2
2
=
2

o
o
cC

c
o

~

el
cC
©
]
[}
C
2L
(%4

%]

[
o

2
(%]
o
[

=
C

]
cC

R
o
%
o

z

-
c
9]
£
9]
)
©
c
]

=

o
c
©
%]

9
£
1)
c
o
o

w

Y=
$)

2
S
)
©

[N

o
c
9]
S
9]
80
©
c
]

=

o
o
c

<
]

'—

ke
c
IS
%]

S
S
o
c
o
(v

w

©
f—

=]
%]
>

o

c

G

S)
o
Q
]

[a)]

Erlend Stegavik Rygg
Hjalmar Jacob Vinje
Cassandra Wu

Enhanced Option Pricing Using
Deep Learning

A Time-Series Approach with a Combined
LSTM-MLP Model

Master’s thesis in Industrial Economics and Technology
Management

Supervisor: Sjur Westgaard

Co-supervisor: Morten Risstad

June 2023

@ NTNU

Norwegian University of
Science and Technology

Erlend Stegavik Rygg
Hjalmar Jacob Vinje
Cassandra Wu

Enhanced Option Pricing Using
Deep Learning

A Time-Series Approach with a Combined
LSTM-MLP Model

Master’s thesis in Industrial Economics and Technology Management
Supervisor: Sjur Westgaard

Co-supervisor: Morten Risstad

June 2023

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management

@ NTNU

Norwegian University of
Science and Technology

Preface

This research represents the conclusion of our master’s degree at the Norwegian University of
Science and Technology (NTNU). It reflects the knowledge we've gathered and the skills we’ve
honed throughout our studies. We’ve had a range of experiences at NTNU that have shaped our
understanding and approach to learning and research. It’s been a meaningful journey of growth
within this academic environment.

We are grateful for the support and guidance from our supervisors, Professor Sjur Westgaard,
and the Head of FX and interest rate derivatives at SpareBank 1 Markets, Ph.D. Morten Risstad.
Their expertise and advice have been instrumental in accomplishing this research. Furthermore,
we would like to thank Professor Christian Oliver Ewald for inspiring discussions and valuable
input on our research topic. We also want to thank our friends and peers for their continuous
support and encouragement.

With the support from the people mentioned above, we are grateful for the experience of researching
the complex yet fascinating problem of option pricing. We hope our research not only contributes
to the current body of knowledge, but also opens new doors for the exploration of the exciting
intersection of deep learning with finance.

Erlend Stegavik Rygg, Hjalmar Jacob Vinje and Cassandra Wu
Trondheim, Norway, June 11, 2023

Abstract

This paper presents a deep learning approach to option pricing that integrates a long short-
term memory (LSTM) network with a multi-layer perceptron (MLP) to form a combined
LSTM-MLP model. The proposed model uses its LSTM component to extract time series
information from the historical returns of the underlying asset. This information is then
used by the MLP component, along with the option characteristics for a given contract, to
determine the option price. By training the pricing model on historical returns, we enable
it to extract time series information that encapsulates market dynamics including volatility.
This can replace the need for an explicit volatility measure, which is required by established
option pricing methods.

We empirically test the proposed LSTM-MLP pricing model by applying it to European
call options on the S&P 500 index from 2015 to 2022. Using sliding windows, we simulate
real-life deployment with monthly retraining. Our results show that the LSTM-MLP model
outperforms benchmark models in pricing accuracy, predictive performance, and risk-adjusted
trading returns. This demonstrates its potential usefulness as a valuation benchmark for
options market makers or as trading signals for options investors.

ii

Sammendrag

Denne artikkelen presenterer en dypleeringstilnserming til opsjonsprising som integrerer et long
short-term memory (LSTM) nettverk med et multi-layer perceptron (MLP) netverk for & danne en
kombinert LSTM-MLP modell. Den foreslatte modellen bruker sin LSTM-komponent til & trekke
ut tidsserieinformasjon fra de historiske avkastningene til den underliggende eiendelen. Denne in-
formasjonen brukes deretter av MLP-komponenten, sammen med opsjonskarakteristikkene for en
gitt kontrakt, for & bestemme opsjonsprisen. Ved & trene prisingsmodellen pa historiske avkast-
ninger, gjor vi det mulig for den a trekke ut tidsserieinformasjon, inkluderer volatilitet. Dette kan
erstatte behovet for et eksplisitt volatilitetsmal som kreves av etablerte metoder for opsjonsprising.

Vi tester empirisk den foreslatte LSTM-MLP prismodellen ved a bruke den pa europeiske kjgpsopsjoner
pa S&P 500-indeksen fra 2015 til 2022. Ved a bruke rullerende vindu, simulerer vi virkelighetsnzer
implementering med manedlig trening. Vare resultater viser at LSTM-MLP modellen overgar
benchmark-modeller i prisingsngyaktighet, prediktiv ytelse og risikojustert avkastning. Dette
demonstrerer modellens potensielle praktiske nytte som en prisingsreferanse for markedsdeltakere
eller som handelssignaler for opsjonsinvestorer.

iii

Table of Contents

List of Figures vi
List of Tables vii
List of Abbreviations viii
1 Introduction 1

2 Literature review 3
2.1 Option pricing models 3
2.2 Volatility measures for neural network-based option pricing models 5
2.3 Performance measures for neural network-based pricing models 6
2.4 Interpretable machine learning oL oL Lo 7

3 Data 8
3.1 Dataset e e e e 8
3.2 Data preprocessingo e e e e e e e e 8
3.3 Descriptive statistics L 9

4 Methods 11
4.1 Combined LSTM-MLP option pricing model 11
4.2 Backtesting trading strategy based on price differences oo 19
4.3 Benchmark models 20
4.4 Performance metrics 22
4.5 Interpretability analysis L oL 23

5 Results and discussion 26
5.1 Pricing performance e 26
5.2 Predictive ability of directional price movements 39
5.3 Trading performance L L 40

6 Conclusion 45

Bibliography 47

Appendix 51

A Nelson—Siegel-Svensson for generating rate curves 51

iv

B MLP model hyperparameter search

C Interpretability analysis

D Market conditions

E Trading performance by year

52

53

54

54

List of Figures

3.1
3.2
4.3
4.4
4.5
4.6
4.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
Al
B.1
C1
C.1
C.2

Number of options quotes at different levels of maturity and moneyness 10
Average daily trading volume per contract for different maturity and moneyness . 10
Architecture of the combined LSTM-MLP option pricing model 11
Structure of an LSTM memory cell at a specific time step ¢. 13
Data structure for the LSTM-MLP 15
Sliding windows setup for model training and testing 16
Hyperparameter search for the LSTM-MLP 17
Boxplot of pricing difference for all models 27
Boxplot of pricing differences for all models across all years 30
Pricing performance of the LSTM-MLP with MACD overlay 32
Pricing performance of the LSTM-MLP with VIX overlay 33
RMSE at different maturities oL oo 34
RMSE at different moneyness oL oo 35
SHAP summary plot of the option characteristics for the LSTM-MLP 37
SHAP summary plot of the 10 most recent returns for the LSTM-MLP 37
ALE feature importance for the LSTM-MLP 38
ALE feature importance for the MLP benchmark 39
Annual cash, net option portfolio and total portfolio for the LSTM-MLP 43
Distributions of options bought and sold at the time of the transaction 44
18 Random interest rate curves generated using the NSS method 51
Hyperparameter search for the MLP 52
SHAP summary plot for all returns for the LSTM-MLP 53
MACD during the testing period L o 54
VIX during the testing period o o 54

vi

List of Tables

3.1
3.2
4.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
B.1
E.1
E.2
E.3
E.4
E.5
E.6

Average trading volume per option contract segmented by filtering criteria 8
Descriptive statistics for all options dataused 9
LSTM-MLP configuration grouped by model component 18
RMSE and MAE values for the pricing performance by all models 26
Diebold-Mariano test statistics for each pair of models 27
RMSE for each model for each year 28
MAE for each model for each year 28
Pricing performance during different S&P 500 regimes 31
Pricing performance during different VIX regimes 33
RMSE grouped by moneyness and maturity 36
Correct directional prediction 40
Average yearly trading performance 41
Alpha and Beta values based on the CAPM 41
MLP model configuration Lo 52
BS 30-day trading performance by year 0oL 55
BS GARCH trading performance by year 55
BS IV trading performance by year L. 55
Heston trading performance by year 95
MLP trading performance by year 56
LSTM-MLP trading performance by year 56

vii

List of Abbreviations

AIC Akaike Information Criterion
ALE Accumulated Local Effects
BIC Bayesian Information Criterion
BS Black-Scholes

