (t1, t2) = −iτz⟨

[
cαn(t1), c

β†
m (t2)

]
⟩. (6.4c)

Since these definitions contain the different spin values possible for the lattice point,

they are similar to the 4 × 4 Green’s function in Nambu space for SF systems

discussed in section 3. They have different dimensions however, since the dimension

of the operator (6.3) makes them 8×8. The 8×8 matrices can be collected in larger

16× 16 matrices,

Ǧαβ
nm =

(
ĜR,αβ

nm ĜK,αβ
nm

0 ĜA,αβ
nm

)
, (6.5)

and even larger 32× 32 matrices,

Ğnm =

(
ǦLL

nm ǦLR
nm

ǦRL
nm ǦRR

nm

)
. (6.6)

In this section we use the notation that ·̂ indicates a 8× 8 matrix in Nambu space,

·̌ indicates a 16 × 16 matrix in Keldysh space and ·̆ indicates a 32 × 32 matrix in

material space.

Using that any operator P evolves in time according to equation (2.4)

i
d

dt
P (t) = [P (t), H], (6.7)

and using this equation on the creation cα†n and annihilation operator cαn, we get the

Gor’kov equations [20, 46]

iτz
∂Ğ

∂t
− Σ̆ • Ğ = δ(t1 − t2)δnm, (6.8a)

∂Ğ

∂t′
iτz + Ğ • Σ̆ = −δ(t1 − t2)δnm, (6.8b)

where

Σ̆ =

(
ĤL

0 + V̌ L T̂LR

T̂RL ĤR
0 + V̌ R

)
=

(
ΣLL ΣLR

ΣRL ΣRR

)
(6.9)

is the self energy. The Gor’kov equations are then used to derive the Dyson equations

for the system, given as [20, 47]

Ğ = Ğ0 + Ğ0 • δΣ • Ğ, (6.10a)

Ğ = Ğ0 + Ğ • δΣ • Ğ0, (6.10b)

where Σ̆0 = Σ̆− δΣ̆ and Ğ0 inserted into (6.8) solves the the Gor’kov equations with

Σ̆ → Σ̆0. Ğ0 is then the Green’s function in the absence of impurities. The Gor’kov

equations are the equations of motion for the system, and gives the starting point

for further derivations.
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6.1 Imputity Averaging

The next step in deriving the Usadel equation for antiferromagnetic metals is to

average over impurities, and identify the self-energy which relates the impurity-

averaged Green’s function to the Green’s function with no impurities. The impurity

averaged Green’s function can be found by replacing the impurity potential in the

Gor’kov equations with this self energy. We assume that there are mαX number

of impurities in material α on sublattice X ∈ {A,B}. We also assume that the

impurity potentials are local to the position of the impurities, and that the potential

strength and position of the i’th impurity in material α on sublattice X are UαX
i and

rαXi , respectively. The impurity average is then defined as the sum over all possible

impurity locations and impurity potential strengths, weighted by some normalized

distribution function pimp({Ui}, {ri}) that makes the impurities independent and

uniformly distributed:

⟨A⟩imp =
∏

α∈{L,R}

∏
X∈{A,B}

mαX∏
i=1

∫ ∞

−∞
dUαX

i

∑
rαX
i ∈Z3

pimp({Ui}, {ri})A({Ui}, {ri}). (6.11)

Finally, the strength and locations of impurities are assumed to be uncorrelated.

The impurity averaged Green’s function, Ğimp ≡ ⟨Ğ⟩imp can then be written as

Ğimp = Ğ0 + Ğ0 • Σ̆imp • Ğimp. (6.12)

To find the expression for the impurity self energy Σ̆imp the impurity average of

the Dyson equations in (6.10) is taken, yielding an expression for the impurity self

energy Σ̆imp as a function of Ğimp, which to second order is given as[
Σ̆imp(t1, t2)

]αβ
nm

=

δαβδnm
∑

X∈{A,B}

nαX
imp

(
ρX⟨UXα⟩imp + ⟨UXαUXα⟩impρX(Ǧ

αα
imp)nn(t1, t2)ρX

)
, (6.13)

where nαX
imp ≡ mαX/Nα is the impurity density on sublattice X in material α, and

ρA =
1 + ρz

2
and ρB =

1− ρz
2

(6.14)

are the projection operators in sublattice space A and B respectively. From now on

we drop the subscript on the impurity averaged Green’s function, Ğimp → Ğ.

Next want to express the self energy Σ̆ in a block diagonal form. To achieve this,

closed equations for ǦLL and ǦRR are needed by first removing ǦLR and ǦRL from

Σ̆. This is done by treating the tunneling self-energy as a perturbation in the Dyson

equation (6.10). Let

T̆ =

(
0 T̂LR

T̂RL 0

)
, (6.15)
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and let Ğ0 be the Green’s function with T̂LR = T̂RL = 0, i.e. it solves the Gor’kov

equations

iτz
∂Ğ0

∂t
− Σ̆0 • Ğ0 = δ(t1 − t2)δnm, (6.16a)

∂Ğ0

∂t′
iτz + Ğ0 • Σ̆0 = −δ(t1 − t2)δnm, (6.16b)

with Σ̆0 = Σ̆− T̆ = diag(Σ̌LL, Σ̌RR) as we can see from definition (6.9), where now

δΣ̆ = T̆ . Note that δΣ̆ includes the impurity self energy term obtained when we

took the impurity average above. The Dyson equations (6.10) are now given as

Ğ = Ğ0 + Ğ0 • T̆ • Ğ, (6.17a)

Ğ = Ğ0 + Ğ • T̆ • Ğ0. (6.17b)

Studying the different blocks of the two equations above, and inserting the results

for the ǦLR and ǦRL blocks into the Gor’kov equations (6.8), the blocks ǦLR and

ǦRL can be removed from the Gor’kov equations, which gives a block-diagonal self

energy,

Σ̆ = H̆0 + V̆ + Σ̆imp + Σ̆T , (6.18)

where

H̆0 =

(
ĤL

0

ĤR
0

)
, (6.19a)

V̆ =

(
V̌ L

V̌ R

)
, (6.19b)

Σ̆T =

(
T̂LR • ǦRR

0 • T̂RL

T̂RL • ǦLL
0 • T̂LR

)
. (6.19c)

Functions in the quasiclassical framework vary slowly with the center-of-mass

(COM) coordinates, and quickly with the relative coordinate. As discussed in section

4, the COM part contains useful information about how different parts of the system

influence physical observables. It would therefore be useful to Fourier transform in

the relative coordinates, in order to obtain functions in terms of momentum k,

energy ε, COM time T and COM position x, also known as Wigner coordinates.

The Fourier transform of function A in relative time t is

Ft(A)(T, ε) =

∫ ∞

−∞
dt A(T + t/2, T − t/2)eiεt, (6.20)

and the Fourier transform in relative position r is given as

Fr(A)(k,xnα) =
∑
m∈Z3

e−iρBk·δαA(n+m)ne
iρBk·δαe−ik·xα

m . (6.21)

The Gor’kov equations in the Wigner coordinates are given as

τzε ◦ Ğ− Σ̆ • Ğ = 1, (6.22a)

Ğ ◦ τzε− Ğ • Σ̆ = 1. (6.22b)
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Note that the circle product using Wigner coordinates is the same as in the contin-

uous models for normal metals discussed in section 2.6. Meanwhile, the spatial part

of the bullet product is different. The bullet product can however still be expanded

as a series of differentiable operators, and the zeroth order term is the same in both

cases. We will end up only keeping the zeroth order terms, except for when calcu-

lating the kinetic energy term, the tunneling term, and the potential which is large

outside the material. These terms must be evaluated explicitly.

6.2 Extracting the Conduction Band

As discussed in section 4, one of the main ideas behind the quasiclassical theory

is that the majority of the interesting physics happens close to the Fermi surface.

It would therefore be beneficial to isolate the contribution from states close to the

Fermi surface. In this case, there will be two energy bands per material α which

are not overlapping, so only one of these can pass through the Fermi surface. To

separate the two bands, Ĥ0 must first be diagonalize by writing it in the band-basis:

Ĥα
0 = SαDα(Sα)T , (6.23)

where

Dα = diag(ξα−, ξ
α
−, ξ

α
−, ξ

α
−, ξ

α
+, ξ

α
+, ξ

α
+, ξ

α
+) (6.24)

contains the different energies, and ST denotes the transpose of

Sα =
1√
2ηα



−σ0 0 σ0 0

σ0 0 σ0 0

0 −σ0 0 σ0

0 σ0 0 σ0

 s̄α −


σz 0 σz 0

σz 0 −σz 0

0 −σz 0 −σz
0 −σz 0 σz

∆sα

 , (6.25)

where σ0 is the 2×2 identity matrix, ηα =
√

(Jα)2 + (Kα)2, Kα is the kinetic term,

ξα± = −µα ± ηα, s̄α = (sα+ + sα−)/2 and ∆sα = (sα+ − sα−)/2, with s
α
± =

√
ηα ± Jα.

Next define

(Sα)T ǦααSα =

(
Ǧαα

−− Ǧαα
−+

Ǧαα
+− Ǧαα

++

)
. (6.26)

We now want an equation for the Green’s function associated with the energy band

which crosses the Fermi surface. This can be either Ǧαα
−− or Ǧαα

++. Here Ǧαα
−− is

chosen. By extracting only one of the bands, we have reduced the dimensional of

the problem by half. This means that when we write ·̂ from now on, we mean the

regular 4×4 dimensions used for e.g. the SF case and so on. The Gor’kov equations

can then be written as

τzε ◦ Ǧαα
−− − ξα−Ǧ

αα
−− −

[
(Σ̌α − Ĥα

0 ) • Ǧαα
]
−−

= 1, (6.27a)

Ǧαα
−− ◦ τzε− ξα−Ǧ

αα
−− − i∇kξ

α
− ·∆RǦ

αα
−− − iJα∇kη

α

Kα
·∆RǦ

αα
−+τzσz (6.27b)

−iKαδα ·∆RǦ
αα
−+ −

[
Ǧαα • (Σ̌α − Ĥα

0 )
]
−−

= 1,
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where Σ̌α is the block of Σ̆ in (6.18) corresponding to material α. We also use the

notation that we can write a general matrix A in the sublattice basis as

(Sα)TASα =

(
A−− A−+

A+− A++

)
, (6.28)

so the −− index, for instance, indicate that one should take the upper left block in

the conduction basis. Also, the discrete finite difference operator is defined as

xαm ·∆RǦ
αα(k, nn) = Ǧαα(k, xαn + xαm)− Ǧαα(k, xαn). (6.29)

Looking at the Gor’kov equations (6.27), we are only considering the Green’s func-

tions which stays in either the left or right material, since they are only denoted by a

single index α. This means we we can ignore the α index, as the difference between

the left and right materials we look at will now manifests itself in the boundary

conditions, which are discussed at the end of this section.

