
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s 
an

d 
M

an
ag

em
en

t 
D

ep
t. 

of
 In

du
st

ria
l E

co
no

m
ic

s 
an

d 
Te

ch
no

lo
gy

 M
an

ag
em

en
t

M
as

te
r’s

 th
es

is

Erlend Stegavik Rygg
Hjalmar Jacob Vinje
Cassandra Wu

Enhanced Option Pricing Using
Deep Learning

A Time-Series Approach with a Combined
LSTM-MLP Model

Master’s thesis in Industrial Economics and Technology
Management
Supervisor: Sjur Westgaard
Co-supervisor: Morten Risstad
June 2023





Erlend Stegavik Rygg
Hjalmar Jacob Vinje
Cassandra Wu

Enhanced Option Pricing Using
Deep Learning

A Time-Series Approach with a Combined
LSTM-MLP Model

Master’s thesis in Industrial Economics and Technology Management
Supervisor: Sjur Westgaard
Co-supervisor: Morten Risstad
June 2023

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management





Preface

This research represents the conclusion of our master’s degree at the Norwegian University of
Science and Technology (NTNU). It reflects the knowledge we’ve gathered and the skills we’ve
honed throughout our studies. We’ve had a range of experiences at NTNU that have shaped our
understanding and approach to learning and research. It’s been a meaningful journey of growth
within this academic environment.

We are grateful for the support and guidance from our supervisors, Professor Sjur Westgaard,
and the Head of FX and interest rate derivatives at SpareBank 1 Markets, Ph.D. Morten Risstad.
Their expertise and advice have been instrumental in accomplishing this research. Furthermore,
we would like to thank Professor Christian Oliver Ewald for inspiring discussions and valuable
input on our research topic. We also want to thank our friends and peers for their continuous
support and encouragement.

With the support from the people mentioned above, we are grateful for the experience of researching
the complex yet fascinating problem of option pricing. We hope our research not only contributes
to the current body of knowledge, but also opens new doors for the exploration of the exciting
intersection of deep learning with finance.

Erlend Stegavik Rygg, Hjalmar Jacob Vinje and Cassandra Wu

Trondheim, Norway, June 11, 2023

i



Abstract

This paper presents a deep learning approach to option pricing that integrates a long short-
term memory (LSTM) network with a multi-layer perceptron (MLP) to form a combined
LSTM-MLP model. The proposed model uses its LSTM component to extract time series
information from the historical returns of the underlying asset. This information is then
used by the MLP component, along with the option characteristics for a given contract, to
determine the option price. By training the pricing model on historical returns, we enable
it to extract time series information that encapsulates market dynamics including volatility.
This can replace the need for an explicit volatility measure, which is required by established
option pricing methods.

We empirically test the proposed LSTM-MLP pricing model by applying it to European
call options on the S&P 500 index from 2015 to 2022. Using sliding windows, we simulate
real-life deployment with monthly retraining. Our results show that the LSTM-MLP model
outperforms benchmark models in pricing accuracy, predictive performance, and risk-adjusted
trading returns. This demonstrates its potential usefulness as a valuation benchmark for
options market makers or as trading signals for options investors.

ii



Sammendrag

Denne artikkelen presenterer en dyplæringstilnærming til opsjonsprising som integrerer et long
short-term memory (LSTM) nettverk med et multi-layer perceptron (MLP) netverk for å danne en
kombinert LSTM-MLP modell. Den foresl̊atte modellen bruker sin LSTM-komponent til å trekke
ut tidsserieinformasjon fra de historiske avkastningene til den underliggende eiendelen. Denne in-
formasjonen brukes deretter av MLP-komponenten, sammen med opsjonskarakteristikkene for en
gitt kontrakt, for å bestemme opsjonsprisen. Ved å trene prisingsmodellen p̊a historiske avkast-
ninger, gjør vi det mulig for den å trekke ut tidsserieinformasjon, inkluderer volatilitet. Dette kan
erstatte behovet for et eksplisitt volatilitetsm̊al som kreves av etablerte metoder for opsjonsprising.

Vi tester empirisk den foresl̊atte LSTM-MLP prismodellen ved å bruke den p̊a europeiske kjøpsopsjoner
p̊a S&P 500-indeksen fra 2015 til 2022. Ved å bruke rullerende vindu, simulerer vi virkelighetsnær
implementering med m̊anedlig trening. V̊are resultater viser at LSTM-MLP modellen overg̊ar
benchmark-modeller i prisingsnøyaktighet, prediktiv ytelse og risikojustert avkastning. Dette
demonstrerer modellens potensielle praktiske nytte som en prisingsreferanse for markedsdeltakere
eller som handelssignaler for opsjonsinvestorer.

iii



Table of Contents

List of Figures vi

List of Tables vii

List of Abbreviations viii

1 Introduction 1

2 Literature review 3

2.1 Option pricing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Volatility measures for neural network-based option pricing models . . . . . . . . . 5

2.3 Performance measures for neural network-based pricing models . . . . . . . . . . . 6

2.4 Interpretable machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Data 8

3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Methods 11

4.1 Combined LSTM-MLP option pricing model . . . . . . . . . . . . . . . . . . . . . 11

4.2 Backtesting trading strategy based on price differences . . . . . . . . . . . . . . . . 19

4.3 Benchmark models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Interpretability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Results and discussion 26

5.1 Pricing performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Predictive ability of directional price movements . . . . . . . . . . . . . . . . . . . 39

5.3 Trading performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion 45

Bibliography 47

Appendix 51

A Nelson–Siegel–Svensson for generating rate curves 51

iv



B MLP model hyperparameter search 52

C Interpretability analysis 53

D Market conditions 54

E Trading performance by year 54

v



List of Figures

3.1 Number of options quotes at different levels of maturity and moneyness . . . . . . 10

3.2 Average daily trading volume per contract for different maturity and moneyness . 10

4.3 Architecture of the combined LSTM-MLP option pricing model . . . . . . . . . . . 11

4.4 Structure of an LSTM memory cell at a specific time step t. . . . . . . . . . . . . . 13

4.5 Data structure for the LSTM-MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.6 Sliding windows setup for model training and testing . . . . . . . . . . . . . . . . . 16

4.7 Hyperparameter search for the LSTM-MLP . . . . . . . . . . . . . . . . . . . . . . 17

5.8 Boxplot of pricing difference for all models . . . . . . . . . . . . . . . . . . . . . . . 27

5.9 Boxplot of pricing differences for all models across all years . . . . . . . . . . . . . 30

5.10 Pricing performance of the LSTM-MLP with MACD overlay . . . . . . . . . . . . 32

5.11 Pricing performance of the LSTM-MLP with VIX overlay . . . . . . . . . . . . . . 33

5.12 RMSE at different maturities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.13 RMSE at different moneyness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.14 SHAP summary plot of the option characteristics for the LSTM-MLP . . . . . . . 37

5.15 SHAP summary plot of the 10 most recent returns for the LSTM-MLP . . . . . . . 37

5.16 ALE feature importance for the LSTM-MLP . . . . . . . . . . . . . . . . . . . . . 38

5.17 ALE feature importance for the MLP benchmark . . . . . . . . . . . . . . . . . . . 39

5.18 Annual cash, net option portfolio and total portfolio for the LSTM-MLP . . . . . . 43

5.19 Distributions of options bought and sold at the time of the transaction . . . . . . . 44

A.1 18 Random interest rate curves generated using the NSS method . . . . . . . . . . 51

B.1 Hyperparameter search for the MLP . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.1 SHAP summary plot for all returns for the LSTM-MLP . . . . . . . . . . . . . . . 53

C.1 MACD during the testing period . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

C.2 VIX during the testing period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



List of Tables

3.1 Average trading volume per option contract segmented by filtering criteria . . . . . 8

3.2 Descriptive statistics for all options data used . . . . . . . . . . . . . . . . . . . . . 9

4.3 LSTM-MLP configuration grouped by model component . . . . . . . . . . . . . . . 18

5.4 RMSE and MAE values for the pricing performance by all models . . . . . . . . . 26

5.5 Diebold-Mariano test statistics for each pair of models . . . . . . . . . . . . . . . . 27

5.6 RMSE for each model for each year . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.7 MAE for each model for each year . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.8 Pricing performance during different S&P 500 regimes . . . . . . . . . . . . . . . . 31

5.9 Pricing performance during different VIX regimes . . . . . . . . . . . . . . . . . . . 33

5.10 RMSE grouped by moneyness and maturity . . . . . . . . . . . . . . . . . . . . . . 36

5.11 Correct directional prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.12 Average yearly trading performance . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.13 Alpha and Beta values based on the CAPM . . . . . . . . . . . . . . . . . . . . . . 41

B.1 MLP model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

E.1 BS 30-day trading performance by year . . . . . . . . . . . . . . . . . . . . . . . . 55

E.2 BS GARCH trading performance by year . . . . . . . . . . . . . . . . . . . . . . . 55

E.3 BS IV trading performance by year . . . . . . . . . . . . . . . . . . . . . . . . . . 55

E.4 Heston trading performance by year . . . . . . . . . . . . . . . . . . . . . . . . . . 55

E.5 MLP trading performance by year . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

E.6 LSTM-MLP trading performance by year . . . . . . . . . . . . . . . . . . . . . . . 56

vii



List of Abbreviations

AIC Akaike Information Criterion

ALE Accumulated Local Effects

BIC Bayesian Information Criterion

BS Black-Scholes

CAPM Capital Asset Pricing Model

CNN Convolutional Neural Networks

DM Diebold-Mariano

IQR Interquartile range

IV Implied Volatility

LSTM Long Short-Term Memory

MACD Moving Average Convergence/Divergence

MAE Mean Absolute Error

MDD Maximum Drawdown

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NSS Nelson-Siegel-Svensson

PDP Partial Dependence Plots

RMSE Root Mean Squared Error

SABR Stochastic alpha, beta, rho

SHAP SHapley Additive exPlanantions

TTM Time-to-maturity

XAI Explainable Artificial Intelligence

viii



1 Introduction

This paper studies the application of deep learning to option pricing and proposes a pricing model
that combines a long short-term memory (LSTM) network with a multi-layer perceptron (MLP).
The proposed architecture enables the model to use both time series and options data in its pricing
process. First, time series data in the form of historical S&P 500 returns is provided as input
to the LSTM network for extraction of the embedded information. Subsequently, the extracted
information is used by the MLP, along with the option characteristic for a given contract, to
determine the option price. The combined LSTM-MLP architecture is motivated by our hypothesis
that the time series information extracted by the LSTM is more informative for option pricing than
the explicit volatility input commonly used by option pricing models. Therefore, we replace the
explicit volatility input to the MLP with extracted time series information conveyed via the LSTM
outputs. Our research objective extends beyond achieving a high pricing accuracy to also include
generating positive risk-adjusted trading returns. This aims to demonstrate the practical value of
the proposed pricing model for different market participants, such as a valuation benchmark for
options market makers or trading signals for investors.

In the context of the literature on neural network-based option pricing models, our research con-
tributes in the following ways:

1. We demonstrate that the proposed LSTM-MLP achieves better pricing and trading perfor-
mance than the benchmark models. This indicates that the time series information extracted
by an LSTM network is more informative for option pricing than an explicit volatility input.
To the best of our knowledge, combining an LSTM network with an MLP for option pricing
has only been explored by Ke and Yang (2019). However, their model does not perform
better than an MLP with an explicit volatility input. This makes our research to be the first
LSTM-MLP implementation to do so. Our implementation is also novel in that the LSTM
uses returns rather than prices for the underlying asset as input, and we use a significantly
longer period of historical data1.

2. We evaluate the practical relevance of the proposed pricing model with a trading imple-
mentation. This goes beyond common practice for evaluating model performance in the
literature, which is often limited to pricing accuracy measured as the difference between the
model price and the market price. We also provide a more comprehensive analysis of trading
performance compared to Andreou et al. (2008), which is the only previous study identified
that uses trading to evaluate a neural network-based option pricing model.

3. We simulate how a market participant could deploy and retrain the model in real life by using
sliding windows to train and test our model, following Andreou et al. (2008)2 and Cao et al.
(2021)3. This differs from most previous studies that split the entire data set chronologically
for training, validation, and testing. Our setup is novel in that we implement more sliding
windows over a longer time period, and we use a different combination of the length of the
training, validation, and test set.

4. We apply our option pricing model to some of the most recent data for options on the S&P
500 index. Our data set ends in December 2022 and thereby includes the market turbulences
related to Covid-19. Besides Gradojevic and Kukolj (2022), our research is one of few studies
to date that analyzes the impact of Covid-19 on neural network-based option pricing models.

1Ke and Yang (2019) use 20-days lags, while our model implementation uses 140-days lags.
2Andreou et al. (2008) divide their data set into ten different overlapping training and validation sets, each

followed by a non-overlapping test set. For visualization of the rolling training-validation-testing procedure, see
Andreou et al. (2008) Figure 2.

3Cao et al. (2021) uses 300 days for testing and validation, and the following 7 or 30 days for testing. Then the
training and validation window rolls forward 7 or 30 days for the second testing. This goes on until the end of the
sample period.

1



Option pricing is complex and challenging due to the uncertainty of outcomes at the future time
when the option expires. Numerous methods have been proposed for the option pricing task, of
which the most well-known one is presented by Black and Scholes (1973). Although it has been
empirically proven that the Black-Scholes model does not fit real financial markets, it has still
gained widespread popularity due to its relatively simple arithmetic and the limited number of
inputs, most of which are easily observable (Natenberg, 2015). Since its publication, the Black-
Scholes model has significantly influenced how traders price and hedge derivatives, and to date
plays a key role in how option portfolios are managed (Hull, 2023).

A challenge central to option pricing is about how to most suitably incorporate information about
volatility. This is fundamental to option pricing as an option holder is sensitive to both the speed
and the direction of the market for the underlying asset. If this market does not move with sufficient
speed, options on the asset will be priced lower to reflect the reduced likelihood of the asset price
going above the strike (Natenberg, 2015). Several volatility measures have been explored in the
literature, including historical and implied volatility, as well as volatility forecasts and volatility
indices. Part of the difficulty with choosing the most appropriate measure is that each requires
its own set of decisions, such as the time horizon for calculating historical volatility or the choice
of forecasting methods. Moreover, option pricing should also account for varying volatility across
different levels of moneyness and maturity.

In contrast to traditional option pricing models, modern-day research on option pricing introduces
more data-driven approaches by applying machine learning methods, such as neural networks. As
these methods can approximate any continuous function without restrictive assumptions (Hornik
et al., 1989), they are well-suited for modeling the complex and non-linear relationship between
option characteristics and option prices. Multiple works in the literature demonstrate that machine
learning-based option pricing models can achieve better pricing accuracy than established pricing
methods. Despite these findings, the adoption of machine learning-based pricing models in real
financial markets has been slow, with one of the key reasons being their lack of interpretability. An
options market maker or investor may be reluctant to act on model outputs when the factors
determining these outputs are unknown. To address the issue of interpretability, explainable
artificial intelligence (XAI) has gained recognition over recent years. However, applications to
machine learning-based option pricing models remain rather limited. We intend to promote the
adoption of XAI practices by applying these methods to our proposed pricing model. This not
only helps us provide economic explanations of our model behavior, but also provides guidance for
further model development.

The rest of this paper is structured as follows. Section 2 presents previous studies that lay the
foundation for our work. Section 3 describes the data set used and how it has been processed.
Section 4 details the implementation of the proposed LSTM-MLP option pricing model, and its
training process. This section also outlines the methods for evaluating model performance in terms
of pricing accuracy and risk-adjusted trading returns, as well as the XAI frameworks used for inter-
pretability analysis. Section 5 presents the results for pricing, prediction and trading performance,
and discusses these in comparison to benchmark models. Finally, Section 6 summarizes our findings
and provides recommendations for future research.

2



2 Literature review

This section presents previous studies that lay the foundation for our research in the following
order: Section 2.1 presents different option pricing models ranging from traditional analytical and
numerical approaches to state-of-the-art machine learning methods. For the latter, we primarily
focus on neural networks to stay consistent with the focus of our research. Section 2.2 discusses
ways to incorporate volatility information in previously proposed neural network-based option
pricing models. The volatility input is of particular interest as it cannot be directly observed in
the market, and therefore often subject to debate about the most appropriate way to quantify it.
Subsequently, Section 2.3 provides an overview of how previous studies evaluate the performance
of neural network-based option pricing models. Finally, Section 2.4 covers XAI through various
methods for interpretability analysis and provides examples of its applications.

2.1 Option pricing models

The most well-known option pricing model is widely regarded as the work by Black and Scholes
(1973), and its extended version by Merton (1973). Contrary to the commonly held belief that
Black and Scholes (1973) and Merton (1973) came up with a new model, their model is actually a
special case of preceding work such as Sprenkle (1961), Boness (1964) and Samuelson and Merton
(1969), among others (Bloch, 2023). More specifically, it is a theoretical economic argument based
on a new way of deriving an already-existing formula (Haug and Taleb, 2011). In practice, the
pricing model by Black and Scholes (1973) and Merton (1973) plays a key role for traders to
manage option portfolios (Hull, 2023). Meanwhile, in academia, several shortcomings of the model
have been discovered when comparing it to empirical evidence. This has driven the development
of alternative methods that aim to better capture the dynamics in the options market.