CAPM Capital Asset Pricing Model
CNN Convolutional Neural Networks
DM Diebold-Mariano

IQR Interquartile range

IV Implied Volatility

LSTM Long Short-Term Memory
MACD Moving Average Convergence/Divergence
MAE Mean Absolute Error

MDD Maximum Drawdown

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NSS Nelson-Siegel-Svensson

PDP Partial Dependence Plots
RMSE Root Mean Squared Error
SABR Stochastic alpha, beta, rho
SHAP SHapley Additive exPlanantions
TTM Time-to-maturity

XAI Explainable Artificial Intelligence

viii

1 Introduction

This paper studies the application of deep learning to option pricing and proposes a pricing model
that combines a long short-term memory (LSTM) network with a multi-layer perceptron (MLP).
The proposed architecture enables the model to use both time series and options data in its pricing
process. First, time series data in the form of historical S&P 500 returns is provided as input
to the LSTM network for extraction of the embedded information. Subsequently, the extracted
information is used by the MLP, along with the option characteristic for a given contract, to
determine the option price. The combined LSTM-MLP architecture is motivated by our hypothesis
that the time series information extracted by the LSTM is more informative for option pricing than
the explicit volatility input commonly used by option pricing models. Therefore, we replace the
explicit volatility input to the MLP with extracted time series information conveyed via the LSTM
outputs. Our research objective extends beyond achieving a high pricing accuracy to also include
generating positive risk-adjusted trading returns. This aims to demonstrate the practical value of
the proposed pricing model for different market participants, such as a valuation benchmark for
options market makers or trading signals for investors.

In the context of the literature on neural network-based option pricing models, our research con-
tributes in the following ways:

1. We demonstrate that the proposed LSTM-MLP achieves better pricing and trading perfor-
mance than the benchmark models. This indicates that the time series information extracted
by an LSTM network is more informative for option pricing than an explicit volatility input.
To the best of our knowledge, combining an LSTM network with an MLP for option pricing
has only been explored by Ke and Yang (2019). However, their model does not perform
better than an MLP with an explicit volatility input. This makes our research to be the first
LSTM-MLP implementation to do so. Our implementation is also novel in that the LSTM
uses returns rather than prices for the underlying asset as input, and we use a significantly
longer period of historical datal.

2. We evaluate the practical relevance of the proposed pricing model with a trading imple-
mentation. This goes beyond common practice for evaluating model performance in the
literature, which is often limited to pricing accuracy measured as the difference between the
model price and the market price. We also provide a more comprehensive analysis of trading
performance compared to Andreou et al. (2008), which is the only previous study identified
that uses trading to evaluate a neural network-based option pricing model.

3. We simulate how a market participant could deploy and retrain the model in real life by using
sliding windows to train and test our model, following Andreou et al. (2008)? and Cao et al.
(2021)3. This differs from most previous studies that split the entire data set chronologically
for training, validation, and testing. Our setup is novel in that we implement more sliding
windows over a longer time period, and we use a different combination of the length of the
training, validation, and test set.

4. We apply our option pricing model to some of the most recent data for options on the S&P
500 index. Our data set ends in December 2022 and thereby includes the market turbulences
related to Covid-19. Besides Gradojevic and Kukolj (2022), our research is one of few studies
to date that analyzes the impact of Covid-19 on neural network-based option pricing models.

IKe and Yang (2019) use 20-days lags, while our model implementation uses 140-days lags.

2Andreou et al. (2008) divide their data set into ten different overlapping training and validation sets, each
followed by a non-overlapping test set. For visualization of the rolling training-validation-testing procedure, see
Andreou et al. (2008) Figure 2.

3Cao et al. (2021) uses 300 days for testing and validation, and the following 7 or 30 days for testing. Then the
training and validation window rolls forward 7 or 30 days for the second testing. This goes on until the end of the
sample period.

Option pricing is complex and challenging due to the uncertainty of outcomes at the future time
when the option expires. Numerous methods have been proposed for the option pricing task, of
which the most well-known one is presented by Black and Scholes (1973). Although it has been
empirically proven that the Black-Scholes model does not fit real financial markets, it has still
gained widespread popularity due to its relatively simple arithmetic and the limited number of
inputs, most of which are easily observable (Natenberg, 2015). Since its publication, the Black-
Scholes model has significantly influenced how traders price and hedge derivatives, and to date
plays a key role in how option portfolios are managed (Hull, 2023).

A challenge central to option pricing is about how to most suitably incorporate information about
volatility. This is fundamental to option pricing as an option holder is sensitive to both the speed
and the direction of the market for the underlying asset. If this market does not move with sufficient
speed, options on the asset will be priced lower to reflect the reduced likelihood of the asset price
going above the strike (Natenberg, 2015). Several volatility measures have been explored in the
literature, including historical and implied volatility, as well as volatility forecasts and volatility
indices. Part of the difficulty with choosing the most appropriate measure is that each requires
its own set of decisions, such as the time horizon for calculating historical volatility or the choice
of forecasting methods. Moreover, option pricing should also account for varying volatility across
different levels of moneyness and maturity.

In contrast to traditional option pricing models, modern-day research on option pricing introduces
more data-driven approaches by applying machine learning methods, such as neural networks. As
these methods can approximate any continuous function without restrictive assumptions (Hornik
et al., 1989), they are well-suited for modeling the complex and non-linear relationship between
option characteristics and option prices. Multiple works in the literature demonstrate that machine
learning-based option pricing models can achieve better pricing accuracy than established pricing
methods. Despite these findings, the adoption of machine learning-based pricing models in real
financial markets has been slow, with one of the key reasons being their lack of interpretability. An
options market maker or investor may be reluctant to act on model outputs when the factors
determining these outputs are unknown. To address the issue of interpretability, explainable
artificial intelligence (XAI) has gained recognition over recent years. However, applications to
machine learning-based option pricing models remain rather limited. We intend to promote the
adoption of XAI practices by applying these methods to our proposed pricing model. This not
only helps us provide economic explanations of our model behavior, but also provides guidance for
further model development.

The rest of this paper is structured as follows. Section 2 presents previous studies that lay the
foundation for our work. Section 3 describes the data set used and how it has been processed.
Section 4 details the implementation of the proposed LSTM-MLP option pricing model, and its
training process. This section also outlines the methods for evaluating model performance in terms
of pricing accuracy and risk-adjusted trading returns, as well as the X AI frameworks used for inter-
pretability analysis. Section 5 presents the results for pricing, prediction and trading performance,
and discusses these in comparison to benchmark models. Finally, Section 6 summarizes our findings
and provides recommendations for future research.

2 Literature review

This section presents previous studies that lay the foundation for our research in the following
order: Section 2.1 presents different option pricing models ranging from traditional analytical and
numerical approaches to state-of-the-art machine learning methods. For the latter, we primarily
focus on neural networks to stay consistent with the focus of our research. Section 2.2 discusses
ways to incorporate volatility information in previously proposed neural network-based option
pricing models. The volatility input is of particular interest as it cannot be directly observed in
the market, and therefore often subject to debate about the most appropriate way to quantify it.
Subsequently, Section 2.3 provides an overview of how previous studies evaluate the performance
of neural network-based option pricing models. Finally, Section 2.4 covers XAI through various
methods for interpretability analysis and provides examples of its applications.

2.1 Option pricing models

The most well-known option pricing model is widely regarded as the work by Black and Scholes
(1973), and its extended version by Merton (1973). Contrary to the commonly held belief that
Black and Scholes (1973) and Merton (1973) came up with a new model, their model is actually a
special case of preceding work such as Sprenkle (1961), Boness (1964) and Samuelson and Merton
(1969), among others (Bloch, 2023). More specifically, it is a theoretical economic argument based
on a new way of deriving an already-existing formula (Haug and Taleb, 2011). In practice, the
pricing model by Black and Scholes (1973) and Merton (1973) plays a key role for traders to
manage option portfolios (Hull, 2023). Meanwhile, in academia, several shortcomings of the model
have been discovered when comparing it to empirical evidence. This has driven the development
of alternative methods that aim to better capture the dynamics in the options market.

