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Abstract

Battery Storage Systems (BSS) have emerged as a promising technology for addressing
the energy security-related challenges caused by the intermittent nature of Variable Re-
newable Energy (VRE). To investigate the impact of large-scale BSS implementation on
the electricity price distribution, the German electricity market is modeled as a cost-
minimization problem with varying levels of BSS storage capacity. Subsequent market
prices undergo analysis through the lens of descriptive statistics and multi-variable quan-
tile regression. The thesis also aims to establish a mathematical relationship to explore
the dynamics between BSS, VRE, and electricity price quantiles.

The results show that BSS lowers the most extreme prices and raises the lower prices,
making the price distribution denser and less variable around its central tendency. Fur-
ther examination of the prices through quantile regression unveils a linear relationship
between BSS storage capacity and electricity price quantiles. The gradients of the lower
quantiles demonstrate a positive yet modest value, while the upper quantiles exhibit a
more significant negative gradient in comparison to the lower quantiles.

When investigating the dynamics between BSS and VRE, the VRE exhibits improved
e�ciency in reducing prices when paired with BSS in the system, particularly for upper
price quantiles. This suggests that the presence of BSS enhances the system’s ability to
e↵ectively utilize and store excess VRE generation, leading to lower electricity prices.
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Sammendrag

Batterilagringssystemer (BLS) har vokst frem som en lovende teknologi for å h̊andtere en-
ergisikkerhetsutfordringene for̊arsaket av de uregelmessige egenskapene til Variabel Forny-
bar Energi (VFE). For å undersøke e↵ekten av storskala BLS-implementering p̊a pr-
isfordelingen til strøm, modelleres det tyske strømmarkedet som et kostnadsminimer-
ingsproblem med ulike niv̊aer av batterilagringskapasitet. Videre analyseres marked-
sprisene ved hjelp av deskriptiv statistikk og multi-variabel kvantilregresjon. Oppgaven
har ogs̊a som mål å etablere en matematisk sammenheng for å belyse dynamikken mellom
BLS, VFE og elektrisitetspris-kvantiler.

Resultatene viser at BLS senker de mest ekstreme prisene og øker de lave prisene, noe som
gjør prisfordelingen mer kompakt og mindre variabel rundt sin sentrale tendens. Videre
analyse av elektrisitetsprisene gjennom kvantilregresjon avslører en lineær sammenheng
mellom BLS-lagringskapasitet og priskvantiler. Gradientene til de nedre kvantilene viser
en beskjeden, positiv verdi, mens de øvre kvantilene viser en betydelig mer negativ gra-
dient sammenlignet med de nedre kvantilene.

Ang̊aende dynamikken mellom BLS og VFE, viser VFE forbedret e↵ektivitet i å re-
dusere priser n̊ar den kombineres med BLS i systemet, spesielt for de øvre pris-kvantilene.
Funnene viser at implementeringen av BLS styrker systemets evne til å e↵ektivt utnytte
og lagre overskuddsgenerering fra VFE, som igjen fører til lavere elektrisitetspriser.
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1 INTRODUCTION

1 Introduction

1.1 Background and Motivation

VRE has grown increasingly vital in the global energy mix, primarily due to interna-
tional goals of reducing climate gas emissions and the exponential decrease in VRE costs
over recent decades. These cost reductions have reached a point where investments in
VRE technologies can compete with other power-generating units, even without subsidy
schemes [2]. Despite these advantages, the intermittent nature of VRE sources presents
challenges to the security of supply in electrical systems that require a constant balance
between production and consumption.

Large-scale energy storage has emerged as a potential solution to the challenges posed by
excess VRE production. Several promising technologies have been explored in academia
and practice, such as pumped hydro storage, hydrogen fuel cells, and thermal energy
storage. However, these solutions still face technological and cost-related constraints,
making them more suitable for long-term rather than short-term energy storage [3].

For short-term energy storage, BSS has gained recognition as a promising technology ca-
pable of handling some of the challenges associated with VRE. Storing energy from cheap
or excessive electricity production can be used for several applications. Small-scale peak
shaving and spot-price arbitrage are some that have shown promise, as demonstrated in
behind-the-meter battery systems [4]. Moreover, BSS has seen significant cost reductions
in recent years, with projections indicating this trend will continue [5].

As battery capacities increase, the aggregated battery fleet could become a key player in
the electricity market, impacting price formation and distribution [6]. Although extensive
research has examined the individual e↵ects of high VRE and BSS shares on electricity
price volatility, a notable research gap remains regarding their combined impact in large-
scale systems on electricity price distribution. More specifically, how the introduction of
BSS impacts the overall shape of the price distribution, as well as the various quantiles
within the distribution. Understanding the influence of BSS on the shape of the electric-
ity price distribution in high-share VRE markets is critical for all market participants.
Producers and end-users rely heavily on price expectations to plan future expansion and
consumption. Therefore, any potential lasting changes in the price distribution shape,
due to the introduction of BSS, must be taken into account. Additionally, risk managers
overseeing electricity market operations must carefully monitor substantial price shifts,
especially at the extreme ends of the price scale. These shifts can lead to significant costs
if not anticipated accurately. Understanding the influence of BSS on upper and lower
price quantiles provides these risk managers with crucial insights, enabling them to make
well-founded decisions during project planning stages.

As a result, this paper aims to address the impact of BSS on electricity price distribution
by examining the German electricity market, which features a significant presence of both
VRE and industrial-sized BSS [7]. By examining the dynamics between BSS and VRE in
the German market, the hope is to gain a deeper understanding of the role of batteries in
the electricity market and pave the way for future research and innovation.

1



1.2 Objective and Contribution

1.2 Objective and Contribution

This thesis aims to explore the impact of industrial-size BSS storage capacity on electricity
price distribution in real electricity markets with substantial shares of VRE. The goal is
to uncover the underlying dynamics and contextualize the findings in comparison to the
small sample size of similar research and relevant literature. Specifically, the thesis aims
to answer the following questions:

• How is the electricity price distribution a↵ected by BSS storage capacity?

• Are the various quantiles of electricity prices a↵ected di↵erently by BSS storage
capacity?

• Can we draw inferences on the mathematical relationship between BSS storage ca-
pacity and electricity price quantiles?

• Will increased VRE capacity a↵ect the impact of BSS on electricity price distribu-
tion?

The research questions are addressed through the following contributions of this thesis:
Firstly, the German electricity market is modeled using real market data supplied by Volue
Insight, a leading power market analysis firm in Europe. Di↵erent levels of BSS storage
capacity are introduced into the system, and their impact on electricity price distribution
is analyzed and compared to a base scenario without BSS. The results show that the BSS
creates a denser and less variable price distribution, where the prices are closer and more
symmetrically positioned around its central tendency. The influence of BSS across price
quantiles demonstrates varying patterns, where lower price quantiles increase while upper
price quantiles decrease. This trend is amplified with increasing BSS capacity.

Quantile regression analysis reveals a linear relationship between BSS storage capacity
and all quantiles. The lower quantiles display a positive but modest influence, whereas
the upper quantiles exhibit a larger negative impact compared to the lower quantiles. The
results are unique in the sense that they are the first to explicitly describe a mathematical
relationship between BSS storage capacity and electricity price quantiles.

Lastly, the dynamic between BSS and VRE is explored through an extended quantile
regression model that considers both variables. VRE demonstrates enhanced e�ciency in
terms of price reductions when operating alongside BSS in the system, especially for the
upper price quantiles. This indicates that the presence of BSS enables the system to more
e↵ectively utilize and store excess VRE generation, resulting in lower electricity prices.

1.3 Outline

The remainder of this thesis is organized as follows: Section 2 introduces relevant in-
formation on electricity markets and modelling, BSS, statistical properties of electricity
prices, and quantile regression. Next, section 3 explores the existing academic literature
and research on BSS and their applications in electricity markets. In addition, a review of
the application of quantile regression models in electricity markets is presented. Section
4 describes the data utilized for modelling the German market, and section 5 elaborates

2



1 INTRODUCTION

on the market optimization model framed as a cost-minimization problem, in addition
to the analysis of price distribution through quantile regression. Section 6 presents the
comprehensive results across all BSS and VRE scenarios, followed by a discussion of no-
table observations and implications in section 7. Finally, section 8 o↵ers a summary of
key findings and conclusions while providing directions for further work.

3



2 Theory

This section o↵ers essential background for understanding the thesis’ methodology and is
structured as follows: Firstly, the concept of deregulated electricity market operation is
explained before emphasizing the characteristics of the German electricity market. Subse-
quently, the basics of electricity market modelling are introduced. This leads to a concise
overview of state-of-the-art BSS. The statistical properties of electricity prices are subse-
quently discussed, followed by an introduction to quantile regression analysis to end the
section.

2.1 Electricity Markets

2.1.1 Deregulated Electricity Market Operation

Deregulated electricity market operation has become an increasingly popular approach to
promote competition, improve e�ciency, and reduce costs in the electricity industry [8].
One approach to achieving these objectives is market pooling, which deviates significantly
from conventional utility models. In a market pooling system, all electricity generators in
an exclusive market area sell their electricity into a common bidding pool, regardless of
their individual costs of production and other factors. The pool is managed by a market
operator or a similar entity and sets the price of electricity in a particular area, based on
the total supply and demand in the market.

The price of electricity in the pool is typically determined by the merit order and set to
the Short Run Marginal Cost (SRMC) of the most expensive generator needed to meet
the demand for electricity. An exception occurs in markets characterized by a high volume
of water-value-based power or regions implementing green energy policies, such as feed-
in tari↵s and tax incentives [9]. The merit order guarantees that all generators in the
pool are paid the same price for their electricity, regardless of their individual costs. An
illustration of this process is given in Figure 1.

4



2 THEORY

Figure 1: Market clearing - A merit order of production vs the demand curve.

No axes - Visual example only

Market pooling can help reduce the production cost of electricity by promoting competi-
tion and e�ciency among generators [8]. This is achieved by establishing the market price
of electricity at the level of the marginal unit’s cost, thereby ensuring a uniform price for
all production units. Consequently, the more cost-e↵ective units yield a profit, stimulat-
ing generators to propose their most competitive pricing. This pricing aligns with the
marginal cost curve, a situation where marginal costs exceed average costs. Additionally,
market pooling can prevent price manipulation by individual generators, as the price is
determined through a competitive market rather than the bids of individual generators
[8].

2.1.2 The German Electricity Market

The German electricity market is very complex and one of the largest in Europe. It
has undergone significant changes in recent years due to Germany’s ambitious energy
transition goals, which include phasing out nuclear power and significantly increasing the
share of renewable energy in the electricity mix [10]. The market is characterized by a
mix of conventional thermal power plants and renewable energy sources such as wind and
solar, illustrated in Figure 2.

5



2.1 Electricity Markets

Figure 2: Production mix in Germany 2021-2023 - Source: Volue Insight [11].

Table 1: Production mix in Germany 2021-2023 - Source: Volue Insight [11].

Generation tech. Share
Wind 22.0%
Solar 10.0%
Biomass 8.0%
Hydro 3.0%
Lignite 19.6%
Natural Gas 15.7%
Hard coal 11.5%
Nuclear 9.1%
Oil 0.4%
Waste 0.7%

The market operates within a framework of regulations designed to promote competition
and protect consumers and is overseen by the Federal Network Agency (Bundesnetzagen-
tur) and the Federal Cartel O�ce (Bundeskartellamt). One of the main challenges facing
the German electricity market is balancing the intermittent supply of renewable energy
sources with the demand for electricity, which can lead to volatility in prices and grid
stability issues [12]. However, Germany has also been a leader in developing innovative
market mechanisms to manage these challenges, such as the integration of renewable en-
ergy sources into the wholesale market through auctions and feed-in tari↵s [13]. Despite
these challenges, the German electricity market is likely to continue to play a leading role
in shaping the future of the European energy sector.

6



2 THEORY

2.2 Electricity Market Modelling

Electricity market modelling can be viewed as a cost minimization problem where the goal
is to determine the lowest cost dispatch of electricity, which is the amount of power each
source should generate at any given time. Formulating the problem by cost minimization
is equivalent to a perfectly competitive market where producers face a market price equal
to the marginal cost of production. A generator maximizes profits by bidding its marginal
cost curve where the marginal cost is above average cost [14]. The complexity in mar-
ket models comes from satisfying the fundamental principles of power system operation,
which include operational and physical limitations. This is done while attaining a balance
between the supply and demand of electricity in the most e�cient way possible.

In this context, the total cost of electricity is the sum of costs from di↵erent sources
of power generation, such as thermal power plants, renewable generation units, and hy-
droelectric power plants. Each source of power generation has di↵erent operational and
technical characteristics, including the variable cost of generation, minimum and maxi-
mum output levels, ramp-up and ramp-down rates, and start-up and shut-down times.
The complex nature of generator characteristics presents challenges in capturing the true
market dynamics, often posing obstacles to accurately capturing market volatility [15].