Of the alternative methods that have been proposed, the most interesting to our research is the
set of methods that address the assumption of constant volatility over the life of the option. This
includes alternative option pricing methods that account for stochastic volatility, and thereby
provide a more realistic representation of real market dynamics. Advances in this area include the
work of Hull and White (1987), Heston (1993), and Hagan et al. (2002). Early works by Hull and
White (1987) propose an option pricing model for when volatility is stochastic and uncorrelated to
the asset. They later modify this to allow for volatility that is correlated to the asset in Hull and
White (1988). Along similar lines, Heston (1993) develop a closed-form solution for European call
options when correlations exist between the underlying asset and volatility. Hagan et al. (2002)
introduce the SABR (stochastic alpha, beta, rho) model and claim that it captures the dynamics
of the volatility smile. However, SABR implied volatility surfaces are found to not always align
with market data (Fukasawa and Gatheral, 2021).

With regard to the state-of-the-art literature on option pricing, the application of machine learning
methods has attracted the attention of many researchers. The emergence of this field of research is
motivated by the ability of machine learning algorithms to learn non-linear relationships between
input and output variables (Hornik et al., 1989), without necessarily being limited by economic and
statistical assumptions as the traditional models (Ivas,cu, 2021). Most previous research on ma-
chine learning-based option pricing models focuses on neural networks (Ludkovski, 2023), of which
multiple studies show that neural network-based models perform better than established bench-
mark models in terms of estimating the observed market price (Ruf and Wang, 2020). Among the
neural network-based option pricing models, MLPs seem to be the most commonly implemented
architecture. The work of Hutchinson et al. (1994) is one of the first studies to use neural net-
works for option pricing. They train an MLP with one hidden layer with four hidden units on
simulated data and demonstrate that it is capable of learning the Black-Scholes formula with a
high degree of accuracy. The practical relevance of the proposed model is tested by using it to
price options on S&P 500 futures, for which it outperforms Black-Scholes. Following Hutchinson
et al. (1994), several later works provide supportive evidence of better performance by MLPs com-
pared to traditional option pricing methods (Amilon, 2003; Gençay and Gibson, 2007; Andreou
et al., 2008; Wang et al., 2012; Culkin and Das, 2017; Fadda, 2020; Iltüzer, 2022). These studies
propose a variety of MLP architectures using different combinations of input variables, different

3



methods to quantify volatility, or deeper neural networks compared to the earliest studies. Bennell
and Sutcliffe (2004) implement a number of MLP pricing models to test different combinations
of the standard Black-Scholes input variables. They find that the MLP generally performs better
than Black-Scholes, especially for out-of-the-money options. Further analysis shows that the MLP
overprices options that are deep in-the-money and underprices options with a long maturity. By
excluding these options from the sample space, the MLP pricing performance becomes comparable
to Black-Scholes.

Different volatility measures for neural network-based option pricing models are explored in Amilon
(2003), Gençay and Gibson (2007), Andreou et al. (2008), Wang et al. (2012), Hsu et al. (2018),
Fadda (2020) and Iltüzer (2022). This body of literature will be discussed separately in Section 2.2
given its relevance to our research. Furthermore, advancement in machine learning methods and
computing has enabled the implementation of deep neural networks. Culkin and Das (2017) follow
the approach in Hutchinson et al. (1994) by training and testing their model on simulated call
option prices. In contrast to Hutchinson et al. (1994), they use a deep MLP consisting of four
hidden layers with 100 units each and incorporate more input variables. Their results show that
the proposed model learns the Black-Scholes option pricing model based on simulated data with
high accuracy.

Besides MLPs, improved pricing performance is also demonstrated by other neural network archi-
tectures. Ruf and Wang (2020) notes that the overall trend in recent research is more complex
architectures. Modular neural networks are proposed by Gradojevic et al. (2009) and Gradojevic
(2016) in which each module is represented by a single MLP. Empirical results show that mod-
ularity improves the pricing performance compared to a standard MLP. The advantage of this
architecture becomes clear when considering a data set that contains a highly volatile period fol-
lowed by a relatively stable period. While it would be challenging for a single neural network to
learn to generalize based on such different data sequences, a modular structure can overcome this
by generalizing through interaction across modules. Gated neural networks are presented in Yang
et al. (2017) and Cao et al. (2021). Both studies demonstrate that this particular architecture
can be used to introduce economic intuition into the pricing models, for instance by enforcing the
no-arbitrage principle. Yang et al. (2017) demonstrate high pricing performance with a multi-gated
pricing model that jointly trains multiple individual gated pricing models. Improved pricing perfor-
mance is also shown in Cao et al. (2021), although with a gated pricing model that uses a different
set of input variables. Wei et al. (2021) propose both a stand-alone convolutional neural networks
(CNN) pricing model, and an ensemble model that combines the CNN with three non-machine
learning option pricing models, namely a stochastic volatility model, a jump diffusion model, and
ad hoc Black-Scholes4. The stand-alone CNN outperforms each of the non-machine learning mod-
els, and high pricing accuracy is also reported for the ensemble model. Both the CNN and the
LSTM proposed by Liang and Cai (2022) achieve better pricing performance than the benchmark
models Black-Scholes, Merton, and Heston. Liang and Cai (2022) attribute the enhanced perfor-
mance of the neural network-based pricing models to their ability to absorb time-series information
embedded in the time-sequenced data.

Recently, options pricing has also been studied using machine learning methods other than neural
networks (Ivas,cu, 2021; Sood et al., 2022; Gradojevic and Kukolj, 2022) In addition to neural net-
works, Ivas,cu (2021) also study the performance of support vector regression, genetic algorithms,
decision trees, random forests, XGBoost and LightGMB. All machine learning algorithms outper-
form the benchmark models Black-Scholes and Corrado-Su across maturity and moneyness. Sood
et al. (2022) implement pricing models based on MLPs, LSTM, support vector machines and XG-
Boost. They find that both the MLP and the LSTM outperform Black-Scholes, while the SVM
and XGBoost fail to do so. Gradojevic and Kukolj (2022) study the pricing performance of various
machine learning algorithms during the significant market changes, or ’regime switch’, caused by
Covid-19. They implement MLPs, support vector machines, random forests, and XGBoost. All
machine learning models outperform Black-Scholes in more stable conditions pre-Covid-19, while
the pricing performance by Black-Scholes becomes comparable to the machine learning models
during Covid-19. This indicates that the regime switches to a certain extent limited the ability of

4The ad hoc Black Scholes pricing model estimates implied volatilities using the determined volatility function,
which is a popular method for estimating implied volatility based on strike and maturity. For further details, see
Wei et al. (2021)

4



the machine learning pricing models to learn and generalize.

2.2 Volatility measures for neural network-based option pricing models

As mentioned previously, appropriately quantifying volatility remains a challenge for both tra-
ditional and neural network-based option pricing methods. In the existing literature on neural
network-based approaches, the most common volatility measures seem to be historical volatility
(Hutchinson et al., 1994; Amilon, 2003; Hsu et al., 2018; Ivas,cu, 2021), implied volatility (Grado-
jevic and Kukolj, 2022), as well as GARCH and its extended versions. A possible drawback with
these approaches is that the volatility is often not adapted to the moneyness and the maturity of
the option being priced. This could therefore lead to inaccurate option prices that do not suitably
reflect the range of possible outcomes at option expiry.

Historical volatility measures used in the existing literature cover a wide range of time periods.
The lowest range identified is seen in Hsu et al. (2018) which proposes a deep neural network
with historical 1-minute and 5-minute volatility to price monthly and quarterly options. However,
no significant improvement in pricing accuracy is achieved by including these very short-term
volatilities. Longer historical periods of 10 to 30 days are seen in Amilon (2003), and 60 days
in Hutchinson et al. (1994) and Ivas,cu (2021). Iltüzer (2022) tests historical volatility over five
different time horizons, including 360 days, 30 days and 10 days for calendar days and 21 and 252
days for trading days. Liang and Cai (2022) give their proposed LSTM model 5 lags of every input
used, treating each input, including the stationary inputs strike and the linearly decreasing input
of maturity, as time-series data. They argue that this allows the model to learn valuable time-series
information from the past five trading days. In addition, the network gets the 90-day historical
volatility on the past five trading days as inputs. Amilon (2003) also provide lagged values of the
underlying asset for the last four days as inputs to their MLP pricing model. This is motivated by
a similar hypothesis as our research about the potential of the pricing model to learn the volatility
structure, or any useful distribution structure, from the historical data.

Among the studies that use implied volatility, different ways have been proposed for how to in-
corporate it into a neural network-based pricing model. Fundamentally, implied volatility is the
value of the volatility variable in Black-Scholes in order to get an option price that matches the
market price. In contrast to historical volatility which is backward-looking, implied volatility is
considered to be forward-looking and therefore used to monitor market views about the volatility of
a particular asset (Hull, 2022). Andreou et al. (2008) calculate the implied volatility for a specific
option on day t−1 and use it to price the same option on day t. The MLP pricing model that uses
this implied volatility appears to be the overall best-performing model. The superiority of pricing
models using implied volatility is also demonstrated in Wang et al. (2012). However, it should be
noted that they calculate implied volatility in a different way by using the equal-weighted average
of implied volatilities for all traded options on day t−1 to price on day t. Along similar lines, Iltüzer
(2022) achieves the best pricing performance with an MLP with implied volatility represented by
the volatility of Black-Scholes that perfectly fits the closing price of the at-the-money call on day
t. Fadda (2020) demonstrate that the MLP using implied volatility significantly outperforms the
MLP using the GJR-GARCH model. However, a dual-volatility pricing model that takes both
volatility measures as input outperforms both of the single-volatility pricing models.

Other neural network-based pricing models use volatility calculated using GARCH. Gençay and
Gibson (2007) use GARCH(1, 1) as the volatility input to the proposed MLP pricing model that
otherwise uses the same input variables as Black-Scholes. The proposed model performs better
across all maturities and moneyness compared to benchmark models including Black-Scholes with
historical volatility, Black-Scholes with GARCH volatility, stochastic volatility model, and stochas-
tic volatility random jump model. Lin and Yeh (2009) show that a pricing model that uses GARCH
outperforms pricing models that use historical, implied5, or the Grey prediction approach. Var-
ious modifications of GARCH have also been able to achieve superior pricing performance, such
as GM(1, 1)-GARCH (Wang, 2009b), Grey-GJR-GARCH (Wang, 2009a), and Grey-EGARCH

5Lin and Yeh (2009) estimates the implied volatility for day t as the average implied volatilities calculated from
option prices on that day.

5



(Tseng et al., 2008).

In contrast to the aforementioned literature which all present option pricing models that use an
explicit volatility input, some studies omit volatility and instead argue that the neural network is
able to extract volatility information from alternative historical data during training. Yao et al.
(2000) suggest that volatility is not required as input to their MLP pricing model when daily prices
for the underlying asset are fed to the network. They propose that this should enable the daily
returns, being the fundamental factor of volatility, to be captured by the network. A similar line of
reasoning is expressed in Gradojevic et al. (2009), in which they suggest that the modular neural
network pricing model proposed extracts volatility information during training using data for the
first two quarters of each year. Ke and Yang (2019) replace the volatility input with outputs from
an LSTM network. They motivate their proposed model architecture with the ability of recurrent
neural networks, like the LSTM, to capture state information that can be more useful to option
pricing than historical volatility. The MLP using outputs from the LSTM network achieves better
pricing accuracy than Black-Scholes, but fails to outperform the MLP pricing model with historical
volatility as an input. Motivated by their novel approach to incorporating volatility information
into option pricing in this way, we show that a pricing model that combines an LSTM and an MLP
component can indeed deliver superior pricing performance.

2.3 Performance measures for neural network-based pricing models

In their literature review on neural networks for option pricing, Ruf and Wang (2020) found that
the Black-Scholes formula with historical volatility is the most common benchmark for pricing
accuracy. This includes studies by Garcia and Gencay (2000), Amilon (2003), and Ivas,cu (2021).
Benchmarking against Black-Scholes with implied volatility is seen in the works of Andreou et al.
(2008), Iltüzer (2022), and Gradojevic and Kukolj (2022). Besides Black-Scholes, other alternative
option pricing models have also been used for benchmarking, such as Heston (Jerbi and Chaabene,
2020; Liang and Cai, 2022; Wang et al., 2022) and Corrado-Su (Andreou et al., 2008; Ivas,cu,
2021). These methods arguably provide a fairer comparison to machine learning-based option
pricing models as they provide more degrees of freedom compared to Black-Scholes. More recently,
neural network-based pricing models have also been compared to other machine learning methods
(Ivas,cu, 2021; Wang et al., 2022; Gradojevic and Kukolj, 2022).

To measure neural network-based option pricing models by their practical relevance, the literature
proposes hedging (Hutchinson et al., 1994; Andreou et al., 2008; Cao et al., 2021) and trading im-
plementations (Amilon, 2003; Andreou et al., 2008). Our research is centered on trading and hence
this will be the focus of the following review. Amilon (2003) suggests, but does not implement, a
trading strategy that buys (sells) options that are underpriced (overpriced) by the market when
compared to model prices. He suggests that different pricing models can be ranked by comparing
the sum of terminal profits or the standard deviation of the profits. A model that can successfully
identify mispriced options would yield a positive value for the terminal position, and the model
that yields the highest terminal value would be the preferred one. To the best of our knowledge,
Andreou et al. (2008) is the only study on neural network-based option pricing models that imple-
ment trading strategies to evaluate model performance. They find that trading strategies based
on both neural network-based and traditional pricing models are profitable for certain combina-
tions of transaction cost and mispricing margin. The best models yield profits in 77-82% of the
transactions made. Overall trading performance, measured by absolute profits, is similar across
neural network-based and traditional models. The neural network-based models provide the most
improvement compared to the traditional methods that use less sophisticated volatility measures,
such as 60-day historical volatility. The trading strategy implemented by Andreou et al. (2008) is
based on the single-instrument hedging approach presented in Bakshi et al. (1997), meaning only
the underlying asset is used as the hedging instrument. Portfolios are created by buying (selling)
undervalued (overvalued) options by comparing the option price predicted by the model to the
market price. Additionally, they take a delta hedging position in the underlying asset by which a
short (long) position in a call option is hedged using a long (short) position in the underlying asset.
A position is held as long as the option is undervalued or overvalued, after which the position is
liquidated, the profit or loss is computed, and a new position is entered based on current market

6



conditions. A limitation in the trading approach by Andreou et al. (2008) is the lack of other
performance measures than absolute profits as they do not implement an actual trading portfolio.

2.4 Interpretable machine learning

Despite the promising results achieved by machine learning models exemplified by the literature
presented above, a major drawback is that the insights learned by these models are hidden in their
architecture, and hence they are often referred to as black box models. This lack of interpretability
poses a challenge for real-life model deployment, and the importance of addressing the black box
challenge associated with machine learning methods is highlighted by the emergence of XAI. At a
basic level, interpretability in machine learning can be achieved by using inherently interpretable
model architectures, such as regression models or decision trees. Another approach is to apply
model-agnostic interpretability methods. In the following parts, we will focus on the latter approach
as it is most suitable for the proposed LSTM-MLP model.

Model-agnostic interpretability methods work by changing the inputs to a machine learning model
and measuring how it changes the output value (Molnar, 2022). The literature on this can be
broadly categorized into global and local methods. Global methods explain the average model
behavior using methods such as Partial Dependence Plot (Friedman, 2001) and Accumulated Local
Effects (ALE) (Apley and Zhu, 2016). On the other hand, local methods explain single instances
of model output, as achieved by Local Interpretable Model-Agnostic Explanations (Ribeiro et al.,
2016) and SHapley Additive exPlanantions (SHAP) (Lundberg and Lee, 2017).

In the context of option pricing, the literature that applies XAI remains rather limited. Liang and
Cai (2022) use ALE to interpret their proposed option pricing models. For the MLP pricing model
used to price call options on the S&P 500 index, they find that the strike is the most important
input, followed by the underlying asset and the time to maturity has relatively less influence.
In comparison, the risk-free rate and volatility appear to have almost no influence. They also
conduct the interpretability analysis on option pricing models using convolutional neural networks
and LSTM and find that feature importance differs across models. Gradojevic and Kukolj (2022)
apply SHAP in their study to the proposed option pricing models and investigate how feature
importance changes across market regimes caused by Covid-19. They find that moneyness is the
most important feature across regimes, and more precisely that option prices increase as moneyness
increases. Less contribution is shown for all other input features including time to maturity, implied
volatility, open interest, and volume.

7



3 Data

3.1 Data set

The primary data set for our research consists of daily closing prices and relevant attributes of
SPX European call options on the S&P500 index, provided by optionsDX6. The data set starts
on November 1st, 2011 and on December 31st, 2022. The data before January 1st, 2015 is used
exclusively for training and validation for hyperparameter tuning. To create the initial sequence of
140 lagged S&P500 returns required by the model, the S&P500 data series begins on April 14th,
2011. The complete data set consists of 13,108,756 observations, each representing a specific option
contract on a particular date.

For the risk-free rate, we use daily Treasury yields from the U.S. Department of the Treasury7.