6.3 Quasiclassical Green’s function

The next step is to transform into using the quasiclassical Green’s function. To

do this, the Green’s function must be integrated over all momenta, as discussed in

section 4. As mentioned above, we only want contributions from the states close to

the Fermi surface. This means that we cannot simply integrate over all momenta, as

the contributions far from the Fermi surface are small but not negligible. Instead,

we must integrate over a contour close to the Fermi surface. The integral is therefore

decomposed into one part which includes contributions close to the Fermi surface,

and one part which includes the rest, by using the Eilenberger decomposition [48]. To

get the quasiclassical equations of motion, we must integrate the Gor’kov equations

(6.27) over this contour
∮
dξ−. The quasiclassical Green’s function is now defined

as

ǧ =
i

π

∮
dξ− Ǧ−−. (6.30)

Here, only positions inside the materials will be looked at, which means the tunneling

self energy term and any potential outside the material can be ignored. Integrating

the Gor’kov equations (6.27) over the contours in the complex ξ− space, subtracting

the second equation from the first, and using the assumption that V̌ + Σ̌imp varies

slowly with COM position, the equation of motion for the quasiclassical Green’s

function can be derived as [20],

ivF ·∆Rǧ +
[
τzε− (Σ̌− Ĥ0)−− ◦, ǧ

]
= 0. (6.31)

This is the Eilenberger equation for antiferromagnetic materials, where vF = ∇kξ−(kF )

is the Fermi velocity. The Eilenberger equation does not have a unique steady-state

solution, so to compensate for this one typically assumes the normalization condition

that ǧ ◦ ǧ = 1.
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6.4 Diffusive Limit

In order to arrive at the Usadel equation for antiferromagnetic materials, the dif-

fusive limit of the Eilenberger equation (6.31) must be taken. Before we can do

this, the impurity self energy (6.13) must be expressed in terms of the quasiclassical

Green’s function (6.30). We assume that there are, on average, an equal amount of

impurities of equal average strength on both sublattices, and the impurities are not

magnetic. Using the Eilenberger contour discussed above, the impurity self energy

can be written as [20]

(Σ̌imp)−− = − i

2τimp

(ǧs +
J2

η2
σzτzǧsσzτz), (6.32)

where the angular average quasiclassical Green’s function in momentum space is

defined as

⟨ǧ⟩ ≡ ǧs =

∫
dΩ

4π
ǧ. (6.33)

We see that the equation for the impurity self energy reduces to the normal state

impurity self energy in the absence of antiferromagnetism when Jα = 0. However,

when Jα ̸= 0 we get an additional term which is equal to the term one gets when

adding magnetic impurities in the quasiclassical theory for normal metals. This

means that the impurities in the antiferromagnet behave as if they where mag-

netic [20]. This antiferromagnetic term proportional to J is similar to the spin-flip

scattering term one gets for the ferromagnetic Usadel equation in section 5

We are now ready to derive the equation of motion for the diffusive limit, starting

from the Eilenberger equation (6.31). This equation of motion is valid for diffusive

systems, where the impurity scattering time is assumed to be small. To start off,

the gradient term needs to be replaced with the covariant derivative, in order to

be able to include spin-orbit coupling and the vector gauge potential from the elec-

tromagnetic field. This is done by extracting the p-wave part of V̌−−, writing it

as

V̌−− = vF · Â+ V̌s +∆V̌ , (6.34)

where V̌s = ⟨V̌−−⟩ is the s-wave part, and vF · Â is the p-wave part of V̌−−. The

p-wave contribution includes the vector gauge potential from the electromagnetic

field, as well as spin-orbit coupling and the spatial variation in the Néel vector. The

covariant derivative is then defined as

∇̃ ◦ ǧ = ∆Rǧ − i
[
Â, ǧ

]
◦
. (6.35)

The Eilenberger equation (6.31) is now

ivF · ∇̃ ◦ ǧ +
[
τzε− V̌s −∆V̌ − (Σ̌imp)−−, ǧ

]
◦ = 0. (6.36)

where Σ̌− Ĥ0 = V̌ + Σ̌imp inside the material, since here the tunneling term is zero.

Also, the matrix current is defined as

ǰ ≡ ⟨vF ǧ⟩. (6.37)

40



6 Usadel Equation for Antiferromagnetic metals

We can get an expression for the matrix current by assuming that 1
τimp

is much

larger than ε, V̌s and ∆V̌ , and writing ǧ = ǧs +∆ǧ where ǧs = ⟨ǧ⟩ is the isotropic

part of the quasiclassical Green’s function. Next, we assume that ∆ǧα does not

include higher order spherical harmonics with large amplitudes, which is valid under

the assumption that ∆V̆ α is small. We can then show that the isotropic Green’s

function also satisfies the normalization condition ǧαs ◦ ǧαs . This is consistent as long
as the change in ǧs over the length of the mean free path limp = vF τimp is small

compared to 1. With these assumptions, the matrix current can be written as

ǰ = −ǧs ◦ ∇̃ ◦ (Dǧs)− ǧs ◦
[
J2

2η2
σzτzǧsσzτz, ǰ

]
◦
, (6.38)

where

D ≡ τimp⟨vF ⊗ vF ⟩ (6.39)

is the diffusion tensor. The next step is to take the angular average of equation

(6.36). We then end up with

i∇̃ ◦ ǰ+
[
τzε− V̌s +

iJ2

2τimpη2
σzτzǧsσzτz, ǧs

]
◦
= 0. (6.40)

This the Usadel equation for systems with antiferromagnets, which gives us the

equation of motion for the system. As we can see, if we set J → 0, we end up with

the usual Usadel equation for normal metals discussed in section 5. This equation

can be used to find useful information about the system, such as magnetization and

density of states.

6.5 Equilibrium

As Fyhn et.al. points out, a simpler equation for the matrix current ǰ can be

found in equilibrium by assuming that (J/η)2[σzτz, ǧs] ≪ 1. This is valid for time

independent situations, and equation (6.38) can then be written as

ǰ ≈ −[1 + (J/η)2]−1Dǧs∇̃ǧs, (6.41)

where D is now constant. Since we are in equilibrium, the ring commutator reduces

to an ordinary commutator. The final version of the Usadel equation is now

[1 + (J/η)2]−1iD∇̃(ǧs∇̃ ◦ ǧs) =
[
τzε− V̌s +

iJ2

2τimpη2
σzτzǧsσzτz, ǧs

]
. (6.42)

6.6 Boundary Conditions

The two materials must have some condition which describes how the electrons will

behave when they travel from one material to the other. Let the superconductor

be denoted by S, and the antiferromagnet by A. The general boundary condition

for the matrix current going out of material α ∈ {S,A} into material β ∈ {A, S} is

given by [20, 49]

e · ǰα =
[
T̂αβ ǧβT̂βα + iR̂α, ǧα

]
, (6.43)
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where en is the outwards pointing normal vector, T̂αβ it the tunneling matrix and

R̂α is the reflection matrix. The tunneling matrix tells us something about the prob-

ability for an electron to tunnel through the boundary, while the reflection matrix

about the probability for it to be reflected at the boundary. For the boundary condi-

tions, we have either compensated or uncompensated interfaces. In the compensated

boundary we assume that the tunneling and reflection are scalars independent of

spin and sublattice, given as T̂αβ = T̂ ∗
αβ = t, R̂α = r. These conditions gives us the

same result as the one discussed in the SF case in section 5. The uncompensated

boundary conditions are the same as the spin active boundary conditions. In this

case it is assume that tunneling can only occur between the superconductor and the

A-sublattice in the antiferromagnet, where the boundary contains spins pointing in

the direction m̂. In this case the tunneling matrix becomes [49]

T̂SA = T̂ †
AS =

t

2

[√
1 + J/µ+

√
1− J/µ+ (

√
1 + J/µ−

√
1− J/µ)τzm̂ · σ

]
.

(6.44)

In general, we should also have spin-dependent reflection. The reflection matrix is

for simplicity set equal for both sides

R̂A = R̂S = rτzm̂ · σ. (6.45)
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7 Spin-orbit coupling as a result of curvature

We would like to take the Usadel equation for antiferromangets we found in section

6 and use it to describe curved systems. To achieve this, we first need to look at how

curvature can induce a spin-orbit coupling which we will include as a background

field in the derivative operator. This section is based on Ref. [30].

When a material with an initially regular atomic lattice with some constant

distance between the lattice points becomes bent, the interatomic distances becomes

nonuniform, as we can see in figure 7. The deformation due to the curvature is tensile

for n > 0 and compressive for n < 0, where n is the normal coordinate. Suppose we

look at a section of the bent material. The strain along the bent direction is defined

as

ϵss =
L(n)− L0

L0

, (7.1)

where L(n) is the length of the bent material at a distance n from the center of the

material, and L(0) ≡ L0 is the length of the material before being bent. The length

can be expressed in terms of the curvature radius R and curvature angle θ along the

material, L(n) = (R + n)θ. We can then write

ϵss =
(R + n)θ −Rθ

Rθ
= κ(s)n, (7.2)

where κ(s) = 1
R
is the curvature of the material and s is the arch length parameter.

Figure 7: A part of the cross section of a curved nanostructure. n is the normal

coordinate, s is the arclength parameter and θ is the curvature angle. R = 1
κ(s)

is

the radius of curvature, where κ(s) is the curvature. L(n) is the length of the section

at a distance n from the center line, indicated by the dotted line.

Since the strain in the material gives rise to different distances between the lattice

points along the normal direction, we get a shift in the energy band [18, 50]. This

shift in the band energies may be treated as a varying potential, which for small
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values of the strain are linear in the strain [50]:

V (s, n) = λϵss(s, n) = λκ(s)n, (7.3)

where λ is a characteristic energy scale, which for semiconductors is in the order of

1eV [19]. As we know, a varying potential gives rise to an electric field E = −1
e
∇V .

Using the gradient in curvilinear coordinates given in [30], the electric field induced

by the strain and the potential (7.3) is given by

E(s, n) = − λn

eH(s, n)
∂s(κ(s))T̂ (s)− λκ(s)

e
N̂ (s). (7.4)

We now average over the normal coordinate by integrating over n, and use the

curvilinear Jacobian given in equation [30]:

⟨E⟩N(s) = −λκ(s)
e

N̂ (s). (7.5)

This is the average of the electric field over the normal coordinate n at the archlength

point s, and is denoted by ⟨...⟩N . This shows that the curvature κ(s) of the material

induces an electric field in the normal direction, proportional to the curvature.

We will now find how this electric field is coupled to the spin of the electrons.