Of the alternative methods that have been proposed, the most interesting to our research is the
set of methods that address the assumption of constant volatility over the life of the option. This
includes alternative option pricing methods that account for stochastic volatility, and thereby
provide a more realistic representation of real market dynamics. Advances in this area include the
work of Hull and White (1987), Heston (1993), and Hagan et al. (2002). Early works by Hull and
White (1987) propose an option pricing model for when volatility is stochastic and uncorrelated to
the asset. They later modify this to allow for volatility that is correlated to the asset in Hull and
White (1988). Along similar lines, Heston (1993) develop a closed-form solution for European call
options when correlations exist between the underlying asset and volatility. Hagan et al. (2002)
introduce the SABR (stochastic alpha, beta, rtho) model and claim that it captures the dynamics
of the volatility smile. However, SABR implied volatility surfaces are found to not always align
with market data (Fukasawa and Gatheral, 2021).

With regard to the state-of-the-art literature on option pricing, the application of machine learning
methods has attracted the attention of many researchers. The emergence of this field of research is
motivated by the ability of machine learning algorithms to learn non-linear relationships between
input and output variables (Hornik et al., 1989), without necessarily being limited by economic and
statistical assumptions as the traditional models (Ivascu, 2021). Most previous research on ma-
chine learning-based option pricing models focuses on neural networks (Ludkovski, 2023), of which
multiple studies show that neural network-based models perform better than established bench-
mark models in terms of estimating the observed market price (Ruf and Wang, 2020). Among the
neural network-based option pricing models, MLPs seem to be the most commonly implemented
architecture. The work of Hutchinson et al. (1994) is one of the first studies to use neural net-
works for option pricing. They train an MLP with one hidden layer with four hidden units on
simulated data and demonstrate that it is capable of learning the Black-Scholes formula with a
high degree of accuracy. The practical relevance of the proposed model is tested by using it to
price options on S&P 500 futures, for which it outperforms Black-Scholes. Following Hutchinson
et al. (1994), several later works provide supportive evidence of better performance by MLPs com-
pared to traditional option pricing methods (Amilon, 2003; Gengay and Gibson, 2007; Andreou
et al., 2008; Wang et al., 2012; Culkin and Das, 2017; Fadda, 2020; Iltiizer, 2022). These studies
propose a variety of MLP architectures using different combinations of input variables, different

methods to quantify volatility, or deeper neural networks compared to the earliest studies. Bennell
and Sutcliffe (2004) implement a number of MLP pricing models to test different combinations
of the standard Black-Scholes input variables. They find that the MLP generally performs better
than Black-Scholes, especially for out-of-the-money options. Further analysis shows that the MLP
overprices options that are deep in-the-money and underprices options with a long maturity. By
excluding these options from the sample space, the MLP pricing performance becomes comparable
to Black-Scholes.

Different volatility measures for neural network-based option pricing models are explored in Amilon
(2003), Gengay and Gibson (2007), Andreou et al. (2008), Wang et al. (2012), Hsu et al. (2018),
Fadda (2020) and Iltiizer (2022). This body of literature will be discussed separately in Section 2.2
given its relevance to our research. Furthermore, advancement in machine learning methods and
computing has enabled the implementation of deep neural networks. Culkin and Das (2017) follow
the approach in Hutchinson et al. (1994) by training and testing their model on simulated call
option prices. In contrast to Hutchinson et al. (1994), they use a deep MLP cousisting of four
hidden layers with 100 units each and incorporate more input variables. Their results show that
the proposed model learns the Black-Scholes option pricing model based on simulated data with
high accuracy.

Besides MLPs, improved pricing performance is also demonstrated by other neural network archi-
tectures. Ruf and Wang (2020) notes that the overall trend in recent research is more complex
architectures. Modular neural networks are proposed by Gradojevic et al. (2009) and Gradojevic
(2016) in which each module is represented by a single MLP. Empirical results show that mod-
ularity improves the pricing performance compared to a standard MLP. The advantage of this
architecture becomes clear when considering a data set that contains a highly volatile period fol-
lowed by a relatively stable period. While it would be challenging for a single neural network to
learn to generalize based on such different data sequences, a modular structure can overcome this
by generalizing through interaction across modules. Gated neural networks are presented in Yang
et al. (2017) and Cao et al. (2021). Both studies demonstrate that this particular architecture
can be used to introduce economic intuition into the pricing models, for instance by enforcing the
no-arbitrage principle. Yang et al. (2017) demonstrate high pricing performance with a multi-gated
pricing model that jointly trains multiple individual gated pricing models. Improved pricing perfor-
mance is also shown in Cao et al. (2021), although with a gated pricing model that uses a different
set of input variables. Wei et al. (2021) propose both a stand-alone convolutional neural networks
(CNN) pricing model, and an ensemble model that combines the CNN with three non-machine
learning option pricing models, namely a stochastic volatility model, a jump diffusion model, and
ad hoc Black-Scholes*. The stand-alone CNN outperforms each of the non-machine learning mod-
els, and high pricing accuracy is also reported for the ensemble model. Both the CNN and the
LSTM proposed by Liang and Cai (2022) achieve better pricing performance than the benchmark
models Black-Scholes, Merton, and Heston. Liang and Cai (2022) attribute the enhanced perfor-
mance of the neural network-based pricing models to their ability to absorb time-series information
embedded in the time-sequenced data.

Recently, options pricing has also been studied using machine learning methods other than neural
networks (Ivascu, 2021; Sood et al., 2022; Gradojevic and Kukolj, 2022) In addition to neural net-
works, Ivascu (2021) also study the performance of support vector regression, genetic algorithms,
decision trees, random forests, XGBoost and Light GMB. All machine learning algorithms outper-
form the benchmark models Black-Scholes and Corrado-Su across maturity and moneyness. Sood
et al. (2022) implement pricing models based on MLPs, LSTM, support vector machines and XG-
Boost. They find that both the MLP and the LSTM outperform Black-Scholes, while the SVM
and XGBoost fail to do so. Gradojevic and Kukolj (2022) study the pricing performance of various
machine learning algorithms during the significant market changes, or ’regime switch’, caused by
Covid-19. They implement MLPs, support vector machines, random forests, and XGBoost. All
machine learning models outperform Black-Scholes in more stable conditions pre-Covid-19, while
the pricing performance by Black-Scholes becomes comparable to the machine learning models
during Covid-19. This indicates that the regime switches to a certain extent limited the ability of

4The ad hoc Black Scholes pricing model estimates implied volatilities using the determined volatility function,
which is a popular method for estimating implied volatility based on strike and maturity. For further details, see
Wei et al. (2021)

the machine learning pricing models to learn and generalize.

2.2 Volatility measures for neural network-based option pricing models

As mentioned previously, appropriately quantifying volatility remains a challenge for both tra-
ditional and neural network-based option pricing methods. In the existing literature on neural
network-based approaches, the most common volatility measures seem to be historical volatility
(Hutchinson et al., 1994; Amilon, 2003; Hsu et al., 2018; Ivascu, 2021), implied volatility (Grado-
jevic and Kukolj, 2022), as well as GARCH and its extended versions. A possible drawback with
these approaches is that the volatility is often not adapted to the moneyness and the maturity of
the option being priced. This could therefore lead to inaccurate option prices that do not suitably
reflect the range of possible outcomes at option expiry.

Historical volatility measures used in the existing literature cover a wide range of time periods.
The lowest range identified is seen in Hsu et al. (2018) which proposes a deep neural network
with historical 1-minute and 5-minute volatility to price monthly and quarterly options. However,
no significant improvement in pricing accuracy is achieved by including these very short-term
volatilities. Longer historical periods of 10 to 30 days are seen in Amilon (2003), and 60 days
in Hutchinson et al. (1994) and Ivascu (2021). Iltiizer (2022) tests historical volatility over five
different time horizons, including 360 days, 30 days and 10 days for calendar days and 21 and 252
days for trading days. Liang and Cai (2022) give their proposed LSTM model 5 lags of every input
used, treating each input, including the stationary inputs strike and the linearly decreasing input
of maturity, as time-series data. They argue that this allows the model to learn valuable time-series
information from the past five trading days. In addition, the network gets the 90-day historical
volatility on the past five trading days as inputs. Amilon (2003) also provide lagged values of the
underlying asset for the last four days as inputs to their MLP pricing model. This is motivated by
a similar hypothesis as our research about the potential of the pricing model to learn the volatility
structure, or any useful distribution structure, from the historical data.