3.2 Data preprocessing

The data preprocessing stage removes approximately 13.58% of the initial dataset, leading to a
final total of 11,328,707 observations. The initial screening process eliminates 3,582 data points
due to invalid or missing values in the options data. Furthermore, we remove 249,566 data points
representing options with zero time to maturity, as their pricing, equating to their intrinsic value8,
is trivial and does not contribute to our research objectives. An additional 285,293 data points,
representing options with more than two years of time-to-maturity (TTM), are also removed. To
counteract the influence of extreme moneyness values, we exclude options that fall approximately
within the top and bottom 5% of moneyness, resulting in the removal of another 1,241,608 data
points with moneyness below 0.8 or above 2.0.

The primary rationale behind this filtering strategy is to mitigate the impact of outliers that
could potentially disrupt model learning. The options removed from the dataset, often less traded
and potentially less efficiently priced, fall outside the typical moneyness and maturity ranges.
Consequently, these options restrict the efficacy of data-driven methods in learning their pricing
dynamics and may also be of less interest to market participants, given their lower trading volumes
and quantities. Table 3.1 provides more detailed insights into the trading volumes associated with
these filtering criteria.

Table 3.1
Average daily trading volume per contract,
where each contract represents 100 options,
segmented by the filtering criteria

Criterion Average Volume

TTM > 2 13.216
< 2 24.144

Moneyness > 2.0 7.045
< 0.8 20.922

0.8− 2.0 25.245

The interest rate data from the U.S. Department of the Treasury specifies rates only for distinct
maturities: 1, 3, 6, 12, and 24 months. To derive the risk-free rate applicable to the time to matu-
rity of each option, we apply the Nelson-Siegel-Svensson (NSS) method, allowing us to construct
continuous risk-free rate curves. A more in-depth explanation of the NSS method applied can be
found in Appendix A.

6https://www.optionsdx.com
7https://home.treasury.gov
8Intrinsic value = Underlying - Strike

8



3.3 Descriptive statistics

Table 3.2 presents descriptive statistics by year. There is a general upward trend in the mean
option price, S&P 500 index, and strike price, with an observable increase in their variability,
which signifies heightened market volatility in later years. Time to maturity and moneyness exhibit
relatively similar behavior throughout the period. The risk-free rate is generally increasing in the
latter years, except for a downturn in 2020 and 2021. The total number of available options
increases through the period except from 2021 to 2022.

Table 3.2
Descriptive statistics of all options data used for hyperparameter search, training, validation, and
testing

Year Measure Option price S&P 500 Strike TTM (Yrs) Rate (%) Moneyness

2011 count 33,080 33,080 33,080 33,080 33,080 33,080
mean 192.32 1236.11 1098.89 0.32 0.03 1.18
std 173.97 27.61 228.79 0.39 0.05 0.28

2012 count 259,343 259,343 259,343 259,343 259,343 259,343
mean 191.6 1,383.49 1,239.55 0.34 0.10 1.17
std 187.5 45.79 245.32 0.42 0.05 0.26

2013 count 345,503 345,503 345,503 345,503 345,503 345,503
mean 227.38 1,653.16 1,462.91 0.32 0.07 1.17
std 218.48 98.33 276.85 0.4 0.06 0.24

2014 count 554,101 554,101 554,101 554,101 554,101 554,101
mean 277.43 1,942.64 1,700.84 0.28 0.05 1.18
std 250.94 80.19 302.33 0.38 0.07 0.24

2015 count 869,602 869,602 869,602 869,602 869,602 869,602
mean 294.05 2,059.37 1,812.5 0.25 0.08 1.18
std 268.59 56.83 326.75 0.32 0.13 0.24

2016 count 811,805 811,805 811,805 811,805 811,805 811,805
mean 275.46 2,097.31 1,870.22 0.24 0.33 1.16
std 272.01 102.25 338.59 0.34 0.14 0.24

2017 count 919,659 919,659 919,659 919,659 919,659 919,659
mean 280.88 2,451.22 2,211.72 0.21 0.92 1.14
std 299.24 111.24 358.84 0.33 0.26 0.22

2018 count 1,249,550 1,249,550 1,249,550 1,249,550 1,249,550 1,249,550
mean 299.29 2,745.12 2,525.13 0.23 1.97 1.12
std 330.92 101.72 404.58 0.32 0.34 0.22

2019 count 1,317,850 1,317,850 1,317,850 1,317,850 1,317,850 1,317,850
mean 343.64 2,917.99 2,644.67 0.23 2.09 1.14
std 358.96 155.2 445.94 0.32 0.34 0.22

2020 count 1,454,860 1,454,860 1,454,860 1,454,860 1,454,860 1,454,860
mean 408.38 3,219.94 2,928.58 0.24 0.38 1.14
std 404.78 314.85 553.86 0.32 0.55 0.23

2021 count 1,762,540 1,762,540 1,762,540 1,762,540 1,762,540 1,762,540
mean 526.87 4,295.38 3,887.66 0.28 0.05 1.14
std 525.04 286.16 695.49 0.34 0.05 0.22

2022 count 1,750,820 1,750,820 1,750,820 1,750,820 1,750,820 1,750,820
mean 397.96 4,108.23 3,916.73 0.27 2.00 1.08
std 456.77 295.95 639.11 0.34 1.52 0.20

Figure 3.1 and Figure 3.2 illustrate the dataset characteristics across the dimensions of time to
maturity and moneyness to provide context for the discussions in later sections. Notably, our
dataset contains a higher density of shorter-maturity options. This observation may not only
be attributable to the fact that all options transit through these shorter maturities during their
lifecycle, but also to the increased writing of options with shorter maturities. When inspecting
moneyness, we observe a concentration of data points around at-the-money options. As for trading
volumes, the data indicates higher volumes for the shortest-maturity and at-the-money options,
with a substantial decrease in volume for options more deeply in-the-money.

9



Figure 3.1 Histogram for the number of options quotes at different levels of maturity and moneyness
in the processed data. The left figure shows the maturity distribution and the right figure shows the
moneyness distribution.

Figure 3.2 Average daily trading volume per contract, where each contract represents 100 options, for
each level of maturity and moneyness. The left figure shows the volume based on maturity and the right
figure shows the volume based on moneyness.

10



4 Methods

4.1 Combined LSTM-MLP option pricing model

4.1.1 Model implementation

The proposed option pricing model combines an LSTM network with an MLP, as illustrated in
Figure 4.3. The LSTM network takes as input historical S&P 500 returns over the past 140 days
and outputs information extracted from the time series data through eight output nodes. The
MLP takes as input the LSTM outputs and the option characteristics including the price of the
underlying asset, the strike, the risk-free rate, and the time to maturity. The final output of the
combined LSTM-MLP is the option price9. The model hyperparameters are decided based on
results from the hyperparameter search presented in Section 4.1.3.

Figure 4.3 Architecture of the combined LSTM-MLP option pricing model. Ri is the return on the S&P
500 index i days ago. S is the price of the underlying asset. K is the strike. T is the time to maturity. r
is the risk-free rate. The illustration is inspired by Ke and Yang (2019).

9Following Yang et al. (2017), Liang and Cai (2022) and others, the bid-ask midpoint is used as a proxy for
the market price. This enables comparison with the benchmark models as these do not output bid and ask prices
separately.

11



The LSTM network is made up of three layers, each consisting of eight nodes each. Each node is
composed of memory cells with an internal structure as shown in Figure 4.4.

Central to the LSTM network (Hochreiter and Schmidhuber, 1997) is the cell state, as illustrated
by the horizontal line at the top of the memory cell. This can be thought of as the long-term
memory component. Updates to the cell state are regulated by three types of gates: an input
gate it, a forget gate ft and an output gate ot. The subscript t represents a single time step. For
short-term memory, information from the previous calculation step is stored in the hidden state,
as illustrated by the horizontal line at the bottom of the memory cell.

The computation for updating the cell state at a specific time step is based on the previous cell state
Ct−1, the previous hidden state ht−1, and the current input xt. The first step of the computation is
to decide what information to throw away by using the forget gate as given by Equation (4.1). The
previous hidden state ht−1 and the current input xt are passed through the sigmoid function, which
outputs values between 0 and 1 for each number in the previous cell state Ct−1. An output of 0
means that the information should be thrown away, and an output of 1 means that the information
should be kept. The results from the forget gate are then multiplied by the cell state, as given by
the first term of the addition in Equation (4.4).

ft = σ(Wf,xxt +Wf,hht−1 + bf ) (4.1)

where σ denotes the sigmoid function, Wf,x and Wf,h denote weight matrices, and bf denotes the
bias term.

In the next step, the input gate is used to decide what information to store. This is done through a
two-step process. First, the input gate decides which values to update, as given by Equation (4.2).
Then, a vector of new candidate values C̃t is generated using tanh, as given by Equation (4.3).
To create an update to the state, we combine the outputs from these two steps, as given by the
second term of the addition in Equation (4.4).

it = σ(Wi,xxt +Wi,hht−1 + bi) (4.2)

C̃t = tanh(WC̃,xxt +WC̃,hht−1 + bC̃) (4.3)

where Wi,x, Wi,h, WC̃,x and WC̃,h denote weight matrices, and bi and bC̃ denote bias terms.

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4.4)

where ⊙ represents element-wise multiplication.

Finally, the new hidden state ht can be seen as a filtered version of the cell state Ct. First, a
sigmoid layer decides which parts of the cell state to output, as given by Equation (4.5). Then,
tanh is applied to the cell state Ct to transform its values between -1 and 1. These two outputs
are multiplied so that only the desired parts are given as output, as given by Equation (4.6).

ot = σ(Wo,xxt +Wo,hht−1 + bo) (4.5)

ht = ot ⊙ tanh(Ct) (4.6)

where Wo,x and Wo,h denote weight matrices, and bo denotes the bias term.

The exact number of interface units, equivalent to nodes in the final LSTM layer, is specifically
investigated in the hyperparameter search to determine the optimal number of units to encode the
information passed by the LSTM to the MLP component.

12



Figure 4.4 Structure of an LSTM memory cell at a specific time step t. Ct is the cell state. ht is the
hidden state. xt is the input. σ is the sigmoid function. The illustration is inspired by Olah (2015).

The MLP component of the LSTM-MLP model consists of four stacking structures, each consisting
of a dense layer followed by a batch normalization layer. The dense layer forms a fully-connected
network with the nodes of the preceding layer. Batch normalization layers are implemented between
each dense layer to normalize the activations of the preceding layer in each batch. This strategy
addresses common challenges in deep neural networks, such as vanishing or exploding gradients,
curbs overfitting, and accelerates the training process by reducing the number of iterations required
for convergence. The BN normalization algorithm is presented below. For further details, see Ioffe
and Szegedy (2015).

Input: Values of x over a mini-batch B = {x1, ..., xm}

Parameters to be learned: γ and β

Output: yi = BNγ,β(xi)

µβ ←
1

m

m∑
i=1

xi Mini-batch mean

σ2
β ←

1

m

m∑
i=1

(xi − µβ)
2 Mini-batch variance

x̂i ←
xi − µβ√
σ2
β + ϵ

Normalize

yi ← γx̂i + β ≡ BNγ,β(xi) Scale and shift

where ϵ is a small constant for numerical stability.

The MLP uses leaky ReLu as its activation function, as given by Equation (4.8). Unlike the
conventional ReLu function given in Equation (4.7), leaky ReLu replaces zero values with small
negative values. This design decision mitigates the ”dead neuron” problem that can arise with
regular ReLu. The ”dead neuron” problem occurs when a neuron gets stuck during the learning
process and only outputs zero, effectively rendering it inactive in any network-wide computation or
learning. By allowing for small negative values instead of zero, the leaky ReLu function ensures that
these neurons remain active and continue learning, which can lead to a more robust and effective
network Maas et al. (2013). For the final dense layer, which consists of a single output node, the

13



conventional ReLu activation function is used to ensure that the final output is a non-negative
option price.

ReLu (x) =

{
x if x ≥ 0

0 otherwise
(4.7)

Leaky ReLu (x) =

{
x if x ≥ 0

αx otherwise
(4.8)

where α is a small positive constant found during the hyperparameter search.

A key strength of the LSTM-MLP architecture is the direct connection between the LSTM network
and the MLP. This collaborative design enables training and backpropagation throughout the entire
network as a unified entity. In other words, extracting time series information is not treated as a
separate process from the pricing of the options, but rather as one integrative task to be solved
by the LSTM-MLP. The intention of this particular setup is to align the training of the LSTM
network and the MLP in terms of maximizing pricing accuracy. Rather than training the LSTM
network to extract pre-specified measures from the time series data it receives as input, it should
instead learn to output the information that is optimally useful for the MLP to price options.

Another strength of the model architecture is that it eliminates the need for an explicit volatility
input to an option pricing model. Instead, the LSTM-MLP is trained to extract information di-
rectly from the historical return series for the underlying S&P 500 index. While the precise nature
of the information extracted by the LSTM remains uncertain, it seems reasonable to hypothesize
that volatility information is embedded within the time series information extracted. The historical
return series could also contain other market information, such as directional expectations or other
factors influencing option pricing behavior by market participants. Nonetheless, we hypothesize
that the LSTM-MLP can learn the appropriate volatility measures used by market participants
during its training period, as well as tailor the volatility measure for specific option characteris-
tics as there are multiple connections between the LSTM and MLP components. This integrative
model structure thereby demonstrates a potential approach for addressing the inherent complex-
ities associated with volatility representation in option pricing, while also allowing for additional
information extraction from the time series of the asset returns.

While standalone LSTM models, as examined in Liang and Cai (2022) and Liu and Wei (2022),
are indeed capable of capturing time series information, they require all input variables to be
lagged. This requirement introduces complexity and computational cost. Computational expenses
may outweigh the benefits in predictive accuracy when lagging constants such as the strike price,
linearly decreasing variables like maturity, or variables with infrequent changes like the risk-free
rate. This could limit the feasible size of the network. Despite not explicitly citing computa-
tional constraints, Liang and Cai (2022) only consider five lags in their LSTM implementation,
supplementing it with a historical volatility input. This implies that handling an array of lagged
variables over extensive time series in large datasets can become computationally burdensome, and
potentially unfeasible. A remedy to this problem lies in the integration of LSTM with MLP in
our proposed model. The LSTM segment captures temporal dependencies within the time series
data, while the MLP component efficiently processes option data at a given time, capturing the
complex nonlinear relationships inherent in option characteristics. This combined architecture thus
streamlines computational resources and enhances model performance.

In order to feed the input data to this model architecture, it is structured in two parts. For the
LSTM model to utilize time series information, it needs data in a time-sequenced format. This
results in a 3D format of its input consisting of the number of options, number of time steps
and number of features, where the latter is only the returns in our case. The MLP component
requires a 2D input with the option characteristics for each option. These two components together
constitute our model input. The result of this data processing, along with the target value of the
call option price, is illustrated in Figure 4.5

14



Figure 4.5 Data structure for the LSTM-MLP model. The MLP component of the model also receives the
output from the LSTM component directly in addition to the external variables of the option characteristics.

4.1.2 Model training

The proposed LSTM-MLP model is trained and tested using sliding windows, following the ap-
proach in Andreou et al. (2008) and Cao et al. (2021). Compared to their implementation, our
setup is different in that we use a greater number of sliding windows and cover a longer time period
overall. Additionally, we propose a novel combination of the length of the training, validation and
test set. This is illustrated in Figure 4.6, in which each model instance corresponds to a single
sliding window. Each model instance uses a 3-year training set, a 1-month validation set, and a
1-month test set. As an example, the model that prices options in January 2015 is trained on
data from December 2011 to November 2014, and validated on data for December 2014. Then, to
price options in February 2015, the training and validation window slides forward by one month.
This sliding procedure continues until the end of the sample period in December 2022 and thereby
creates 96 sliding windows in total. In a real-life setting, a market participant could retrain the
model at a higher frequency as needed, such as on a daily or weekly basis. We have chosen to
retrain every month in our research to limit the computing time.

Our implementation of sliding windows for model training and testing provides several advantages.
First, it keeps the training data up-to-date, such that it is relevant for and representative of the
out-of-sample options to be priced. At the same time, we also provide sufficient historical training
data for the model to learn the past pricing behavior of the market. The model should therefore be
able to adapt to changing market conditions. This is key given the time-inhomogeneity inherent
in financial data (Ruf and Wang, 2020), where the statistical properties and underlying dynamics
of the data can change over time. Second, it reinforces the robustness of our proposed model
architecture by testing across multiple time periods. With this setup, we thereby intend to improve
upon most previous studies which only assess model performance based on one or a few out-of-
sample test periods. Thus, our out-of-sample results obtained through this training and testing
procedure provide a stronger argument for the generalization capability of our model.

15



Figure 4.6 Sliding windows setup for model training and testing. Each of the 96 separate model instances
uses a 3-year training set, a 1-month validation set, and a 1-month test set. The full out-of-sample test
period runs from 2015 through 2022.

In order to ensure consistency across training periods and expedite the training process, we fix the
number of training samples at 1,000,000. This utilizes most of the available options in the first
sliding window shown in Figure 4.6. As the number of options in the market grows in subsequent
periods, we randomly sample 1,000,000 options based on a uniform distribution from each training
set. This approach provides a balanced and representative sample for training and facilitates
computational efficiency. For validation and testing, we utilize all options in the data set for the
one-month periods.