An electron traveling with a velocity v in an electric field E experiences a magnetic

field B = −v × E. This magnetic field couples to the magnetic momentum µe of

the electron through the Zeeman interaction in the Hamiltonian

HSO = −µe ·B =
eg

2m
S · (v × E), (7.6)

where S is the spin-vector and g is the g-factor, which for an electron is approxi-

mately equal to 2. Writing this in terms of the electron momentum p and the Pauli

spin matrix vector σ = 2S, we get

HSO =
eg

4m2
σ · (p× E). (7.7)

This Hamiltonian shows how the electron momentum is coupled to the spin, which is

mediated by the electric field. This type of coupling is known as spin-orbit coupling.

We can now insert equation (7.5) for the electric field induced by the curvature into

this Hamiltonian and get

HSO = −αN

m
σ · (p× N̂ (s)), (7.8)

where αN = gλκ(s)
4m

is the Rashba coefficient determining the strength of the curvature-

induced spin-orbit coupling. We see that by adjusting the curvature κ(s) of the

material, we can directly control the spin orbit strength on the electron through the

Rashba coefficient.

We will now look at how we can express the spin-orbit coupling in terms of

a spin-orbit field A. In addition to the spin-orbit coupling in the normal direction

originating from the curved structure, we may also have a second, intrinsic, spin-orbit
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term independent of the curvature [51]. This term comes from the fact that we have

an asymmetric confinement in the binormal direction. To account for these different

types, we may introduce a general spin-orbit vector whose components represents the

spin-orbit coupling strength in the different curvilinear directions: α = αT T̂ (s) +

αNN̂ (s) + αBB̂(s) [33]. The magnitude of the spin-orbit interaction, and its axis

can now be determined by the magnitude and direction of α, respectively. The

Hamiltonian of the system, only including the kinetic and spin-orbit part, can now

be written as:

Ĥ =
p2

2m
− α

2m
· σ × p. (7.9)

Next, we would like to write this as a covariant equation using tensors. To achieve

this, we replace p = −i∇ with the coordinate covariant derivatives defined in equa-

tion (2.23) and rewrite the cross product in covariant form:

Ĥ = − 1

2m
ηijDiDj +

i

2m
αiE ijkσj∂k. (7.10)

Since the ordinary Levi-Cevita symbol ϵijk is not a tensor, we introduce the con-

travariant Levi-Cevita tensor E ijk ≡ 1√
η
ϵijk, where

√
η is defined as the square root

of the determinant of the metric tensor ηij. This makes sure that the equations stay

in tensorial form. We can now introduce the contravariant spin-orbit field Ak in the

last term of the equation

Ak = αiE ijkσj. (7.11)

The Hamiltonian now takes the form:

Ĥ = − 1

2m
ηijDiDj +

i

2m
Ak∂k. (7.12)

When operating on a scalar function, regular and covariant derivatives are equiva-

lent. This is the case for the Hamiltonian, as it acts on scalar wavefunctions. We

can therefore replace ∂k → Dk in the last term of the Hamiltonian. After relabeling

the k-index and using the metric tensor to lower the index of the spin-orbit field, we

get:

Ĥ = − 1

2m
ηij(DiDj − iAiDj). (7.13)

If we now assume that the spin-orbit coupling is weak, i.e. the physical components∣∣A(i)

∣∣ ≪ 1, we can rewrite this equation in a similar way as for a charged particle

moving in a magnetic field

Ĥ = − 1

2m
ηij(Di − iAi)

2, (7.14)

where Ai acts as a background SU(2) gauge field [52]. Finally, we need to replace

the coordinate covariant derivatives with a coordinate-gauge covariant derivative

to ensure that we have the correct transformation properties under local SU(2)

rotations. The coordinate-gauge covariant derivative of a covariant vector vj is

defined as:

D̃ivj = Divj − i[Ai, vj] = ∂ivj − Γk
ijvk − i[Ai, vj]. (7.15)

The commutator ensures that the transformation is gauge covariant, while the

Christoffel symbols ensures that it is coordinate covariant.
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8 Usadel Equation for Antiferromagnets in Curvi-

linear Coordinates

Now we are ready to derive the Usadel equation for curved systems. Here we will

insert the different Christoffel symbols in the coordinate-gauge covariant derivative,

and consider them in terms of a curvilinear gradient and physical spin-orbit field A.

We would like to find an expression for the Usadel equation in curvilinear co-

ordinates. To achieve this, we start off by considering the Usadel equation for

antiferromagnets (6.42) we found earlier. We would like to include spin-orbit cou-

pling, and write the equation in covariant form. We therefore replace the derivatives

with the coordinate-gauge covariant derivative, and write the scalar product using

tensor notation. This gives us the Usadel equation for antiferromagnets in tensorial

form, which also includes spin-orbit coupling:

iDFη
ij[1 + (J/η)2]−1D̃i(ǧD̃j ǧ) =

[
ϵτz − V̌s +

iJ2

2τimpη2
σzτzǧσzτz, ǧ

]
, (8.1)

where D̃ivj = ∂ivj−Γk
ijvk− i

[
Âi, vj

]
and Âi ≡ (Ai,−Aα∗

i ) is the covariant spin-orbit

field in 4× 4 Nambu space.

We now want to go from the general Usadel equation using tensor notation, to

using a curvilinear coordinate system as described in section 2.4. We will start

by looking at the case of no torsion. We will see how the equations change when

adding torsion when we look at a more specific case for the nanowire arch/helix

in the next section. The left hand side of the Usadel equation can be calculated

explicitly. Writing it out, we get

iDFη
ij[1 + (J/η)2]−1D̃i(ǧD̃j ǧ) = iDFη

ij[1 + (J/η)2]−1

(
∂i(ǧ∂j ǧ)− Γk

ij(ǧ∂kǧ)

−i
[
Âi, ǧ∂j ǧ

]
− i∂i

(
ǧ
[
Âj, ǧ

])
+ iΓk

ij ǧ
[
Âk, ǧ

]
−
[
Âi, ǧ

[
Âj, ǧ

]])
.

(8.2)

In section 2.4 we found the expressions for the Christoffel symbols (2.34) and metric

tensor (2.31) for a curvilinear coordinate system with no torsion. In equation (2.28),

we multiply the Christoffel symbols with the diagonal metric tensor. As a result,

only the terms with equal lower indices (i = j) contribute, which are

Γs
ss =

1

H(s, n)
∂sH(s, n), Γn

ss = −H(s, n)∂nH(s, n). (8.3)

We now insert the metric tensor and Christoffel symbols into equation (8.2). The

full Usadel equation (8.1) now takes the form [30]

iDF [1 + (J/η)2]−1

[
∇̃s(ĝ∇̃sĝ) +

1

H(s, n)
∇̃n(H(s, n)ĝ∇̃nĝ) + ∇̃b(ĝ∇̃bĝ)

]
=[

ϵτz − V̌s +
iJ2

2τimpη2
σzτzǧσzτz, ǧ

]
,

(8.4)
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8 Usadel Equation for Antiferromagnets in Curvilinear Coordinates

where we have defined the gauge covariant derivative in terms of the physical spin

orbit field component Â(i) defined in the curvilinear basis, such that

∇̃ivj = ∇ivj − i
[
Â(i), vj

]
, (8.5)

where ∇i is the component of the curvilinear gradient ∇ = ( 1
H(s,n)

∂s, ∂n, ∂b) in the

i-th direction, and Â(i) = (Ai,−A∗
i ) where the physical spin-orbit field is given as

A = (α(N)σ(B) − α(B)σ(N), α(B)σ(T ) − α(T )σ(B), α(T )σ(N) − α(N)σ(T )). (8.6)

Equation (8.6) is derived by considering the definition of the contravariant spin-

orbit field in equation (7.11), and inserting the determinant of the metric tensor

into the equation while performing the summation using curvilinear coordinates [30].

Here we also defined the set of physical curvilinear Pauli matrices σ(T ),(N),(B)(s) ≡
σ · {T̂ (s), N̂ (s), B̂(s)}.

We can perform a similar derivation in order to find the curvilinear expressions

for the boundary conditions given in (6.43). The covariant form of the boundary

conditions can be written as

[1 + (J/η)2]−1DǧαD̃iǧα =
[
T̂αβ ǧβT̂βα + iR̂α, ǧα

]
, (8.7)

where D̃i is the coordinate-gauge covariant derivative. Expanding the covariant

boundary conditions in curvilinear coordinates like we did above, we achieve

[1 + (J/η)2]−1Dǧα∇̃iǧα =
[
T̂αβ ǧβT̂βα + iR̂α, ǧα

]
, (8.8)

where ∇̃i is the gauge covariant derivative in terms of the physical spin-orbit field

discussed in equation (8.5).
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9 Nanowire Arc

In this section we will apply the Usadel equation for curved systems we found in the

previous section to the case of a nanowire arch curved in the form of a portion of a

circle, as illustrated in figure 8. In this case, the curvature is constant, κ(s) = κ =

1/R, where R is the radius of the full circle. We will first look at the case with no

torsion, and afterwards look at how the equations changes after adding torsion.

Figure 8: An illustration of a nanowire arch, here chosen to be a semicircle with

constant radius of curvature R = 1
κ(s)

. The nanowire resides in the xy-plane, where

at any arclength point s, measured from the right end of the semicircle, we have a

local set of basis vectors T̂ (s), N̂ (s) and B̂(s), following a right handed curvilinear

coordinate system. For the case of no torsion the binormal unit vector is constant.

We assume that the wire is infinitesimally thin and lies in the xy-plane. This

means that we may neglect the degrees of freedom in the normal and binormal

direction, n, b → 0, and the curvature dependent scale function becomes H(s, n) =

1 − κ(s)n = 1. The metric tensor in equation (2.31) thus reduces to the same

form as the Cartesian metric tensor. For coordinate systems with a Cartesian-like

metric, there is no distinction between covariant/contravariant and physical tensor

component. We can therefore drop the parenthesis notation for physical components

in the following sections.

For a 1D nanowire arc, the curvilinear Usadel equation in (8.4) takes the simple

form:

iDF [1 + (J/η)2]−1∂̃s(ǧ∂̃sǧ) =

[
ϵτz − V̌s +

iJ2

2τimpη2
σzτzǧσzτz, ǧ

]
, (9.1)

where we defined the gauge covariant derivative ∂̃svj = ∂svj − i
[
ÂT , vj

]
, corre-

sponding to H(s, n) = 1 for the coordinate gauge covariant derivative in curvilinear

coordinates used in the curvilinear Usadel equation. Also, ÂT = diag(AT ,−A∗
T ),

where AT = αNσB −αBσN is the tangential component of the spin-orbit field (8.6).

Only the AT component of the gauge covariant derivative remains since we can

ignore the derivatives in the binormal and normal directions due to taking n, b→ 0.

9.0.1 Curvilinear Pauli Matrices

Looking at equation (9.1), the only part of the equation that makes this curved case

different from a straight case is that the Pauli matrices changes expressions in the
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9 Nanowire Arc

curvilinear basis. We will therefore need the Pauli Matrices in a curvilinear basis.