In its most general form, the least-cost problem of the central planner can be formulated
as:

min c(x) (1a)

s.t. g(x) = d (1b)

a(x)  K (1c)

The objective function, 1a, minimizes the total generation cost of the system given the
generation units x. The constraint in 1b states that total system generation g(x) must
equal total system demand d. This is known as the power balance constraint. The last
constraint, 1c, forces system generation and transmission a(x) to stay within their limits
and capacities, K, to ensure system stability.

This formulation presents a constrained optimization problem. Here, the Lagrange mul-
tiplier of the power balance constraint in 1b, known as �, signifies the system’s marginal
cost. Under marginal pricing, this cost sets the market price for electricity [16]. The
decision on the most suitable method for solving the problem is influenced by various
factors, such as the characteristics of the objective function and constraints, as well as
the available computational resources. It is important to tailor the chosen method to the
specific market model being analyzed [17].

2.3 Battery Storage Systems

BSS have emerged as one of the most promising technologies for short-term storage of
electrical energy. These systems provide a critical solution to challenges posed by the
intermittency and variability of VRE, such as wind and solar power [18]. BSS are capable
of storing excess electricity during periods of low demand and discharging it during peak
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hours. This not only reduces reliance on costly peaking power plants but also enhances
grid stability. Among the impressive features of BSS are fast response times, low standby
losses, and high energy e�ciency up to 95% [3]. Furthermore, compared to other storage
technologies, these systems boast one of the shortest construction times. In addition to
fuel flexibility and environmental benefits, they can also o↵er important operating benefits
to the electricity utility, such as voltage regulation, frequency control, uninterruptible
power supply, and spinning reserves [3]. Lastly, BSS has experienced a remarkable cost
reduction in recent years, with projections suggesting that the trend will persist [5]. This
is illustrated by the decreasing costs of lithium-ion systems in Figure 3.

Figure 3: Battery cost projections for 4-hour lithium-ion systems as of 2021. The figure
is obtained from the National Renewable Energy Laboratory [5].

2.4 Statistical Properties of Deregulated Electricity Prices

Understanding the behavior of electricity prices is crucial for e↵ective decision-making
in the electricity industry [19]. In deregulated electricity markets, prices are determined
by supply and demand and thus can exhibit significant fluctuations over time [20]. This
section will provide an overview of the main statistical properties of electricity prices,
including price distribution and volatility. Factors influencing electricity prices, such as
physical limitations, fuel prices, and demand trends, are discussed. Relevant statistical
tests and test statistics will also be introduced. The analysis of the statistical properties
of electricity prices can provide insights into the dynamics of electricity markets and help
stakeholders make informed decisions regarding risk management [19].

2.4.1 Price Distribution

The price distribution of electricity prices in deregulated markets shows evidence of vari-
ation depending on a number of factors related to the dynamics between supply and
demand [21]. The instantaneous nature and limited storage potential of electricity make
prices sensitive to rapid changes in the availability of di↵erent energy sources and vary-
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ing levels of demand. The availability of generation technologies is highly influenced by
weather, prices of thermal fuels, plant outages, and other market conditions. Varying
levels of demand are caused by daily, weekly, and seasonal demand patterns.

Empirical research indicates that electricity prices in deregulated markets tend to follow
a log-normal distribution [22]. The advantage of using a log-normal description is due
to the flexibility and ability to capture a wide range of the characteristics of electricity
prices. The log-normal shape of electricity prices is characterized by a skewed, right-tailed
shape, where the majority of the observations are clustered around a lower price range.
The tail of the distribution on the right-hand side represents extreme observations or
outliers, where prices can diverge strongly from the mean or median. The shape of this
distribution reflects the tendency of electricity prices to be relatively stable and low in
normal conditions, but are characterized by frequent sharp spikes during periods of high
demand or supply shortages [23].

2.4.2 Volatility

Volatility can be defined as the measure of the spread or dispersion of a set of data.
Analyzing this dispersion is critical when assessing the uncertainty, or risk, associated
with the data [24]. The volatility of electricity prices in deregulated markets is a result of
several factors, and often combinations of them. The primary reason is the instantaneous
nature of electricity combined with storage constraints. These characteristics make prices
sensitive to changes in the availability of power-generating sources. Combined with a high
level of inelastic demand, price spikes are very frequent and unpredictable in deregulated
markets. Secondary factors include commodity prices, carbon prices, weather, and de-
mand patterns, among others [21]. These factors can a↵ect the dynamics between supply
and demand strongly, and thereby influence pricing patterns. A comprehensive analysis
of all drivers behind electricity price volatility is outside the scope of this thesis. However,
given the fast response time of BSS and its ability to fully charge and discharge within
hours, it seems that the e↵ects of BSS are closely tied to short-term intra-day demand-
driven fluctuations in electricity price. Consequently, it is reasonable to assume that the
primary impact of BSS is on the intra-day volatility factor. In conclusion, the volatility
of electricity prices can create both opportunities and risks for all market participants,
and careful analysis and management are required to e↵ectively navigate [19].

2.4.3 Descriptive Test Statistics

Test statistics are statistics used in statistical hypothesis testing. Statistical hypothesis
testing is used to make probabilistic statements about population parameters [24]. In this
thesis, both raw price data and price results from modelling will be subject to hypothesis
testing in order to describe the statistical characteristics of the data. The tests include
the Jarque-Bera test for normality and the Augmented Dickey-Fuller unit root test for
stationarity [24]. The testing procedure and mathematics behind the tests will not be
described in this section as it is considered outside the scope of this thesis. Detailed
derivations of the tests are described by Brooks [24].
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2.5 Quantile Regression

Quantile regression is a statistical approach to mathematically describe the relationship
between a dependent variable and one or more independent variables through estimating
the conditional quantiles of the dependent variable [25]. In contrast, traditional linear re-
gression estimates the conditional mean of the dependent variable given the independent
variables. Quantile regression allows estimations of conditional relationships at various
quantiles. As a result, it is advantageous in the presence of outliers or non-normal distribu-
tions compared to linear regression. In other words, it does not make assumptions about
the relationship between the dependent and independent variables. This is favorable for
this thesis, as there is little previous evidence of any specific mathematical relationship
between electricity prices and BSS storage capacity. Also, electricity prices show strong
evidence of non-normal distribution [26], which favors the use of quantile regression as no
assumptions are made on the distribution.

As no assumptions are made on the relationship between electricity price quantiles and
BSS storage capacity, nor on the distribution of electricity prices, quantile regression is
deemed the favorable method for describing this relationship. The general formulation of
a quantile regression model can be mathematically described as:

Q⌧ (y|X) = X�⌧ (2)

Where Q⌧ is the conditional ⌧ -quantile function of the dependent variable y, and X is
a vector of independent variables. �⌧ is a vector of the estimated coe�cients for the
predictors X associated with the quantile ⌧ .

The obtain the coe�cients in �, one must minimize the corresponding loss function that
measures the distance between the observed values of the dependent variable and the
predicted values of the conditional quantiles. The loss function is defined as:

L(y,X,�) = ⇢⌧(u)(y �X�) (3)

where ⇢⌧(u) is a function that measures the distance between u and zero, depending on
the quantile level ⌧ . Typically, ⇢⌧(u) is defined as:

⇢⌧ = u(⌧ � I(u < 0)) (4)

where I(u < 0) is an indicator function that equals 1 if u < 0 and 0 otherwise.

Estimating the coe�cients in � can be di�cult due to them being unavailable in the
closed form [27]. To estimate the coe�cients, the minimization of loss function L must
therefore be reformulated as an optimization problem.

min
�⌧

X

i2I

(⌧ � 1yi�⌧Xi)(yi � �⌧Xi) (5a)

10



2 THEORY

where

1yi�⌧Xi =

(
1, if yi  �⌧Xi

0, otherwise
(6)

The minimization problem can be solved using either simplex methods or interior point
methods, depending on whether the problem is linear or non-linear [25]. The resulting
estimates of the regression coe�cients provide information about the influence of the
independent variables on di↵erent quantiles of the dependent variable.

11
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The following section contextualizes the thesis within the relevant literature. The first
subsection presents a general introduction to batteries, small-scale BSS, and their appli-
cations in electricity systems. Advantages of large-scale BSS in electricity markets with
high shares of VRE are subsequently highlighted. Secondly, the history and application
of quantile regression in electricity markets are summarized. Finally, a summary explains
how this thesis di↵ers from previous work and what it can add to the academic domain of
electricity markets. Subsection 3.1 is reused material from an unpublished project thesis
by the same authors [1].

3.1 Battery Storage Systems in Electricity Markets

BSS of varying scales can be applied for di↵erent behind-the-meter applications. The
peak shaving ability of BSS has been frequently examined in academia, with both optimal
management and sizing being assessed [28][29]. The concept of price arbitrage has also
been explored using BSS and proven to be profitable for both small-scale [4] and large-
scale [30] battery systems. In applications such as peak shaving and price arbitrage, the
BSS often acts as a price-taker, i.e., it does not a↵ect the electricity market equilibrium
because of limited battery storage capacity. With large-scale BSS, however, the market
equilibrium can be a↵ected. Mathematical models for determining this e↵ect have been
derived and tested numerically by Awad et al. [31]. It is found that energy storage size
and location directly impact electricity market prices and arbitrage benefits. The results
point towards lower price di↵erences between peak and o↵-peak hours. Some results
even claim that energy storage increases market equilibrium prices [32], as o↵-peak prices
increase more than peak prices are reduced.

An auspicious aspect of large-scale BSS is its application in high-share VRE electricity
markets. The term ”large-scale BSS” generally describes large single battery sites and
aggregated small-scale batteries in an area. Large-scale energy storage could become
crucial in future electricity markets, due to the potential of VRE, which o↵ers the lowest
lifetime cost per delivered unit of power. Consequently, VRE may displace traditional
generators burdened by higher marginal costs [18]. This is known as the merit-order e↵ect
[33]. Botterud & Korp̊as [18] find that combining large-scale Energy Storage Systems
(EES) and VRE will remove substantial base-load thermal generation from the market,
while peaker thermal generation will essentially remain unchanged. This is because EES
seem to trigger significant amounts of additional VRE capacity in the system optimum.
The paper states that this is the most important factor of the EES (and BSS), i.e.,
EES enables VRE capacity expansion but does not directly a↵ect the price of electricity.
However, VRE capacity expansion will subsequently reduce the price of electricity in
addition to the level of CO2 emissions from the system. The benefits of BSS in high-share
VRE electricity markets proposed by Botterud & Korp̊as [18] are supported by Li et al.
[34] where the uncertainty of wind power forecasts are considered as well. Lastly, the
e↵ects of BSS on peak and o↵-peak prices by Awad et al. [31] is supported in a future
scenario in the Belgian electricity with high shares of VRE and BSS [35].

Academia has briefly addressed the impact of BSS in reducing price volatility. Yang &
Ozdaglar [36] suggest that the value of energy storage could be significantly underesti-
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mated if its potential contribution to volatility reduction is neglected. Several of the
aforementioned papers comment on price volatility implicitly by highlighting price di↵er-
ences in peak and o↵-peak hours [35][31], and the annual cost of energy [18] respectively.
Nevertheless, no detailed volatility assessments are presented. Masoumzadeh et al. [37]
present a bi-level optimization model for finding the optimal nodal BSS storage capac-
ities for reducing price volatility levels in a nodal electricity market. The optimal size
of storage devices at two price areas in Australia and a 30-bus IEEE system is deter-
mined. However, there is no explicit price volatility modelling or analysis. The approach
is instead described as a price volatility management framework. The most explicit work
on how BSS a↵ects price volatility in high-share VRE electricity markets is performed
by Gissey et al. [38], where the aggregated electrical storage capacity of consumers in
Britain is integrated into the market clearing, either by consumer-led (decentralized) or
aggregator-led (centralized) coordination. The volatility of electricity prices in four di↵er-
ent future scenarios is presented. The volatility is found to decrease for increasing levels
of BSS storage capacity in the market. Centralized coordination of the aggregate storage
capacity decreases the mean and volatility of electricity prices compared to decentralized
operation.

3.2 Quantile Regression in Electricity Markets

In order to gain a deeper understanding of the relationship between electricity price dis-
tribution and BSS, the establishment of a sound framework is necessary as a foundation
for analysis. As a result, quantile regression is utilized in this thesis to di↵erentiate the
research methodology from previous research by examining the relationship on a quantile
level. To the best of the authors’ knowledge, quantile regression has not been applied
in the context of the relationship between electricity price distribution and BSS. How-
ever, quantile regression analysis has been broadly applied in academia. This subsection
will briefly discuss the history and relevant application of quantile regression analysis in
finance and electricity markets.