Furthermore, to prevent any potential biases in the training process, data points corresponding to
specific option contracts in the training set are randomly shuffled. This ensures that the model
performance is not impacted by the order in which the data points are presented during training.
To avoid any confusion, it should be noted that the lagged data points provided as input to the
LSTM network are not shuffled. These are always kept in chronological order for the past 140 days
from the pricing date of the given option, which is necessary for the LSTM to accurately capture
temporal dependencies.

The learning process incorporates an exponentially decaying learning rate to optimize parameter
tuning, as expressed in Equation (4.9). This approach promotes faster learning in the early stages,
while minimizing the risk of bypassing the global minimum during gradient descent. Furthermore,
it facilitates refined parameter adjustments as training evolves. This decay mechanism encourages
substantial initial changes to weights and biases when the model is far from the optimal solution. As
the model approaches the optimal solution, adjustments become smaller and more cautious. This
strategy strikes a balance between rapid convergence and the precision of the model’s performance.

Lrepoch = Lrinitial × decay rateepoch (4.9)

To ensure that the features are on a similar scale and to avoid any potential issues with the training
process, the features are scaled. The scaler is fitted and used on the training set and then applied
to the validation and test sets, ensuring that the scaling is consistent across all data sets and that
there is no data leakage. Min-max scaling is used to scale each input value between 0 and 1, as
given by Equation (4.10).

Xscaled =
X −Xmin

Xmax −Xmin
(4.10)

16



Model training begins with randomly generated initial weights for the LSTM-MLP model. Through
an iterative process, these weights are continuously calibrated using the Adam optimizer, a variant
of stochastic gradient descent, where mean squared error (MSE) serves as the objective function.
For an in-depth exploration of this technique, see Kingma and Ba (2014). Early stopping is imple-
mented and stops the model training if there is no improvement in validation loss for 20 consecutive
epochs. To ensure that the best model configuration is retained, we utilize checkpointing during
the final model training, which saves the model configuration each time a reduction in validation
loss is observed. This process continues iteratively, gradually fine-tuning the model performance.

4.1.3 Hyperparameter configuration

In developing machine learning models, the choice of hyperparameters is important because it can
have a meaningful impact on model performance. Therefore, to ensure a systematic and efficient
approach, we conduct our hyperparameter search using Wandb10, a machine learning development
tool for experiment tracking. Wandb is useful in that it keeps a detailed record of model runs and
facilitates parallel exploration of multiple hyperparameter configurations. This is highly beneficial
for the proposed LSTM-MLP architecture due to the significant number of hyperparameters that
need to be specified.

The hyperparameter search for the proposed LSTM-MLP is conducted using a window ending
in December 2014, as illustrated in Figure 4.6. The validation period is purposefully set before
the first out-of-sample test period in January 2015 to avoid data leakage between validation and
out-of-sample testing. To match the total duration of the one-month validation and one-month
test period in the 96 sliding windows used for out-of-sample testing, a two-month validation period
is used for the hyperparameter search. With this setup, the hyperparameter search uses training
data for the three years from November 2011 to October 2014, and validation data for the two
months from November to December 2014.

The ranges of hyperparameter values to be searched over are determined based on values that
have been used in previous studies, including Ke and Yang (2019), Liu et al. (2019), Liang and
Cai (2022). Further adjustments to these ranges are made based on observed results. Due to the
extensive number of hyperparameters, it is not computationally feasible to conduct a grid search
testing all possible combinations. Exploration of the hyperparameter space is therefore carried out
using a random search algorithm where 150 unique combinations of hyperparameters are generated
and tested. Figure 4.7 shows the model run for each unique combination of hyperparameters and
the resulting validation loss.

Figure 4.7 Hyperparameter search for the LSTM-MLP model in terms of hyperparameter combinations,
hyperparameter value ranges and MSE validation loss. Results are shown for model runs testing 150
distinct combinations of hyperparameter values. The data set used consists of training data for the three
years from November 2011 to October 2014, and validation data for the two months from November to
December 2014.

Interestingly, the hyperparameter search shows a clear preference for a higher number of LSTM
timesteps, meaning more lagged values of S&P returns. It seems intuitive that providing more

10https://wandb.ai/

17



historical data can improve model performance, assuming that the additional information does not
introduce too much unnecessary noise or lead to excessive overfitting. This is where the strength
of the LSTM network comes in, with its ability to selectively forget irrelevant historical data while
retaining valuable information. The clear preference for longer periods of historical data provides
support for our hypothesis that the LSTM is capable of extracting useful information from long-
term patterns in historical data.

A limitation of our current approach to setting hyperparameters is that the same values are applied
to all 96 model instances across the entire test period. This could potentially lead to suboptimal
results, as different market conditions might require different hyperparameters for optimal perfor-
mance. For example, the same hyperparameters might not have been suitable before and after the
onset of the Covid-19 pandemic. Despite this, we have opted for to use the same hyperparameters
for all model instances due to computation limitations. To improve our process, we could consider
conducting separate hyperparameter searches for each of the 96 model instances or performing a
search at fixed intervals, like every six months. Alternatively, we could keep the hyperparameters
constant across model instances until a significant change in market conditions necessitates a new
hyperparameter search.

The final hyperparameters are chosen based on inspection of Figure 4.7 and analysis of the highest
performing runs during the hyperparameter search. The parameters chosen and configuration
choices made based on the hyperparameter search and discussion in Section 4.1 are summarized
in Table 4.3.

Table 4.3
LSTM-MLP model configuration grouped by model component. The parameters layers, units,
interface units, timesteps, BN momentum, alpha constant, learning rate and learning rate
decay were found during the hyperparameter search using Wandb while the others were
determined manually beforehand to reduce the hyperparameter space.

Parameter Value

LSTM Layers 3
Units per layer 8
Units in the last layer (Interface units) 8
Lagged returns (Timesteps) 140
Activation function Tanh
Recurrent activation function Sigmoid

MLP Layers 4
Units per layer 200
Batch normalization momentum 0.10
Activation function Leaky ReLu
Alpha constant for Leaky ReLu 0.05

Training Training set samples 1,000,000
Learning rate 5.7× 10−2

Learning rate decay 0.91
Minibatch size 4 096
Epochs Early stopping
Optimizer Adam

Sliding windows setup Training length 3 years
Validation length 1 month
Test length 1 month
Number of windows 96

Computations Hardware Nvidia Tesla T4 GPU
Hyperparameter search run time 26 hours
Final model average run time per window 13 min
Total run time all windows 21 hours

18



4.2 Backtesting trading strategy based on price differences

Evaluating an option pricing model based on its ability to accurately estimate the observed market
price implies that the observed market price is the most accurate option price. Fundamentally,
an accurate option price can be defined as the discounted risk-neutral11 expectation of its payout
at maturity (Blyth, 2014). As an academic exercise to investigate whether our proposed model
can price options more accurately than the market per this definition, we implementing trading
strategies based on the difference between the model price and the market price. Following the
trading implementation in Andreou et al. (2008), we trade by buying (selling) options that are
undervalued (overvalued) by the market when compared to the model price. This approach also
enables us to demonstrate the ability of the proposed model to achieve positive risk-adjusted
returns, thereby strengthening our argument about its practical significance.

The technical specifications of the trading implementation include the following:

1. The trading portfolio is initialized with a starting capital of $1,000,000

2. Trading signals are generated when the difference between the model price and the observed
market price is greater than 15%12

3. Options are bought at the ask price and sold at the bid price with a mispricing margin of
15%. A buy signal is generated if the model price is 15% above the ask price, and a sell
signal is generated if the model price is 15% below the bid price

4. Each buy or sell position the trading strategy takes is for an amount equivalent to 0.005% of
the available cash in the portfolio at the time of the trading signal13

5. If an option is bought (sold) on day t, it cannot be bought (sold) again on subsequent days

6. If an option has been bought (sold) on day t, it can be sold (bought) again on subsequent days
if the price passes sell (buy) threshold, i.e. it becomes mispriced in the opposite direction

7. A stop-loss threshold is set at 500%. This implies that when going short, if the bid price is
500% higher than the price originally sold for, the algorithm will buy back the option for the
current ask. This will not be triggered when going long as it is only possible to lose 100% of
the invested amount in that case

8. The difference in the number of long and short positions cannot exceed 10% of the total
number of positions. If the difference exceeds 10%, only new positions that lower this per-
centage are permitted. This rule is implemented to limit the directional exposure in the
portfolio, ensuring that the model primarily generates profits from market mispricings rather
than directional bets

9. A transaction cost of 0.5% is imposed14. This is meant to represent the exchange fees,
clearing fees, regulatory fees, and technology and infrastructure a market participant would
have to pay when deploying a trading strategy like this

10. Options with a mid-price under 50 cents are disregarded to avoid extreme percentage fluctu-
ations

To bridge the trading implementation from an academic exercise to real-life deployment, we identify
three main simplifications made that could prevent a market participant from achieving the same
trading results showcased in our research. First, with regard to slippage, our implementation
assumes infinite liquidity at every bid and ask price. In reality, the liquidity at a specific price

11The concept of risk-neutral probability means that these probabilities depend on the price the underlying asset
can take in different states of the world, but not on the actual probability of these states occurring (Blyth, 2014)

12Andreou et al. (2008) show that a mispricing margin of 15% yields the highest absolute returns for their trading
implementation. They also observe that the P&L increases in a diminishing fashion for higher mispricing thresholds,
indicating that there is an optional threshold for maximizing trading profits.

13In practice, this might not be entirely realistic as it requires the options trader to buy a discrete number of
options to exactly fit the specified percentage position.

14Andreou et al. (2008) find that the best strategies retained profitability up to transaction costs of 0.5%.

19



may be limited such that the rest of the position is executed at a worse price. Secondly, we do
not incorporate the market impact of trading decisions in the sense that trades on one day do
not affect the price on the next day. It is worth highlighting that the effect of both of these
limitations depends on the transaction size. Third, we do not impose margin requirements. The
only limitation of writing options we currently have, is that there needs to be a balance of going
long and short options as described above. At the same time, the portfolio has significant cash at
all times, which could act as collateral. However, in real life, more formal collateral and margin
requirements to write options will be required than what we have implemented.

4.3 Benchmark models

4.3.1 Black-Scholes

First introduced by Black and Scholes (1973), the Black-Scholes model (BS) defines the price for
a European call option as:

C = S N(d1)−Ke−rtN(d2) (4.11)

d1 =
log(S/K) + (r + σ2/2)/τ

σ
√
τ

(4.12)

d2 =
log(S/K) + (r − σ2/2)/τ

σ
√
τ

= d1 − σ
√
τ (4.13)

where S is the current price of the underlying asset, K is the strike, τ is the time to maturity, σ
is the volatility of the underlying asset, r is the risk-free interest rate and N(·) is the cumulative
normal distribution.

Despite its widespread use in practice, a straightforward implementation of the BS model can
underperform due to its reliance on potentially biased information. In contrast, our LSTM-MLP
model is trained with actual options prices, which allows it to potentially capture higher-order
moments. The BS model, notably, is sensitive to the choice of volatility measure, which is the only
input variable that is unobservable. This issue is compounded by the inability of the model to
adjust its functional form, unlike neural networks (Anders et al., 1998). Consequently, the same
volatility measure must be applied to all options, leading to inherent inflexibility. Despite these
limitations, the BS model is widely employed as a benchmark due to its widespread acceptance
and understanding within the financial community (Hutchinson et al., 1994; Ruf and Wang, 2020).

To provide a fairer comparison, we use three different versions of the BS model as our benchmark
models, each incorporating a different volatility measure: historical, implied, or volatility predicted
using GARCH(1,1).

Historical volatility

Historical volatility is computed from the past 30 trading days using the following formula:

σ30 =
√
252

√√√√√√
30∑
i=1

(Ri −R)2

29
(4.14)

Ri = ln(
Si

Si−1
) (4.15)

where σ30 is the 30-day historical volatility at time t, Ri is the log return of the underlying asset
price at time i, R is the average log return, and Si is the closing price of the underlying asset on
day i. We annualize the volatility by multiplying by

√
252, assuming 252 trading days per year.

GARCH(1, 1) volatility

20



The GARCH model introduced by Bollerslev (1986) provides a more sophisticated measure for
capturing the inherent time-varying volatility in financial markets. This could yield a more robust
and dynamic measure of the risk associated with the option. We employ the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) to determine the optimal order of p
and q for the GARCH model, which penalizes model complexity while promoting goodness-of-fit.

The GARCH(1, 1) model was selected as it returned the lowest AIC and BIC values among different
combinations of p and q. The model is specified as follows:

σ2
t = ω + αR2

t−1 + βσ2
t−1 (4.16)

where σ2
t is the conditional variance at time t, ω is the constant term, α and β are the GARCH

parameters, and Rt−1 is the log return at time t−1. In this model, we assume a normal distribution
for the error terms. After obtaining the conditional volatilities, we annualize them by multiplying
by
√
252.

Implied Volatility

Following Wang et al. (2012) we calculate an implied volatility (IV) measure for day t−1, which is
then employed to price all options on day t. Since implied volatility is often considered a superior
predictor of future volatility than historical volatility (Jorion, 1995; Egelkraut and Garcia, 2006),
it might enhance the pricing accuracy of BS model. Given the volatility smile, the deep in- and
out-of-the-money options have a disproportional effect on the calculated implied volatility. Using
the median as opposed to the average as seen in Wang et al. (2012) yielded better results and BS
with median implied volatility is therefore reported. The Newton-Raphson numerical method is
used to calculate the implied volatilities at t− 1 from the option prices and the BS formula given
in Equation (4.11).

4.3.2 Heston

Heston is one of the most popular models for option pricing (Larikka and Kanniainen, 2012; Jerbi
and Chaabene, 2020; Liang and Cai, 2022). It is a stochastic volatility model where the asset price
and its volatility are described as two stochastic processes. The model is described by the following
system of stochastic differential equations:

dSt = µStdt+
√
νtStdz1t (4.17)

dνt = κ(θ − νt)dt+ σ
√
νtdz2t (4.18)

dz1tdz2t = ρdt (4.19)

where St is the spot asset price, νt is the mean-reverting stochastic volatility, σ is the volatility of
the variance, µ is the rate of return of the underlying asset, θ is the long-term variance, κ is the
mean reversion rate and ρ is the correlation between the two Brownian motions z1t and z2t.

The formula for pricing a European call option under the Heston model, as described by Heston
(1993), involves solving the complex integral below:

C0 =
1

2
(S0 −Ke−rτ ) +

1

π
Re

∫ ∞

0

(
erτ

ϕ(u− i)

iuKiu
− ϕ(u)

iuKiu

)
du (4.20)

ϕ(u) = euτSiu
0

(
1− ge−dτ

1− g

)−2 θκ
σ2

exp

(
θκτ

σ2
(κ− ρσiu− d) +

V0

σ2
(κ− ρσiu+ d)

1− edτ

1− gedτ

)
(4.21)

d =
√
(ρσui− κ)2 + σ2(iu+ u2) (4.22)

g =
κ− ρσiu− d

κ− ρσiu+ d
(4.23)

where i is the complex number, V0 is the square of the initial volatility, r is the risk free rate, K
is the exercise price of the option and τ is the time to maturity and.

Solving this complex integral requires a discretization strategy, as demonstrated in (Mikhailov and
Nögel, 2004). Five parameters have to be calibrated: κ, ρ, θ, σ and V0. We calibrate the Heston

21



model on the last trading day prior to each test set using the Levenberg-Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963). The MSE loss function was used for the Levenberg-Marquardt
algorithm to maintain consistency with the loss function used during LSTM-MLP training and the
primary performance metric.

4.3.3 MLP

A standard MLP model is implemented as a benchmark model to understand the impact of sub-
stituting the explicit volatility input with the LSTM component of the LSTM-MLP model. The
MLP model uses historical volatility as volatility input, as also implemented in Iltüzer (2022).
The 30-day historical volatility calculated in Section 4.3.1 is used. The MLP model is developed
and trained following a similar methodological approach to that used for the LSTM-MLP model,
as detailed in Section 4.1. The MLP model undergoes its independent hyperparameter search,
conducted following the same process as that outlined for the LSTM-MLP model in Section 4.1.3.
Details of the hyperparameter search for the MLP model, including the final optimized hyperpa-
rameters, can be found in Appendix B.

4.4 Performance metrics

4.4.1 Pricing performance

To evaluate the pricing performance of the LSTM-MLP model and the benchmark models, we use
root mean squared error (RMSE) and mean absolute error (MAE). These metrics measure the
degree of pricing error, with lower values indicating better accuracy. RMSE is a quadratic scoring
rule which weighs large errors more heavily, thus punishing large outliers to a greater extent. MAE
is a linear scoring rule and therefore treats all individual differences equally in the average, resulting
in less sensitivity to outliers. By employing both metrics, we gain a nuanced perspective on the
model’s performance, considering both its overall predictive accuracy and its robustness to large
errors. RMSE and MAE are defined as:

RMSE =
√
MSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2 (4.24)

MAE =
1

m

m∑
i=1

|yi − ŷi| (4.25)

Where m is the total number of options, yi is the observed price, ŷi is the model price estimates.