The curvilinear Pauli matrices are defined as:

σT = σ · T̂ (s), σN = σ · N̂ (s), σB = σ · B̂(s), (9.2)

where σ is the Cartesian Pauli spin vector. As we can see, we need expressions

for the three basis vectors. The basis vectors are related through the torsion-free

Frenet-Serret formulas given in equation (2.27), and can be expressed in terms of

the arc length parametrization ξ(s) as:

T̂ (s) =
d

ds
ξ(s), N̂ (s) =

1

κ(s)

d2

ds2
ξ(s), B̂(s) = êz. (9.3)

The arch length parametrization is given by ξ(s) = 1
κ
cos (κs)êx+

1
κ
sin (κs)êy, using

a Cartesian coordinate system as shown in figure 8. Using this parametrization, the

basis vectors in (9.3) can be written as:

T̂ (s) = − sin (κs)êx+cos (κs)êy, N̂ (s) = − cos (κs)êx−sin (κs)êy, B̂(s) = êz.

(9.4)

Finally, we are able to find expressions for the curvilinear Pauli matrices in equation

(9.2):

σT =

(
0 −ie−iκs

ieiκs 0

)
, σN =

(
0 −e−iκs

−eiκs 0

)
, σB =

(
1 0

0 −1

)
. (9.5)

9.1 Nanowire Helix

We would now like to see how the Usadel equation changes when we add torsion

to the system, as is seen in figure 9. In this case, we need to use the metric tensor

given in equation (2.36)

ηij =

H(s, n)2 + τ(s)2(n2 + b2) −τ(s)b τ(s)n

−τ(s)b 1 0

τ(s)n 0 1

 . (9.6)

We can now look at the calculation we did for deriving the Usadel equation in

curvilinear coordinates with no torsion in section 8 to see how the equation changes

when we add torsion. Looking at the equations, we see that adding torsion to the

system changes the number of Christoffel symbols we need to include after inserting

the coordinate-gauge covariant derivative, due to the metric tensor having more

terms in the case with torsion. In addition, the metric tensor is no longer diagonal

so we cannot use the Christoffel symbols for diagonal metric tensors in equation

(2.33), but must instead use the full equation (2.24). Fortunately, we would still

like to look at a wire which is infinitesimally thin, so we get a nanowire helix. This

means that we neglect the degrees of freedom in the normal and binormal direction,

n, b → 0. Looking at the metric tensor in equation (9.6), we see that it reduces
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9 Nanowire Arc

Figure 9: An illustration of a nanowire helix, with a local set of basis vectors T̂ (s),

N̂ (s) and B̂(s), following a right handed curvilinear coordinate system. P is the

pitch of the helix, and R is the radius.

to the same metric tensor we got for the case with no torsion, i.e. to a Cartesian

metric tensor. We therefore have the same form for the Usadel equation with and

without torsion, given in equation (9.1). It is worth repeating that this is only the

case for a 1D nanowire where we take the limit n, b→ 0. For a 2D or 3D system, the

equations with and without torsion would look different due to the different metric

tensors and thus different Christoffel symbols.

9.1.1 Curvilinear Pauli Matrices with tortion

The difference between the 1D nanowire arch without torsion and the 1D nanowire

helix with torsion lies in the Pauli matrices. For a nanowire helix, the curvilinear

basis vectors can be written in a Cartesian coordinate system as [33]

T̂ (φ) = − cos(α) sin(φ)êx + cos(α) cos(φ)êy + sin(α)êz, (9.7)

N̂ (φ) = − cos(φ)êx − sin(φ)êy, (9.8)

B̂(φ) = sin(α) sin(φ)êx − sin(α) cos(φ)êy + cos(α)êz, (9.9)

where φ is the azimuthal angle in the xy-plane, and α = arctan(τ/κ). Finally, we

can use equation (9.2) to get the Pauli matrices for a nanowire helix

σT =

(
sin(α) −i cos(α)e−iφ

i cos(α)eiφ − sin(α)

)
,

σN =

(
0 −e−iφ

−eiφ 0

)
,

σB =

(
cos(α) i sin(α)e−iφ

− sin(α)eiφ − cos(α)

)
.

(9.10)
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10 Parametrization

In this section we will use the Riccati parametrization on the Usadel equation for

curved antiferromagnetic materials we found in the previous section. We will end

up with an equation of motion for the γ-matrix, which we can use to solve for the

Green’s function. The equation of motion for the γ-matrix can be solved numerically,

and it is a convenient parametrization of the Green’s function as the range of 0 to

1 parametrizes an infinite range of variation in ĝ.

As discussed in section 3, the advanced, Keldysh and retarded Green’s function

are all related to each other in equilibrium. We can therefore focus on only solving

one of them, e.g. the retarded component. Recall that the retarded quasiclassical

Green’s function was defined as

ĝR(z, ε) =

(
gR(z,+ε) fR(z,+ε)

−fR∗
(z,−ε) −gR∗

(z,−ε)

)
. (10.1)

As we discussed in section 4, the Green’s function has a symmetry between it’s

components, as we can see by using the tilde conjugation

g∗(z,−ε) ≡ g̃(z,+ε). (10.2)

We can always get the tilde-version of an equation by taking the tilde-conjugate of

the equation, where taking the tilde conjugate simply makes the non-tilde variables

into tilde variables, and vice versa. This allows us to parameterize the matrix using

the Riccati parametrization [10], defined as

ĝR =

(
N 0

0 −Ñ

)(
1 + γγ̃ 2γ

2γ̃ 1 + γ̃γ

)
, (10.3)

where N is a 2 × 2 normalization matrix defined as N = (1 − γγ̃)−1. The form of

the N -matrix gives some useful identities

Nγ = γÑ, Ñ γ̃ = γ̃N. (10.4)

The Riccati parametrization reduces the problem from solving for the 4× 4 Green’s

functions to solving for the 2× 2 γ-matrices.

The left hand side of the Usadel equation for AF-S systems is the same as for the

curved SF case with no torsion (except for an extra constant in the antiferromagnet

case). We will therefore only solve for the right hand side of the equation. For a

derivation of the left hand side, see [30]. We will first consider the case with no

torsion, and then look at the system with torsion.

Recall that the Usadel equation for curved antiferromagnets is given as

iDF [1 + (J/η)2]−1∂̃s(ǧ∂̃sǧ) =
[
ϵτz − V̌s + ζσzτzǧσzτz, ǧ

]
, (10.5)

where we define:

ζ ≡ iJ2

2τimpη2
. (10.6)
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10 Parametrization

We will now insert the γ-parametrization of ĝ on the right hand side, and solve for

each term separately.

The first term is given as:

[ϵτz, ĝ] = ϵ

(
1 0

0 −1

)(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)

− ϵ

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)(
1 0

0 −1

)

= ϵ

(
N(1 + γγ̃) 2Nγ

2Ñ γ̃ Ñ(1 + γ̃γ)

)
− ϵ

(
N(1 + γγ̃) −2Nγ

−2Ñ γ̃ Ñ(1 + γ̃γ)

)

=

(
0 4ϵNγ

4ϵÑ γ̃ 0

)
.

(10.7)

Next, we solve for the second term for a general potential V̂s =

(
V 11 V 12

V 21 V 22

)
:

[
−V̂s, ĝ

]
= −

(
V 11 V 12

V 21 V 22

)(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)

+

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)(
V 11 V 12

V 21 V 22

)

=

(
−V 11N(1 + γγ̃) + 2V 12Ñ γ̃ −2V 11Nγ + V 12Ñ(1 + γ̃γ)

−V 21N(1 + γγ̃) + 2V 22Ñ γ̃ −2V 21Nγ + V 22Ñ(1 + γ̃γ)

)

+

(
N(1 + γγ̃)V 11 + 2NγV 21 N(1 + γγ̃)V 12 + 2NγV 22

−2Ñ γ̃V 11 − Ñ(1 + γ̃γ)V 21 −2Ñ γ̃V 12 − Ñ(1 + γ̃γ)V 22

)
.

(10.8)

Since we will look at a S-AF system, we will use the potential for a superconductor,

V̂s = ∆̂ =

(
0 ∆iσy

∆∗iσy 0

)
. This term should be zero when we are inside the

antiferromagnet. We get:[
−∆̂, ĝ

]
=(

2∆iσyÑ γ̃ ∆iσyÑ(1 + γ̃γ)

−∆∗iσyN(1 + γγ̃) −2∆∗iσyNγ

)
+

(
2Nγ∆∗iσy N(1 + γγ̃)∆iσy

−Ñ(1 + γ̃γ)∆∗iσy −2Ñ γ̃∆iσy

)

=

(
2∆iσyÑ γ̃ + 2Nγ∆∗iσy ∆iσyÑ(1 + γ̃γ) +N(1 + γγ̃)∆iσy

−∆∗iσyN(1 + γγ̃)− Ñ(1 + γ̃γ)∆∗iσy −2∆∗iσyNγ − 2Ñ γ̃∆iσy

)
.

(10.9)
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10 Parametrization

The third and last term is given as:

[ζσiτzĝσiτz, ĝ] = ζσi

(
1 0

0 −1

)(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
σi

(
1 0

0 −1

)

·

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
− ζ

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
σi

(
1 0

0 −1

)

·

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
σi

(
1 0

0 −1

)

= ζσi

(
N(1 + γγ̃) 2Nγ

2Ñ γ̃ Ñ(1 + γ̃γ)

)
σi

(
N(1 + γγ̃) 2Nγ

2Ñ γ̃ Ñ(1 + γ̃γ)

)

− ζ

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
σi

(
N(1 + γγ̃) 2Nγ

2Ñ γ̃ Ñ(1 + γ̃γ)

)
σi

(
1 0

0 −1

)
.

(10.10)

We now want to insert a specific direction for the spin basis. Here we will use

σi = σB, where σB =

(
1 0

0 −1

)
. Since the Pauli matrices are the same with and

without torsion, the equation we derive here are valid for both cases. Inserting this

into equation (10.10), we get :

[ζσBτzĝσBτz, ĝ] = ζσB

(
N(1 + γγ̃) 2Nγ

2Ñ γ̃ Ñ(1 + γ̃γ)

)
σB

(
N(1 + γγ̃) 2Nγ

2Ñ γ̃ Ñ(1 + γ̃γ)

)

− ζ

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
σB

(
N(1 + γγ̃) 2Nγ

2Ñ γ̃ Ñ(1 + γ̃γ)

)
σB

(
1 0

0 −1

)

= ζσB

(
N(1 + γγ̃)σBN(1 + γγ̃) + 4NγσBÑ γ̃ 2N(1 + γγ̃)σBNγ + 2NγσBÑ(1 + γ̃γ)

2Ñ γ̃σBN(1 + γγ̃) + 2Ñ(1 + γ̃γ)σBÑ γ̃ 4Ñ γ̃σBNγ + Ñ(1 + γ̃γ)σBÑ(1 + γ̃γ)

)

− ζ

(
N(1 + γγ̃)σBN(1 + γγ̃) + 4NγσBÑ γ̃ −2N(1 + γγ̃)σBNγ − 2NγσBÑ(1 + γ̃γ)

−2Ñ γ̃σBN(1 + γγ̃)− 2Ñ(1 + γ̃γ)σBÑ γ̃ 4Ñ γ̃σBNγ + Ñ(1 + γ̃γ)σBÑ(1 + γ̃γ)

)

·

(
σB 0

0 σB

)
.