Koenker & Basset Jr first introduced quantile regression in 1978 [39]. Since then, the
mathematical principles of quantile regression have been applied within a broad range of
academic fields [25]. In finance, there is a growing interest in quantile regression mod-
elling with an emphasis on risk management [40]. Specifically, the application of quantile
regression within Value at Risk (VaR) estimations has received growing interest. Rele-
vant results of using quantile regression in VaR estimations include identifying previously
undetected periods of increased risk exposure [41]. Similarly, Conditional Value at Risk
(CVaR) assessments have benefited from quantile regression models as they do not require
any of the extreme assumptions invoked by existing methodologies, such as normality or
independent and identically distributed returns [42]. Instead, quantile regression models
move the focus of attention from the distribution of returns directly to the behavior of the
quantile. Other examples of financial fields where quantile regression is applied, include
portfolio optimization and volatility spillover e↵ects [40][43].

Quantile regression has gained significant attention within academic research pertaining
to electricity markets, as it o↵ers a flexible and robust analytical framework for exam-
ining the complex relationships between various market factors. Patterns of electricity
demand have been investigated using quantile regression, showing the varying impact of
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demographic, socioeconomic, and household characteristics on domestic electricity con-
sumption [44]. The e↵ects of the predictor variables are found to di↵er across quantiles
and change over time. Analysis and forecasting of electricity price risk is another example
of quantile regression application within the field. Accurate risk measures have consid-
erable value in trading and risk management with the topic being actively researched
for better techniques [45]. Using a multi-factor, dynamic, quantile regression formulation,
extended to include Generalised Autoregressive Conditional Heteroscedasticity (GARCH)
properties, the specification e↵ects of mean reversion, spikes, and time-varying volatility
are captured by Bunn et al. [45]. The results demonstrate how the prices of gas, coal,
and carbon, forecasts of demand, and reserve margin influence the electricity price quan-
tiles. Hagfors et al. [26] characterize the impact of fundamental factors on UK electricity
prices by means of linear quantile regression. Positive elasticities for the underlying fuel
commodities are found, while the sensitivity to changes in demand is generally positive.
However, the sensitivity to di↵erent factors varies substantially both across the day and
within the price distribution.

Quantile regression models have also been used to estimate the merit order e↵ect [33]
for di↵erent quantiles of electricity prices in markets with VRE. In a preliminary study
on the impact of Renewable Energy Sources (RES) on prices in the German electricity
market, Hagfors [46] finds that RES overall has a mild price-dampening e↵ect. The
influence of wind and Solar Photovoltaic (SPV) on the magnitude and variability of the
German electricity spot price is analyzed by Maciejowska [47]. The findings indicate
that both types of renewable generation have a similar, negative impact on the price
level, approximated by the price median. However, the e↵ect of two renewable sources
deviates when employing inter-quantile range measures. Conditional on the level of the
total demand, wind production is found to either increase when demand is low or decrease
when demand is high. On the other hand, the increase in solar power stabilizes the price
variance for moderate demand levels. As a result, the paper underscores the significance
of maintaining a balance between wind and solar power in policy recommendations for
the development and integration of VRE.

3.3 Summary

Applications of behind-the-meter and large-scale BSS in electricity systems have been
widely covered in academia [3][28][30]. The impact of fundamental factors, including
VRE, on electricity price volatility has been examined using quantile regression anal-
ysis [26][45][47][46]. Optimal operation and sizing of BSS in electricity markets with
and without VRE has also been investigated [37][38][18][31][33]. The impact of BSS
storage capacity on market equilibrium has been investigated, and price volatility has
been commented on implicitly by studying price patterns in peak and o↵-peak hours
[36][37][38][18][31][34][35]. Although the value of energy storage in reducing price volatil-
ity is emphasized [36], only Masoumzadeh et al. [37] and Gissey et al. [38] explicitly
investigate the relationship between BSS storage capacity and price volatility. However,
these studies do not explicitly examine the varying impacts of BSS on the di↵erent quan-
tiles of the price distribution. Furthermore, no comprehensive framework, such as quantile
regression, has been employed in previous studies to investigate the relationship between
BSS and the distribution of electricity prices.
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In conclusion, the authors of this thesis believe that there exists a research gap concerning
the impact of BSS on electricity price distribution in high-share VRE markets, and how
BSS a↵ects the di↵erent quantiles of the price distribution. This thesis aims to investigate
this relationship, and if possible, draw mathematical inferences between BSS and the
various price quantiles. Relevant findings are compared with the small sample size of
similar research and relevant literature. As BSS becomes an increasingly more important
part of electricity market operation, the findings of this thesis can help gain a deeper
understanding of the dynamics between BSS and electricity prices which may be beneficial
to all market participants.

15



4 Data

The power market analytics company Volue Insight has provided the data used in this
thesis. The firm originates from Markedskraft which was established in 1992. Since then,
they have become an international company and have over 35 million daily data calls to
their Application Programming Interface (API) [48]. Volue Insight is a part of the publicly
traded company Volue ASA. The introduction of Subsection 4.1 is reused material from
an unpublished project thesis by the same authors [1].

4.1 Fundamental Market Data

Volue Insight uses fundamental data gathered from Transmission System Operators (TSO)
and other external sources to construct their data curves, i.e., time series of fundamental
data related to the power market. In Germany, the measured data comes from the four
TSOs: Amprion, TenneT, TransnetBW, and 50Hertz Transmission. These operators
ensure that power is produced and transported optimally, and as a byproduct, they also
measure the produced power accurately. These measurements make a solid foundation
for the models produced by Volue.

This thesis uses fundamental data for prices, production, consumption, and capacities of
relevant generation technologies. This data also serves as input for state-of-the-art fore-
casting models. These models include the EMPS- and Plexos-model [49], which simulate
power systems with constraints on transfer capacity and hydrological di↵erences between
areas. Forecasts from these models are either used for further analysis or published di-
rectly to users. An example of the data curves used in this thesis can be seen in Figure
4 below. The curves show actual solar production in Germany between January 1st and
January 8th, 2023.

Figure 4: Actual solar production in Germany between the 1st and 8th of January, 2023,
measured at a frequency of 15 minutes. Source: Volue Insight [11].
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Volue Insight has preprocessed the API data, removing outliers and filling in missing
values, so no further cleaning is required. To minimize timezone complications, the data
is converted from local to a neutral timezone before the analysis (CET to UTC) and is
reverted after. To facilitate comparison, the time series are aggregated from a mix of
monthly and 15-minute frequencies to a consistent hourly frequency.

4.1.1 Thermal Generation

Thermal generation of electricity is generally referred to as power produced from heat,
that drives rotating generators [50]. The most common thermal energy sources are natural
gas, coal, oil, and nuclear, while greener alternatives such as biomass and waste burning
are growing industries. Production data from these plants are reported to the European
Energy Exchange (EEX) by all production plants in Europe, which creates a transparent
market. The data is observed hourly and is measured in MWh/h. The platform incorpo-
rates plant-specific capabilities, forthcoming maintenance activities, and Urgent Market
Messages (UMM) to generate publications that inform both current and future produc-
tion in addition to available capacity[51]. Subsequently, this data is distributed to energy
market operators, including Volue Insight.

The publications on future available generation capacities from EEX form the basis for
capacity assumptions in this thesis. The capacity forecasts represent the most recent
forecasts for the period under investigation. This methodology is employed to obtain the
most precise and up-to-date information possible. Nonetheless, a drawback of using these
forecasts is that they are hypothetical rather than empirical values, thereby elevating the
possibility of data imperfections caused by underlying modelling assumptions.

4.1.2 Renewable Generation

Renewable generation technologies included in this thesis are solar photovoltaic, onshore
and o↵shore wind, and hydropower. Volue Insight receives the data for renewable genera-
tion through EEX. The data is observed every 15 minutes, updated daily, and measured in
MWh/h. It is then aggregated to an hourly frequency to align with the thermal generation
capacities.

Reported production data is used instead of generation capacities for renewable tech-
nologies. This is equivalent to an assumption of a perfect forecast of VRE where the
availability of VRE capacity is expressed implicitly. Given that renewables consistently
operate at nearly full available capacity due to their low SRMC [33], utilizing actual pro-
duction data is considered justifiable as it closely aligns with the available production
capacity. If installed capacities of VRE were to be used, the model would strongly over-
estimate the available capacity as varying weather conditions would not be considered.
This is visualized in Figure A.1 in the Appendix.

Using actual production data to model renewable power generation is considered especially
beneficial for hydropower as this approach eliminates the need to model water values
[12], reducing the complexity of the model without significantly impacting the results.
Hydropower has limited production and installed capacity in Germany, coupled with a
low SRMC. As a result, it is rarely the price-setting technology in the German electricity
market [33].

17



4.1 Fundamental Market Data

4.1.3 Cost of Power Generation

In thermal power generation, the SRMC is mainly a↵ected by the cost of fuel and the
price of CO2 quotas. The cost of fuel is decided by several factors, including the price
of the thermal fuel itself, along with costs related to transportation and storage. These
factors can change drastically over a short period due to scarcity [52]. In addition, the
historical prices of CO2 quotas have increased notably in recent years [53]. As a result,
the SRMC of thermal power generation can vary significantly over time. The SRMC of
thermal power generation for a given e�ciency ⌘ is calculated as follows:

SRMC =
fuelCost

⌘
+

CO2Cost

⌘
+ fixedCost (7)

Accurately representing the SRMC of thermal generation is imperative to the performance
and accuracy of electricity market modelling as the market price is set by the marginal
cost of production (see: Subsection 2.1.1). An overview of all fundamental generation
data and corresponding SRMC used in the thesis is seen in Table 2 below. Elaboration
on historical costs and justification of assumptions for historical averages follow in the
paragraphs below the table.

Table 2: Overview of fundamental generation data and corresponding SRMC.

Generation Technology Generation Input Data SRMC
Wind Actual Production1 0
Solar Actual Production1 0
Hydro Actual Production1 Assumption2

Gas Available Capacity Historical Cost
Coal Available Capacity Historical Cost
Oil Available Capacity Historical Cost
Lignite Available Capacity Historical Cost
Biomass Available Capacity Historical Cost
Nuclear Available Capacity Historical Average3

Waste Available Capacity Historical Average3

1
Equivalent to deterministic forecast.

2
Assumed to be zero. Low hydro capacity and is rarely price setter [54].

3
Historical SRMC average values are found in Table 21 in the Appendix.

For gas and coal, historical SRMCs are provided directly from the Volue Insight API.
E�ciencies of gas and coal power plants are based on internal Volue Insight assumptions
[54].

Regarding lignite, no explicit data on SRMC of German power generators are available
and time-series must resultingly be constructed. SRMC of lignite is highly correlated
with coal historically but has been priced lower than coal as lignite is both mined and
consumed in Germany [55]. As a result, the SRMC of lignite is priced accordingly:

SRMClignite = SRMCcoal ��SRMC (8)
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where �SRMC is an estimate of the historic di↵erence between SRMC of lignite and
coal in Germany based on internal Volue Insight assumptions [54].

The SRMC of German oil generation is constructed using Equation 7. Fuel costs are based
on historic forward contracts for heavy fuel oil in Germany. The price of forward contracts
is provided to Volue Insight by Metanoploy. Historic prices of CO2 quotas are used to
calculate CO2 costs and are provided by Volue Insight [11]. The installed capacity of oil
power production in Germany is very low compared to gas, coal, and lignite. However,
the SRMC of oil is often found to be the marginal production unit historically [55]. Thus,
a realistic representation of the SRMC of oil is important for the accuracy of modelling
the German electricity market.

As for thermal biomass generation, the SRMC has historically shown high levels of corre-
lation with North Western Europe pellets [56]. However, as biomass is assumed to rarely
a↵ect the marginal cost of electricity [54], a varying SRMC based on the historic average
price of North Western Europe pellets [56] is assumed. The SRMC varies between 75 and
200e/MWh.

Nuclear generation is assumed to have a constant SRMC, an assumption used in similar
research [57]. The modest installed capacity of power production from thermal waste is
also assumed to be produced at a constant SRMC based on a historic average [54].

Renewable electricity generation has a very low SRMC as there are no fuel costs. Due to
state-driven compensation, the costs can even be negative [58]. As a result, the SRMC of
wind and solar, is assumed to be zero. Regarding hydropower generation, the SRMC is
assumed to be zero as well. Firstly, hydropower has a very low variable cost of production.
In addition, hydropower generation is rarely a marginal technology in Germany [54] which
justifies the assumption further.

4.2 German Spot Prices

To evaluate the performance of the optimization model, the results of the base scenario
are compared with actual German spot prices for the period under investigation. The
spot prices used as the basis for comparison are gathered from Nordpool and distributed
through the API of Volue Insight [11]. The spot prices are displayed at an hourly frequency
and in e/MWh. The German spot prices for electricity for the period under investigation
can be seen in Figure 5 below.