To perform pairwise comparisons of the models, the Diebold-Mariano (DM) test is employed using
the MSE loss function to asses the equality of model predictions. For a given loss function l(·), the
difference series, d, between the two prediction series is defined as:

di = l(ŷi,1 − yt,1)− l(ŷi,2 − yi,2) (4.26)

Given the null hypothesis of:

H0 : E[di] = 0 (4.27)

The DM test statistic is:

DM =
1
m

∑m
i=1 di√

2πf̂d(0)/m
(4.28)

Where f̂d(·) is the spectral density of {di}.

22



4.4.2 Trading performance

We assess the risk-adjusted performance of our options portfolio using several metrics: the Sharpe
ratio, the Sortino ratio, the Capital Asset Pricing Model (CAPM) α, returns and maximum draw-
down (MDD). These metrics are intended to assess both the trading returns and risks.

The Sharpe ratio, introduced by Sharpe (1966), is a measure of risk-adjusted return, taking into
account the total volatility of returns. The Sortino ratio, a variant of the Sharpe ratio intro-
duced by Sortino (1994), distinguishes harmful volatility from total volatility by considering only
the downside deviation. We compute the Sharpe and Sortino ratios using the daily returns and
annualize the measures. The formulas are given in:

Sharpe Ratio =
Rp − rf

σp
(4.29)

Sortino Ratio =
Rp − rf

σd
(4.30)

where Rp is the return of the portfolio, rf is the risk-free rate, σp is the standard deviation of the
portfolio returns, σd is the standard deviation of negative portfolio returns.

The CAPM α provides a measure of the value a portfolio manager adds over a benchmark, with a
positive α signifying market outperformance after adjusting for market risk. In the CAPM model,
α is the intercept in the linear OLS regression model that relates the excess return of a security or
portfolio (over the risk-free rate) to the excess return of the market (over the risk-free rate). The
α and β can be extracted from the following formula:

Rp − rf = α+ β · (Rm −Rf ) + ϵ (4.31)

where Rp is the return of the portfolio, rf is the one-month risk-free rate, Rm is the return of the
market, β represents the part of the excess return attributed to taking market risk and ϵ is an
error term.

The annual portfolio returns are computed by determining the ratio of the ending balance to the
starting balance, subtracting 1 from the result. This provides a measure of the overall growth or
contraction of the portfolio over a year. Maximum drawdown, on the other hand, serves as an
assessment of risk. It quantifies the largest relative decline from a peak to a trough in the portfolio
value over the specified period. As such, it reflects the most severe potential loss that could have
been incurred, underlining the exposure of the portfolio to downside risk.

4.5 Interpretability analysis

Interpretability analysis using both SHAP and ALE is conducted to gain a better understanding
of the pricing behavior demonstrated by the LSTM-MLP model and to ensure a sanity check of its
behavior. As outlined in Section 2.4, SHAP and ALE distinguish themselves based on the local and
global scope of their interpretability respectively. Thus, the implementation of both these methods
makes our analysis more comprehensive: SHAP contributes insights at a granular level, revealing
individual instance-based characteristics, while ALE provides a broader perspective, capturing
average effects to illuminate overarching model behaviors. While there may be areas of overlap in
their analyses, the contrasting techniques of SHAP and ALE bring about a more comprehensive
and robust understanding of the LSTM-MLP model. This combination, in turn, bolsters the
reliability of our analysis and enriches the interpretability of our model in the complex domain of
option pricing.

For both the ALE and the SHAP method, we choose to use the training set of the model for the
interpretability analysis due to their larger size and a wider variety of feature values compared
to the test sets, which span only one month each. Our rationale is that a broader dataset would
better show the learned behavior by the model, which is the primary goal of the interpretability
analysis. This choice aligns with our focus on understanding the overall model behavior rather
than the specific pricing patterns in the shorter test periods. However, if the goal was to explain
specific pricing estimates on the test set, the test set could be employed.

23



4.5.1 SHapley Additive exPlanations (SHAP)

SHAP (Lundberg and Lee, 2017) serves as a unified measure for interpreting model predictions.
It was developed to consolidate the expanding number of interpretability methods, due to the lack
of understanding about their relationships and the criteria for choosing one over another. Rather
than depending on a single method, SHAP integrates six methods to offer a unified measure of
feature importance, which can be assigned individually to each feature.

In introducing these methods, SHAP treats every explanation of a model’s prediction as an expla-
nation model in its own right. All six methods that comprise SHAP utilize the same explanation
model. Mathematically, if f is the original prediction model to be explained and g is the explana-
tion model, the explanation models generally transform the original inputs x through a mapping
function x = hx(x

′) to acquire simplified inputs x′. The explanation model g can then be expressed
as:

g(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (4.32)

where z′ ∈ {0, 1}M , M is the number of simplified input features, and ϕi ∈ R is the effect attributed
to each feature by methods with explanation models matching Equation (4.32). For more detailed
explanations, see Lundberg and Lee (2017).

Given that SHAP is a local interpretability method it calculates the impact for each data point
individually, thus making it computationally intensive. In response to this, we apply SHAP using
K-means with k = 75 to identify representative option quotes from the training set for use by the
explainer. We then sample 10,000 options to compute SHAP values. The analysis is performed on
the final model trained on data from November 2019 - October 2022.

4.5.2 Accumulated Local Effects (ALE)

ALE (Apley and Zhu, 2016) provides an average measure of a feature’s influence on the predictions
of a machine learning model. ALE is a faster, and unbiased extension of Partial Dependence Plots
(PDP), which notably overcomes the inability of PDPs to account for correlations between input
features.

The ALE methodology can be broken down into several steps. Firstly, the values of the target
feature are divided into intervals. For the data within each interval, the difference in predictions
is calculated when the target feature value is replaced from the upper limit to the lower limit of
the interval. These differences are then accumulated to yield the uncentered ALE values. Mathe-
matically, this estimation process for the uncentered effect gj,ALE(·) can be expressed as:

ĝj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑
{i:xi,j∈Nj(k)}

[
f
(
zk,j , xi,\j

)
− f

(
zk−1,j , xi,\j

)]
(4.33)

where f(·) is the function of the machine learning model, xj is the target feature, Nj(k) is the kth

interval, zk,j is the limit value of feature j in the kth interval, and xi,\j is the ith sample excluding
feature j.

To ensure that the mean effect is zero, the computed ALE values are centered to form an ALE
curve. The centering process to estimate the main effect function fj,ALE(·) can be expressed as:

f̂j,ALE(x) = ĝj,ALE(x)−
1

n

n∑
i=1

ĝj,ALE(xi,j) (4.34)

where n is the number of samples. For a more comprehensive explanation, see Apley and Zhu
(2016).

We conduct the ALE method on the final model trained each year from 2015 to 2022. The feature
importance measures for each year are then averaged over the eight-year period. Even though ALE

24



is a global interpretability method and is therefore significantly quicker than local interpretability
methods such as SHAP, it can demand substantial GPU memory when processing large amounts
of data simultaneously. To tackle this issue, we opt to select a sample of 500,000 data points for
the ALE estimation of each model.

25



5 Results and discussion

This section measures the performance of the proposed LSTM-MLP model from three perspectives.
Section 5.1 analyzes pricing performance in terms of accurately estimating the market price. Sec-
tion 5.2 studies the predictive ability of option price movements, testing whether the model is able
to correctly identify overpriced or underpriced options. This is applied in practice in Section 5.3
with trading strategies based on the mispricings identified.

Comparisons are made between the proposed LSTM-MLP model and the benchmark models, as
well as other models in the literature. For comparisons with the literature, it should be noted that
fair comparison is limited due to the novelty of our approach. However, we believe it is still relevant
to compare our results to the literature, albeit on a more general basis due to the unavailability of
truly comparable model architectures, data sets, and time periods studied.

5.1 Pricing performance

Pricing results for the proposed LSTM-MLP model are generated by using it to price European
call options from 2015 to 2022, during which the model is evaluated using 96 sliding windows with
a one-month out-of-sample test period each. In total, 10,136,680 options are priced out-of-sample
by the LSTM-MLP model and each of the benchmark models.

In the following analysis, Section 5.1.1 evaluates the overall pricing performance across the full
test period from 2015 to 2022. Section 5.1.2 tests the robustness of the model in different market
conditions, including Covid-19 induced regime shifts, changes in underlying returns, and volatility
variations measured by the VIX index. Section 5.1.3 examines the pricing performance for different
levels of maturity and moneyness. Finally, Section 5.1.4 applies the XAI frameworks SHAP and
ALE to interpret the influence of input features on model output.

5.1.1 Overall pricing performance

Table 5.4 presents the overall pricing performance by each model from 2015 to 2022. The pro-
posed LSTM-MLP pricing model outperforms all benchmark models in terms of pricing accuracy
measured by RMSE and MAE. The Diebold-Mariano test confirms that these pricing differences
are statistically significant, as reported in Table 5.5.

Our finding that both neural network-based models perform better than BS is supported by mul-
tiple previous works in the literature (Hutchinson et al., 1994; Amilon, 2003; Ke and Yang, 2019;
Wang et al., 2022; Iltüzer, 2022). The observation that the LSTM-MLP, as a neural network-
based model, performs better than Heston is consistent with the general conclusion in Jerbi and
Chaabene (2020), which states that neural network-based approaches have higher pricing accuracy
than Heston. However, we also note that this is to some extent contradicted by the fact that our
MLP is beaten by the Heston implementation. Nonetheless, the positive results provide support-
ive evidence of the LSTM-MLP being able to capture useful relationships inherent in the options
market.

Table 5.4
RMSE and MAE values for the pricing performance by each pricing model
across the period from 2015 to 2022. The lowest (best) value for each metric is
highlighted in bold.

Metric BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

RMSE 35.92 36.26 20.42 13.15 17.10 11.84
MAE 15.48 15.52 10.78 7.47 8.86 6.61

26



Table 5.5
Diebold-Mariano test statistics for each pair of models. All values are significant at the
p < 0.01 level.

BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

BS 30-day 6.27 -255.91 -302.42 -271.42 -311.73
BS GARCH -6.27 -250.20 -281.67 -254.95 -288.92
BS IV 255.91 250.20 -325.54 -143.26 -368.01
Heston 302.42 281.67 325.54 266.82 -180.88
MLP 271.42 254.95 143.26 -266.82 -344.71
LSTM-MLP 311.73 288.92 368.01 180.88 344.71

The improved performance of the LSTM-MLP model compared to the BS models and the Heston
model is likely due to its ability to capture the complex, non-linear relationship between the input
variables and option prices. In comparison to the baseline MLP, the increased performance of
the LSTM-MLP suggests that the combination of two neural network architectures does enhance
pricing accuracy. More specifically, it demonstrates that an MLP with inputs from an LSTM
outperforms an MLP with a single 30-day historical volatility input. These findings contradict Ke
and Yang (2019) which found that a combined LSTM-MLP model could outperform the BS model,
but not the standalone MLP model. Our implementation of the LSTM-MLP is able to do this,
which hints at the proficiency of our model implementation described in Section 4.1, and suggests
their usage of only 20 timesteps was insufficient to extract time series information more valuable
than historical volatility. In contrast, we use 140 timesteps.

Figure 5.8 complements these results by illustrating the range of pricing differences defined by
the model price minus the market price. Most models exhibit a median pricing difference near
zero, with BS IV and Heston models slightly overpricing the median. Distinctively, the proposed
LSTM-MLP model displays a narrower range of pricing differences, signifying a more consistent
pricing behavior. These observations contribute to validating our hypothesis that the LSTM-MLP
model is able to adapt its pricing behavior to varying option characteristics and market conditions,
thereby minimizing the variability in pricing differences.

Figure 5.8 Boxplot of pricing differences, defined as the model price minus the observed market price, in
terms of USD for all pricing models studied. The rectangular body represents the first and third quartiles of
the error distribution (interquartile range, or IQR), with a line indicating the median error. The whiskers
represent the minimum and maximum error within a conventional range, defined as 1.5 times the IQR
below the first quartile or above the third quartile.

27



5.1.2 Impact of market conditions over time on pricing performance

Covid-19 pandemic

Table 5.6 and Table 5.7 display RMSE and MAE pricing errors for all models per year. In every
year except 2022, our LSTM-MLP model is the top performer, achieving the lowest RMSE and
MAE in comparison to the benchmark models. In 2022, however, the Heston model marginally
surpasses the LSTM-MLP model. These findings align with the results documented in Gradojevic
and Kukolj (2022), where a neural network-based model more distinctly outperformed the BS
model before the Covid-19 pandemic. However, it’s worth noting that their findings are based on
a dataset limited to the first half of 2020.

Table 5.6
Pricing performance measured in RMSE for each pricing model. Results are
reported for each year between 2015 and 2022. For each year, the lowest value
is printed in bold to highlight the best-performing pricing model for the given
year.

Year BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

2015 11.99 13.99 8.70 6.55 7.10 3.12
2016 11.23 12.37 8.72 4.85 5.30 3.33
2017 11.79 9.81 9.03 3.81 3.41 3.20
2018 18.25 22.75 13.07 7.76 11.46 5.24
2019 19.82 18.50 12.51 6.52 7.32 6.12
2020 72.90 70.83 31.24 22.79 34.88 21.41
2021 36.57 34.66 25.98 16.15 14.39 12.54
2022 31.20 37.28 23.84 13.84 17.21 14.45

Table 5.7
Pricing performance measured in MAE for each pricing model. Results are
reported for each year between 2015 and 2022. For each year, the lowest value
is printed in bold to highlight the best-performing pricing model for the given
year.

Year BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

2015 6.91 7.18 5.51 4.47 4.11 2.19
2016 6.47 6.68 5.18 3.46 3.26 2.30
2017 5.83 5.04 4.98 2.92 2.39 2.28
2018 9.83 10.54 7.08 4.98 7.37 3.57
2019 10.58 9.72 7.28 4.68 5.02 4.42
2020 30.73 30.19 16.13 12.97 19.28 12.88
2021 20.87 19.9 16.41 10.53 9.71 8.38
2022 18.59 20.58 14.20 9.43 11.66 9.93

Up until 2022, the LSTM-MLP model consistently outperforms all benchmark models. This in-
dicates its effective learning of the relationship between market variables and option prices. It
exhibits flexibility in adapting to changing market conditions over time, demonstrated by its bet-
ter performance across these years. In contrast, the BS models and the Heston model cannot match
this adaptability. Their limitations potentially arise from the stringent statistical and economic
assumptions inherent in their designs.

Interestingly, despite its flexibility, the MLP model still falls short of consistently outperforming
the Heston model. One possible reason could be the reliance of the MLP on the 30-day historical
volatility, which might not capture rapid market changes effectively. It is conceivable that the
MLP could be improved with alternative volatility measures, but this raises a crucial point of
our research: the assumption-laden process of choosing specific volatility measures. Given this, it
might be more effective to enable the model to learn its own volatility representation, freeing it
from predefined assumptions.

The year 2020, characterized by unprecedented market volatility due to the Covid-19 pandemic,

28



posed a significant challenge for all pricing models. Although the Heston model was competitive, it
failed to match the LSTM-MLP’s robust performance. The LSTM-MLP model also demonstrated
better adaptability by displaying the smallest increase in RMSE from 2019 to 2020 compared to
other models, but a slightly higher increase in MAE than the Heston model.

Post-2020, we observe broader ranges of pricing differences for all models as illustrated in Figure 5.9,
signaling a shift in their performance. The difference in RMSE and MAE performance between
models also varies more during and post-Covid-19 than prior, implying varying consistency in
model performance. Heightened volatility during this period could contribute to these challenging
pricing conditions for all models and the subsequent fluctuation in relative model performance.
This change in trend might be due to the significant market transformations brought about by the
Covid-19 market crash and recovery period. Particularly for the deep learning models MLP and
LSTM-MLP, these changes might have hampered their ability to effectively apply pre-pandemic
historical data (Gradojevic and Kukolj, 2022).

One potential solution to enhance the model performance post-Covid-19 could involve adjusting the
length of the training window. A shorter window might allow the model to learn from and adapt
more rapidly to recent market trends. However, this approach comes with trade-offs. However, a
shorter training window might limit the diversity of training data, potentially negatively affecting
the overall model performance. Therefore, the selection of the training window length presents a
delicate balance: a longer window might enhance the model’s ability to generalize through exposure
to diverse market conditions, while a shorter window could facilitate quicker adaptation to recent
market trends.

29



Figure 5.9 Boxplot of pricing differences, defined as the model price minus the observed market price,
in terms of USD for all pricing models. Errors are reported for each year between 2015 and 2022. The
rectangular body represents the first and third quartiles of the error distribution (interquartile range, or
IQR), with a line indicating the median error. The whiskers represent the minimum and maximum error
within a conventional range, defined as 1.5 times the IQR below the first quartile or above the third
quartile.

S&P 500 index returns

Our analysis of the SP500 market conditions involves identifying three distinct regimes: stable,
upwards-trending, and downwards-trending. These regimes are established based on the Moving
Average Convergence/Divergence (MACD) technical indicator. In essence, we subtract the 26-day
exponential moving average of the SP500 index from its 12-day exponential moving average to get
the MACD. Then, we split the MACD range of all the test period days into three equal parts,
creating threshold values of 0.93 and 21.12. The MACD plot with these threshold values during
the testing period can be found in Appendix D.