(10.11)

Inserting equations (10.7) - (10.11) into equation (10.5), we get a set of 2× 2-

matrix equations for γ and γ̃. From now on, we only need to consider the (1, 1)

and (1, 2) components of the matrices used to solve for γ, as we can take the tilde

conjugate of these equations to get the equations coming from the (2, 1) and (2, 2)

components used to solve for γ̃. After simplifying these terms (derived in appendix

A), and inserting the parametrization of the left-hand side, we end up with the fully
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10 Parametrization

Riccati parametrized Usadel equation

D̃F [(∂
2
sγ) + 2(∂sγ)Ñ γ̃(∂sγ)]

= i(γ∆∗γ −∆)− 2iζ
[
σBNσBγ + γσBÑσB + σBNγσB + γσBÑ γ̃σBγ − γ

]
− 2iεγ + 2D̃F i(∂sγ)Ñ(A∗

T + γ̃ATγ) + 2D̃F i(AT + γA∗
T γ̃)N(∂sγ)

+ 2D̃F (ATγ + γA∗
T )Ñ(A∗

T + γ̃ATγ) + D̃F (A
2
Tγ − γ(A∗

T )
2)− D̃F i[(∂sAT )γ

+ γ(∂sA
∗
T )],

(10.12)

where D̃F ≡ DF [1 + (J/η)2]−1. This parametrized equation for for a curved AF-

S bilayer is the main result of this thesis. Equation (10.12) is valid for both the

case with and without torsion, when we choose the spin direction in the binormal

direction and insert this into equation (10.10). If we want the Usadel equation for

the spin direction in the normal or tangential direction, the equations for the case

with and without torsion would be different, since the Pauli matrices in (9.5) and

(9.10) are different. In the next sections we will look at different numerical results

using the parametrized equation (10.12).

For a discussion on the parametrized versions of the boundary conditions, see

e.g. [53].
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11 Weak Proximity Limit

In this section we will look at the weak proximity effect for the Riccati parametrized

equation we found in the previous section. We will first look at the case with no

torsion, and afterwards look at the case with torsion.

When the superconductor is in contact with the antiferromagnet, some of the

Cooper pairs will tunnel from one side to the other. If the transparency of the

interface between them is low, only a small number of Cooper pairs are able to

tunnel through. This is known as the weak proximity effect. In this scenario the

components of the γ matrix are expected to be small, i.e. |γij| ≪ 1, which means

we may neglect terms of the order O(γ2) [10]. In this limit N ≈ 1, so the anomalous

Green’s function given in the upper right block of equation (10.3), fR = 2Nγ,

reduces to fR = 2γ. It will also be useful to decompose the anomalous Green’s

function into singlet/triplet components, where the singlet component is described

by a scalar function fs, and the triplet component are encapsulated in the so-called

d-vector [54],

f = (fs + ηijdiσj)iσy. (11.1)

For a nanowire arch, we can write this equation in curvilinear coordinates as

fR = (fs + dTσT + dNσN + dBσB)iσy. (11.2)

In matrix form, this equation is given as

fR = 2γ =

(
(idT + dN)e

−iκs dB + fs

dB − fs (idT − dN)e
iκs

)
, (11.3)

where we used the expressions for the Pauli-matrices for a nanowire arch with no

torsion given in equation (9.5).

We will consider the weak proximity limit inside the antiferromagnet. This means

that ∆ = 0. In the weak proximity limit, the Riccati parametrized Usadel equation

for a nanowire arch in (10.12) reduces to a linear differential equation in γ

D̃F∂
2
sγ = −2iζ [γ + σBγσB]− 2iεγ + 2iD̃F [(∂sγ)A

∗
T + AT (∂sγ)]

+ D̃F

[
ATγA

∗
T + γ(A∗

T )
2
]
+ D̃F

[
(AT )

2γ − γ(A∗
T )

2
]

− iD̃F [(∂sAT )γ + γ(∂sA
∗
T )] .

(11.4)

We now want to express each term of the above equation in matrix form, using the

weak proximity representation of the γ-matrix given in equation (11.3). Here, we

will only solve for the antiferromagnet ζ-term of the equation. For a derivation of

the remaining terms, see [30]. Multiplying the weak proximity γ-matrix with the

spin vector in the binormal direction, the antiferromagnet part in equation (11.4) is

given as

−2iζ [γ + σBγσB] = −2iζ

(
(idT + dN)e

−κs 0

0 (idT − dN)e
iκs

)
. (11.5)
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11 Weak Proximity Limit

Comparing the components of the matrix representation of the weak proximity Ric-

cati parametrized Usadel equation in (11.4), we get four coupled differential equa-

tions

D̃F

2
(∂s − iκ)2(idT + dN) = −2iζ(idT + dN)− iε(idT + dN) + D̃καBdB

+ 2D̃F

[
α2
N(idT + dN) + αNαBdB + α2

B(idT )
]

+ 2iD̃F [αN(∂s − iκ)(idT + dN) + αB∂sdB] ,

(11.6)

D̃F

2
(∂s + iκ)2(idT − dN) = −2iζ(idT − dN) +−iε(idT − dN)− D̃καBdB

+ 2D̃F

[
α2
N(idT − dN)− αNαBdB + α2

B(idT )
]

+ 2iD̃F [−αN(∂s + iκ)(idT − dN) + αB∂sdB] ,

(11.7)

D̃F

2
∂2s (dB + fs) = −iε(dB + fs)− D̃FκαBdN + 2D̃F

[
α2
BdB + αNαBdN

]
− 2D̃F [αB(∂s(dT )− κdN)] ,

(11.8)

D̃F

2
∂2s (dB − fs) = −iε(dB − fs)− D̃FκαBdN + 2D̃F

[
α2
BdB + αNαBdN

]
− 2D̃F [αB(∂s(dT )− κdN)] ,

(11.9)

where αj is the strength of the spin-orbit field in the direction j. These four equa-

tions can be simplified by adding and subtracting equation (11.7) from (11.6), and

equation (11.9) from (11.8). We then end up with four coupled differential equations

for the curvilinear components of the d-vector and the singlet

iDF

2
∂2sdT = 2ζidT + ϵdT + iDF [2(α

2
N + α2

B) + κ(
κ

2
+ 2αN)]dT (11.10)

+ iDF (2αN + κ)∂sdN + 2iDFαB∂sdB,

iDF

2
∂2sdN = 2ζidN + ϵdN + iDF [2α

2
N + κ(

κ

2
+ 2αN)]dN (11.11)

− iDF (2αN + κ)∂sdT + iDFαB(2αN + κ)dB,

iDF

2
∂2sdB = ϵdB + 2iDFα

2
BdB + iDFαB(2αN + κ)dN (11.12)

− 2iDFαB∂sdT ,

iDF

2
∂2sfs = ϵfs. (11.13)

From these equations we see how the different components interact with each other.

For instance, starting with only singlets will not generate any triplet components,

and vice versa. For the triplet components (11.10) - (11.12) we see that we only get

mixing between the triplet states when either the spin-orbit coupling strength in the

normal and binormal direction, αN , αB or the curvature κ are non-zero. Comparing

these results to the case of a ferromagnet [16], we see that the weak proximity equa-

tions for an antiferromagnet does not have the terms proportional to the exchange

field components hi which gives a mixing between the states. Instead, we have the
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11 Weak Proximity Limit

term proportional to ξ ≡ iJ2

2τimpη2
which contributes in an additive way to the tan-

gential and normal component, but does not contribute to the binormal or singlet

component. We will need to add torsion in order to get triplet generation from the

singlet components.

11.1 Helix

We will now look at the weak proximity effect for a nanowire helix. In this case, the

anomalous Green’s function in equation (11.2) takes the form

fR =

(
i cos(α)e−iφdT + e−iφdN − i sin(α)e−iφdB fs + sin(α)dT + cos(α)dB

−fs + sin(α)dT + cos(α)dB i cos(α)eiφdT − eiφdN − i sin(α)eiφdB

)
,

(11.14)

where we used the Pauli matrices for a nanowire helix in (9.10).

Again, we consider the weak proximity effect inside the antiferromagnet, so ∆ =

0. We start by looking at the antiferromagnetic ζ-term in equation (11.4), and insert

the weak proximity γ matrix:

− 2iζ(γ + σBγσB) =

− iζ

[(
i cos(α)e−iφdT + e−iφdN − i sin(α)e−iφdB fs + sin(α)dT + cos(α)dB

−fs + sin(α)dT + cos(α)dB i cos(α)eiφdT − eiφdN − i sin(α)eiφdB

)]

+

(
cos(α) i sin(α)e−iφ

− sin(α)eiφ − cos(α)

)

·

(
i cos(α)e−iφdT + e−iφdN − i sin(α)e−iφdB fs + sin(α)dT + cos(α)dB

−fs + sin(α)dT + cos(α)dB i cos(α)eiφdT − eiφdN − i sin(α)eiφdB

)

·

(
cos(α) i sin(α)e−iφ

− sin(α)eiφ − cos(α)

)
.

(11.15)

Adding and multiplying the matrices, we get

−2iζ[γ + σBγσB]
(1,1) = i cos(α)e−iφ{1 + sin2(α) + cos2(α)}dT

+ {e−iφ + cos2(α)e−iφ − sin2(α)eiφ}dN − i sin(α)eiφ{e−2iφ + cos2(α) + sin2(α)}dB
− i cos(α) sin(α)(e−iφ + eiφ}fs,

(11.16)

−2iζ[γ + σBγσB]
(1,2) = − sin(α)e−2iφ{−e2iφ + cos2(α) + sin2(α)}dT

+ i cos(α) sin(α)(1 + e−2iφ)dN − cos(α){−1 + cos2(α) + sin2(α)}dB
+ {1 + sin2(α)e−2iφ − cos2(α)}fs,

(11.17)

−2iζ[γ + σBγσB]
(2,1) = − sin(α)e2iφ{−e−2iφ + cos2(α) + sin2(α)}dT

− i cos(α) sin(α)(1 + e2iφ)dN − cos(α){−1 + cos2(α) + sin2(α)}dB
− {1 + sin2(α)e2iφ − cos2(α)}fs,

(11.18)
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11 Weak Proximity Limit

−2iζ[γ + σBγσB]
(2,2) = i cos(α)eiφ{1 + sin2(α) + cos2(α)}dT

− {e−iφ + cos2(α)eiφ − sin2(α)e−iφ}dN − i sin(α)e−iφ{e2iφ + cos2(α) + sin2(α)}dB
+ i cos(α) sin(α){e−iφ + eiφ}fs.