19



4.2 German Spot Prices

Figure 5: German spot prices for electricity from January 2021 to January 2023. Source:
Volue Insight [11].

The figure above reveals high volatility in German prices throughout the period. This is
especially evident from the fall of 2021 until the end of the period. It is as if two distinct
paradigms exist within the time series: one from January 2021 until fall 2021, and another
thereafter. The first period is more in line with the spot price profile for the years before
2021, while the latter deviates significantly from historical pricing patterns. The high
prices and volatility seen from the fall of 2021 must be contextualized with the tightening
of Russian gas exports to Germany [52], and later as a result of the Russian invasion
of Ukraine in February 2022 [59]. These events massively impacted energy prices across
Europe [60]. The extreme price spikes during this period are in line with theory (see:
Subsection 2.4.2 on the volatility of electricity prices), and are an example of how sudden
changes in supply dynamics can a↵ect price volatility. More specifically, how scarcity of
fuel can a↵ect the costs of marginal production technologies and thereby influence market
prices.

A summary of relevant descriptive statistics from the German spot prices is seen in Table
3 below.
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Table 3: Descriptive statistics for German spot prices from January 2021 to January
2023.

Test Statistic Numeric Value
Min -69.00
Max 871.00
Mean 166.54
Median 123.32
Standard Deviation 133.06
Skewness 1.39
Kurtosis 2.04
Jarque-Bera 8681.47*

ADF -5.22*

N 17472
*
Indicates that the respective null hypothesis is rejected

at the 1% level.

The minimum and maximum observation over the period is -69.00e/MWh and 871.00e/MWh
respectively. The standard deviation is 133.06e/MWh compared to the mean of 166.54e/MWh.
The median, of 123.32e/MWh, is significantly lower than the mean, which is in line with
the discussion in subsection 2.4.1 of right-skewed electricity price distribution. The spot
price density distribution is visualized in Figure 6 below.

Figure 6: Density plot for German spot prices from January 2021 to January 2023. KDE
is the Kernel Density Estimation [61] of the probability density function of spot prices.

The skewness and excess kurtosis, from Table 3, is displayed in the figure above. Here,
the median is positioned left of the mean and suggests that lower prices are the most
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common. The excess kurtosis, visualized by the fat tail on the right-hand side of the
mean, represents high prices that significantly deviate from normal prices. These results
support the claim from Subsection 2.4.1 on how electricity prices tend to be relatively
stable and low in normal conditions, while also having high spikes during periods of supply
shortages. The Jarque-Bera test of Table 3 reject the hypothesis of German electricity
prices being normally distributed. This is also evident by examining the shape of the
distribution seen in Figure 6. Lastly, the test statistic from the ADF test for stationarity
confirms the presence of stationary and mean-reverting prices.

The prices at di↵erent quantiles are presented in Table 4 below. These results will be
compared with the quantiles of the base scenario of the model. The comparison will be of
interest due to the peak shaving ability of BSS. In theory, the BSS should remove the most
extreme price pikes due to discharging of the batteries while also increasing the prices in
o↵-peak hours as a result of charging activity (see: Subsection 3.1). As a result, prices at
lower quantiles are expected to increase, while prices at higher quantiles are expected to
be reduced.

Table 4: German spot prices at di↵erent quantiles from January 2021 to January 2023
measured in e/MWh.

Quantile 1% 5% 25% 50% 75% 95% 99%
Price -0.03 29.66 67.70 123.32 225.98 444.95 593.49

To motivate the investigation of the dynamics between BSS and VRE, the correlation be-
tween German spot prices and thermal SRMCs, wind, and solar generation are presented
in Table 5 below.

Table 5: Correlation between German spot prices and thermal SRMCs, wind, and solar
generation at di↵erent quantiles from January 2021 to January 2023.

Quantile 5% 25% 50% 75% 95% Overall
SRMC gas 0.08 -0.23 0.25 0.73 0.60 0.81
SRMC coal 0.04 -0.27 0.29 0.45 0.37 0.69
SRMC oil 0.05 -0.29 0.24 0.30 0.28 0.61
Wind 0.03 -0.47 -0.26 -0.20 0.03 -0.35
Solar -0.28 -0.20 -0.10 0.01 0.06 -0.05

As evident from the table, there is a negative correlation between low prices and both
wind and solar generation. Through the implementation of BSS, surplus VRE generation
during low-priced hours can be utilized to reduce prices during peak hours when thermal
generation serves as the marginal units. The high correlation, seen between the SRMC of
thermal generation technologies and the upper quantiles of German spot prices, clearly
visualizes how expensive thermal generation a↵ects prices in hours of high demand. These
correlations illustrate the potential for BSS to replace expensive thermal generation with
VRE generation, thereby contributing to a more cost-e↵ective and sustainable energy
mix.
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4 DATA

4.3 Battery Storage System Data

To perform the analysis regarding the impact of BSS, a battery index with BSS storage
capacities is created from external sources. The Battery-based Energy Storage Road Map
(BATSTORM) report [7] has been the primary source of information when creating the
index. The index is created by asserting capacity values to specific dates when BSS storage
capacities are commissioned and production goals are set. These values are aggregated
to show Germany’s total BSS storage capacity at a given time. This data is used to
create a time series with a desired length and frequency, where there is a linear increase
in storage capacities between the original data points from the report. The BSS capacity
ranges from ⇠1GWh, which corresponds to the present non-aggregated BSS capacity in
Germany [7], to 20GWh, with increments of 1GWh. The upper limit is chosen based
on future predictions for installed BSS storage capacity in Germany [62]. The BSS is
assumed to have a charge and discharge rate of half its storage capacity, i.e., it can be
fully charged or discharged in two hours. This is known as the C-rate of the battery.

For the BSS, the SRMC is defined as the cost of discharging. The discharge cost should
ideally reflect the opportunity cost of conserving the energy for later use, similarly to
water-values of hydro-power plants [12]. As this is considered outside the scope of this
thesis, the marginal cost of discharging is assumed to be zero, similar to hydro-power
generation. This reflects the sunk investment cost of the BSS and the low variable cost
per cycle.
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5 Methodology

5.1 Electricity Market Modelling with BSS

The German electricity market is modeled between January 2nd, 2021, and January 1st,
2023 using the data presented in Section 4. BSS is introduced in the system, with varying
levels of storage capacity. This capacity represents the total industrial-sized electrical
battery storage within Germany. Under the assumption that the market operator controls
the BSS (i.e., centralized control), this approach mirrors the storage coordination used by
Gissey et al [38]. Previous studies have shown that the aggregation of storage can increase
social welfare and decrease electricity costs compared to the decentralized operation of
storage [63][64].

5.1.1 Formulation of the Optimization Model

The optimization problem is formulated as a deterministic cost minimization problem,
in line with relevant deregulated electricity market modelling theory (see: Subsection
2.2). This is equivalent to a perfectly competitive market where producers face a market
price equal to the marginal cost of production. The market price is represented by the
Lagrangian multiplier associated with the power balance constraint [16].

The least-cost dispatch problem of the central planner is specified as presented below. All
model sets, indices, parameters, variables, and problem formulation are included.

Sets and indices

T : set of hours, t 2 T

S: set of scenarios, s 2 S

I: set of generation technologies, i 2 I

Parameters

ci,t : cost of generation type i in hour t

x̄i: generation capacity of technology i

ēt: storage capacity of BSS in hour t

b̄: charge and discharge power capacity of BSS

⌘+: discharge e�ciency of BSS

⌘�: charge e�ciency of BSS

dt: power demand at hour t

Variables
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xi,t : power generation of technology i in hour t

bsoc,t: State of Charge (SOC) in BSS in hour t

b+t : power discharge of BSS in hour t

b�t : power charge of BSS in hour t

The complete model formulation:

min
x, b+, b�, bsoc

C =
X

t2T

X

i2I

c(xi,t) · xi,t (9a)

s.t. dt =
X

i2I

xi,t + b+
t
� b�

t
8t 2 T (9b)

0  xi,t  x̄i,t 8t 2 T, 8i 2 I (9c)

0  b+
t
 b̄ 8t 2 T (9d)

0  b�
t
 b̄ 8t 2 T (9e)

bsoc,t+1 = bsoc,t + ⌘� · b�
t
� ⌘+ · b+

t
8t 2 T (9f)

0  bsoc,t  ēt 8t 2 T (9g)

bsoc,0 = 0 (9h)

The objective function in 9a minimizes the production cost of the system. The power
balance equality is represented by 9b, while upper limits for generation capacities are
accounted for in 9c. Power charge and discharge limitations for the BSS are expressed in
9d and 9e, respectively, while the BSS energy balance is given by 9f, including round-trip
losses. The storage capacity of the BSS is expressed in 9g. Lastly, the initial state of the
BSS is set to zero in 9h.

The objective function minimizes the sum of costs for all electricity generating sources,
storage, and import. The total cost is the product of production and cost for every
technology in the system. The cost of each thermal generation technology is modeled
to vary in accordance with the energy produced, simulating the volume-based bidding
process employed by producers. This representation of thermal costs is achieved using a
quadratic function as presented in Equation 10 below.

c(xi,t, x̄i,t) = Cmin,t + (Cmax,t � Cmin,t)(
xi,t

x̄i,t

)2 (10)

Cmax,t and Cmin,t are the maximum and minimum marginal costs for a generation tech-
nology at time t as a result of varying plant e�ciencies within the same technology. (xi,t

x̄i,t
)

is the ratio between the current generation and the maximum generation capacity of the
given generation technology. Figure 7 visualizes the quadratic cost curve, where the x-
axis represents the ratio between the current generation and the maximum generation
capacity of the specified generation technology. The cost function for import and each
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5.1 Electricity Market Modelling with BSS

thermal generation technology follows the same curve, as shown beneath, but with distinct
parameter values.

Figure 7: General cost curve for thermal generation and import in the system.

Using this curve, the thermal generation costs vary with utilized capacity. By letting
the modeled costs vary with the dispatched generation, the costs reflect the di↵erence in
e�ciencies between generation units within the same technology. This induces an e↵ect
of disaggregating a general cost of production within a unique technology into individual
unit costs, where the cheapest units are dispatched first.

The model is implemented and run in Python, using the optimization modelling language
Pyomo. Optimal production mix and BSS operation are obtained directly, while the
market price series is expressed as the dual value of the power balance in constraint 9b.

5.1.2 Decomposition of the Optimization Model

The process of breaking down a model into smaller, more manageable parts and running
them separately is known as model decomposition. This approach allows for a more in-
depth analysis of each component of the model and can simplify the modelling process,
especially for complex systems [65].

The introduction of a quadratic cost function in the model for thermals and import in-
creases the complexity of the optimization problem. As a result, it makes the optimization
problem unsolvable for periods longer than 11 days, when solved directly. The added com-
plexity arises from the transformation of the objective function from linear to non-linear,
which demands a higher solving capacity. To address this issue, a decomposition method
is applied.

In electricity market modelling with storage, accurate time representation and endpoint
constraint management are essential for a precise analysis. When solving for the com-
plete period, only one SOC endpoint must be addressed. However, when decomposing the
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problem, more SOC endpoints are created. Assessing this increase in endpoint complexity
when integrating the individual decomposed components is essential. Combining decom-
posed periods consecutively would assume fixed endpoint values, leading to unrealistic or
sub-optimal resource allocation decisions as it fails to account for the dynamic nature of
the problem.

To overcome this limitation, a rolling horizon approach is applied. This allows for a more
accurate representation of inter-period dynamics in BSS management by considering the
continuity of the SOC across di↵erent periods [66]. Incorporating overlap between periods
enables the model to account for carryover storage, ensuring optimal allocation of stored
electricity over time.

The rolling horizon decomposition is illustrated in Figure 8 below.

Figure 8: An illustration of the rolling horizon decomposition.

To implement the rolling horizon decomposition, the set of hours T is divided into N
overlapping sub-horizons with length H1. The starting point of each sub-horizon is de-
noted by 0, and the corresponding ending time by H1. The overall horizon is divided into
N non-overlapping sub-periods denoted p, where

Length of p = H2 = d T

H1
e (11)

Thus, the rolling horizon optimization problem is formulated as follows:
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5.1 Electricity Market Modelling with BSS

min Cp =
t=H1X

t=0

c(xp,t) (12a)

s.t. g(xp,t)  0 8t 2 [0, H1] (12b)

bsoc,p+1,0 = bsoc,p,H2 (12c)

8p 2 [0, N � 1].

The objective function in 12a minimizes the cost over the period of length H1, where
the cost function is the same as in equation 10. The constraint in 12b represents all the
constraints of the complete model formulation, except the BSS energy balance equation
which is represented in 12c. Here, the constraint sets the initial state of the BSS equal
to the last state of the previous period p. Note that the initial state of the new period
is equal to the state at time H2 in the previous period, and not at time H1 which is the
optimization horizon. Consequently, only the decisions made from time 0 until time H2

are taken into account when moving on to the next period. This is illustrated by the
SAVED and DISCARDED boxes in Figure 8.