The model performance under the three S&P500 return market regimes are presented in Table 5.8.
In all three market conditions, the LSTM-MLP model consistently surpasses all benchmark models.
Interestingly, underperformance by Heston is slightly lower in stable markets when evaluated on
RMSE and standard deviation of absolute errors. This suggests that the complexity of the LSTM-
MLP model may be less necessary in stable markets where the dynamics are simpler. Alternatively,
it could suggest that the assumptions for Heston hold more accurately in stable conditions, im-
proving the parameter estimation process and leading to better pricing performance.

30



In contrast, the MLP model underperforms consistently compared to both Heston and LSTM-MLP
models across all market conditions. This performance gap is notably higher in both upward and
downward trending markets, where the pricing error for the MLP escalates to levels similar to
the BS IV model in downward trends. The MLP model’s underperformance could be attributed
to its dependence on the 30-day historical volatility measure, which does not account for market
movement direction. Consequently, it struggles to adjust promptly and accurately to the different
market directions. On the other hand, the LSTM-MLP model can leverage the capacity of the
LSTM component to memorize and exploit data temporal dependencies, potentially capturing and
reacting to underlying market trends, including direction, more accurately.

Hence, integrating an LSTM component into an MLP model can significantly improve its perfor-
mance across various market trends. Most notably, the superior adaptability of the LSTM-MLP
to market directionality provides it with a distinct advantage over the MLP model when markets
are in motion, especially during downward trends, making it a potentially more reliable tool in
these dynamic scenarios.

Table 5.8
Pricing performance during different S&P 500 regimes, measured in RMSE, MAE, and the
standard deviation of the absolute value of pricing differences defined as model price minus
the observed market price. Upwards-trending is defined as MACD over 21.12. Stable
conditions is defined as MACD between 0.93 and 21.12. Downwards-trending is defined as
MACD under 0.93. Each regime consists of 1/3 of the total days in the period.

BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

Downwards-trending
RMSE 44.54 51.86 24.13 16.00 23.16 14.91
MAE 18.38 21.36 12.06 8.58 11.29 7.72
St.dev. 40.57 47.25 20.90 13.50 20.22 12.76

Stable conditions
RMSE 25.44 16.53 15.63 7.88 9.39 7.09
MAE 10.51 8.48 8.05 4.90 5.24 3.90
St.dev. 23.17 14.19 13.40 6.17 7.79 5.93

Upwards-trending
RMSE 34.07 29.73 20.01 13.49 15.18 11.61
MAE 16.63 15.62 11.69 8.40 9.41 7.66
St.dev. 29.74 25.30 16.24 10.56 11.91 8.72

The pricing behavior of the LSTM-MLP across different S&P 500 regimes over time is illustrated
in Figure 5.10. The largest absolute mean pricing differences are observed in downward-trending
regimes, which might be expected due to the asymmetric effect of negative shocks on volatility,
making downward-trending markets typically more volatile (Black, 1976). As increased volatility
boosts option prices, higher pricing difference values might be expected in absolute terms. Inter-
estingly, the widest ranges, including 90% of the pricing differences, and the most drastic changes
in mean pricing difference are also noticed for upward- and downward-trending markets, most
notably in downward-trending markets.

31



Figure 5.10 Pricing performance of the LSTM-MLP model, measured in mean pricing difference and
the broadness of the range including 90% of pricing differences. The colored overlay represents different
market regimes defined by S&P 500 returns. Upwards-trending is defined as MACD over 21.12. Stable
conditions are defined as MACD between 0.93 and 21.12. Downwards-trending is defined as MACD under
0.93. Each regime consists of 1/3 of the total days in the period. The mean error and error interval is
slightly smoothed for readability.

VIX

The VIX index, often referred to as the ”fear gauge”, measures the expectation by the market of
future volatility. This makes it a key factor in option pricing, as higher volatility generally leads
to higher option prices due to the increased risk. We explore this aspect further by examining
the pricing performance of our models across three distinct VIX15 regimes. Table 5.9 presents the
pricing performance of each model for three distinct market regimes defined by the VIX. We divide
the VIX range of all days in the test period into three equal parts, resulting in threshold values
of 14.22 and 20.48. A plot of the VIX in the testing period with threshold values is included in
Appendix D.

The LSTM-MLP model stands out in all scenarios with the lowest RMSE, MAE, and standard
deviation. This suggests that the LSTM-MLP model can effectively adjust its pricing behavior to
prevailing market volatility conditions due to its LSTM component, which captures the temporal
dependencies in the sequential return data for the SP 500 index. In contrast, the MLP model only
surpasses all other benchmark models in the medium VIX regime in terms of RMSE and standard
deviation and in the low VIX regime in terms of MAE. Compared to the closest competitors, MLP
exhibits a worsening relative performance in the high VIX regime. This implies that the MLP
model may not be as robust when it comes to adjusting to different market volatility conditions.

15Daily VIX data from Cboe used: https://www.cboe.com/

32



Table 5.9
Pricing performance during different VIX regimes, measured in RMSE, MAE, and
standard deviation of the absolute value of the pricing difference defined as model price
minus the observed market price. Low VIX regime is defined as VIX values below
14.22. Medium VIX regime is defined as VIX values between 14.22 and 20.48. High
VIX regime is defined as VIX values above 20.48. Each regime consists of 1/3 of the
total days in the period.

BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

Low VIX
RMSE 12.64 11.21 9.84 4.74 4.91 4.42
MAE 6.67 6.01 5.61 3.54 3.23 3.02
St.dev. 10.74 9.46 8.08 3.16 3.70 3.22

Medium VIX
RMSE 25.51 25.07 17.33 10.78 10.29 8.69
MAE 13.45 12.92 10.07 6.62 6.69 5.27
St.dev. 21.67 21.48 14.11 8.51 7.82 6.91

High VIX
RMSE 51.23 52.25 27.18 18.04 25.28 16.71
MAE 23.32 24.33 14.96 10.91 14.62 10.26
St.dev. 45.62 46.24 22.69 14.36 20.63 13.19

Figure 5.11 further illustrates the pricing behavior of the LSTM-MLP model across different VIX
regimes over time. The high VIX regimes visually exhibit more fluctuations in mean pricing
difference and larger 90% ranges, indicating the more difficult pricing conditions during these
periods.

As previously discussed, absolute pricing errors could be expected to increase with higher VIX as
option prices are higher when volatility is higher. This is especially true since we use the VIX
index to determine different volatility periods. As the VIX index is directly tied to the implied
volatility for options, it essentially approximates the pricing level of options.

Figure 5.11 Pricing performance of the LSTM-MLP model, measured in mean pricing difference and the
range including 90% of pricing differences. The colored overlay represents different market regimes defined
by VIX values. Low VIX regime is defined as VIX values below 14.22. Medium VIX regime is defined as
VIX values between 14.22 and 20.48. High VIX regime is defined as VIX values above 20.48. Each regime
consists of 1/3 of the total days in the period. The mean error and error interval is slightly smoothed for
readability.

33



5.1.3 Impact of moneyness and maturity on pricing performance

Figure 5.12 shows the pricing performance of each model for different maturities. For all models,
the RMSE generally increases for longer maturities. However, some increase is expected given the
increased option values for longer maturities.

Figure 5.12 RMSE at different maturities. The graph is slightly smoothed for readability.

Both the LSTM-MLP and MLP show worse performance than the benchmark models for the
shortest maturities. However, the RMSE increases more across maturities for the other bench-
mark models, and especially the BS models. This is also reported by Liang and Cai (2022), who
noted comparable performance by conventional option pricing models like BS and machine learn-
ing methods like MLP for the shortest maturity options and then a strengthening of the relative
performance by the machine learning methods for longer maturities.

This trend could be linked to the limitations of the BS assumptions, such as constant volatility
and log-normally distributed asset prices, which may not accurately reflect the market dynamics
over a long period. As a result, the market may price options for longer maturities differently than
the BS model would predict, leading to greater pricing errors. In contrast, the LSTM-MLP model,
being data-driven, is not constrained by such assumptions and can adjust its predictions based on
the data it is trained on. This could explain its relatively stable performance across maturities
compared to the BS models. The same reasoning can be applied to the Heston model, which
accounts for stochastic volatility and does not require a lognormal distribution of the underlying
asset prices.

When comparing the LSTM-MLP model with the MLP model, it is noticeable that the LSTM-MLP
outperforms the MLP for short-maturity options but shows similar performance for long-maturity
options. This suggests that the flexibility of the MLP may not be sufficient to accurately adapt to
lower-maturity options using the 30-day volatility input. It, therefore, seems that the LSTM input
is especially more suitable to extract the relevant volatility for the short and medium maturities
relative to the explicit volatility input given to the MLP model.

Figure 5.13 illustrates the pricing performance of each model at varying levels of moneyness.
The LSTM-MLP outperforms all the benchmark models for out-of-the-money and at-the-money
options. For deeper in-the-money options, the underperformance by the MLP lessens and the
Heston model slightly beats the LSTM-MLP. This is in line with the findings of Amilon (2003)
and Iltüzer (2022), which highlighted the improved performance of neural network-based models
over the BS model with historical volatility. Further, Iltüzer (2022) also documented an edge by
neural networks over BS with GARCH volatility across all levels of moneyness. Comparing neural
network-based models to BS with implied volatility, the most challenging point for outperformance

34



arises for at-the-money options, a finding also echoed in Iltüzer (2022).

Figure 5.13 RMSE at different moneyness. The graph is slightly smoothed for readability.

The performance of the LSTM-MLP indicates that it is more suitable for capturing the pricing
dynamics for out-of-the-money and at-the-money options, which can be more complex than in-
the-money options as there is more uncertainty about whether they will become in-the-money at
expiry. For out-of-the-money options, the lower RMSE for the neural network-based pricing model,
and the higher RMSE for BS are also observed in Amilon (2003). Moreover, the observation that
the neural network-based model has difficulty pricing options deep in the money, whereas BS is
more capable of pricing in-the-money than out-of-the-money options is consistent with Bennell and
Sutcliffe (2004).

For further in-the-money options, the Heston model becomes a stronger competitor for the LSTM-
MLP model. The relative underperformance could be attributed to the generally lower liquidity of
these options, as shown in Figure 3.2 and cited by Fan et al. (2017). Reduced liquidity could imply
less efficient market prices and, consequently, a greater challenge in discerning a robust pricing
relationship. As depicted in Figure 3.1, the number of options in the dataset drops considerably at
higher moneyness levels, implying that the reported RMSE for these levels is based on a smaller
sample size. Furthermore, the reduced sample could potentially impede the LSTM-MLP model’s
ability to learn a representative mapping from option characteristics to option price, due to insuf-
ficient data and variation. This is supported by Yang et al. (2017), who excluded in-the-money
options from their study on gated neural networks for option pricing on the S&P500 index, citing
the low trading activity and unreliability of prices for these options.

Table 5.10 shows the RMSE for each pricing model at different maturities within the specified
groups of moneyness. For out-of-the-money and at-the-money options, the LSTM-MLP outper-
forms benchmark models across maturities. This is also in line with the one-dimensional analysis
of pricing performance by the moneyness dimension shown in Figure 5.13. The outperformance
across models is more mixed for in-the-money options. The LSTM-MLP struggles for shorter and
medium-term options, for which BS with implied volatility performs best. However, the LSTM-
MLP performs best again for the long and very long maturities of in-the-money options. Our
observations for the LSTM-MLP are similar to the results for the MLP in Liang and Cai (2022),
although our MLP implementation does not demonstrate equally strong performance.

Comparatively, our results diverge somewhat from those presented in Gradojevic and Kukolj
(2022), who found that pricing options with a maturity greater than 180 days and not near-
the-money is generally more challenging. Contrary to their findings, our LSTM-MLP model out-
performs all benchmark models for options with long and very long maturities. This discrepancy
may highlight the strengths of the LSTM-MLP model in handling these more challenging options.

35



Wang et al. (2022) demonstrate that a deep neural network-based pricing model outperforms both
the BS and Heston models across all maturities and moneyness levels. Our results mostly align with
these findings, although our LSTM-MLP model falls short in pricing short-maturity, in-the-money
options.

Table 5.10
RMSE grouped by moneyness and maturity. For moneyness, out-of-the-money is defined as less
than 0.97, at-the-money is defined as between 0.97 and 1.03, and in-the-money is defined as
greater than 1.03. For maturity, shorter maturity is defined as 0-30 days, medium maturity is
defined as 31-90 days, longer maturity is defined as 91-300 days, and very long maturity is
defined as 301-730 days. For each combination of moneyness and maturity, the lowest value is
printed in bold to highlight the best-performing pricing model for the given combination.

Moneyness Maturity BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

<0.97 0-30 12.15 13.65 6.85 7.22 7.33 4.98
31-90 31.20 31.99 18.66 13.04 13.79 8.52
91-300 65.39 68.98 43.57 20.20 20.26 13.41
301-730 104.34 107.84 73.23 23.27 23.61 17.22

0.97-1.03 0-30 15.68 13.43 12.35 12.94 19.26 11.71
31-90 26.74 25.30 17.19 16.99 22.24 12.83
91-300 56.32 56.94 27.24 22.69 25.38 18.67
301-730 100.49 101.99 48.95 23.97 25.08 21.76

>1.03 0-30 8.04 6.61 4.71 6.23 16.60 9.11
31-90 16.62 15.13 7.74 9.19 14.57 9.42
91-300 41.12 40.75 17.17 14.77 16.78 14.29
301-730 72.45 72.59 36.43 21.41 20.51 20.31

5.1.4 Interpretability analysis of pricing behavior

Interpretability analysis using SHAP and ALE is implemented to better understand the pricing
behavior of the LSTM-MLP model.

In the SHAP summary plots, the x-axis represents the SHAP values. The SHAP values estimate
the impact of each feature value in terms of explaining deviations in output values from a baseline
of expected option value if no feature values were given. The interpretations of feature effects are
thus relative to the other options in the data set. A positive SHAP value indicates an increased
option price from the baseline price and a negative value represents a reduced option price. A red
color indicates a high feature value, and a blue color indicates a low feature value.

Figure 5.14 presents the SHAP summary plot ordered by feature importance for model outputs
for the option characteristics used as input in the MLP component of the LSTM-MLP model. The
strike price is found to be the most important feature, followed by the price of the underlying
asset, time to maturity, and the risk-free rate. This ordering is consistent with the interpretability
analysis by Liang and Cai (2022) using ALE for LSTM and MLP option pricing models. Higher
values for the S&P 500 index, time to maturity and risk-free rate contribute to increasing the
estimated option price, while higher values for the strike contribute to reducing the estimated
option price. This makes intuitive sense to what we would expect for call options and thus serve
as a sanity check of the model.

36



Figure 5.14 SHAP summary plot of feature importance and positive or negative impact on model output.
The SHAP values are calculated for 10,000 options sampled from the latest LSTM-MLP option pricing
model trained on options data from November 2019 - October 2022.

Figure 5.15 presents the SHAP values for the 10 most recent returns of the return series given to
the LSTM component of the model. The full return series is included in Appendix C. The most
recent returns seem the most important, with a declining impact of older returns. Negative returns
tend to have a positive impact on option price for the most recent returns, while positive returns
tend to have a negative impact. Large negative shocks tend to have a higher absolute SHAP value
than positive shocks. This indicates that negative shocks have a greater impact on the option price,
which could be partly explained by the fact that negative shocks are typically larger in magnitude
as well. Many of the return data points are clustered around lower absolute SHAP values, while
the endpoints of high and low returns show higher absolute SHAP values. This indicates that the
most important information from the time series comes from the large movements and shocks.

Figure 5.15 SHAP summary plot for the 10 most returns in the return series of the underlying asset given
to the LSTM component. The full summary plot for the entire return series is given in Appendix C. The
SHAP values are calculated for 10,000 options sampled from the latest LSTM-MLP option pricing model
trained on options data from November 2019 - October 2022.

The pronounced and positive impact of recent negative returns aligns with the well-documented
leverage effect. Initially identified by Black (1976) and empirically confirmed in numerous studies
such as Christie (1982), the leverage effect suggests that negative returns and shocks tend to have
a more pronounced impact on future volatility than positive shocks. Furthermore, asset prices and

37



volatility are typically negatively correlated (Bouchaud et al., 2001). Increased volatility typically
leads to higher option prices due to the asymmetrical payoff profile of options. Potential losses
are capped at the cost of the option premium, while potential gains can be theoretically unlimited
for call options. Hence, increased volatility, indicative of greater price uncertainty, generally leads
to higher option prices. Therefore, it is reasonable that negative shocks, which are typically
associated with greater volatility, exert a greater positive influence on option prices. This dynamic
underscores the benefit of incorporating return series into the option pricing model, allowing the
model to capture this complex relationship more effectively than if it were to rely solely on explicit
volatility measures like historical volatility.

Another plausible reason for the apparent higher option prices following negative returns might
be investors’ risk perception and behavior. Investors could perceive negative returns as a sign of
increased risk, prompting them to buy more options to limit downside risk, which in turn drives
up the option prices. On the other hand, during periods of positive returns, the perceived risk may
decrease, and investors might not feel the need for such risk management, leading to a decrease in
demand for options and consequently lower prices.