Among the studies that use implied volatility, different ways have been proposed for how to in-
corporate it into a neural network-based pricing model. Fundamentally, implied volatility is the
value of the volatility variable in Black-Scholes in order to get an option price that matches the
market price. In contrast to historical volatility which is backward-looking, implied volatility is
considered to be forward-looking and therefore used to monitor market views about the volatility of
a particular asset (Hull, 2022). Andreou et al. (2008) calculate the implied volatility for a specific
option on day t — 1 and use it to price the same option on day ¢t. The MLP pricing model that uses
this implied volatility appears to be the overall best-performing model. The superiority of pricing
models using implied volatility is also demonstrated in Wang et al. (2012). However, it should be
noted that they calculate implied volatility in a different way by using the equal-weighted average
of implied volatilities for all traded options on day t—1 to price on day ¢. Along similar lines, Iltiizer
(2022) achieves the best pricing performance with an MLP with implied volatility represented by
the volatility of Black-Scholes that perfectly fits the closing price of the at-the-money call on day
t. Fadda (2020) demonstrate that the MLP using implied volatility significantly outperforms the
MLP using the GJR-GARCH model. However, a dual-volatility pricing model that takes both
volatility measures as input outperforms both of the single-volatility pricing models.

Other neural network-based pricing models use volatility calculated using GARCH. Gengay and
Gibson (2007) use GARCH(1, 1) as the volatility input to the proposed MLP pricing model that
otherwise uses the same input variables as Black-Scholes. The proposed model performs better
across all maturities and moneyness compared to benchmark models including Black-Scholes with
historical volatility, Black-Scholes with GARCH volatility, stochastic volatility model, and stochas-
tic volatility random jump model. Lin and Yeh (2009) show that a pricing model that uses GARCH
outperforms pricing models that use historical, implied®, or the Grey prediction approach. Var-
ious modifications of GARCH have also been able to achieve superior pricing performance, such
as GM(1, 1)-GARCH (Wang, 2009b), Grey-GJR-GARCH (Wang, 2009a), and Grey-EGARCH

5Lin and Yeh (2009) estimates the implied volatility for day ¢ as the average implied volatilities calculated from
option prices on that day.

(Tseng et al., 2008).

In contrast to the aforementioned literature which all present option pricing models that use an
explicit volatility input, some studies omit volatility and instead argue that the neural network is
able to extract volatility information from alternative historical data during training. Yao et al.
(2000) suggest that volatility is not required as input to their MLP pricing model when daily prices
for the underlying asset are fed to the network. They propose that this should enable the daily
returns, being the fundamental factor of volatility, to be captured by the network. A similar line of
reasoning is expressed in Gradojevic et al. (2009), in which they suggest that the modular neural
network pricing model proposed extracts volatility information during training using data for the
first two quarters of each year. Ke and Yang (2019) replace the volatility input with outputs from
an LSTM network. They motivate their proposed model architecture with the ability of recurrent
neural networks, like the LSTM, to capture state information that can be more useful to option
pricing than historical volatility. The MLP using outputs from the LSTM network achieves better
pricing accuracy than Black-Scholes, but fails to outperform the MLP pricing model with historical
volatility as an input. Motivated by their novel approach to incorporating volatility information
into option pricing in this way, we show that a pricing model that combines an LSTM and an MLP
component can indeed deliver superior pricing performance.

2.3 Performance measures for neural network-based pricing models

In their literature review on neural networks for option pricing, Ruf and Wang (2020) found that
the Black-Scholes formula with historical volatility is the most common benchmark for pricing
accuracy. This includes studies by Garcia and Gencay (2000), Amilon (2003), and Ivascu (2021).
Benchmarking against Black-Scholes with implied volatility is seen in the works of Andreou et al.
(2008), Itiizer (2022), and Gradojevic and Kukolj (2022). Besides Black-Scholes, other alternative
option pricing models have also been used for benchmarking, such as Heston (Jerbi and Chaabene,
2020; Liang and Cai, 2022; Wang et al., 2022) and Corrado-Su (Andreou et al., 2008; Ivascu,
2021). These methods arguably provide a fairer comparison to machine learning-based option
pricing models as they provide more degrees of freedom compared to Black-Scholes. More recently,
neural network-based pricing models have also been compared to other machine learning methods
(Ivascu, 2021; Wang et al., 2022; Gradojevic and Kukolj, 2022).

To measure neural network-based option pricing models by their practical relevance, the literature
proposes hedging (Hutchinson et al., 1994; Andreou et al., 2008; Cao et al., 2021) and trading im-
plementations (Amilon, 2003; Andreou et al., 2008). Our research is centered on trading and hence
this will be the focus of the following review. Amilon (2003) suggests, but does not implement, a
trading strategy that buys (sells) options that are underpriced (overpriced) by the market when
compared to model prices. He suggests that different pricing models can be ranked by comparing
the sum of terminal profits or the standard deviation of the profits. A model that can successfully
identify mispriced options would yield a positive value for the terminal position, and the model
that yields the highest terminal value would be the preferred one. To the best of our knowledge,
Andreou et al. (2008) is the only study on neural network-based option pricing models that imple-
ment trading strategies to evaluate model performance. They find that trading strategies based
on both neural network-based and traditional pricing models are profitable for certain combina-
tions of transaction cost and mispricing margin. The best models yield profits in 77-82% of the
transactions made. Overall trading performance, measured by absolute profits, is similar across
neural network-based and traditional models. The neural network-based models provide the most
improvement compared to the traditional methods that use less sophisticated volatility measures,
such as 60-day historical volatility. The trading strategy implemented by Andreou et al. (2008) is
based on the single-instrument hedging approach presented in Bakshi et al. (1997), meaning only
the underlying asset is used as the hedging instrument. Portfolios are created by buying (selling)
undervalued (overvalued) options by comparing the option price predicted by the model to the
market price. Additionally, they take a delta hedging position in the underlying asset by which a
short (long) position in a call option is hedged using a long (short) position in the underlying asset.
A position is held as long as the option is undervalued or overvalued, after which the position is
liquidated, the profit or loss is computed, and a new position is entered based on current market

conditions. A limitation in the trading approach by Andreou et al. (2008) is the lack of other
performance measures than absolute profits as they do not implement an actual trading portfolio.

2.4 Interpretable machine learning

Despite the promising results achieved by machine learning models exemplified by the literature
presented above, a major drawback is that the insights learned by these models are hidden in their
architecture, and hence they are often referred to as black box models. This lack of interpretability
poses a challenge for real-life model deployment, and the importance of addressing the black box
challenge associated with machine learning methods is highlighted by the emergence of XAI. At a
basic level, interpretability in machine learning can be achieved by using inherently interpretable
model architectures, such as regression models or decision trees. Another approach is to apply
model-agnostic interpretability methods. In the following parts, we will focus on the latter approach
as it is most suitable for the proposed LSTM-MLP model.

Model-agnostic interpretability methods work by changing the inputs to a machine learning model
and measuring how it changes the output value (Molnar, 2022). The literature on this can be
broadly categorized into global and local methods. Global methods explain the average model
behavior using methods such as Partial Dependence Plot (Friedman, 2001) and Accumulated Local
Effects (ALE) (Apley and Zhu, 2016). On the other hand, local methods explain single instances
of model output, as achieved by Local Interpretable Model-Agnostic Explanations (Ribeiro et al.,
2016) and SHapley Additive exPlanantions (SHAP) (Lundberg and Lee, 2017).

In the context of option pricing, the literature that applies XAl remains rather limited. Liang and
Cai (2022) use ALE to interpret their proposed option pricing models. For the MLP pricing model
used to price call options on the S&P 500 index, they find that the strike is the most important
input, followed by the underlying asset and the time to maturity has relatively less influence.
In comparison, the risk-free rate and volatility appear to have almost no influence. They also
conduct the interpretability analysis on option pricing models using convolutional neural networks
and LSTM and find that feature importance differs across models. Gradojevic and Kukolj (2022)
apply SHAP in their study to the proposed option pricing models and investigate how feature
importance changes across market regimes caused by Covid-19. They find that moneyness is the
most important feature across regimes, and more precisely that option prices increase as moneyness
increases. Less contribution is shown for all other input features including time to maturity, implied
volatility, open interest, and volume.

3 Data

3.1 Data set

The primary data set for our research consists of daily closing prices and relevant attributes of
SPX European call options on the S&P500 index, provided by optionsDX6. The data set starts
on November 1st, 2011 and on December 31st, 2022. The data before January 1st, 2015 is used
exclusively for training and validation for hyperparameter tuning. To create the initial sequence of
140 lagged S&P500 returns required by the model, the S&P500 data series begins on April 14th,
2011. The complete data set consists of 13,108,756 observations, each representing a specific option
contract on a particular date.