The length of the overlapping period must be carefully examined to avoid endpoint in-
accuracies. The overlap period is required to be longer than the battery’s charge cycle
to ensure an optimal storage allocation [67][66]. In the simulations, the BSS displays a
charge cycle of three days at its maximum. Consequently, endpoint challenges are ad-
dressed by running the model for 10 days and using only the results from the first seven
days. This approach satisfies the overlapping requirement.

As long as the remaining period length is longer than 10 days, the model will decompose
the problem as described above. The last period, which lacks overlap data, is used directly
in the solution. With the addition of an endpoint handling approach inspired by hydro
reservoir modelling, the decomposition method applied in this thesis ensures an accurate
representation of the battery constraints within the electricity market model. This leads
to improved optimization results and a more realistic market operation.

5.1.3 Model Assumptions

Import

The model assumes zero power exchange between Germany and connected countries to
reduce model complexity arising from power exchange dynamics and price interactions
between countries. As electricity prices in Germany are highly correlated with surrounding
areas [11], this simplification of the system must be handled appropriately. To simulate the
e↵ect of high prices in periods of generation shortage in Germany, the optimization model
uses historical correlations between peak gas prices in Germany and levels of import. In
times of high import, German electricity prices are highly correlated with SRMC of gas
power plants [11]. The price of imported power due to generation shortage is therefore
priced as SRMC of gas power multiplied with a factor accounting for price e↵ects caused
by import. This factor varies between Cmin=1.1 and Cmax=2.0, depending on the level
of power import and is based on the historical correlation between SRMC of gas and
German electricity prices during import [54].
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Other Assumptions

To concentrate the scope of this thesis, certain simplifications regarding the German
electricity market are made. The complexity-reducing measures are considered to not
significantly impact the established indications made by the thesis. The assumption
of a deterministic forecast for VRE and hydropower are accounted for in Subsection
4.1.2. In addition, relevant simplifications and assumptions include demand flexibility,
internal transmission congestion, ancillary services, and ramping costs. These aspects
are neglected because the model’s intended application is on an aggregated level. The
e↵ects of these simplifications should be a topic for discussion and will be highly relevant
concerning future research.

5.2 Model Scenarios

5.2.1 Base Scenario

The model is initially run without any BSS storage capacity, to imitate the current Ger-
man electricity market with no centralized BSS operation. The base scenario is considered
to be a proxy for the performance and quality of the model. Resultant production mix and
market prices generated by the base scenario will be analyzed and compared with actual
production and prices during the period under investigation. Subsequently, the market
prices generated by the model will be subject to the same examination as the authentic
German spot prices analyzed in Subsection 4.2. The resultant descriptive statistics will be
compared with corresponding authentic statistics, where both di↵erences and similarities
will be highlighted. Moreover, the results of the base scenario will in addition serve as a
basis for comparison when introducing BSS and additional VRE to the system.

5.2.2 BSS Scenario

Varying levels of BSS storage capacities are subsequently introduced in the model. The
storage capacity ranges from ⇠1GWh, which corresponds to the present non-aggregated
storage capacity in Germany [7], to 20GWh, with increments of 1GWh. The upper limit
is chosen based on future predictions for installed BSS storage capacity in Germany [62].
The obtained production mixes and BSS operation will be analyzed and compared with
the base scenario. The same applies to descriptive statistics acquired from market prices
from BSS iterations. The inferences drawn on the relationship between BSS and market
prices will be compared with relevant literature. Furthermore, the BSS market prices at
various quantiles will serve as inputs for the subsequent quantile regression.

5.2.3 BSS & VRE Scenario

In addition to evaluating the e↵ects of BSS on electricity market prices, the interactions
between VRE and BSS are investigated. Current literature emphasizes the importance of
su�cient VRE capacity in the context of BSS [18]. To further dissect the role of BSS in
future electricity markets, the installed capacity of VRE is increased in various iterations
of the model. The VRE capacity increase ranges between zero and one, with increments
of 0.2, and represents the percent increase in installed VRE capacity in each iteration.
In this context, installed VRE capacity is defined as the aggregated capacities of solar
and wind generation. The upper limit of the VRE capacity increase is based on future
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VRE capacity predictions by Volue [54]. The goal is to observe and draw inferences on
the dynamics between BSS and VRE, and how they collectively influence the production
mix and market prices. Findings will be compared with previous model iterations and
relevant literature. The price dynamic caused by BSS and VRE interaction will also be
investigated by means of quantile regression.

An overview of all model scenarios is presented in Table 6 below.

Table 6: Overview of model scenarios.

Scenario Base BSS BSS & VRE
BSS Capacity [GWh] 0 1-20 0-20
VRE Capacity Increase 0 0 0-1

5.3 Quantile Regression

5.3.1 BSS

As stated in the introduction, one of the main objectives of this thesis is to investigate
the relationship between BSS storage capacity and electricity prices at di↵erent quantiles,
and if possible, draw inferences on the mathematical relationship between them. In order
to accomplish this objective, quantile regression is applied. The linear quantile regression
model utilized in this thesis follows the approach described in the theory section (see:
Subsection 2.5). The conditional ⌧ -quantile function of the quantile regression model is
formulated as follows:

Q⌧ (Ps|Xs) = ↵⌧ + �⌧

BSS
Xs + ✏⌧

s
(13)

where Ps is the ⌧ -quantile electricity price related to BSS scenario s, and Xs is the BSS
capacity in scenario s. ↵q is the constant term of quantile ⌧ for all BSS scenarios, and
�⌧

BSS
is the gradient of quantile ⌧ for all BSS scenarios. ✏⌧

s
is the ⌧ -quantile error term for

BSS scenario s.

To estimate the coe�cients ↵⌧ and �⌧

BSS
a linear optimization algorithm is applied. The

minimization problem for a given quantile ⌧ becomes:

min
↵⌧ , �⌧

BSS

X

s2S

(⌧ � 1Ps↵⌧+�
⌧
BSSXs)(Ps � (↵⌧ + �⌧

BSS
Xs)) (14a)

where

1Ps↵⌧+�
⌧
BSSXs =

(
1, if Ps  ↵⌧ + �⌧

BSS
Xs

0, otherwise
(15)

The minimization problem seeks to estimate coe�cients that minimize the weighted sum
of the residuals (i.e. error terms). The residuals are the di↵erences between the actual
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observed electricity prices and the estimated values provided by the quantile regression
model. Equation 15 equals one if the residual is negative and zero if it is positive. If the
residuals are positive (i.e., under-predictions), their weight is equal to ⌧ . On the other
hand, if the residuals are negative (i.e., over-predictions), their weight is equal to |⌧ � 1|.
As a result, the model minimizes the weighted absolute distances between the observed
values and the predicted values.

The quantile regression is run in Python, using the Python package Statsmodels [68].
Estimated gradients and plots are presented in the results. The gradient plots include
quantile intervals, or bands, estimated by asymptotic analysis, as they do not assume
normally distributed prices [69].

5.3.2 VRE

To distinguish potential synergy e↵ects between BSS and VRE on the electricity price
distribution from the individual impact of VRE, a separate quantile regression is run using
VRE capacity as the independent variable. The regression model utilizes prices derived
from scenarios featuring di↵erent levels of additional VRE capacity and a constant zero
BSS storage capacity. The conditional ⌧ -quantile function of the quantile regression model
for the single-variable VRE scenarios is thus defined as:

Q⌧ (Pr|Yr) = ↵⌧ + �⌧

V RE
Yr + ✏⌧

r
(16)

where Pr is the ⌧ -quantile electricity price related to VRE scenario r, and Yr is the VRE
capacity increase in scenario r.

The coe�cients ↵⌧ and �⌧

V RE
are estimated using the same methodology as described in

Subsection 5.3.1. Estimated gradients and plots are presented in the results.

5.3.3 BSS and VRE

To investigate the interconnection between BSS and the implementation of VRE, a multi-
variate quantile regression model is formulated. The purpose of an additional model is to
create a basis for comparison with the work of Botterud & Korp̊as [18]. They have shown
that increased implementation of VRE capacity has positive synergies with BSS, as it
lowers the average cost of electricity. This is due to the ability of BSS to take advantage
of the fluctuations of VRE, mainly by storing energy in times of excess VRE generation.
To explore the relationship between BSS, VRE, and the electricity price distribution, the
following quantile regression model is formulated:

Q⌧ (Ps,r|Xs, Yr) = ↵⌧ + �⌧

BSS
Xs + �⌧

V RE
Yr + ✏⌧

s,r
(17)

where Ps,r is the ⌧ -quantile electricity price related to BSS scenario s and VRE scenario
r. The error, ✏⌧

s,r
, is the ⌧ -quantile error term for BSS scenario s and VRE scenario r.

The coe�cients ↵⌧ , �⌧

BSS
and �⌧

V RE
are estimated using the same methodology as de-

scribed in Subsection 5.3.1. Estimated gradients and plots are presented in the results.
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6 Results

6.1 Electricity Market Modelling with BSS

The following section presents the results of the electricity market modelling. First, the
generation mixes and market prices from the base scenario are introduced. They are then
compared with actual production and prices, before the price distribution and quantiles
are investigated. The same procedure is subsequently repeated for the single-variable BSS
scenario and the multi-variate BSS & VRE scenario, where the base scenario serves as
the basis of comparison.

6.1.1 Base Scenario

The results of the base scenario are presented in the following subsection. In the base
scenario, no BSS storage capacity or additional VRE capacity has been implemented.

Generation Mix

The German electricity market is simulated for a span of two years, from January 2nd,
2021, to January 1st, 2023. For a clearer illustration of the optimal production mix, a
10-day time frame is selected. This choice is made as changes in the price profile due
to BSS occur on an intra-day and intra-week basis, and would not be easily visible in a
yearly plot. The specific time frame selected for analysis spans from July 16th to July
25th, 2022, as shown in Figure 9 below. During this period, there is a combination of
both high and low VRE production in relation to the demand. Since significant price
fluctuations typically coincide with high VRE production, this particular time frame may
o↵er valuable insights as it illustrates this phenomenon well. In the figure, demand is
visualized by a black curve and generation as a stacked bar plot. Please note that this
figure does not di↵erentiate between individual thermal generation technologies.

Figure 9: Market mix for the base scenario from 16th to 25th of July, 2022.

Figure 9 above demonstrates that all available VRE is generated during all hours in
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an attempt to cover demand, a pattern that remains consistent throughout the two-
year period. However, consumption is rarely fully covered by VRE, leading to thermal
generation technologies becoming the marginal generators in most hours. The complete
generation mix for the two-year period can be seen in Table 7 below.

Table 7: Generation mix for the base scenario and actual generation from January 2021
to January 2023. Absolute deviations are relative to the actual generation.

Generation tech. Base [%] Actual [%] Dev. [%]
Wind 22.8 22.0 0.8
Solar 10.3 10.0 0.3
Biomass 3.4 8.0 -4.6
Hydro 3.1 3.0 0.1
Lignite 21.7 19.6 2.1
Natural Gas 8.0 15.7 -7.7
Hard coal 17.9 11.5 6.4
Nuclear 9.7 9.1 0.6
Oil 0.9 0.4 0.5
Waste 0.7 0.7 0.0
Other 1.4 0.0 1.4

The generation mix for renewables in the base scenario closely resembles the actual pro-
duction in Germany, with the exception of biomass production. However, there are signif-
icant deviations in thermal generation, particularly in natural gas generation. The base
scenario appears to favor lignite and hard coal generation over natural gas. Addition-
ally, the base scenario is unable to meet the demand during all hours, which accounts for
the 1.4 % discrepancy in the Other category. In this thesis, Other represents the addi-
tional generation required to meet demand in situations where the existing generation is
insu�cient, analogous to imports in a real market.

The discrepancy in generation mixes could be linked to the model’s disregard for ramp-
up costs in thermal plants, permitting these plants to switch production on and o↵ every
hour. Such behavior would be less likely in an actual market due to the associated cost
of varying production. Another factor possibly contributing to this discrepancy could be
the model’s lack of cross-boundary power transfer. As the model potentially overprices
imported energy in some instances, overcompensation in local production because of the
perceived energy shortfall might occur.

it might overestimate local production to compensate for the perceived energy shortfall.

Price Profile

The price profile for the base scenario is presented and compared to actual German spot
prices in Figure 9 below for the period between July 16th and July 25th, 2022.
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Figure 10: Market price for the base scenario from July 16th to July 25th, 2022.

The price profile of the base model successfully captures the overall price trends of the
actual prices by accurately predicting when price peaks and valleys occur. Additionally,
it e↵ectively represents the varying price levels over the span of two years (see: Figure A.2
in the Appendix). This indicates that the capacities and SRMCs of di↵erent generation
technologies reliably reflect the capacities and costs in the market.