The relationship between the impact of positive and negative returns on option prices changes for
older lags and becomes more mixed for the oldest. For some of the middle returns, the relationship
appears the opposite. This might indicate some form of reversal effects. The SHAP method, while
powerful, can struggle with the interpretation complexities in the presence of high-dimensional
data and does not consider the time ordering of input features, which could typically have an
effect on time series data. Therefore, while the SHAP analysis provides valuable insights into the
behavior of our LSTM-MLP model, it may not fully reveal all patterns captured by the model due
to these interpretation challenges.

Using the global explainability method ALE, Figure 5.16 illustrates the average feature importance
of each feature for the last models trained each year from 2015 to 2022. The ordering of the option
characteristics is the same as shown with SHAP. When aggregating the impact of each lag in the
return series, it achieves an importance of 7%. This makes the return series less important than
the strike and S&P500 price, but more important than the time to maturity and risk-free rate.
Breaking down the impact of the return series, the most recent lag accounts for about 6 % of the
total impact of the return series. After this, there is a rapid decline until around lag 15. For later
lags there is a more stable and less rapid decline in importance. This indicates that the model
considers the entire return series it is given, but with higher attention given to the most recent
lags.

Figure 5.16 ALE feature importance for the LSTM-MLP model averaged across the last model trained
each year during 2015-2022. The plot to the left shows the feature importance across the option character-
istics with aggregated returns impact. The plot to the right show the feature importance of each individual
lagged return towards the overall impact of the return series.

Figure 5.17 illustrates the feature importance for the MLP benchmark model when an explicit
volatility input is employed. The features strike, S&P 500 value, time-to-maturity and risk-free
rate maintain the same order and similar importance as observed in the LSTM-MLP model. On the

38



contrary, the MLP model assigns low importance to the volatility input at 0.2%. This observation
aligns with Liang and Cai (2022) who also identified historical volatility as the least important
feature. They reported a comparable importance percentage for the volatility input for both their
MLP and LSTM models in pricing S&P 500 options.

Figure 5.17 ALE feature importance for the MLP benchmark model averaged across the last model
trained each year during 2015-2022.

The low attention given to the volatility input by the MLP strengthens the argument that providing
explicit volatility input to these deep learning models yields less benefit to the models. One possible
explanation could be that the MLP model extracts the average volatility from the training set and
makes minor adjustments based on the historical volatility input. The implementation of sliding
windows could further enable the MLP model to adjust learned volatility levels. If this hypothesis
holds, it could explain the MLPs poor performance during periods with fluctuating volatility and
returns as seen in the analysis in section 5.1.2. It could also hint at why we are seeing higher
variability observed in the boxplot for the MLP as shown previously in Figure 5.9.

Nonetheless, the stark contrast between the importance assigned to the return series in the LSTM-
MLP model and the volatility input in the MLP model provides additional evidence supporting the
efficacy of time series information extraction using an LSTM component in the combined LSTM-
MLP model. While strike and S&P500 price naturally prove the most important in determining
the option price, we argue that the 7% feature importance attributed to the return series appears
to be the differentiating factor causing the LSTM-MLP model to outperform the MLP.

5.2 Predictive ability of directional price movements

Table 5.11 shows the percentage of correct directional predictions of the market price by each pricing
model. The model predicts an upward movement when it deems the option to be undervalued by
the market, and a decrease when it sees the option as overvalued. The analysis considers different
time horizons in terms of days after the pricing date, as well as different thresholds for classifying
an option as underpriced or overpriced by the market16. It should be noted that this is not
directly what the models are trained for, and ignores effects like changing market conditions or
theta-decay which should reduce the value of the options as the maturity decreases all else being
equal. Nonetheless, it still provides some insights into the ability of the model to identify options
that are mispriced by the market.

For threshold 0%, Heston achieves the highest percentage of correct directions. However, most
models achieve close to 50% prediction for the 0% threshold. For the other thresholds considered,
the LSTM-MLP achieved the highest predictive performance. Interestingly, the LSTM-MLP has
better predictive performance for higher thresholds. This indicates that when it is more certain

16A threshold of 5% means that an option is underpriced (overpriced) by the market if the model price is higher
(lower) than the market price by 5% or more.

39



about potential mispricings by the market, it also tends to be more correct about the directional
movement of the mispriced options for the days ahead.

The MLP has the second greatest predictive power considering thresholds larger than 0%, followed
by Heston. The BS models appear more random in their mispricing direction. The LSTM-MLP
and MLP model are trained on how the market has priced options in the last years. Misspricings
by these models could therefore be interpreted as the market deviating from how it has previously
priced options. We, therefore, argue that there could be more information in the mispricings by the
LSTM-MLP model than in the benchmarking models. This gives the model value beyond simply
trying to hit the market price. The information in the mispricings could thus be used by market
participants as trading signals or other indicators of market conditions.

Table 5.11
Correct directional predictions for each model for different days ahead. Only options
still alive after the given number of days are included in the calculation. Model
overpricing compared to market price gives a downward prediction and
underprediction gives an upward prediction. Different thresholds t for relative
pricing difference compared to the market in order to generate a directional signal.

BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

t = 0%
1-day (%) 49.08 49.29 48.76 50.33 49.46 50.06
5-day (%) 49.83 50.03 49.09 52.78 51.06 51.31
10-day (%) 49.95 49.06 48.66 54.16 52.28 50.38

t = 5%
1-day (%) 46.23 46.56 44.63 48.00 48.88 50.14
5-day (%) 46.30 46.63 44.05 50.98 53.32 54.61
10-day (%) 46.28 44.74 43.14 52.60 56.01 56.10

t = 10%
1-day (%) 45.52 46.00 43.66 47.62 48.71 50.69
5-day (%) 45.89 46.48 43.12 51.35 54.12 56.64
10-day (%) 45.57 44.53 41.69 53.37 57.48 58.92

t = 15%
1-day (%) 45.24 45.66 43.17 47.38 48.61 51.06
5-day (%) 45.81 46.34 42.39 51.68 54.76 58.29
10-day (%) 45.34 44.31 40.68 53.80 58.89 61.04

t = 30%
1-day (%) 44.76 44.74 42.22 46.82 48.28 51.58
5-day (%) 45.82 45.53 40.78 52.26 56.42 61.80
10-day (%) 45.47 43.23 38.47 54.56 62.26 65.95

5.3 Trading performance

Table 5.12 shows the average yearly trading performance by each of the option pricing models
studied across the full out-of-sample test period from 2015 to 2022. The yearly trading performance
used to calculate these averages can be found in Appendix E. It can be observed that the LSTM-
MLP model outperforms all benchmark models measured by Sharpe, Sortino, and percentage
return. However, the MLP and BS GARCH performs best in terms of maximum drawdown. Our
finding that the overall best trading performance is achieved by a neural network-based pricing
model is consistent with Andreou et al. (2008)17.

The combination of high values for percentage return and simultaneously higher Sharpe and Sortino
ratios emphasizes the ability of the LSTM-MLP to achieve better risk-adjusted returns than all

17A fair comparison to other trading implementations in the literature on neural network-based option pricing
models is not possible due to the unavailability of similar model architectures and trading performance metrics.
However, comparisons can be made on a rather generalized basis to provide some more context about how our
results compare to previous research.

40



benchmark models. This suggests that the LSTM-MLP is better at accurately pricing options in
a way that aligns more closely with the true option value. This ability can in turn be attributed
to the LSTM-MLP architecture. By enabling the model to combine insights from time series and
options data, it is better equipped to accurately calculate the true option value with regard to
prevailing market conditions and option characteristics.

Table 5.12
Average yearly trading performance for each option pricing model from 2015 to 2022.
Bolded values indicate the best-performing model based on the specific metric.

Metric BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

Sharpe 0.16 -0.52 -0.21 0.38 0.83 1.28
Sortino 0.31 -0.71 -0.31 0.53 1.43 1.90
Return (%) 2.86 -1.87 -2.31 4.70 9.52 18.47
MDD (%) -10.19 -8.02 -9.92 -12.98 -7.74 -9.26

Table 5.13 shows the trading results in terms of alpha and beta values using the CAPM. It should
be noted that even though the CAPM model is used in this research, it should not be seen as an
endorsement of the model for options trading. As stated in Leland (1999), it is not ideal to apply
the CAPM to strategies with positively skewed returns, for which strategies that limit downside
risk will be mismeasured. Despite these potential shortcomings, CAPM is still utilized in our
study as it facilitates a certain degree of performance comparison between the models and because
within the hedge fund industry, α is frequently used as the go-to reference model for benchmarking
trading strategies (Ewald et al., 2022).

The table shows that of all models, only the LSTM-MLP has an alpha significant at the 1% level.
This implies strong statistical confidence that the excess return generated by the LSTM-MLP
model is not due to chance or by taking on systematic risk, but rather the proficiency of the
model. The MLP model is the only benchmark model to achieve a statistically significant alpha
at the 5% level. The superior alpha for the LSTM-MLP model provides further support for the
improved risk-adjusted performance of the proposed model. Analogous to how alpha traditionally
represents the value added by investment managers, the superior alpha of the LSTM-MLP could
be attributed to its ability to use available market information in a better way to accurately
calculate the true value of options and identify truly mispriced options. As for the beta of the
portfolio, its value will depend on the portfolio delta18. A negative beta portfolio, as observed for
the LSTM-MLP, can easily be constructed by simply selling more options than you buy.

Table 5.13
Alpha and Beta values based on the CAPM for each of the option pricing models studied. The
statistical significance of the results is denoted by asterisks: *** indicates significance at the 1%
level, ** indicates the 5% level, and * indicates the 10% level. A model with alphas and betas that
are statistically significantly different from zero is able to provide distinct predictions of asset pricing.

BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP

α (%) 3.33 0.16 0.08 8.30 10.86 21.14
SE α 4.92 3.56 4.03 5.66 4.25 5.35
α p-value 0.4985 0.9639 0.9836 0.1430 0.0107** 8.108e-05***
β 0.0802 0.1510 0.3060 0.0527 -0.1329 -0.2564
SE β 0.0164 0.0119 0.0134 0.0189 0.0142 0.0178
β p-value 1.12e-06*** 9.98e-36*** 4.59e-102*** 0.0053*** 1.73e-20*** 1.33e-44***

Figure 5.18 illustrates the development in the cash position, net value of the options portfolio19,
and total value20 for each trading year. The graphs clearly demonstrate a consistent upward
trajectory for the total value, depicted by the blue line. We also observe that in some periods,

18The delta of an options portfolio is a measure of the sensitivity of the portfolio’s value to changes in the
underlying asset’s price, often interpreted as the expected change in the portfolio’s value for a small change in the
underlying’s price

19Value of long options minus the value of short options.
20Sum of cash and net value of options portfolio.

41



few trades are made. This is either due to the fact that the LSTM-MLP identifies few sufficiently
mispriced options at the time, or that it only identifies overpriced or underpriced options, thus not
being able to create a balanced portfolio satisfying the trading rules.

42



Figure 5.18 Annual progression of cash balance, net value of the options portfolio, and total portfolio
value for the LSTM-MLP trading algorithm from 2015 to 2022

43



To better understand the trading behavior of the LSTM-MLP model, Figure 5.19 shows the distri-
bution of options bought and sold during the period from 2015 to 2022. The median moneyness is
0.994 for the options bought, and 0.960 for options sold. Accumulated, this bears resemblance to
the options trading strategy known as a bull spread in which you buy a call option at a lower strike
and sell a call option on the same underlying asset at a higher strike Hull (2022). Such a strategy
limits the upside as well as the downside risk, with the maximum profit being made when the strike
price of the option sold is reached (Vejendla and Enke, 2013). This is an optimistic option strategy
that takes advantage of a moderate increase in the price of the underlying asset (Djeutcha and
Kamdem, 2022). Interestingly, the standard deviation of the moneyness distribution of options
sold is 0.077 compared to 0.037 for the options bought. Speculating on why the options the market
overvalues compared to the LSTM-MLP are more diverse than the ones the market undervalues is
challenging due to the black-box nature of the pricing model.

Another observation from Figure 5.19 is that the longer the maturity, the more out of the money
the options bought are.

Figure 5.19 Distributions of options bought and sold at the time of the transaction. The graph to left is
options bought and the graph to the right is options sold.

44



6 Conclusion

This paper presents a deep learning approach to option pricing using an LSTM-MLP model. The
proposed model uses both time series market data and option characteristics to create a robust
framework for option pricing. To unlock the value of the time series market data, historical returns
for the underlying asset are given as input to the LSTM component. Given the ability of LSTM
networks to learn and model temporal patterns embedded in time series data, we hypothesize that
the information extracted by the LSTM component is more useful for option pricing than the
explicit volatility input used by traditional option pricing models. We complement the pricing
analysis of our model with an interpretability analysis using XAI frameworks to better understand
the behavior of the LSTM-MLP model. Furthermore, the practical significance of the proposed
pricing model is investigated using trading strategies based on mispricings identified by comparing
the model price to the market price.

In terms of pricing performance, the LSTM-MLP model exhibits enhanced accuracy compared to
the benchmark models. It outperforms both a standard MLP model with an explicit volatility
input and traditional option pricing methods. The improved performance is consistently observed
across most years and fluctuating market conditions, as characterized by VIX levels, market direc-
tional movements and the impact of Covid-19. In comparison to the benchmark MLP model, the
integration of the LSTM component in the LSTM-MLP proves particularly advantageous during
larger market movements and elevated volatility. The LSTM-MLP model’s strong performance is
most noticeable for out-of-the-money and at-the-money options across all examined maturities, as
well as for in-the-money options with longer time to maturity. The environment for option pricing
is perceived to be more challenging during and after the Covid-19 period for all models under
consideration.

By employing the XAI frameworks of ALE and SHAP, we delve deeper into the workings of
the LSTM-MLP model and discover compelling evidence for the efficacy of substituting explicit
volatility input with the LSTM component. We find that the model exhibits reasonable behavior
in terms of higher and lower feature values for the option characteristics. While the model pays
attention to the entire return series, it attaches more significance to recent returns. Market shocks,
particularly negative ones, appear to be the most influential components in the return series. The
model tends to increase option prices the most in response to negative returns, suggesting that the
LSTM-MLP successfully captures the leverage effect. Furthermore, the LSTM-MLP model assigns
a considerably higher degree of feature importance to the provided return series compared to the
explicit volatility input used in the benchmark MLP model.

Regarding trading performance, the LSTM-MLP demonstrates better risk-adjusted returns com-
pared to the benchmark models. The LSTM-MLP model achieved an average annual return of
18.47%, outperforming the rest of the models by a considerable margin. The highest risk-adjusted
returns, as measured by the Sharpe and Sortino ratios, further validate the robust performance
of the LSTM-MLP. The only metric where it did not lead was the maximum drawdown, where
the MLP and BS GARCH models exhibited marginally less severe drawdowns. The LSTM-MLP
model also stands out as the only model to deliver a statistically significant alpha at the 1% level,
reinforcing its ability to generate statistically significant excess returns.

For further research, given the demonstrated ability of the LSTM component to extract valuable
time series information in the option pricing context, it would be intriguing to experiment with
different sequence models such as transformers or alternative recurrent neural network architectures
in combination with an MLP. To delve deeper into the discrepancies between the market price and
the LSTM-MLP predicted price, we have started using these price deviations as a tool for price
direction predictions and generating trading signals, but other testing methods could add to these
valuable insights. Further, enhancing our trading algorithm with more realistic assumptions could
provide additional evidence of the LSTM-MLP model’s usefulness to generate trading signals. For
example, we could examine its performance under margin requirements or implement it within
the framework of delta hedging. The LSTM-MLP model could be explored directly in hedging
strategies as well. It could also be interesting to dive even deeper into the interpretability analysis
to further understand the deeper and more complicated time series patterns learned by the LSTM-
MLP model and their changing dynamics over time. Lastly, it could be interesting to explore the

45



use of the proposed LSTM-MLP model architecture in other applications within finance where
one could benefit from its dual design. Such applications could include forecasting stock price
predictions, managing risk, optimizing portfolios, or predicting economic indicators.

As a closing note, our research motivates the use of alternative methods to incorporate time series
data into option pricing. We do so by demonstrating enhanced pricing and trading performance
with the proposed LSTM-MLP model relative to established models. This encourages us, and
should encourage others, to explore how much more we can achieve in option pricing using deep
learning techniques.

46



Bibliography

Amilon, H. (2003). A neural network versus Black-Scholes: A comparison of pricing and hedging
performances. Journal of Forecasting, 22:317–335.

Anders, U., Korn, O., and Schmitt, C. (1998). Improving the pricing of options: A neural network
approach. Journal of Forecasting, 17(5-6):369–388.

Andreou, P. C., Charalambous, C., and Martzoukos, S. H. (2008). Pricing and trading European
options by combining artificial neural networks and parametric models with implied parameters.
European Journal of Operational Research, 185(3):1415–1433.

Apley, D. W. and Zhu, J. Y. (2016). Visualizing the effects of predictor variables in black box
supervised learning models.

Bakshi, G., Cao, C., and Chen, Z. (1997). Empirical performance of alternative option pricing
models. The Journal of Finance, 52:2003–2049.

Bennell, J. and Sutcliffe, C. (2004). Black–Scholes versus artificial neural networks in pricing FTSE
100 options. Intelligent Systems in Accounting, Finance and Management, 12(4):243–260.