(11.19)

Simplifying the terms, we end up with

−2iζ[γ + σBγσB]
(1,1) = −iζ

[
2i cos(α)e−iφdT +

{
[1 + cos2(α)]e−iφ − sin2(α)eiφ

}
dN

− 2i sin(α) cos(φ)dB − 2i cos(α) sin(α) cos(φ)fs

]
,

(11.20)

−2iζ[γ + σBγσB]
(1,2) = −iζ

[
− sin(α)[e−2iφ − 1]dT + i cos(α) sin(α)[1 + e−2iφ]dN

− {cos2(α)− sin2(α)e−2iφ − 1}fs
]
,

(11.21)

−2iζ[γ + σBγσB]
(2,1) = −iζ

[
− sin(α)[e2iφ − 1]dT − i cos(α) sin(α)[1 + e2iφ]dN

+ {cos2(α)− sin2(α)e2iφ − 1}fs
]
,

(11.22)

−2iζ[γ + σBγσB]
(2,2) = −iζ

[
2i cos(α)eiφdT +

{
sin2(α)e−iφ − [1 + cos2(α)]eiφ

}
dN

− 2i sin(α) cos(φ)dB + 2i cos(α) sin(α) cos(φ)fs

]
.

(11.23)

Adding and subtracting equation (11.23) from (11.20), and equation (11.22) from

(11.21), we end up with the four equations

(1, 1) + (2, 2) = −iζ
[
2i cos(α)dT − i sin2(α) sin(2φ)dN − 2i cos(α) sin(α) cos2(φ)dB

+ 2 cos(α) sin(α) cos(φ) sin(φ)fs

]
,

(11.24)

(1, 1)− (2, 2) = −iζ
[
i(1 + cos2(α)− sin2(α) cos(2φ))dN + 2i sin(α) cos(φ) sin(φ)dB

+ 2 cos(α) sin(α) cos2(φ)fs

]
,

(11.25)

(1, 2) + (2, 1) = −iζ
[
sin(α)(1− cos(2φ))dT + cos(α) sin(α) sin(2φ)dN

]
, (11.26)
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11 Weak Proximity Limit

(1, 2)− (2, 1) = −iζ
[
− sin(α) sin(2φ)dT − cos(α) sin(α)(1 + cos(2φ))dN

− i(cos2(α)− sin2(α)e−2iφ − 1)fs

]
.

(11.27)

To further simplify the equations, we will multiply and sum the equations (11.24) cos(α)+

(11.25) sin(α) and (11.24) sin(α)− (11.25) cos(α). We will also write these equations

in terms of κ and τ by using cos(α) = κL̃, sin(α) = τL̃, where 1/L̃ =
√
κ2 + τ 2 is

the length of one turn of the helix. We then get:

(11.24) cos(α) + (11.25) sin(α) =

− iζ

[
2iκ2L̃2dT + iτ L̃(1 + κ2L̃2 − τL̃2(κ sin(2φ) + τ cos(2φ)))dN

− 2iτ L̃2 cos(φ)(κ2L̃ cos(φ)− τ sin(φ))dB

+ 2κτL̃3 cos(φ)(κ sin(φ) + τ cos(φ))fs

]
,

(11.28)

(11.24) sin(α)− (11.25) cos(α) =

− iζ

[
2iκτL̃2dT − iL̃(κ(1 + κ2L̃2) + τ 2L̃(τL̃ sin(2φ)− cos(2φ)))dN

− 2iκτL̃2 cos(φ)(τL̃ cos(φ) + sin(φ))dB

+ 2κτL̃3 cos(φ)(τ sin(φ)− κ cos(φ))fs

]
.

(11.29)

Writing the last to terms (11.26) and (11.27) in terms of κ, τ and L̃, we get

(1, 2) + (2, 1) = −iζ
[
τL̃(1− cos(2φ))dT + κτL̃2 sin(2φ)dN

]
, (11.30)

(1, 2)−(2, 1) = −iζ
[
−τL̃ sin(2φ)dT−κτL̃2(1+cos(2φ))dN−i(L̃2(κ2−τ 2e−2iφ)−1)fs

]
.

(11.31)

Combining equations (11.28) - (11.31) with the rest of the terms in equation (11.4)

derived in [38], we end up with the weak proximity equations for a nanowire helix

where αN = αB = 0:

i
D̃F

2

(
∂2sdT − 2κ∂sdN − κ2dT + κτdB

)
= ϵdT

− iζ

[
2iκ2L̃2dT + iτ L̃(1 + κ2L̃2 − τL̃2(κ sin(2φ) + τ cos(2φ)))dN

− 2iτ L̃2 cos(φ)(κ2L̃ cos(φ)− τ sin(φ))dB + 2κτL̃3 cos(φ)(κ sin(φ) + τ cos(φ))fs

]
,

(11.32)

i
D̃F

2

(
∂2sdN + 2κ∂sdT − 2τ∂sdB − (κ2 + τ 2)dN

)
= ϵdN

− iζ

[
2iκτL̃2dT − iL̃(κ(1 + κ2L̃2) + τ 2L̃(τL̃ sin(2φ)− cos(2φ)))dN

− 2iκτL̃2 cos(φ)(τL̃ cos(φ) + sin(φ))dB + 2κτL̃3 cos(φ)(τ sin(φ)− κ cos(φ))fs

]
,

(11.33)
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11 Weak Proximity Limit

i
D̃F

2

(
∂2sdB+2τ∂sdN−τ 2dB+κτdT

)
= εdB−iζ

[
τL̃(1−cos(2φ))dT+κτL̃

2 sin(2φ)dN

]
,

(11.34)

i
D̃F

2
∂2sfs = ϵfs−iζ

[
−τL̃ sin(2φ)dT−κτL̃2(1+cos(2φ))dN−i(L̃2(κ2−τ 2e−2iφ)−1)fs

]
.

(11.35)

If we want to go to the case of a nanowire arc, we let κ → 0. The above equations

then reduces to the equations (11.10) - (11.13) when αN = αB = 0. Looking at

equations (11.33) - (11.35), we see that we get mixing between the different singlet

and triplet components when the torsion κ ̸= 0. We also note that if we let the

curvature κ → 0, the triplet states will not be converted to singlet states, but the

singlet state will be converted to the normal triplet component. Finally, we see that

we do not need any spin-orbit coupling to achieve mixing nor a nanowire helix.
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12 Density of States

12 Density of States

Here we will look at the density of states for the nanowire helix. The normalized

density of states is related to the Green’s function through the equation

NF ·N(s, ε) =
1

2
NF Re

{
Tr
{
ĝR(s, ε

}}
, (12.1)

where NF is the density of states at the Fermi-surface [55]. This equation can be

expressed in terms of the γ-matrix in the Riccati parametrization as

N(s, ε) =
1

2
Re{Tr{N(1 + γγ̃)}}. (12.2)

The density of states in the center of the helix with one turn for different values of

curvature κ, torsion τ and (J/µ)2 are given in figure 10 for compensated boundary

conditions, and in figure 11 for the uncompensated boundary conditions with no

spin-orbit coupling, αB = αN = 0. The density of states for one turn along the

entire antiferromagnet is given in figure 12.

The normalized density of states at zero energy, N(s, 0), can be used to gain

further insight into the underlying physics. N(s, 0) can be expressed in terms of the

singlet fs and triplet component d of the γ-matrix as [56]

N(s, 0) = 1− |fs(s, 0)|
2

+
|d(s, 0)|

2
. (12.3)

Since the triplet component has a positive contribution to the normalized density

of states, and the singlet contributes negatively, we can look at the zero energy

density of states to see if the system predominantly contains triplets d or singlets

fs. When the system contains more triplets d than singlets, we expect a peak in the

zero energy normalized density of states. Conversely, when the singlet state fs is

dominating, we expect a gap in the normalized density of states around zero energy

due to the negative contribution to the density of states.

Next we will look at some numerical results for the density of states. All numer-

ical modeling and plots are provided by Tancredi Salamone, who collaborated on

this work in conjunction with his PhD degree. Salamone has developed a working

code for a curved SF system, which will be made available in conjunction with his

PHD-thesis. I have derived the Riccati parametrized Usadel equation for the AF-S

system, which Salamone has added to his code. Comparing the two figures 10 and

11 with different boundary conditions, we see that we need spin-active boundary

conditions in order to get a significant peak at zero energy. We also see that increas-

ing the torsion τ increases the amount of triplets d we have in the system. It also

appears that we get a dip in the triplet generation for the increased values of τ at

zero energy when we increase the fraction J2/µ2. This shows that there exist some

optimal relationship between the values of κ, τ and J2/µ2 which gives the biggest

triplet generation.
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12 Density of States

For the density of states along the entire antiferromagnet in figure 12, we see that

we start off with mostly singlets at the boundary with the superconductor, which

gets transformed into triplets along the antiferromagnet. Comparing this with the

case of two turns of the helix in figure 13, we see that the triplets stays as triplets

after the first turn. This is because while the triplets does get converted back to the

singlet component, more triplets are generated than are converted.
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12 Density of States

Figure 10: The density of states in the midpoint of the antiferromagnet in a S-AF

bilayer with compensated boundary conditions. LAF = 2ξs, where LAF is the length

of the antiferromagnet and ξs is the superconducting coherence length. ζj = 3 is

the ratio between the barrier resistance and the bulk resistance. ε/∆0 is given along

the x-axis, and the normalized density of states N(ε) is given along the y-axis. The

different plots shows different values of J2/µ2. The different colored functions show

different ratios of curvature κ and torsion τ . No spin-orbit coupling is included, so

αB = αN = 0.
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Figure 11: The density of states in the midpoint of the antiferromagnet in a S-

AF bilayer with uncompensated boundary conditions. LAF = 2ξs, where LAF is the

length of the antiferromagnet and ξs is the superconducting coherence length. t is the

tunneling constant, r is the reflection constant and the direction of the magnetization

at the boundary is given as m̂ = T̂ as discussed in section 6. nturns = 1 is the number

of turns for the helix. ε/∆0 is given along the x-axis, and the normalized density

of states N(ε) is given along the y-axis, where ∆0 is the superconducting cap. The

different plots shows different values of J2/µ2. The different colored functions show

different ratios of curvature κ and torsion τ . No spin-orbit coupling is included, so

αB = αN = 0.
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Figure 12: The density of state along the entire antiferromagnet in a S-AF bilayer

with uncompensated boundary conditions. LAF = 2ξs, where LAF is the length of

the antiferromagnet and ξs is the coherence length. The direction of the magnetiza-

tion at the boundary is given as m̂ = T̂ . nturns = 1 is the number of turns for the

helix. J2/µ2 = 0.02. The curvature κ = 0.44π/LAF and the torsion κ = 1.95π/LAF .