For the risk-free rate, we use daily Treasury yields from the U.S. Department of the Treasury”.

3.2 Data preprocessing

The data preprocessing stage removes approximately 13.58% of the initial dataset, leading to a
final total of 11,328,707 observations. The initial screening process eliminates 3,582 data points
due to invalid or missing values in the options data. Furthermore, we remove 249,566 data points
representing options with zero time to maturity, as their pricing, equating to their intrinsic value®,
is trivial and does not contribute to our research objectives. An additional 285,293 data points,
representing options with more than two years of time-to-maturity (TTM), are also removed. To
counteract the influence of extreme moneyness values, we exclude options that fall approximately
within the top and bottom 5% of moneyness, resulting in the removal of another 1,241,608 data
points with moneyness below 0.8 or above 2.0.

The primary rationale behind this filtering strategy is to mitigate the impact of outliers that
could potentially disrupt model learning. The options removed from the dataset, often less traded
and potentially less efficiently priced, fall outside the typical moneyness and maturity ranges.
Consequently, these options restrict the efficacy of data-driven methods in learning their pricing
dynamics and may also be of less interest to market participants, given their lower trading volumes
and quantities. Table 3.1 provides more detailed insights into the trading volumes associated with
these filtering criteria.

Table 3.1

Average daily trading volume per contract,
where each contract represents 100 options,
segmented by the filtering criteria

Criterion Average Volume

TTM > 2 13.216
<2 24.144

Moneyness > 2.0 7.045
< 0.8 20.922

0.8—-2.0 25.245

The interest rate data from the U.S. Department of the Treasury specifies rates only for distinct
maturities: 1, 3, 6, 12, and 24 months. To derive the risk-free rate applicable to the time to matu-
rity of each option, we apply the Nelson-Siegel-Svensson (NSS) method, allowing us to construct
continuous risk-free rate curves. A more in-depth explanation of the NSS method applied can be
found in Appendix A.

Shttps://www.optionsdx.com
"https://home.treasury.gov
8Intrinsic value = Underlying - Strike

3.3 Descriptive statistics

Table 3.2 presents descriptive statistics by year. There is a general upward trend in the mean
option price, S&P 500 index, and strike price, with an observable increase in their variability,
which signifies heightened market volatility in later years. Time to maturity and moneyness exhibit
relatively similar behavior throughout the period. The risk-free rate is generally increasing in the
latter years, except for a downturn in 2020 and 2021. The total number of available options
increases through the period except from 2021 to 2022.

Table 3.2
Descriptive statistics of all options data used for hyperparameter search, training, validation, and
testing

Year Measure Option price S&P 500 Strike TTM (Yrs) Rate (%) Moneyness
2011 count 33,080 33,080 33,080 33,080 33,080 33,080

mean 192.32 1236.11 1098.89 0.32 0.03 1.18

std 173.97 27.61 228.79 0.39 0.05 0.28
2012 count 259,343 259,343 259,343 259,343 259,343 259,343

mean 191.6 1,383.49 1,239.55 0.34 0.10 1.17

std 187.5 45.79 245.32 0.42 0.05 0.26
2013 count 345,503 345,503 345,503 345,503 345,503 345,503

mean 227.38 1,653.16 1,462.91 0.32 0.07 1.17

std 218.48 98.33 276.85 0.4 0.06 0.24
2014 count 554,101 554,101 554,101 554,101 554,101 554,101

mean 277.43 1,942.64 1,700.84 0.28 0.05 1.18

std 250.94 80.19 302.33 0.38 0.07 0.24
2015 count 869,602 869,602 869,602 869,602 869,602 869,602

mean 294.05 2,059.37 1,812.5 0.25 0.08 1.18

std 268.59 56.83 326.75 0.32 0.13 0.24
2016 count 811,805 811,805 811,805 811,805 811,805 811,805

mean 275.46 2,097.31 1,870.22 0.24 0.33 1.16

std 272.01 102.25 338.59 0.34 0.14 0.24
2017 count 919,659 919,659 919,659 919,659 919,659 919,659

mean 280.88 2,451.22 2,211.72 0.21 0.92 1.14

std 299.24 111.24 358.84 0.33 0.26 0.22
2018 count 1,249,550 1,249,550 1,249,550 1,249,550 1,249,550 1,249,550

mean 299.29 2,745.12 2,525.13 0.23 1.97 1.12

std 330.92 101.72 404.58 0.32 0.34 0.22
2019 count 1,317,850 1,317,850 1,317,850 1,317,850 1,317,850 1,317,850

mean 343.64 2,917.99 2,644.67 0.23 2.09 1.14

std 358.96 155.2 445.94 0.32 0.34 0.22
2020 count 1,454,860 1,454,860 1,454,860 1,454,860 1,454,860 1,454,860

mean 408.38 3,219.94 2,928.58 0.24 0.38 1.14

std 404.78 314.85 553.86 0.32 0.55 0.23
2021 count 1,762,540 1,762,540 1,762,540 1,762,540 1,762,540 1,762,540

mean 526.87 4,295.38 3,887.66 0.28 0.05 1.14

std 525.04 286.16 695.49 0.34 0.05 0.22
2022 count 1,750,820 1,750,820 1,750,820 1,750,820 1,750,820 1,750,820

mean 397.96 4,108.23 3,916.73 0.27 2.00 1.08

std 456.77 295.95 639.11 0.34 1.52 0.20

Figure 3.1 and Figure 3.2 illustrate the dataset characteristics across the dimensions of time to
maturity and moneyness to provide context for the discussions in later sections. Notably, our
dataset contains a higher density of shorter-maturity options. This observation may not only
be attributable to the fact that all options transit through these shorter maturities during their
lifecycle, but also to the increased writing of options with shorter maturities. When inspecting
moneyness, we observe a concentration of data points around at-the-money options. As for trading
volumes, the data indicates higher volumes for the shortest-maturity and at-the-money options,
with a substantial decrease in volume for options more deeply in-the-money.

Number of Options
Number of options

1e6
25 8
7
20
8
15 B
a4
1.0 3
2
05
1
0.0 0
0.0 05 1.0

. 15 20 0.8 1.0 1.2 1.4 16 1.8 20
Time to Maturity (Years) Moneyness

Figure 3.1 Histogram for the number of options quotes at different levels of maturity and moneyness
in the processed data. The left figure shows the maturity distribution and the right figure shows the
moneyness distribution.

100 100
80 80
[0} [+]
£ e 5 e
g s
o (=
£]
g B
= =
20 20
0 0
000 025 050 075 100 125 1560 175 200 08 1.0 12 14 16 18 20
Maturity (Years) Moneyness

Figure 3.2 Average daily trading volume per contract, where each contract represents 100 options, for
each level of maturity and moneyness. The left figure shows the volume based on maturity and the right
figure shows the volume based on moneyness.

10

4 Methods

4.1 Combined LSTM-MLP option pricing model
4.1.1 Model implementation

The proposed option pricing model combines an LSTM network with an MLP, as illustrated in
Figure 4.3. The LSTM network takes as input historical S&P 500 returns over the past 140 days
and outputs information extracted from the time series data through eight output nodes. The
MLP takes as input the LSTM outputs and the option characteristics including the price of the
underlying asset, the strike, the risk-free rate, and the time to maturity. The final output of the
combined LSTM-MLP is the option price’. The model hyperparameters are decided based on
results from the hyperparameter search presented in Section 4.1.3.

LSTM
L

[~

= |
0000
|
0000
|

HEEH 00--00

— — . —
Output Option
neuron price

000 . 000
a | |

Option
characteristics

‘ ‘ Input layer D LSTM layer

. Input variable . LSTM node

Output layer

Output variable

Figure 4.3 Architecture of the combined LSTM-MLP option pricing model. R; is the return on the S&P
500 index 4 days ago. S is the price of the underlying asset. K is the strike. T is the time to maturity. r
is the risk-free rate. The illustration is inspired by Ke and Yang (2019).

9Following Yang et al. (2017), Liang and Cai (2022) and others, the bid-ask midpoint is used as a proxy for
the market price. This enables comparison with the benchmark models as these do not output bid and ask prices
separately.

11

The LSTM network is made up of three layers, each consisting of eight nodes each. Each node is
composed of memory cells with an internal structure as shown in Figure 4.4.

Central to the LSTM network (Hochreiter and Schmidhuber, 1997) is the cell state, as illustrated
by the horizontal line at the top of the memory cell. This can be thought of as the long-term
memory component. Updates to the cell state are regulated by three types of gates: an input
gate iz, a forget gate f; and an output gate o;. The subscript ¢ represents a single time step. For
short-term memory, information from the previous calculation step is stored in the hidden state,
as illustrated by the horizontal line at the bottom of the memory cell.