Black, F. (1976). Studies of stock price volatility changes. Proceedings of the 1976 Meeting of the
Business and Economic Statistics Section, pages 177–181.

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637–654.

Bloch, D. A. (2023). A review of ’The pricing of options and corporate liabilities’. SSRN Electronic
Journal.

Blyth, S. (2014). An Introduction to Quantitative Finance. Oxford University Press.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econo-
metrics, 31(3):307–327.

Boness, A. J. (1964). Elements of a theory of stock-option value. Journal of Political Economy,
72(2).

Bouchaud, J.-P., Matacz, A., and Potters, M. (2001). Leverage effect in financial markets: The
retarded volatility model. Physical Review Letters, 87:228701.

Cao, Y., Liu, X., and Zhai, J. (2021). Option valuation under no-arbitrage constraints with neural
networks. European Journal of Operational Research, 293:361–374.

Christie, A. A. (1982). The stochastic behavior of common stock variances: Value, leverage and
interest rate effects. Journal of Financial Economics, 10(4):407–432.

Culkin, R. and Das, R. (2017). Machine learning in finance : The case of deep learning for option
pricing. Journal Of Investment Management, 15(4):1–9.

Djeutcha, E. and Kamdem, J. S. (2022). Pricing for a vulnerable bull spread options using a mixed
modified fractional Hull–White–Vasicek model. Annals of Operations Research.

Egelkraut, T. M. and Garcia, P. (2006). Intermediate volatility forecasts using implied forward
volatility: The performance of selected agricultural commodity options. Journal of Agricultural
and Resource Economics, 31(3):508–528.

Ewald, C.-O., Haugom, E., Lien, G., Størdal, S., and Wu, Y. (2022). Trading time seasonality
in commodity futures: An opportunity for arbitrage in the natural gas and crude oil markets?
Energy Economics, 115:106324.

Fadda, S. (2020). Pricing options with dual volatility input to modular neural networks. Borsa
Istanbul Review, 20:269–278.

Fan, R., Taylor, S. J., and Sandri, M. (2017). Density forecast comparisons for stock prices,
obtained from high-frequency returns and daily option prices. Journal of Futures Markets,
38(1).

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals
of Statistics, 29(5).

Fukasawa, M. and Gatheral, J. (2021). A rough SABR formula. Frontiers of Mathematical Finance.

47



Garcia, R. and Gencay, R. (2000). Pricing and hedging derivative securities with neural networks
and a homogeneity hint. Journal of Econometrics, 94(1–2):93–115.

Gençay, R. and Gibson, R. (2007). Model risk for European-style stock index options. IEEE
Transactions on Neural Networks, 18:193–202.

Gradojevic, N. (2016). Multi-criteria classification for pricing European options. Studies in Non-
linear Dynamics and Econometrics, 20:123–139.

Gradojevic, N., Gencay, R., and Kukolj, D. (2009). Option pricing with modular neural networks.
IEEE Transactions on Neural Networks, 20(4):626–637.

Gradojevic, N. and Kukolj, D. (2022). Unlocking the black box: Non-parametric option pricing
before and during Covid-19. Annals of Operations Research.

Hagan, P. S., Kumar, D., Lesniewski, A., and Woodward, D. E. (2002). Managing smile risk.
Wilmott, 1:84–108.

Haug, E. and Taleb, N. (2011). Option traders use (very) sophisticated heuristics, never the
Black-Scholes–Merton formula. Journal of Economic Behavior Organization, 77(2):97–106.

Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications
to bond and currency options. The Review of Financial Studies, 6(2):327–343.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366.

Hsu, P. Y., Chou, C., Huang, S. H., and Chen, A. P. (2018). A market-making quotation strategy
based on dual deep learning agents for option pricing and bid-ask spread estimation. Proceedings
- 2018 IEEE International Conference on Agents, ICA 2018, pages 99–104.

Hull, J. (2022). Options, Futures and Other Derivatives. Pearson.

Hull, J. (2023). Why Has Black-Scholes-Merton Been So Successful? Wilmott, 2023(125).

Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. The
Journal of Finance, 42(2):281–300.

Hull, J. and White, A. (1988). An analysis of the bias in option pricing caused by a stochastic
volatility. Advances in Futures and Options Research, 2.

Hutchinson, J. M., Lo, A. W., and Poggio, T. (1994). A nonparametric approach to pricing and
hedging derivative securities via learning networks. Journal of Finance, 49(3):851–889.

Iltüzer, Z. (2022). Option pricing with neural networks vs. Black-Scholes under different volatility
forecasting approaches for BIST 30 index options. Borsa Istanbul Review, 22:725–742.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift.

Ivas,cu, C. (2021). Option pricing using machine learning. Expert Systems with Applications, 163.

Jerbi, Y. and Chaabene, S. (2020). European call price modeling using neural networks in consid-
ering volatility as stochastic with comparison to the Heston model. 90:1793–1810.

Jorion, P. (1995). Predicting volatility in the foreign exchange market. The Journal of Finance,
50(2):507–528.

Ke, A. and Yang, A. (2019). Option Pricing with Deep Learning. Research paper for CS230: Deep
learning, Stanford University.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization.

Larikka, M. and Kanniainen, J. (2012). Calibration strategies of stochastic volatility models for
option pricing. Applied Financial Economics, 22(23):1979–1992.

Leland, H. E. (1999). Beyond mean-variance: Performance measurement in a nonsymmetrical
world. Financial Analysts Journal, 55(1):27–36.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, 2(2):164–168.

48



Liang, L. and Cai, X. (2022). Time-sequencing european options and pricing with deep learning –
analyzing based on interpretable ALE method. Expert Systems with Applications, 187.

Lin, C. T. and Yeh, H. Y. (2009). Empirical of the Taiwan stock index option price forecasting
model–applied artificial neural network. Applied Economics, 41:1965–1972.

Liu, D. and Wei, A. (2022). Regulated LSTM artificial neural networks for option risks. FinTech,
1(2):180–190.

Liu, S., Oosterlee, C., and Bohte, S. (2019). Pricing options and computing implied volatilities
using neural networks. Risks, 7(1):16.

Ludkovski, M. (2023). Statistical machine learning for quantitative finance. Annual Review of
Statistics and Its Application, 10:271–295.

Lundberg, S. and Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances
in Neural Information Processing Systems 30 (NIPS 2017).

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural network
acoustic models. In Proceedings of the 30th International Conference on Machine Learning,
volume 30.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters.
Journal of the society for Industrial and Applied Mathematics, 11(2):431–441.

Merton, R. (1973). Theory of rational option pricing. The Bell Journal of Economics and Man-
agement Science, 4(1):141–183.

Mikhailov, S. and Nögel, U. (2004). Heston’s stochastic volatility model: Implementation, calibra-
tion and some extensions. John Wiley and Sons.

Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models Ex-
plainable. 2nd edition.

Natenberg, S. (2015). Option Volatility and Trading. McGraw-Hill Education.

Olah, C. (2015). Understanding LSTM networks. https://colah.github.io/posts/

2015-08-Understanding-LSTMs/. Accessed: 2022-11-24.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Why should i trust you?: Explaining the
predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining.

Ruf, J. and Wang, W. (2020). Neural networks for option pricing and hedging: A literature review.
Journal of Computational Finance, 24(1):1–46.

Samuelson, P. and Merton, R. C. (1969). A complete model of warrant pricing that maximizes
utility. Industrial Management Review.

Sharpe, W. F. (1966). Mutual fund performance. The Journal of Business, 39(1):119–138.

Sood, S., Jain, T., Batra, N., and Taneja, H. C. (2022). Black–Scholes option pricing using machine
learning. Proceedings of International Conference on Data Science and Applications, 1.

Sortino, F. A. (1994). Performance measurement in a downside risk framework. The Journal of
Investing, 3(3):59–65.

Sprenkle, C. M. (1961). Warrant prices as indicators of expectations and preferences. Yale Eco-
nomics Essays, 1(2).

Tseng, C. H., Cheng, S. T., Wang, Y. H., and Peng, J. T. (2008). Artificial neural network model
of the hybrid EGARCH volatility of the Taiwan stock index option prices. Physica A: Statistical
Mechanics and its Applications, 387:3192–3200.

Vejendla, A. and Enke, D. (2013). Performance evaluation of neural networks and GARCH models
for forecasting volatility and option strike prices in a bull call spread strategy. Journal of
Economic Policy and Research, 8(2).

Wang, C. P., Lin, S. H., Huang, H. H., and Wu, P. C. (2012). Using neural network for forecasting
TXO price under different volatility models. Expert Systems with Applications, 39:5025–5032.

49

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Wang, M., Zhang, Y., Qin, C., Liu, P., and Zhang, Q. (2022). Option pricing model combining en-
semble learning methods and network learning structure. Mathematical Problems in Engineering,
2022.

Wang, Y. H. (2009a). Nonlinear neural network forecasting model for stock index option price:
Hybrid GJR–GARCH approach. Expert Systems with Applications, 36:564–570.

Wang, Y. H. (2009b). Using neural network to forecast stock index option price: A new hybrid
garch approach. Quality and Quantity, 43:833–843.

Wei, X., Xie, Z., Cheng, R., Zhang, D., and Qing, L. (2021). An intelligent learning and ensembling
framework for predicting option prices. Emerging Markets Finance and Trade, 57(15):4237–4260.

Yang, Y., Zheng, Y., and Hospedales, T. (2017). Gated neural networks for option pricing: Ratio-
nality by design. 31st AAAI Conference on Artificial Intelligence.

Yao, J., Li, Y., and Tan, C. (2000). Option price forecasting using neural networks. Omega,
28(4):455–466.

50



Appendix

A Nelson–Siegel–Svensson for generating rate curves

NSS is a method to fit discrete data points to a smooth and continuous curve. The resulting yield
curve is matched with the observed interest rates at different maturities.

The NSS model is defined as:

y(τ) = β0 + β1
1− e−λτ

λτ
+ β2

(
1− e−λτ

λτ
− e−λτ

)
+ β3

(
1− e−λ2τ

λ2τ
− e−λ2τ

)
(A.1)

where y(τ) is the yield for a given time to maturity τ , β0, β1, β2, and β3 are the model parameters,
and λ and λ2 are the exponential decay factors. The parameters of the NSS model are estimated
by minimizing the sum of squared differences between the observed yields and the estimated yields
from the model.

We apply the NSS model to the discrete interest rate data for each day in order to obtain the
yield curve on that day. We then match each specific option’s TTM with the maturity on the yield
curve in order to obtain the interest rate to use for pricing.

In cases where the optimization of the NSS model fails or the TTM is less than one month, we use
linear interpolation as a fallback method to estimate the risk-free rate. This ensures that we have
a consistent and accurate estimate of the risk-free rate for each time to maturity in our data set.

Figure A.1 18 Random interest rate curves generated using the NSS method

51



B MLP model hyperparameter search

Figure B.1 Hyperparameter search for the MLP model in terms of hyperparameter combinations, hyper-
parameter value ranges and MSE validation loss. Results are shown for model runs testing 150 distinct
combinations of hyperparameter values. The data set used consists of training data for the three years
from November 2011 to October 2014, and validation data for the two months from November to December
2014.

Table B.1
Configuration for the MLP model grouped by model
component. The parameters layers, units, BN momentum,
alpha constant, learning rate and learning rate decay were found
during the hyperparameter search using Wandb while the others
were determined manually beforehand to reduce the
hyperparameter space

Parameter Value

MLP Layers 4
Units per layer 200
Batch normalization momentum 0.70
Activation function Leaky ReLu
Alpha constant for Leaky ReLu 0.01

Training Training set samples 1,000,000
Learning rate 4.9× 10−2

Learning rate decay 0.82
Minibatch size 4 096
Epochs Early stopping
Optimizer Adam

52



C Interpretability analysis

Figure C.1 SHAP summary plot of feature importance and positive or negative impact on model output.
The results shown are for the latest LSTM-MLP model trained on February 2020 - January 2022. SHAP
feature values are evaluated as high or low relative to a baseline.

53



D Market conditions

Figure C.1 MACD during the testing period. Grey lines indicate threshold values of 0.93 and 21.12 used
during the analysis in section 5.1.2

Figure C.2 VIX during the testing period. Grey lines indicate threshold values of 14.22 and 20.48 used
during the analysis in section 5.1.2

E Trading performance by year

Note the discrepancies between Table 5.13 and the α values reported in Appendix E, due to the
former being based on a regression performed on returns in the entire 2015-2022 period, while the
latter is the average of the coefficients from running the regression on each year individually.

54



Table E.1
BS 30-day trading performance by year

Year Sharpe Sortino Return (%) MDD (%) α(%)

2015 -0.33 -0.55 -1.09 -2.91 -0.28
2016 0.29 0.14 2.37 -9.61 2.37
2017 0.89 1.40 7.56 -4.85 6.43
2018 -0.09 0.01 2.18 -6.62 6.06
2019 -0.13 -0.25 2.26 -11.19 0.16
2020 0.39 1.11 6.34 -9.09 7.10
2021 0.33 0.52 6.86 -19.50 24.60
2022 -0.05 0.12 -3.62 -17.76 6.82

Average 0.16 0.31 2.86 -10.19 6.66

Table E.2
BS GARCH trading performance by year

Year Sharpe Sortino Return (%) MDD (%) α(%)

2015 0.16 0.28 0.77 -7.33 2.39
2016 -0.11 -0.14 -0.61 -4.27 -0.34
2017 -1.00 -1.40 -0.17 -1.20 -0.50
2018 -0.99 -1.29 -1.37 -2.12 0.49
2019 -1.17 -1.63 -1.17 -3.10 -3.42
2020 0.34 0.50 5.89 -10.09 6.67
2021 -1.02 -1.64 -11.07 -18.06 -16.96
2022 -0.41 -0.37 -7.26 -17.98 4.71

Average -0.52 -0.71 -1.87 -8.02 -0.87

Table E.3
BS IV trading performance by year

Year Sharpe Sortino Return (%) MDD (%) α(%)

2015 -0.01 0.22 -0.47 -7.37 0.83
2016 -0.14 -0.27 -1.01 -6.61 -1.81
2017 -0.40 -0.63 -0.60 -4.20 -3.65
2018 -0.60 -0.77 0.50 -4.05 2.79
2019 -0.29 -0.35 -2.51 -9.39 -6.54
2020 0.09 0.22 -5.31 -27.62 5.64
2021 0.02 -0.49 -0.30 -0.55 -0.43
2022 -0.35 -0.42 -8.77 -19.60 7.39

Average -0.21 -0.31 -2.31 -9.92 0.53

Table E.4
Heston trading performance by year

Year Sharpe Sortino Return (%) MDD (%) α(%)

2015 0.18 0.65 0.73 -2.67 1.73
2016 0.43 -0.29 -0.08 -5.70 0.98
2017 0.66 1.21 3.03 -4.31 -6.10
2018 0.60 0.83 12.31 -11.07 16.64
2019 -0.03 0.05 -1.99 -23.42 -1.66
2020 0.58 0.94 7.59 -13.95 17.82
2021 -0.15 -0.07 -2.18 -19.04 0.39
2022 0.73 0.90 18.15 -23.68 22.80

Average 0.38 0.53 4.70 -12.98 6.58

55



Table E.5
MLP trading performance by year

Year Sharpe Sortino Return (%) MDD (%) α(%)

2015 0.42 0.52 2.29 -2.93 3.94
2016 0.56 1.21 8.12 -5.15 11.34
2017 1.40 2.86 16.36 -3.67 13.32
2018 1.71 2.26 22.20 -9.79 25.88
2019 0.40 0.45 8.41 -7.68 18.25
2020 0.96 2.18 14.73 -9.62 21.06
2021 1.73 2.68 13.83 -3.03 14.56
2022 -0.52 -0.72 -9.79 -20.06 -8.96

Average 0.83 1.43 9.52 -7.74 12.42

Table E.6
LSTM-MLP trading performance by year

Year Sharpe Sortino Return (%) MDD (%) α(%)

2015 1.16 1.61 8.82 -4.78 11.95
2016 0.99 1.29 8.56 -4.10 12.73
2017 1.66 2.54 20.50 -3.93 23.29
2018 1.44 1.97 22.34 -10.46 25.78
2019 1.44 2.19 17.46 -4.28 24.49
2020 1.29 2.72 35.07 -20.12 43.11
2021 1.44 1.93 11.49 -7.47 5.61
2022 0.83 0.98 23.55 -18.92 23.14

Average 1.28 1.90 18.47 -9.26 21.26

56




	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Literature review
	Option pricing models
	Volatility measures for neural network-based option pricing models
	Performance measures for neural network-based pricing models
	Interpretable machine learning

	Data
	Data set
	Data preprocessing
	Descriptive statistics

	Methods
	Combined LSTM-MLP option pricing model
	Backtesting trading strategy based on price differences
	Benchmark models
	Performance metrics
	Interpretability analysis

	Results and discussion
	Pricing performance
	Predictive ability of directional price movements
	Trading performance

	Conclusion
	Bibliography
	Appendix
	Nelson–Siegel–Svensson for generating rate curves
	MLP model hyperparameter search
	Interpretability analysis
	Market conditions
	Trading performance by year