The base model encounters di�culties in capturing volatility during hours when the most
extreme price changes occur, whether they are negative or positive. Though the accurate
representation of high volatility is a recurring challenge in electricity market modelling
[15], there is most likely an added e↵ect caused by the general volatility in the European
and German electricity market during the period under investigation. The tightening of
Russian gas exports has caused supply constraints and led to a substantially more volatile
price level across the European countries, including Germany [52][60]. These sudden and
unpredictable market conditions represent significant market challenges that are di�cult
to capture in modelling. However, the model’s price prediction accuracy is considered
satisfactory, given that it e↵ectively replicates real market prices during periods of more
stable volatility throughout the two-year period.

Price Distribution

The price distribution plot for the base scenario is presented in Figure 11 below.
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Figure 11: Density plot for base scenario prices compared to German spot prices from
January 2021 to January 2023. KDE is the Kernel Density Estimation [61] of the proba-
bility density function of the prices.

The base scenario prices follow a log-normal distribution, a characteristic also found in
German spot prices. This distribution shape mirrors the typical behavior of electricity
prices, which tend to maintain a relatively low and stable level under standard conditions,
but are characterized by frequent sharp spikes during periods of high demand or supply
shortages [22][23]. These price spikes often originate from a reduced availability in power
generation, linked directly to fluctuations in fuel availability [21].

The base scenario exhibits a more concentrated distribution of prices than the German
spot prices, with reduced variability in the central region of the curve. This less pro-
nounced spread is observed by the shorter tails on the Kernel Density Estimation (KDE)
plot. In essence, the distribution exhibits lower kurtosis compared to the German spot
prices.

Descriptive Statistics

Descriptive statistics are presented for the full period in Table 8. The table presents the
statistical values for both the base and actual spot prices in the first two columns while
the subsequent columns highlight the deviation between them. Deviations are expressed
in both their respective units and as a percentage change.

35



6.1 Electricity Market Modelling with BSS

Table 8: Descriptive statistics for base scenario market prices from January 2021 to
January 2023.

Test Statistic Base Actual Deviation Deviation [%]
Min 10.00 -69.00 79 114.49
Max 794.69 871.00 -76.31 -8.76
Mean 162.26 166.54 -4.28 -2.57
Median 145.93 123.32 22.61 18.34
Standard Deviation 96.39 133.06 -36.66 -27.56
Skewness 1.26 1.39 -0.14 -9.82
Kurtosis 2.33 2.04 -0.28 -13.94
Jarque-Bera 8531.40* 8681.47* -150.06 -1.73
ADF -5.34* -5.22* -0.12 -2.24

N 17472 17472 N/A N/A
*
Indicates that the respective null hypothesis is rejected at the 1% level.

The minimum and maximum values indicate that the model does not reproduce negative
prices and that the highest prices are not entirely captured. The absence of negative
prices is due to the exclusion of ramp-up costs in thermal plants and the omission of VRE
subsidy schemes in the model formulation [2][58]. The mean values are quite similar,
while the median values suggest that the model’s price level is typically higher than the
actual prices. The standard deviation illustrates the variability in prices and reveals
less variability in the modeled prices compared to the German spot prices. The values for
skewness and kurtosis depict a model that is more symmetrical around its central tendency
and has fewer extreme values, which is consistent with the base scenario price profile seen
in Figure 10. The Jarque-Bera and ADF tests confirm the presence of non-normality and
stationarity in the price series of the base scenario. Overall, the table conveys a model
that captures general price trends but struggles with accurately representing the most
extreme prices.

Table 9 below presents the distribution of prices across percentiles.

Table 9: Price quantiles for the base scenario measured in e/MWh. Deviations are
relative to German spot prices.

Quantile 1% 5% 25% 50% 75% 95% 99%
Base 35.09 48.30 87.18 145.93 214.40 351.68 476.19
Actual -0.03 29.66 67.69 123.32 225.98 444.95 593.49
Deviation 35.12 18.64 19.48 22.61 -11.58 -93.27 -117.31
Deviation [%] N/A 62.86 28.78 18.34 -5.12 -20.96 -19.77

The figure reveals that in the base scenario, prices are higher than the actual spot prices
for the lower quantiles. This pattern is evident until the 50% quantile. For the upper
quantiles, especially the 95%, and 99%, the base scenario prices are lower than the actual
prices. In general, the deviations indicate that the model does not capture the most
extreme prices, both at the upper and lower ends. This is in line with the price peaks
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seen in Figure 10 and the distribution plot in Figure 11.

6.1.2 BSS Scenario

The results of the single-variable BSS scenarios are presented in the following subsection.
In the BSS scenarios, varying levels of BSS storage capacity are introduced to the system.
The BSS storage capacity ranges between one and 20GWh with increments of 1GWh per
scenario.

Generation Mix

Similar to the base scenario, the generation mix with the addition of 20GWh BSS storage
capacity is illustrated in Figure 12 below. The green bars below the x-axis represent BSS
charging, while the red bars near the demand line indicate discharging. Of note is the
intersection of the demand curve with the stacked bar plot, which represents production,
when the BSS is charging. The demand does not account for BSS charging, and an excess
of energy is required to accommodate the additional load from the BSS. The green bars,
which demonstrate the BSS extracting power from the grid, will have the same absolute
values as the excess production due to the power balance constraint from Equation 9b in
the model formulation.

Figure 12: Market mix for the 20GWh BSS scenario from 16th to 25th of July, 2022.

Typically, charging of the BSS occurs in hours when power generation from VRE is high.
However, the marginal technology in instances of charging is usually thermal, rather than
VRE. When discharging, the BSS replaces more expensive thermal generation with stored,
cheaper thermal generation, resulting in cost savings. The complete generation mix for
the 20GWh BSS scenario is presented in Table 10 below.
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Table 10: Generation mix for the 20GWh BSS scenario from January 2021 to January
2023. Absolute deviations are relative to the base scenario.

Generation tech. 20GWh [%] Dev. [%]
Wind 22.7 -0.1
Solar 10.3 0.0
Biomass 3.4 0.0
Hydro 3.1 0.0
Lignite 22.1 0.4
Natural Gas 7.8 -0.2
Hard coal 18.2 0.3
Nuclear 9.6 -0.1
Oil 0.9 0.0
Waste 0.7 0.0
Other 1.1 -0.3

The generation mix with increased BSS capacity is very similar to the base scenario
but shows minor di↵erences in the mix of thermal generation. The table indicates that
BSS moves some of the generation from more expensive technologies, such as import and
natural gas, to cheaper technologies, including lignite and hard coal.

Price Profile

The price profile for two BSS scenarios are presented in Figure 13 below. Specifically,
the price profiles for the 10GWh and 20GWh BSS scenarios are compared to the base
scenario.

Figure 13: Market prices for the 10GWh and 20GWh BSS scenarios from July 16th to
July 25th, 2022.

The 20GWh BSS scenario demonstrates lower maximum prices and higher minimum
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prices in comparison to the base prices represented by the pink line in the plot. The black
line, representing the 10GWh scenarios, follows a trend similar to that of the 20GWh
scenario. However, its overall impact is less pronounced. Consequently, the 10GWh
scenario remains within the visual limits established by the two extreme cases.

Price Distribution

The price distribution plot for the 20GWh BSS scenario is illustrated and compared to
the base scenario in the KDE plot in Figure 14 below.

Figure 14: Density plot for the 20GWh BSS and base scenario prices from January 2021
to January 2023. KDE is the Kernel Density Estimation [61] of the probability density
function of the prices.

The figure reveals a higher concentration of prices between 50 and 240e/MWh, signifying
a denser price distribution. The curve representing the 20GWh BSS scenario is consis-
tently below the blue curve at both ends of the spectrum, more specifically, near zero and
from 380e/MWh to 650e/MWh. As a result, the 20GWh BSS scenario demonstrates a
reduced density at both tails of the curve.

Descriptive Statistics

As with the base scenario, descriptive statistics for the full two-year period are presented
for two BSS scenarios in Table 11. The table displays statistical values for the 10GWh and
20GWh scenarios, respectively. Additionally, deviation from the base scenario in terms
of percent change is presented.
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Table 11: Descriptive statistics for the 10GWh and 20GWh BSS scenario market prices
from January 2021 to January 2023.

Test Statistic 10GWh Deviation [%] 20GWh Deviation [%]
Min 10.00 0.00 30.70 207.01
Max 647.94 -18.47 593.32 -25.34
Mean 161.67 -0.36 161.08 -0.73
Median 146.76 0.57 147.43 1.03
Standard Deviation 92.94 -3.58 90.72 -5.89
Skewness 1.10 -12.74 0.99 -20.81
Kurtosis 1.50 -35.35 1.08 -53.44
Jarque-Bera 5142.21* -39.71 3733.59* -56.24
ADF -5.35* -0.09 -5.17* 3.14

N 17472 N/A 17472 N/A
*
Indicates that the respective null hypothesis is rejected at the 1% level.

The minimum price remains unchanged for the 10GWh scenario, while it increases from
10 to 31e/MWh for the 20GWh scenario. The opposite is true for the maximum price,
which decreases by approximately 54e/MWh between the BSS scenarios alone, though
both scenarios significantly reduce the maximum price compared to the base scenario.
The mean and median values do not exhibit substantial changes, indicating that the
BSS primarily influences price outliers on both ends of the spectrum, thus reducing price
volatility. This observation is supported by the negative change in standard deviations.
The changes in skewness and kurtosis suggest that the distribution is more symmetrical
and has fewer price outliers with increased BSS storage capacity. Notably, the kurtosis
decreases significantly in both BSS scenarios. The decreased values for skewness and
kurtosis are consistent with the shape of the BSS price distribution in Figure 14. As with
the base scenario, the Jarque-Bera and ADF tests still reject the hypotheses of a normal
distribution and non-stationarity. In summary, the less extreme minimum and maximum
prices, paired with reduced values for kurtosis, skewness, and standard deviation, illustrate
how the BSS contributes to a more compact and less variable price distribution. As a
result, the prices are closer and more symmetrically positioned around its central tendency.

Table 12 displays the distribution of prices across quantiles and between the two BSS
scenarios.

Table 12: Price quantiles for BSS scenarios measured in e/MWh. Deviations are relative
to the base scenario.

Quantile 1% 5% 25% 50% 75% 95% 99%
10GWh 39.15 49.13 87.31 146.76 213.50 344.04 458.70
Dev. from base [%] 11.58 1.72 0.15 0.57 -0.42 -2.17 -3.67
20GWh 39.82 49.58 87.58 147.43 214.02 332.69 440.96
Dev. from base [%] 13.50 2.64 0.46 1.03 -0.18 -5.68 -7.40

The price deviations from the base scenario are, in general, more evident in the 20GWh
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scenario compared to the 10GWh scenario. The deviations in the middle quantiles are
minimal and comparable for both BSS scenarios. In contrast, for the upper and lower
quantiles, there is a di↵erence in the extent of deviations between the two BSS scenarios.
Compared to the 10GWh scenario, the 20GWh scenario exhibits a greater increase in the
lower quantiles and a larger reduction in the upper quantiles.

Relative to the base scenario, the absolute deviations are significantly greater for the
upper quantiles. This phenomenon can be explained by assessing the smaller di↵erences
in SRMC among lower-cost technologies, compared to the significant di↵erences in SRMC
between expensive technologies. When BSS alters the generation mix, cost disparities
result in larger price di↵erences when switching between expensive technologies compared
to shifting between cheaper technologies.

6.1.3 BSS & VRE Scenario

The results of the multi-variate BSS & VRE scenarios are presented in the following sub-
section. In the multivariate scenarios, varying levels of both BSS storage capacity and
additional VRE capacity are introduced to the system. The BSS storage capacity ranges
between zero and 20GWh, while the VRE capacity increase is between zero and one with
increments of 0.2.

Generation Mix

The generation mix for the multivariate scenario with 20GWh capacity and a VRE in-
crease of 0.6 is presented in Figure 15 below. The figure employs the same description for
the BSS charging cycle and the balance between production and demand as presented for
Figure 12 illustrating the production mix for the single-variable BSS scenario.

Figure 15: Market mix for the multivariate 20GWh BSS and 0.6 VRE increase scenario
from July 16th to 25th, 2022.

When introducing additional VRE capacity into the system, the VRE can more frequently
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meet the demand compared to the base and single-variable BSS scenario. With more VRE
capacity entering the system, the VRE is more often the main source when charging the
BSS.

The complete generation mix for the multivariate scenario with 20GWh BSS and 0.6 VRE
increase is presented in Table 13 below. The single-variable BSS scenario in the table is
the corresponding scenario to the multi-variate scenario where the BSS storage capacity
is the same but the VRE increase is zero.