The computation for updating the cell state at a specific time step is based on the previous cell state
Cy_1, the previous hidden state h;_1, and the current input z;. The first step of the computation is
to decide what information to throw away by using the forget gate as given by Equation (4.1). The
previous hidden state h;_; and the current input x; are passed through the sigmoid function, which
outputs values between 0 and 1 for each number in the previous cell state C;_1. An output of 0
means that the information should be thrown away, and an output of 1 means that the information
should be kept. The results from the forget gate are then multiplied by the cell state, as given by
the first term of the addition in Equation (4.4).

ft = U(Wf@a:t + Wf,hht_1 + bf) (4.1)

where o denotes the sigmoid function, Wy, and Wy) denote weight matrices, and by denotes the
bias term.

In the next step, the input gate is used to decide what information to store. This is done through a
two-step process. First, the input gate decides which values to update, as given by Equation (4.2).
Then, a vector of new candidate values C is generated using tanh, as given by Equation (4.3).
To create an update to the state, we combine the outputs from these two steps, as given by the
second term of the addition in Equation (4.4).

it = O'(Wi,z‘rt + Wi,hht—l + bz) (42)

Cy = tanh(We o + We , hi—1 + bg) (4.3)
where W; ., Wi p, Wé,m and Wé,h denote weight matrices, and b; and b denote bias terms.

Co=f©C1+i,0C (4.4)
where ® represents element-wise multiplication.

Finally, the new hidden state h; can be seen as a filtered version of the cell state C;. First, a
sigmoid layer decides which parts of the cell state to output, as given by Equation (4.5). Then,
tanh is applied to the cell state C; to transform its values between -1 and 1. These two outputs
are multiplied so that only the desired parts are given as output, as given by Equation (4.6).

Oy = O'(Wo’xl't + Wo,hhtfl + bo) (45)

ht =0t ©® tanh(Ct) (46)
where W, , and W, ;, denote weight matrices, and b, denotes the bias term.

The exact number of interface units, equivalent to nodes in the final LSTM layer, is specifically
investigated in the hyperparameter search to determine the optimal number of units to encode the
information passed by the LSTM to the MLP component.

12

Cell state

Ceq > X > T[> Ct

>T§ tanh

Hidden state

he g 7 o »(X) > hy

{

Xt Candidate

Input update values

Forget gate Input gate Output gate

Activation functions {X; Multiplication \—]7 Addition

Figure 4.4 Structure of an LSTM memory cell at a specific time step t. C} is the cell state. h; is the
hidden state. xz; is the input. o is the sigmoid function. The illustration is inspired by Olah (2015).

The MLP component of the LSTM-MLP model consists of four stacking structures, each consisting
of a dense layer followed by a batch normalization layer. The dense layer forms a fully-connected
network with the nodes of the preceding layer. Batch normalization layers are implemented between
each dense layer to normalize the activations of the preceding layer in each batch. This strategy
addresses common challenges in deep neural networks, such as vanishing or exploding gradients,
curbs overfitting, and accelerates the training process by reducing the number of iterations required
for convergence. The BN normalization algorithm is presented below. For further details, see Ioffe
and Szegedy (2015).

Input: Values of = over a mini-batch B = {z1,...,Zm }
Parameters to be learned: ~ and /8

Output: y; = BN, g(z;)

1 «— o
. Zl T; Mini-batch mean
=
1 m
O’% — — Z(xl — up)? Mini-batch variance
m
i=1
T; LiZ B8 Normalize
A /Ug +e€
Yi < Y&; + 8 = BN, g(x;) Scale and shift

where € is a small constant for numerical stability.

The MLP uses leaky ReLu as its activation function, as given by Equation (4.8). Unlike the
conventional ReLu function given in Equation (4.7), leaky ReLu replaces zero values with small
negative values. This design decision mitigates the "dead neuron” problem that can arise with
regular ReLu. The "dead neuron” problem occurs when a neuron gets stuck during the learning
process and only outputs zero, effectively rendering it inactive in any network-wide computation or
learning. By allowing for small negative values instead of zero, the leaky ReLu function ensures that
these neurons remain active and continue learning, which can lead to a more robust and effective
network Maas et al. (2013). For the final dense layer, which consists of a single output node, the

13

conventional ReLiu activation function is used to ensure that the final output is a non-negative
option price.

if x>0
ReLu (x) =4~ === (4.7)
0 otherwise
if x>0
Leaky ReLu (x) = {x ne=) (4.8)
ax otherwise

where « is a small positive constant found during the hyperparameter search.

A key strength of the LSTM-MLP architecture is the direct connection between the LSTM network
and the MLP. This collaborative design enables training and backpropagation throughout the entire
network as a unified entity. In other words, extracting time series information is not treated as a
separate process from the pricing of the options, but rather as one integrative task to be solved
by the LSTM-MLP. The intention of this particular setup is to align the training of the LSTM
network and the MLP in terms of maximizing pricing accuracy. Rather than training the LSTM
network to extract pre-specified measures from the time series data it receives as input, it should
instead learn to output the information that is optimally useful for the MLP to price options.

Another strength of the model architecture is that it eliminates the need for an explicit volatility
input to an option pricing model. Instead, the LSTM-MLP is trained to extract information di-
rectly from the historical return series for the underlying S&P 500 index. While the precise nature
of the information extracted by the LSTM remains uncertain, it seems reasonable to hypothesize
that volatility information is embedded within the time series information extracted. The historical
return series could also contain other market information, such as directional expectations or other
factors influencing option pricing behavior by market participants. Nonetheless, we hypothesize
that the LSTM-MLP can learn the appropriate volatility measures used by market participants
during its training period, as well as tailor the volatility measure for specific option characteris-
tics as there are multiple connections between the LSTM and MLP components. This integrative
model structure thereby demonstrates a potential approach for addressing the inherent complex-
ities associated with volatility representation in option pricing, while also allowing for additional
information extraction from the time series of the asset returns.

While standalone LSTM models, as examined in Liang and Cai (2022) and Liu and Wei (2022),
are indeed capable of capturing time series information, they require all input variables to be
lagged. This requirement introduces complexity and computational cost. Computational expenses
may outweigh the benefits in predictive accuracy when lagging constants such as the strike price,
linearly decreasing variables like maturity, or variables with infrequent changes like the risk-free
rate. This could limit the feasible size of the network. Despite not explicitly citing computa-
tional constraints, Liang and Cai (2022) only consider five lags in their LSTM implementation,
supplementing it with a historical volatility input. This implies that handling an array of lagged
variables over extensive time series in large datasets can become computationally burdensome, and
potentially unfeasible. A remedy to this problem lies in the integration of LSTM with MLP in
our proposed model. The LSTM segment captures temporal dependencies within the time series
data, while the MLP component efficiently processes option data at a given time, capturing the
complex nonlinear relationships inherent in option characteristics. This combined architecture thus
streamlines computational resources and enhances model performance.

In order to feed the input data to this model architecture, it is structured in two parts. For the
LSTM model to utilize time series information, it needs data in a time-sequenced format. This
results in a 3D format of its input consisting of the number of options, number of time steps
and number of features, where the latter is only the returns in our case. The MLP component
requires a 2D input with the option characteristics for each option. These two components together
constitute our model input. The result of this data processing, along with the target value of the
call option price, is illustrated in Figure 4.5

14

LSTMinput MLP input Targetvariable

R. R» ez iz =

~
~

R. Ra Resa Rean I
R. R For Fore —]
Features R+ Rs Raa Run 7 e c il
Ry Rz Riag R0 ’ Day 140 I
[Doyt | Day2 | | Doy 139 | Day 140 Optons Options
L |
[
Time steps
\ I\ /
Independent x Dependent y

Figure 4.5 Data structure for the LSTM-MLP model. The MLP component of the model also receives the
output from the LSTM component directly in addition to the external variables of the option characteristics.