ε/∆0 is given along one axis, s/LAF is the length along the antiferromagnet and is

given along the other axis, where ∆0 is the superconducting gap. The normalized

density of states N(ε) is given along the last axis. No spin-orbit coupling is included,

so αB = αN = 0.

Figure 13: The density of state along the entire antiferromagnet in a S-AF bilayer

with the same conditions as in figure 12, but for two turns instead of one
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13 Magnetization

In the quasiclassical limit the magnetization is given as [55, 57]

M =M0

∫
dεTr

{
σĝK

}
, (13.1)

whereM0 is the constant reference magnetization given byM0 = gµBN0∆/16, where

µB is the Bohr magneton, g is the g-factor, and N0 is the density of states at the

Fermi-level. As mentioned in section 3, in thermal equilibrium the Keldysh compo-

nent of the quasiclassical Green’s function is related to the retarded component

ĝK = (ĝ + τz(ĝ
R)†τz) tanh (

βε

2
). (13.2)

We can now use the weak proximity limit to get a better understanding of how

the singlet and triplet components influence the magnetization. Due to the small

value of the induced magnetism, a first order approximation of γ will vanish. We

therefore need a second order weak proximity limit, keeping terms of order O(γ2).

The retarded component of the quasiclassical Green’s function is then given as

ĝR ≈

(
2γγ̃ + 1 2γ

−2γ̃ −2γ̃γ − 1

)
, (13.3)

while the adjoint is given as

(ĝR)† ≈

(
2γ̃†γ† + 1 −2γ̃†

2γ† −2γ†γ̃† − 1

)
. (13.4)

The Keldysh component can now be written in terms of the γ-matrices using equa-

tion (13.2)

ĝK =

(
2(γγ̃ + γ̃†γ† + 1) 2(γ + γ̃†)

−2(γ̃ + γ†) −2(γ̃γ + γ†γ̃† + 1)

)
tanh (

βε

2
) (13.5)

We can now use the Pauli spin vector for a nanowire helix given in equation (9.10).

We start by looking at the component of the magnetization in the tangential direc-

tion. To second order in the component γij, it can be expressed as

MT = 2M0

∫
dε{

sin(α)
[
γ11γ̃11 + γ12γ̃21 + c.c. + 1

]
− i cos(α)e−iφ

[
γ21γ̃11 + γ22γ̃21 + c.c.

]
− sin(α)

[
γ21γ̃12 + γ22γ̃22 + c.c. + 1

]
+ i cos(α)eiφ

[
γ11γ̃12 + γ12γ̃22 + c.c.

]
− sin(α)

[
γ̃11γ11 + γ̃12γ21 + c.c. + 1

]
− i cos(α)eiφ

[
γ̃21γ11 + γ̃22γ21 + c.c.

]
+sin(α)

[
γ̃21γ12 + γ̃22γ22 + c.c. + 1

]
− i cos(α)e−iφ

[
γ̃11γ12 + γ̃12γ22 + c.c.

]}
tanh (

βε

2
),

(13.6)

66



13 Magnetization

where c.c. denotes the complex conjugate, which is not the same as tilde conjugation.

Since we integrate over all energies, we can however make the simplification [30]∫
dε (γij(ε)γ̃kl(ε))

∗ tanh (
βε

2
) = −

∫
dε γ̃ij(ε)γkl(ε) tanh (

βε

2
). (13.7)

Using this, equation (13.6) can be simplified to

MT = 4M0

∫
dε{

sin(α)
[
γ11γ̃11 + γ12γ̃21 + 1

]
− i cos(α)e−iφ

[
γ21γ̃11 + γ22γ̃21

]
− sin(α)

[
γ21γ̃12 + γ22γ̃22 + 1

]
+ i cos(α)eiφ

[
γ11γ̃12 + γ12γ̃22

]
− sin(α)

[
γ̃11γ11 + γ̃12γ21 + 1

]
− i cos(α)eiφ

[
γ̃21γ11 + γ̃22γ21

]
+sin(α)

[
γ̃21γ12 + γ̃22γ22 + 1

]
− i cos(α)e−iφ

[
γ̃11γ12 + γ̃12γ22

]}
tanh (

βε

2
).

(13.8)

We now look at each of the sine and cosine terms separately. The sine term is given

as

MTs = 4M0 sin(α)

∫
dε

{[
γ11γ̃11 + γ12γ̃21

]
−
[
γ21γ̃12 + γ22γ̃22

]
−
[
γ̃11γ11 + γ̃12γ21

]
+
[
γ̃21γ12 + γ̃22γ22

]}
tanh (

βε

2
)

= 8M0 sin(α)

∫
dε
[
γ12γ̃21 − γ21γ̃12

]
tanh (

βε

2
).

(13.9)

Inserting the d-vector formalism of the γ-matrix in curvilinear coordinates for a

nanowire helix in equation (9.10) into the above equation, we get the expression

MTs = 4M0 sin(α)

∫
dε
[
sin(α)(d̃Tfs − dT f̃s) + cos(α)(d̃Bfs − dB f̃s)

]
tanh (

βε

2
).

(13.10)

The cosine terms of equation (13.8) are calculated in a similar way, and are given as

MTc = 4M0 cos(α)

∫
dε
[
cos(α)(d̃Tfs − dT f̃s)− sin(α)(d̃Bfs − dB f̃s)

]
tanh (

βε

2
).

(13.11)

Combining the sine term in equation (13.10) with the cosine terms in equation

(13.11), we get that the magnetization in the tangential direction is given as

MT =MTs +MTc = 4M0

∫
dε
[
(d̃Tfs − dT f̃s)

]
tanh (

βε

2
). (13.12)

The magnetization in the normal and binormal direction are derived in a similar

way and are given as

MB = 4M0

∫
dε
[
(d̃Bfs − dB f̃s)

]
tanh (

βε

2
), (13.13)
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MN = 4M0

∫
dε
[
d̃Nfs − dN f̃s

]
tanh

(
βε

2

)
. (13.14)

The magnetization vector can now be expressed in terms of the d-vector as

M = 4M0

∫
dε
[
d̃fs − df̃s

]
tanh

(
βε

2

)
. (13.15)

This is the same expression as one gets when looking at a curved ferromagnet with

no torsion [30].

The magnetization for different values of torsion κ and curvature τ are given in

figure 14 for spin-active boundary conditions with one turn. As we can see, increasing

the torsion increases the distance it takes for the magnetization to decay. Also, we

need non-zero torsion for the tangential and normal component to be non-zero. We

can see why this is the case by looking at the equations for the weak proximity.

When τ = 0, we get the weak proximity equations equations with αN = αB = 0

in equations (11.10) - (11.13). We always have a binormal component since the

electrons start with spins in the binormal direction. However, as we can see we

from the equations we get no conversion from the triplet component in the binormal

direction to the other directions. This makes it so we get no components for the

magnetization in the normal or tangential direction. We therefore need torsion in

order to get magnetization in the normal and tangential direction. Comparing the

case for one turn in figure 14 to two turns in figure 15, we see that we get small

oscillations in the second turn. The amplitude increases for increased torsion, until

we reach zero curvature where we have a very small oscillation. This shows that

there exist an optimal value between κ and τ if we want to have oscillations with

large amplitudes in the second turn. For zero torsion we get no oscillations in the

second turn for the same reason we get no component in the normal and tangential

direction.
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Figure 14: The magnetization inside an antiferromagnet in a S-AF bilayer with

uncompensated boundary conditions. LAF = 2ξs, where LAF is the length of the

antiferromagnet and ξs is the coherence length. t is the tunneling constant, r is the

reflection constant and the direction of the magnetization at the boundary is given

as m̂ = T̂ as discussed in section 6. nturns = 1 is the number of turns for the helix.

J2/µ2 = 0.02. The distance along the antiferromagnet is given along the x-axis. The

normalized magnetizationMi/M0 is given along the y-axis. The different plots show

different ratios of curvature κ and torsion κ. The blue, red and yellow functions are

the magnetization in the in the T̂ (s), N̂ (s) and B̂(s) directions, respectively. No

spin-orbit coupling is included, so αB = αN = 0.
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Figure 15: The magnetization inside an antiferromagnet in a S-AF bilayer with the

same parameters as in figure 14, but with two turns instead of one
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14 Summary and Outlook

In this thesis, we derived the Riccati parametrization for the curved antiferromagnet-

superconductor Usadel equation. We started with the AF-S equation of motion

derived by Fyhn et.al. [20], and used tensor notation to rewrite it in terms of a

curvilinear coordinate system in the 1D case. The density of states and magnetiza-

tion were then solved numerically using the Riccati parametrized equations.

From looking at the weak proximity equations for the case with and without

torsion, we saw that we needed torsion in order to get mixing between the triplet

and singlet components. We also saw that we did not need spin-orbit coupling in

the case with torsion for mixing to happen. In addition, letting the curvature κ→ 0

made it so the triplet would not be converted to the singlet, but the singlet would

be converted to the normal component. Looking at the density of states at zero

energy, we saw that we needed to use uncompensated boundary conditions to get a

significant positive contribution for triplet components. There also appeared to be

an optimal value for the curvature κ, torsion τ and fraction J2/µ2 which gives the

biggest peak for triplet generation, where µ is the chemical potential and J is the

exchange energy between localized spins and conducting electrons. When looking

at the density of states along the curved antiferromagnet, we saw that the singlet

components leaking in from the superconductor were quickly converted into triplet

components. For the Magnetization, we saw that increasing the torsion increased the

distance it took for the magnetization to decay. Furthermore, we saw that adding a

second loop for the helix gave small oscillations in the second loop, due to the mixing

of the different singlet and triplet components. We saw that we needed torsion to get

magnetization in the normal and tangential direction, as there is no mixing between

the singlet/binormal component and the normal/tangential component when τ = 0.

An application using what we have discussed could be to use a antiferromagnetic

helix as a way to convert and transport triplet components through a system in 1D.

A component inside a computer could perhaps use this as a way to transport spin

triplets as information carriers.

Possibilities for further work could be to take the Riccati parametrization for

different spin directions, not just in the binormal case as is considered in this thesis.

This could lead to different results for the density of states and magnetization of

the electrons, especially when also looking at the spin direction used for the un-

compensated boundary conditions. In this thesis we chose to solve for the binormal

direction as the Pauli matrix in this case was the simplest. This choice is also similar

to the homogeneous case discussed in [34]. It would also be interesting to see the

results for a nanowire with non-constant curvature and torsion. This could allow

for a process where one can vary the amount of triplet components generated along

the nanowire, by adjusting the curvature and torsion. In the clean limit, elliptical

quantum rings have been studied [58], where it was found that the triplet d-vector

exhibits winding along the curved profile. Finally, one could also look at a 2D and
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3D curved structures. One could then study the effect of vortices in the ferromagnet.

It would therefore also be interesting to study the system with a time-dependence.

72



References

References

1. Van Remortel, N. The nature of natural units. Nature Physics 12, 1082–1082

(2016).