Table 13: Generation mix for the multivariate 20GWh BSS and 0.6 VRE increase sce-
nario from January 2021 to January 2023. Absolute deviations are relative to the single-
variable 20GWh BSS and base scenario.

Generation
technology

20GWh &
0.6 VRE [%]

Dev. from
BSS [%]

Dev. from
base [%]

Wind 35.8 13.1 13.0
Solar Photovoltaic 16.1 5.8 5.8
Biomass 2.4 -1.0 -1.0
Hydro 3.0 -0.1 -0.1
Lignite 15.8 -6.3 -5.9
Natural Gas 4.4 -3.4 -3.6
Hard coal 12.3 -5.9 -5.6
Nuclear 8.6 -1.0 -1.1
Oil 0.5 -0.4 -0.4
Waste 0.7 0.0 0.0
Other 0.4 -0.7 -1.0

Due to the increased VRE capacity, the multivariate scenario generates significantly more
wind and solar power compared to the single-variable BSS and base scenario. The in-
creased VRE generation leads to a substantial reduction in the utilization of the most
expensive thermal generation technologies. This is evident in the decreased generation of
lignite, hard coal, and natural gas. In conclusion, it is clear that the inclusion of additional
VRE capacity amplifies the merit order e↵ect [33].

Price Profile

The price profiles of the multivariate scenarios are exemplified by the 20GWh and 0.6
VRE increase in Figure 15 below. The price profile is compared with both the base and
single-variable 20GWh BSS scenario.
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Figure 16: Market prices for the multivariate 20GWh BSS and 0.6 VRE increase scenario
from July 16th to July 25th, 2022.

In general, the prices of the multivariate scenario seem to follow the same profile as the
single-variable 20GWh BSS scenario. However, the price level of the multivariate scenario
is significantly lower and reaches zero more often in comparison due to the high share of
VRE generation at zero cost. This trend remains consistent throughout the two-year
period. Despite the additional consumption from BSS charging, price valleys persist and,
in some cases, are even more pronounced. In addition, the BSS contributes to peak price
shaving because there is an excess supply of zero-priced VRE generation available to meet
both the demand and the charging requirements of the BSS. Consequently, the combined
implementation of increased VRE capacity and BSS leads to a price profile where the
highest extreme prices are reduced, and the overall price level is lower compared to the
base scenario and the single-variable BSS scenario. The price profile showcased in Figure
16 e↵ectively demonstrates the combined e↵ect of BSS and VRE.

Price Distribution

The price distribution plot for the multivariate 20GWh BSS and 0.6 VRE increase scenario
is presented and compared with the 20GWh BSS scenario in Figure 17 below.
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Figure 17: Density price plot for the multivariate 20GWh BSS and 0.6 VRE capacity
increase scenario and the single-variable 20GWh BSS scenario from January 2021 to
January 2023. KDE is the Kernel Density Estimation [61] of the probability density
function of the prices.

When considering the price distribution, the combined impact of BSS and VRE results
in a distribution that is more concentrated around its central tendency. The central
tendency is significantly lower compared to other scenarios, as demonstrated in Figure
17 above. The introduction of BSS contributes to a reduction in skewness and kurtosis
by removing the most extreme prices at the upper end of the distribution. In contrast,
the increased capacity of VRE results in a significant rise in instances with zero prices,
ultimately reducing the central tendency of the distribution.

Descriptive Statistics

Descriptive statistics for the full two-year period are presented for the multivariate 20GWh
BSS and 0.6 VRE increase scenario in Table 14. Deviations from the single-variable
20GWh BSS and the base scenario are included.
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Table 14: Descriptive statistics for the multivariate 20GWh BSS & 0.6 VRE increase
scenario market prices from January 2021 to January 2023.

Test Statistic 20GWh & 0.6VRE Dev. from BSS [%] Dev. from base [%]
Min 0.00 -100.00 -100.00
Max 551.16 -7.11 -30.64
Mean 120.21 -25.37 -25.91
Median 107.10 -27.36 -26.61
Standard Deviation 87.81 -3.21 -8.90
Skewness 0.79 -20.66 -37.17
Kurtosis 0.64 -40.56 -72.33
Jarque-Bera 2111.50* -43.37 -75.22
ADF -7.25* -40.13 -35.73

N 17472 N/A N/A
*
Indicates that the respective null hypothesis is rejected at the 1% level.

The new minimum value is zero, as seen frequently in both Figure 15 and 17. Although
there is a decrease in maximum value, it is not as substantial as the reduction observed
while transitioning from the base scenario to the single-variable BSS scenario. The central
tendency, however, is significantly reduced as both the mean and median have decreased
by approximately 25% and 27%, in the BSS scenario. The variability is slightly reduced,
while both skewness and kurtosis have decreased substantially, which is in line with the
observations in the density plot in Figure 17. Lastly, the price series is still non-normally
distributed and stationary.

The price quantiles of the multivariate scenarios are illustrated by the 20GWh BSS and
0.6 VRE capacity increase scenario in Table 15.

Table 15: Price quantiles for the multivariate 20GWh & 0.6 VRE increase scenario
measured in e/MWh. Deviations are relative to the single-variable 20GWh BSS and
base scenario.

Quantile 1% 5% 25% 50% 75% 95% 99%
20GWh & 0.6VRE 0.00 0.00 55.63 107.10 177.10 271.82 380.54
Dev. from BSS [%] -100.00 -100.00 -36.47 -27.36 -17.25 -18.05 -13.70
Dev. from base [%] -100.00 -100.00 -36.18 -26.61 -17.40 -22.71 -20.09

The 1% and 5% quantiles are both zero. In addition, the 25%, 50%, and 75% quantiles
have been reduced substantially compared to the single-variable 20GWh BSS and base
scenario. The prices of the two upper quantiles have also decreased significantly. However,
the reduction from the single-variable 20GWh BSS scenario is less evident than from the
base scenario for the upper quantiles.

The price quantiles for a 0GWh BSS and 0.6 VRE increase scenario are presented in Table
16.
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Table 16: Price quantiles the for a 0GWh BSS and 0.6 VRE increase scenario measured
in e/MWh. Deviations are relative to the base scenario.

Quantile 1% 5% 25% 50% 75% 95% 99%
0GWh & 0.6VRE 0.00 0.00 53.33 105.83 178.06 284.19 418.84
Dev. from base [%] -100.00 -100.00 -38.82 -27.48 -16.95 -19.19 -12.04

For the lower and middle quantiles, the price reductions from the base scenario are very
similar to those seen in Table 15. This indicates that additional VRE leads to significant
price reductions for most quantiles, regardless of the level of BSS storage capacity. How-
ever, for the two upper quantiles, there are di↵erences between the two 0.6 VRE increase
scenarios. Specifically, the scenario incorporating 20GWh BSS storage capacity exhibits
even greater price reductions for the upper quantiles compared to the scenario without
BSS.

To summarize the findings of Table 15 and 16, the additional capacity of VRE significantly
reduces all price quantiles in comparison to both the base scenario and the single-variate
BSS scenario. However, there are noticeable di↵erences in the deviation levels between
the multi-variate scenario and the base/single-variate BSS scenarios, particularly for the
upper two quantiles. The di↵erences in the two upper quantiles of Table 15 (with 20GWh
battery capacity) and Table 16 (with 0GWh battery capacity) further emphasize the role
of BSS in reducing the occurrence of the highest price extremes in scenarios with the same
amount of VRE capacity. These findings suggest that BSS is particularly beneficial in
mitigating the highest prices, as VRE alone cannot address these exceptional price levels
fully.

6.2 Quantile Regression

In this section, the results of the quantile regression models are presented through plots
of the regression lines and the gradients for the di↵erent quantiles. The gradients are
also presented in a table format, providing the exact values. The results of the single-
variable BSS scenarios and the single-variable VRE scenarios are presented first. Lastly,
the partial impacts of both BSS and VRE on the multi-variable system are isolated and
presented through plots of the gradients.

6.2.1 BSS

Before evaluating the results of the single-variable BSS quantile regression, and thereby
drawing inferences on the mathematical relationship between BSS and electricity price
quantiles, it is essential to evaluate the choice of selecting a linear quantile regression
approach. While the impact of BSS on price concentration in Table 12 seems to emulate
a linear relationship where the influence is proportional to the storage capacity of the
BSS, the trend is more clearly visualized in Figure A.3 in the Appendix. The figure
illustrates that as the BSS storage capacity increases, all price quantiles exhibit nearly
perfect linearity with either negative or positive gradients. This characteristic makes a
linear approach to the quantile regression favorable. A linear relationship can also be
seen for the impact of VRE capacity on electricity price quantiles (see: Figure A.4 in the
Appendix).
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The scatter plot of hourly market prices for all BSS scenarios is presented in Figure 18
below along with the regression lines from the quantile regression model. The BSS storage
capacity varies from zero to 20GWh, while the VRE increase is constant at zero, indicating
that no additional VRE is added to the system.

Figure 18: Price scatter plot and quantile regression lines for varying levels of BSS
storage capacity and constant zero VRE increase.

(a) Zoomed-in view of the regression lines

for the 99% and 95% quantiles.

(b) Zoomed-in view of the regression lines

for the 1% and 5% quantiles.

The figure shows that the upper price quantiles are reduced as the storage capacity of
the BSS increases, while the opposite trend is observed for the lower price quantiles. In
simpler terms, the upper quantiles exhibit negative gradients, while the lower quantiles
demonstrate positive gradients. The gradients are more clearly visualized in Figure 18a
and 18b. These findings are in line with the price quantile deviations presented in Table 12
and indicate that the price distribution is turning more concentrated as the BSS capacity
increases.

The gradient, �BSS, exhibits variation across quantiles, as demonstrated in Figure 19
below. A positive linear relationship between BSS storage capacity and electricity price
quantiles is associated with positive gradients for �BSS. The blue, shaded area illustrates
the quantile intervals, or bands, representing the range of uncertainty or variability around
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the estimated quantile regression line. The pink line in the plot represents a standard
Ordinary Least Squares (OLS) regression with corresponding confidence interval lines,
i.e., a regression where di↵erences between quantiles are not taken into account.

Figure 19: Gradients for BSS across price quantiles in a system with varying levels of
BSS storage capacity and a constant zero VRE increase.

Gradients for the lower and middle quantiles up to the 75% quantile are positive but
modest in magnitude. In contrast, the gradients for the upper quantiles are negative.
For the 95% and 99% quantiles, the gradients are considerably larger, in absolute value,
than those of the lower quantiles. This implies that a greater BSS storage capacity exerts
a progressively more substantial e↵ect on higher prices. The quantile bands are narrow
across all quantiles, indicating a low level of uncertainty in the estimations. As the impact
of BSS varies across the price quantiles, it is evident that quantile regression provides a
more accurate description of the relationship compared to a standard OLS regression.
Unlike OLS, quantile regression captures the di↵ering influence across the price quantiles.

The exact gradient values are presented in Table 17 below.

Table 17: Gradients for BSS across price quantiles in a system with varying levels of
BSS storage capacity and constant zero VRE increase. The gradients are expressed in
[e/MWh]
[GWh] .

Quantile 1% 5% 25% 50% 75% 95% 99%
�BSS 0.26 0.07 0.02 0.07 -0.02 -0.98 -1.70

In absolute terms, the largest value is -1.70 in the 99% quantile. The value implies that the
99% quantile will be reduced by 34e/MWh when adding 20GWh BSS storage capacity
to the system.

48



6 RESULTS

In summary, the findings show evidence of a linear relationship between all quantiles of
the electricity price distribution and BSS storage capacity, where the impact varies from a
modestly positive relationship up until the 75% quantile to a greater negative relationship
for the 95% and 99% quantile.

6.2.2 VRE

The isolated impact of VRE capacity in a system without BSS is presented in Figure 20
below. The VRE capacity increase ranges between zero and one, with increments of 0.2,
and represents how much the current installed VRE capacity is increased in percent for
each iteration compared to the base scenario.

Figure 20: Price scatter plot and quantile regression lines for varying levels of VRE
capacity increase and constant zero BSS storage capacity.

(a) Zoomed-in view of the regression lines

for the 99% and 95% quantile.

(b) Zoomed-in view of the regression lines

for the 1% and 5% quantile.

The upper price quantiles are reduced as VRE capacity increases, exhibiting a similar
pattern as observed in the single-variable BSS scenarios seen in Figure 18a. The same
trend is seen in the lower quantiles, where the prices decrease as VRE capacity is increased.
In addition, the regression lines in the central region of the plot consistently reveal a
negative trend as VRE increases. This implies that the impact of increased VRE capacity
on the lower and middle quantiles stand in sharp contrast to the influence of BSS storage
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capacity on the same quantiles, distinguishing these results from those seen in the single-
variable BSS scenarios.

The impact of increased VRE capacity on electricity prices for di↵erent quantiles is pre-
sented in Figure 21 below.