4.1.2 Model training

The proposed LSTM-MLP model is trained and tested using sliding windows, following the ap-
proach in Andreou et al. (2008) and Cao et al. (2021). Compared to their implementation, our
setup is different in that we use a greater number of sliding windows and cover a longer time period
overall. Additionally, we propose a novel combination of the length of the training, validation and
test set. This is illustrated in Figure 4.6, in which each model instance corresponds to a single
sliding window. Each model instance uses a 3-year training set, a 1-month validation set, and a
1-month test set. As an example, the model that prices options in January 2015 is trained on
data from December 2011 to November 2014, and validated on data for December 2014. Then, to
price options in February 2015, the training and validation window slides forward by one month.
This sliding procedure continues until the end of the sample period in December 2022 and thereby
creates 96 sliding windows in total. In a real-life setting, a market participant could retrain the
model at a higher frequency as needed, such as on a daily or weekly basis. We have chosen to
retrain every month in our research to limit the computing time.

Our implementation of sliding windows for model training and testing provides several advantages.
First, it keeps the training data up-to-date, such that it is relevant for and representative of the
out-of-sample options to be priced. At the same time, we also provide sufficient historical training
data for the model to learn the past pricing behavior of the market. The model should therefore be
able to adapt to changing market conditions. This is key given the time-inhomogeneity inherent
in financial data (Ruf and Wang, 2020), where the statistical properties and underlying dynamics
of the data can change over time. Second, it reinforces the robustness of our proposed model
architecture by testing across multiple time periods. With this setup, we thereby intend to improve
upon most previous studies which only assess model performance based on one or a few out-of-
sample test periods. Thus, our out-of-sample results obtained through this training and testing
procedure provide a stronger argument for the generalization capability of our model.

15

2011 2012 2013 2014 2015 2023
Mar Oct
1 1 I 1 I eo s |

Hyperparameter search

Model instance 1

Model instance 2

Model instance 3

Model instance 94

Model instance 95

Model instance 96

. Training period Validation period Test period

Figure 4.6 Sliding windows setup for model training and testing. Each of the 96 separate model instances
uses a 3-year training set, a 1-month validation set, and a 1-month test set. The full out-of-sample test
period runs from 2015 through 2022.

In order to ensure consistency across training periods and expedite the training process, we fix the
number of training samples at 1,000,000. This utilizes most of the available options in the first
sliding window shown in Figure 4.6. As the number of options in the market grows in subsequent
periods, we randomly sample 1,000,000 options based on a uniform distribution from each training
set. This approach provides a balanced and representative sample for training and facilitates
computational efficiency. For validation and testing, we utilize all options in the data set for the
one-month periods.

Furthermore, to prevent any potential biases in the training process, data points corresponding to
specific option contracts in the training set are randomly shuffled. This ensures that the model
performance is not impacted by the order in which the data points are presented during training.
To avoid any confusion, it should be noted that the lagged data points provided as input to the
LSTM network are not shuffled. These are always kept in chronological order for the past 140 days
from the pricing date of the given option, which is necessary for the LSTM to accurately capture
temporal dependencies.

The learning process incorporates an exponentially decaying learning rate to optimize parameter
tuning, as expressed in Equation (4.9). This approach promotes faster learning in the early stages,
while minimizing the risk of bypassing the global minimum during gradient descent. Furthermore,
it facilitates refined parameter adjustments as training evolves. This decay mechanism encourages
substantial initial changes to weights and biases when the model is far from the optimal solution. As
the model approaches the optimal solution, adjustments become smaller and more cautious. This
strategy strikes a balance between rapid convergence and the precision of the model’s performance.

Lt epoch = LTinitiar X decay rate och (4.9)

To ensure that the features are on a similar scale and to avoid any potential issues with the training
process, the features are scaled. The scaler is fitted and used on the training set and then applied
to the validation and test sets, ensuring that the scaling is consistent across all data sets and that
there is no data leakage. Min-max scaling is used to scale each input value between 0 and 1, as
given by Equation (4.10).

KXscaled = 4.1
ted Xmaa: - szn (0)

16

Model training begins with randomly generated initial weights for the LSTM-MLP model. Through
an iterative process, these weights are continuously calibrated using the Adam optimizer, a variant
of stochastic gradient descent, where mean squared error (MSE) serves as the objective function.
For an in-depth exploration of this technique, see Kingma and Ba (2014). Early stopping is imple-
mented and stops the model training if there is no improvement in validation loss for 20 consecutive
epochs. To ensure that the best model configuration is retained, we utilize checkpointing during
the final model training, which saves the model configuration each time a reduction in validation
loss is observed. This process continues iteratively, gradually fine-tuning the model performance.

4.1.3 Hyperparameter configuration

In developing machine learning models, the choice of hyperparameters is important because it can
have a meaningful impact on model performance. Therefore, to ensure a systematic and efficient
approach, we conduct our hyperparameter search using Wandb'®, a machine learning development
tool for experiment tracking. Wandb is useful in that it keeps a detailed record of model runs and
facilitates parallel exploration of multiple hyperparameter configurations. This is highly beneficial
for the proposed LSTM-MLP architecture due to the significant number of hyperparameters that
need to be specified.

The hyperparameter search for the proposed LSTM-MLP is conducted using a window ending
in December 2014, as illustrated in Figure 4.6. The validation period is purposefully set before
the first out-of-sample test period in January 2015 to avoid data leakage between validation and
out-of-sample testing. To match the total duration of the one-month validation and one-month
test period in the 96 sliding windows used for out-of-sample testing, a two-month validation period
is used for the hyperparameter search. With this setup, the hyperparameter search uses training
data for the three years from November 2011 to October 2014, and validation data for the two
months from November to December 2014.

The ranges of hyperparameter values to be searched over are determined based on values that
have been used in previous studies, including Ke and Yang (2019), Liu et al. (2019), Liang and
Cai (2022). Further adjustments to these ranges are made based on observed results. Due to the
extensive number of hyperparameters, it is not computationally feasible to conduct a grid search
testing all possible combinations. Exploration of the hyperparameter space is therefore carried out
using a random search algorithm where 150 unique combinations of hyperparameters are generated
and tested. Figure 4.7 shows the model run for each unique combination of hyperparameters and
the resulting validation loss.

BN momentum Leaky RelU a Timesteps LSTM layers LSTM units. Interface units MLP layers MLP units Learning rate LR decay Validation loss
1.00 70
-

\ 65

60

Figure 4.7 Hyperparameter search for the LSTM-MLP model in terms of hyperparameter combinations,
hyperparameter value ranges and MSE validation loss. Results are shown for model runs testing 150
distinct combinations of hyperparameter values. The data set used consists of training data for the three
years from November 2011 to October 2014, and validation data for the two months from November to
December 2014.

Interestingly, the hyperparameter search shows a clear preference for a higher number of LSTM
timesteps, meaning more lagged values of S&P returns. It seems intuitive that providing more

Ohttps://wandb.ai/

17

historical data can improve model performance, assuming that the additional information does not
introduce too much unnecessary noise or lead to excessive overfitting. This is where the strength
of the LSTM network comes in, with its ability to selectively forget irrelevant historical data while
retaining valuable information. The clear preference for longer periods of historical data provides
support for our hypothesis that the LSTM is capable of extracting useful information from long-
term patterns in historical data.

A limitation of our current approach to setting hyperparameters is that the same values are applied
to all 96 model instances across the entire test period. This could potentially lead to suboptimal
results, as different market conditions might require different hyperparameters for optimal perfor-
mance. For example, the same hyperparameters might not have been suitable before and after the
onset of the Covid-19 pandemic. Despite this, we have opted for to use the same hyperparameters
for all model instances due to computation limitations. To improve our process, we could consider
conducting separate hyperparameter searches for each of the 96 model instances or performing a
search at fixed intervals, like every six months. Alternatively, we could keep the hyperparameters
constant across model instances until a significant change in market conditions necessitates a new
hyperparameter search.

The final hyperparameters are chosen based on inspection of Figure 4.7 and analysis of the highest
performing runs during the hyperparameter search. The parameters chosen and configuration
choices made based on the hyperparameter search and discussion in Section 4.1 are summarized
in Table 4.3.

Table 4.3

LSTM-MLP model configuration grouped by model component. The parameters layers, units,
interface units, timesteps, BN momentum, alpha constant, learning rate and learning rate
decay were found during the hyperparameter search using Wandb while the others were
determined manually beforehand to reduce the hyperparameter space.