2. Rauchs, M., Blandin, A., Dek, A. & Wu, Y. Cambridge Bitcoin Electricity Con-

sumption Index Available at https://ccaf.io/cbnsi/cbeci/comparisons.

Accessed 8. May 2023.

3. U.S. Energy Information Administration. Available at https://tinyurl.com/

42ty4nbc. Accessed 8. May 2023.

4. Cooper, L. N. Bound electron pairs in a degenerate Fermi gas. Physical Review

104, 1189 (1956).

5. De Gennes, P. & Guyon, E. Superconductivity in” normal” metals. Phys. Let-

ters 3 (1963).

6. Werthamer, N. Theory of the superconducting transition temperature and en-

ergy gap function of superposed metal films. Physical Review 132, 2440 (1963).

7. Hauser, J. HC Theuerer and NR Werthamer. Phys. Rev 136, A637 (1964).

8. De Gennes, P. Boundary effects in superconductors. Reviews of Modern Physics

36, 225 (1964).

9. Bergeret, F. & Tokatly, I. Spin-orbit coupling as a source of long-range triplet

proximity effect in superconductor-ferromagnet hybrid structures. Physical Re-

view B 89, 134517 (2014).

10. Jacobsen, S. H., Ouassou, J. A. & Linder, J. Critical temperature and tunnel-

ing spectroscopy of superconductor-ferromagnet hybrids with intrinsic Rashba-

Dresselhaus spin-orbit coupling. Physical Review B 92, 024510 (2015).

11. Eschrig, M. et al. Spin-polarized supercurrents for spintronics. Phys. Today 64,

43 (2011).

12. Fominov, Y. V., Volkov, A. & Efetov, K. Josephson effect due to the long-range

odd-frequency triplet superconductivity in S F S junctions with Néel domain
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A Riccati Parametrization of Antiferromagnetic

Term

We will now simplify the commutators terms in the Usadel equation,

iDF [1 + (J/η)2]−1∂̃s(ǧ∂̃sǧ) =
[
ϵτz − V̌s + ζσzτzǧσzτz, ǧ

]
. (A.1)

After inserting the γ-matrix for ǧ, the three terms on the right hand side are given

as

[ϵτz, ĝ] =

(
0 4ϵNγ

4ϵÑ γ̃ 0

)
, (A.2)

[
−∆̂, ĝ

]
=

(
2∆iσyÑ γ̃ + 2Nγ∆∗iσy ∆iσyÑ(1 + γ̃γ) +N(1 + γγ̃)∆iσy

−∆∗iσyN(1 + γγ̃)− Ñ(1 + γ̃γ)∆∗iσy −2∆∗iσyNγ − 2Ñ γ̃∆iσy

)
,

(A.3)

[ζσBτzĝσBτz, ĝ] =

ζσB

(
N(1 + γγ̃)σBN(1 + γγ̃) + 4NγσBÑ γ̃ 2N(1 + γγ̃)σBNγ + 2NγσBÑ(1 + γ̃γ)

2Ñ γ̃σBN(1 + γγ̃) + 2Ñ(1 + γ̃γ)σBÑ γ̃ 4Ñ γ̃σBNγ + Ñ(1 + γ̃γ)σBÑ(1 + γ̃γ)

)

− ζ

(
N(1 + γγ̃)σBN(1 + γγ̃) + 4NγσBÑ γ̃ −2N(1 + γγ̃)σBNγ − 2NγσBÑ(1 + γ̃γ)

−2Ñ γ̃σBN(1 + γγ̃)− 2Ñ(1 + γ̃γ)σBÑ γ̃ 4Ñ γ̃σBNγ + Ñ(1 + γ̃γ)σBÑ(1 + γ̃γ)

)

·

(
σB 0

0 σB

)
.

(A.4)

We now want to simplify these terms. First, we will operate the (1, 1) components

of the matrices above with γ from the right. Then, we subtract this from the (1, 2)

component, and finally operate with 1
2
N−1 = 1

2
(1 − γγ̃) from the left. Let us first

consider the ϵτz-term in equation (A.2). We get:

1

2
N−1

(
[ϵτz, ĝ]

(1,2) − [ϵτz, ĝ]
(1,1)γ

)
=

1

2
N−1

(
4ϵNγ

)
= 2ϵγ. (A.5)

Next, we consider the ∆̂-term in equation (A.3):

1

2
N−1

([
−∆̂, ĝ

](1,2)
−
[
−∆̂, ĝ

](1,1)
γ
)

=
1

2
N−1

(
∆Ñ(1 + γ̃γ) +N(1 + γγ̃)∆− 2∆Ñ γ̃γ − 2Nγ∆∗γ

)
=

1

2
(1− γγ̃)∆Ñ(1 + γ̃γ) +

1

2
(1 + γγ̃)∆− (1− γγ̃)∆Ñ γ̃γ − γ∆∗γ

=
1

2
(1− γγ̃)∆Ñ +

1

2
(1− γγ̃)∆Ñ γ̃γ − (1− γγ̃)∆Ñ γ̃γ +

1

2
(1 + γγ̃)∆− γ∆∗γ

=
1

2
(1− γγ̃)∆Ñ(1− γ̃γ) +

1

2
(1 + γγ̃)∆− γ∆∗γ

= ∆− γ∆∗γ.

(A.6)
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Finally, we look at the ζ term in equation (A.4):

1

2
N−1

(
[ζσBτzĝσBτz, ĝ]

(1,2) − [ζσBτzĝσBτz, ĝ]
(1,1)γ

)
=

1

2
ζ
[
2(1− γγ̃)σBN(1 + γγ̃)σBNγ + 2(1− γγ̃)σBNγσBÑ(1 + γ̃γ) + 2(1 + γγ̃)σBNγσB

+ 2γσBÑ(1 + γ̃γ)σB − (1− γγ̃)σBN(1 + γγ̃)σBN(1 + γγ̃)γ − 4(1− γγ̃)σBNγσBÑ γ̃γ

+ (1 + γγ̃)σBN(1 + γγ̃)σBγ + 4γσBÑ γ̃σBγ
]
.

(A.7)

Expanding the terms, we get

1

2
N−1

(
[ζσBτzĝσBτz, ĝ]

(1,2) − [ζσBτzĝσBτz, ĝ]
(1,1)γ

)
=

ζ

2

[
2(σBN − γγ̃σBN + σBNγγ̃ − γγ̃σBNγγ̃)σBNγ + 2(σBNγσBÑ − γγ̃σBNγσBÑ

+ σBNγσBÑ γ̃γ − γγ̃σBNγσBÑ γ̃γ) + 2(σBNγσB + γγ̃σBNγσB)

+ 2(γσBÑσB + γσBÑ γ̃γσB)− 4(σBNγσBÑ γ̃γ − γγ̃σBNγσBÑ γ̃γ) + 4γσBÑ γ̃σBγ

− (σBNσBN + σBNσBNγγ̃ − γγ̃σBNσBN − γγ̃σBNσBNγγ̃ + σBNγγ̃σBN

+ σBNγγ̃σBNγγ̃ − γγ̃σBNγγ̃σBN − γγ̃σBNγγ̃σBNγγ̃)γ+

(σBN + γγ̃σBN + σBNγγ̃ + γγ̃σBNγγ̃)σBγ
]
.

(A.8)

Next we add and subtract similar terms

1

2
N−1

(
[ζσBτzĝσBτz, ĝ]

(1,2) − [ζσBτzĝσBτz, ĝ]
(1,1)γ

)
=

ζ

2

[
(σBN − γγ̃σBN + σBNγγ̃ − γγ̃σBNγγ̃)σBNγ + 2(σBNγσBÑ − γγ̃σBNγσBÑ

− σBNγσBÑ γ̃γ − γγ̃σBNγσBÑ γ̃γ) + 2(σBNγσB + γγ̃σBNγσB)

+ 2(γσBÑσB + γσBÑ γ̃γσB) + 4γγ̃σBNγσBÑ γ̃γ + 4γσBÑ γ̃σBγ

− (σBNσBNγγ̃ − γγ̃σBNσBNγγ̃ + σBNγγ̃σBNγγ̃ − γγ̃σBNγγ̃σBNγγ̃)γ

+ (σBN + γγ̃σBN + σBNγγ̃ + γγ̃σBNγγ̃)σBγ
]
.

(A.9)

Then we collect similar terms

1

2
N−1

(
[ζσBτzĝσBτz, ĝ]

(1,2) − [ζσBτzĝσBτz, ĝ]
(1,1)γ

)
=

ζ

2

[
(σBN − γγ̃σBN + σBNγγ̃ − γγ̃σBNγγ̃)σBNγ(1− γ̃γ) + 2(σBNγσB(Ñ + 1)

− γγ̃σBNγσB(Ñ − 1)− σBNγσBÑ γ̃γ − γγ̃σBNγσBÑ γ̃γ)

+ 2(γσBÑσB + γσBÑ γ̃γσB) + 4γγ̃σBNγσBÑ γ̃γ + 4γσBÑ γ̃σBγ

+ (σBN + γγ̃σBN + σBNγγ̃ + γγ̃σBNγγ̃)σBγ
]
.

(A.10)
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On the first line we use the fact that Nγ = γÑ and Ñ−1 = (1− γ̃γ). On the second

line we use that we can write Ñ γ̃γ = Ñ(1− Ñ−1) = Ñ − 1. We then get

1

2
N−1

(
[ζσBτzĝσBτz, ĝ]

(1,2) − [ζσBτzĝσBτz, ĝ]
(1,1)γ

)
=

ζ

2

[
(σBN − γγ̃σBN + σBNγγ̃ − γγ̃σBNγγ̃)σBγ + 4(σBNγσB − γγ̃σBNγσB(Ñ − 1))

+ 2(γσBÑσB + γσBÑ γ̃γσB) + 4γγ̃σBNγσBÑ γ̃γ + 4γσBÑ γ̃σBγ

+ (σBN + γγ̃σBN + σBNγγ̃ + γγ̃σBNγγ̃)σBγ
]
.

(A.11)

Adding and subtracting similar terms gives

1

2
N−1

(
[ζσBτzĝσBτz, ĝ]

(1,2) − [ζσBτzĝσBτz, ĝ]
(1,1)γ

)
=

ζ

2

[
2(σBN + σBNγγ̃)σBγ + 4σBNγσB + 2(γσBÑσB + γσBÑ γ̃γσB) + 4γσBÑ γ̃σBγ

]
.

(A.12)

Finally we use that Nγγ̃ = N(1−N−1) = N − 1 and σBσB =

(
1 0

0 1

)
to get

1

2
N−1

(
[ζσBτzĝσBτz, ĝ]

(1,2) − [ζσBτzĝσBτz, ĝ]
(1,1)γ

)
=

2ζ
[
σBNσBγ + γσBÑσB + σBNγσB + γσBÑ γ̃σBγ − γ

]
.

(A.13)
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