Figure 21: Gradients for VRE across price quantiles in a system with varying levels of
VRE capacity and constant zero BSS storage capacity.

The figure displays a less consistent trend compared to the �BSS plot, as the gradient of
the VRE does not consistently decrease across the quantiles. However, the gradients are
consistently negative, indicating that VRE has a negative impact on prices throughout
all quantiles. Similar to the e↵ect of BSS observed in Figure 19, the upper price quan-
tiles exhibit the most significant sensitivities. The quantile bands are narrow across all
quantiles, indicating a low level of uncertainty in the estimations. The exact gradients
are presented in Table 18 below.

Table 18: Gradients for VRE across price quantiles in a system with varying levels of
VRE and constant zero BSS storage capacity. The gradients are expressed in [e/MWh]

[VRE increase] .

Quantile 1% 5% 25% 50% 75% 95% 99%
�V RE 0.00 -51.57 -82.62 -64.20 -56.91 -81.52 -82.83

In absolute terms, the largest value is -82.83 in the 99% quantile. The value implies that
the 99% quantile will be reduced by 82.83e/MWh when introducing a VRE increase of
1, i.e., a 100% increase in the VRE capacity.

6.2.3 BSS and VRE

Quantile regression results for the multivariate system with varying levels of BSS and
VRE are now presented by their respective gradient plots. The partial impact of BSS
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storage capacity on the multi-variable system is presented in Figure 22 below.

Figure 22: Gradients for BSS across price quantiles in a system with varying levels of
both BSS storage and VRE capacity.

The gradients, �BSS follow the same trend as in the single-variable BSS scenario seen in
Figure 19. The gradients of the lower and middle quantiles up until the 75% quantile are
modest, yet positive. The upper quantile gradients are negative, and for the 95% and
99% quantiles, the values are significantly larger than for the lower quantiles in absolute
terms.

The gradients for BSS in the multi-variable scenario are presented in Table 19, including
deviations from the single-variable BSS scenario.

Table 19: Gradients for BSS across price quantiles in a system with varying levels of
both BSS storage capacity and VRE capacity, with deviations from the single-variable
BSS scenario. The gradients are expressed in [e/MWh]

[GWh] .

Quantile 1% 5% 25% 50% 75% 95% 99%
�BSS 0.07 0.00 0.10 0.07 -0.02 -0.70 -1.63
Deviation -0.19 -0.07 0.08 -0.00 0.01 0.27 0.07

The reduced gradients in the two lower quantiles indicate that the BSS increases low prices
less evidently in the multivariate scenario than in the single-variable scenario. For the
upper price quantiles, the trend is the opposite as the high prices seem to be less reduced
by the BSS in the multi-variable scenario than in the single-variable scenario. In absolute
terms, however, the di↵erences in BSS impact between the single- and multi-variable
scenarios are modest. The largest deviation value, which is 0.27 for the 95% quantile,
implies that the 95% quantile is only reduced by 5.40e/MWh less in the multivariate
scenarios than the single-variable when introducing 20GWh BSS to the system. These
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findings imply that the BSS functions with consistent e�ciency in a multivariate system
relative to the single-variable BSS scenarios.

The impact of increased VRE capacity in the multivariate scenarios is illustrated in Figure
23 below.

Figure 23: Gradients for VRE across price quantiles in a system with varying levels of
both BSS storage and VRE capacity.

The shape of the figure is very similar to the gradient plot in the single-variable VRE
scenario seen in Figure 21. However, the gradient of the 1% quantile has become signifi-
cantly more negative. Regarding the upper quantiles, the gradients of the 95% and 99%
quantiles exhibit a marginally more negative tendency. The exact VRE gradient values
of the multivariate scenario are presented in Table 20 below.

Table 20: Gradients for VRE across price quantiles in a system with varying levels of
both BSS storage capacity and VRE capacity, with deviations from the single variable
VRE scenario. The gradients are expressed in [e/MWh]

[VRE increase] .

Quantile 1% 5% 25% 50% 75% 95% 99%
�V RE -56.82 -59.76 -71.19 -65.07 -58.10 -84.19 -84.44
Deviation -56.82 -8.19 11.43 -0.87 -1.18 -2.68 -1.60

Most gradients exhibit further reductions compared to the single-variable VRE scenario.
A clear di↵erence is seen in the 1% quantile with a deviation of -56.82 from the single-
variable VRE scenario. Thus, the 1% price quantile is reduced by an additional 56.82e/MWh
in the multi-variable scenarios when increasing the VRE capacity increase from zero to
one, compared to the same increase in the single-variable VRE scenario.

As the 1% price quantile of the base scenario is 35.09e/MWh (see: Table 9), the mul-
tivariate VRE 1% gradient suggests that the lowest prices would be negative for a VRE

52



6 RESULTS

increase higher than 0.6, regardless of BSS storage capacity. Negative prices would occur
if the VRE increase reduces prices beyond the given value of the 1% price quantile of
the base scenario. Given the gradient value of -56.82 for the 1% price quantile, an VRE
increase of 0.7 would reduce the 1% quantile by 39.77e/MWh, exceeding the current
base scenario 1% price quantile of 35.09e/MWh. However, the current formulation of
the electricity market model does not allow negative pricing. Therefore, the multivariate
quantile regression seems to overestimate the impact of substantial VRE increases on the
lowest prices.

In summary, the results of the multivariate quantile regression show that VRE exhibits
increased e�ciency in terms of price reductions when operating within a system that
incorporates BSS. As evident from Table 20, most price quantiles experience further
reductions compared to the single-variable VRE scenario. This indicates that the presence
of BSS enables the system to more e↵ectively utilize and store excess VRE generation,
resulting in lower electricity prices across all quantiles.
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7 Discussion

The price smoothing e↵ect observed in the BSS scenarios is in line with the majority
of pertinent literature regarding optimal BSS operation [37][38][31][35]. Increasing the
storage capacity of the BSS reduces volatility, aligning with previous literature [36][37][38].
Regarding the impact of BSS on the generation mix, it is evident that the BSS replaces
expensive generation sources with more cost-e↵ective alternatives. These findings are
consistent with the relevant literature [18][31][33] and further substantiates the optimal
functioning of BSS. The influence of BSS on the generation mix particularly resonates
with the research of Nyamdash & Denny [32], suggesting that introducing BSS does not
necessarily lead to lower average prices when the generation mix remains close to constant.
This is evidenced by the findings of the BSS scenarios, where the central tendency remains
near unchanged regardless of BSS storage capacity. While previous research has implicitly
discussed the varying impact of BSS on electricity price quantiles by examining peak and
o↵-peak hours [37][31][35], this thesis is the first to explicitly describe the relationship
between BSS storage capacity and electricity prices on a quantile level. The findings
reveal a linear relationship between all quantiles of the electricity price distribution and
BSS storage capacity, with varying impact across the quantiles in terms of sign and
magnitude.

Consistent with related studies [18][46][47][33], this thesis suggests that VRE has the po-
tential to reduce the overall price level. In contrast, the BSS primarily contributes to a
more concentrated price distribution without significantly altering the central tendency
of the price distribution. In real systems, the expansion of VRE capacity is often accom-
panied by expectations of increased demand, or changes to the generation mix, which
may a↵ect the observed price reduction compared to scenarios with constant consump-
tion. Nonetheless, the main claim that VRE has a negative impact on prices across all
quantiles remains applicable and aligns with related research [47][46].

The observed dynamics of price reduction between VRE and BSS are consistent with the
findings of Korp̊as & Botterud [18], where BSS facilitates the storage of surplus VRE that
would otherwise be curtailed, stimulating increased VRE generation. This increased VRE
generation displaces thermal capacity from the market, resulting in reduced electricity
prices.

An examination of BSS e�ciency reveals that higher price volatility, similar to the levels
seen in the actual German market, could enhance its operation. This observation suggests
that BSS implementation could be even more e�cient in the actual market as the potential
for price concentration increases. A strategy to better replicate real market volatility could
be through the introduction of stochasticity in VRE generation forecasts. In scenarios
where stochastic VRE forecasts underestimate the wind and/or solar activity, the need
for thermal generation increases, raising the market prices relative to a perfect forecast.
The deterministic forecast, operating under the assumption of perfect foresight, would
yield lower prices due to the assured maximum utilization of VRE capacity. Therefore,
a stochastic forecast could more faithfully represent the uncertainties embedded in day-
ahead bids, thus providing a closer approximation to the dynamics of the actual market.
This may raise the volatility in the modeled prices and enhance the e�ciency of BSS.
However, the stochastic nature of VRE generation would prevent optimal operation of
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7 DISCUSSION

BSS due to the absence of perfect foresight. This could potentially lead to sub-optimal
operation and result in a less pronounced impact on the concentration of the electricity
price distribution. While intriguing, the e↵ect of these two factors proves hard to quantify
and should be investigated further.

The findings of this thesis carry implications for all participants in the electricity market.
For consumers, the adoption of BSS would result in a more predictable cost of electricity,
with a decrease in the occurrence of extreme prices. This enhanced predictability of ex-
penses reduces the risk associated with future financial commitments, enabling consumers
to make better-informed decisions regarding their future activities. In essence, BSS has
the potential to bring about a substantial transformation in risk management for both
industrial and residential consumers.

From the perspective of producers, the adoption of large-scale industrial BSS will have
an impact on revenues due to the reduced frequency of extreme prices. However, as long
as there is no significant change in the generation mix, the average income for the ag-
gregated pool of producers is expected to remain relatively similar. The concentration of
prices, caused by BSS, can contribute to more predictable revenue streams. This enables
producers to gain better insights into the future profitability of their operations. Fur-
thermore, BSS increases the e�ciency of VRE by storing otherwise curtailed generation.
As a result, the additional VRE generation will increase the profitability of VRE. This
enhanced profitability can have a profound impact on the energy market as it incentivizes
investment in renewable energy projects and encourages the shift away from more expen-
sive and carbon-intensive energy sources. In this way, the combination of BSS and VRE
can contribute to a more sustainable and cost-e↵ective energy landscape.
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8 Conclusion

In this thesis, the impact of BSS on the electricity price distribution is investigated by
modelling the German electricity market from January 2021 to January 2023. The results
show that the BSS creates a denser and less variable price distribution, where the prices
are closer and more symmetrically positioned around its central tendency. This trend
is amplified with increasing BSS storage capacity. The influence of BSS across price
quantiles demonstrates varying patterns, with modestly positive e↵ects observed in the
lower quantiles and larger negative impacts in the upper quantiles.

Quantile regression analysis reveals a linear relationship between BSS storage capacity
and all quantiles, with varying sign and magnitude of the gradients. The lower quantiles
display a positive but modest influence, whereas the upper quantiles exhibit a larger
negative impact compared to the lower quantiles. The results are unique in the sense that
they are the first to explicitly describe a mathematical relationship between BSS storage
capacity and electricity price quantiles.

The introduction of additional VRE capacity to the system leads to a notable rise in
instances with zero electricity prices, resulting in a decrease in the central tendency of the
distribution. While the e�ciency of BSS remains consistent regardless of the addition of
surplus VRE capacity, VRE demonstrates enhanced e�ciency in terms of price reductions
when operating alongside BSS in the system, especially for the upper price quantiles. This
indicates that the presence of BSS enables the system to more e↵ectively utilize and store
excess VRE generation, resulting in lower electricity prices.

8.1 Further Work

Future research can explore the dynamic interaction between BSS and VRE in a system
where both consumption and the generation mix undergo changes with increasing VRE
capacity. A possible approach is to incorporate additional variables, such as consumption
and thermal generation technologies, in the quantile regression analysis. This investiga-
tion would be valuable considering the growing adoption of VRE, which is expected to
significantly alter the generation mix and energy landscape in the future.

Furthermore, incorporating stochastic forecasts for VRE generation would contribute to
a more realistic representation of the intermittency of VRE. This could result in a more
accurate representation of BSS operation, which may be closer to real-world conditions.

Lastly, an in-depth analysis of the generation cost savings resulting from the implementa-
tion of BSS could be conducted. This analysis could contextualize the savings in relation
to the installed capacity of the BSS, serving as a proxy for the cost of BSS and providing
a measure of the potential profitability associated with an implementation in electricity
markets.
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A Appendix

VRE production vs installed capacity

Figure A.1: Average VRE production versus total installed capacity for 2022. Source:
Volue Insight [48].

SRMC assumptions

Table 21: Historical average SRMC of thermal generation technologies in Germany.

Type SRMC [e/MWh]
Nuclear 10 [57]
Waste 5 [54]
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A APPENDIX

Base model prices vs German spot prices

Figure A.2: Price profile for the base scenario and actual spot prices from January 2021
to January 2023.

Price quantiles for single-variable BSS and VRE scenarios.

Figure A.3: Price quantiles for all single-variable BSS scenarios.
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Figure A.4: Price quantiles for all single-variable VRE scenarios.
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