Parameter Value
LSTM Layers 3
Units per layer 8
Units in the last layer (Interface units) 8
Lagged returns (Timesteps) 140
Activation function Tanh
Recurrent activation function Sigmoid
MLP Layers 4
Units per layer 200
Batch normalization momentum 0.10
Activation function Leaky ReLu
Alpha constant for Leaky ReLu 0.05
Training Training set samples 1,000,000
Learning rate 5.7 x 1072
Learning rate decay 0.91
Minibatch size 4 096
Epochs Early stopping
Optimizer Adam
Sliding windows setup Training length 3 years
Validation length 1 month
Test length 1 month
Number of windows 96
Computations Hardware Nvidia Tesla T4 GPU
Hyperparameter search run time 26 hours
Final model average run time per window 13 min
Total run time all windows 21 hours

18

4.2 Backtesting trading strategy based on price differences

Evaluating an option pricing model based on its ability to accurately estimate the observed market
price implies that the observed market price is the most accurate option price. Fundamentally,
an accurate option price can be defined as the discounted risk-neutral’! expectation of its payout
at maturity (Blyth, 2014). As an academic exercise to investigate whether our proposed model
can price options more accurately than the market per this definition, we implementing trading
strategies based on the difference between the model price and the market price. Following the
trading implementation in Andreou et al. (2008), we trade by buying (selling) options that are
undervalued (overvalued) by the market when compared to the model price. This approach also
enables us to demonstrate the ability of the proposed model to achieve positive risk-adjusted
returns, thereby strengthening our argument about its practical significance.

The technical specifications of the trading implementation include the following:

1. The trading portfolio is initialized with a starting capital of $1,000,000

2. Trading signals are generated when the difference between the model price and the observed
market price is greater than 15%*2

3. Options are bought at the ask price and sold at the bid price with a mispricing margin of
15%. A buy signal is generated if the model price is 15% above the ask price, and a sell
signal is generated if the model price is 15% below the bid price

4. Each buy or sell position the trading strategy takes is for an amount equivalent to 0.005% of
the available cash in the portfolio at the time of the trading signal'®

5. If an option is bought (sold) on day ¢, it cannot be bought (sold) again on subsequent days

6. If an option has been bought (sold) on day ¢, it can be sold (bought) again on subsequent days
if the price passes sell (buy) threshold, i.e. it becomes mispriced in the opposite direction

7. A stop-loss threshold is set at 500%. This implies that when going short, if the bid price is
500% higher than the price originally sold for, the algorithm will buy back the option for the
current ask. This will not be triggered when going long as it is only possible to lose 100% of
the invested amount in that case

8. The difference in the number of long and short positions cannot exceed 10% of the total
number of positions. If the difference exceeds 10%, only new positions that lower this per-
centage are permitted. This rule is implemented to limit the directional exposure in the
portfolio, ensuring that the model primarily generates profits from market mispricings rather
than directional bets

9. A transaction cost of 0.5% is imposed'*. This is meant to represent the exchange fees,
clearing fees, regulatory fees, and technology and infrastructure a market participant would
have to pay when deploying a trading strategy like this

10. Options with a mid-price under 50 cents are disregarded to avoid extreme percentage fluctu-
ations

To bridge the trading implementation from an academic exercise to real-life deployment, we identify
three main simplifications made that could prevent a market participant from achieving the same
trading results showcased in our research. First, with regard to slippage, our implementation
assumes infinite liquidity at every bid and ask price. In reality, the liquidity at a specific price

11 The concept of risk-neutral probability means that these probabilities depend on the price the underlying asset
can take in different states of the world, but not on the actual probability of these states occurring (Blyth, 2014)

12 Andreou et al. (2008) show that a mispricing margin of 15% yields the highest absolute returns for their trading
implementation. They also observe that the P&L increases in a diminishing fashion for higher mispricing thresholds,
indicating that there is an optional threshold for maximizing trading profits.

131n practice, this might not be entirely realistic as it requires the options trader to buy a discrete number of
options to exactly fit the specified percentage position.

14 Andreou et al. (2008) find that the best strategies retained profitability up to transaction costs of 0.5%.

19

may be limited such that the rest of the position is executed at a worse price. Secondly, we do
not incorporate the market impact of trading decisions in the sense that trades on one day do
not affect the price on the next day. It is worth highlighting that the effect of both of these
limitations depends on the transaction size. Third, we do not impose margin requirements. The
only limitation of writing options we currently have, is that there needs to be a balance of going
long and short options as described above. At the same time, the portfolio has significant cash at
all times, which could act as collateral. However, in real life, more formal collateral and margin
requirements to write options will be required than what we have implemented.

4.3 Benchmark models
4.3.1 Black-Scholes

First introduced by Black and Scholes (1973), the Black-Scholes model (BS) defines the price for
a European call option as:

C =SN(dy) — Ke "™ N(dy) (4.11)
4, — log(S/K) —;—\(/7;»_—%02/2)/7' (4.12)
dy— log(S/K) + (r—a%/2)/7 —d—oF (4.13)

o\T

where S is the current price of the underlying asset, K is the strike, 7 is the time to maturity, o
is the volatility of the underlying asset, r is the risk-free interest rate and N(:) is the cumulative
normal distribution.

Despite its widespread use in practice, a straightforward implementation of the BS model can
underperform due to its reliance on potentially biased information. In contrast, our LSTM-MLP
model is trained with actual options prices, which allows it to potentially capture higher-order
moments. The BS model, notably, is sensitive to the choice of volatility measure, which is the only
input variable that is unobservable. This issue is compounded by the inability of the model to
adjust its functional form, unlike neural networks (Anders et al., 1998). Consequently, the same
volatility measure must be applied to all options, leading to inherent inflexibility. Despite these
limitations, the BS model is widely employed as a benchmark due to its widespread acceptance
and understanding within the financial community (Hutchinson et al., 1994; Ruf and Wang, 2020).

To provide a fairer comparison, we use three different versions of the BS model as our benchmark
models, each incorporating a different volatility measure: historical, implied, or volatility predicted

using GARCH(1,1).
Historical volatility

Historical volatility is computed from the past 30 trading days using the following formula:

30
Z(Ri - R)?
030 = V/252 HT (4.14)
Si
R, =1 4.15
n(SH) (4.15)

where o730 is the 30-day historical volatility at time ¢, R; is the log return of the underlying asset
price at time i, R is the average log return, and S; is the closing price of the underlying asset on
day i. We annualize the volatility by multiplying by /252, assuming 252 trading days per year.

GARCH(1, 1) volatility

20

The GARCH model introduced by Bollerslev (1986) provides a more sophisticated measure for
capturing the inherent time-varying volatility in financial markets. This could yield a more robust
and dynamic measure of the risk associated with the option. We employ the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) to determine the optimal order of p
and ¢ for the GARCH model, which penalizes model complexity while promoting goodness-of-fit.

The GARCH(1, 1) model was selected as it returned the lowest AIC and BIC values among different
combinations of p and ¢. The model is specified as follows:

o =w+aR? |+ Bol | (4.16)

where o7 is the conditional variance at time ¢, w is the constant term, o and 3 are the GARCH
parameters, and R;_; is the log return at time t—1. In this model, we assume a normal distribution
for the error terms. After obtaining the conditional volatilities, we annualize them by multiplying

by v/252.
Implied Volatility

Following Wang et al. (2012) we calculate an implied volatility (IV) measure for day ¢t — 1, which is
then employed to price all options on day ¢. Since implied volatility is often considered a superior
predictor of future volatility than historical volatility (Jorion, 1995; Egelkraut and Garcia, 2006),
it might enhance the pricing accuracy of BS model. Given the volatility smile, the deep in- and
out-of-the-money options have a disproportional effect on the calculated implied volatility. Using
the median as opposed to the average as seen in Wang et al. (2012) yielded better results and BS
with median implied volatility is therefore reported. The Newton-Raphson numerical method is
used to calculate the implied volatilities at ¢ — 1 from the option prices and the BS formula given
in Equation (4.11).

4.3.2 Heston

Heston is one of the most popular models for option pricing (Larikka and Kanniainen, 2012; Jerbi
and Chaabene, 2020; Liang and Cai, 2022). It is a stochastic volatility model where the asset price
and its volatility are described as two stochastic processes. The model is described by the following
system of stochastic differential equations:

dSt = uStdt + \/EStdzlt (417)
dvy = k(0 — v)dt + o+/vedzoy (4.18)
dz1tdzor = pdt (4.19)

where S; is the spot asset price, v; is the mean-reverting stochastic volatility, ¢ is the volatility of
the variance, p is the rate of return of the underlying asset, 6 is the long-term variance, is the
mean reversion rate and p is the correlation between the two Brownian motions z1; and zo;.

The formula for pricing a European call option under the Heston model, as described by Heston
(1993), involves solving the complex integral below:

1 DN | < ou—1) P(u)
Co= 5(50 —Ke ")+ fRe/O (e R iuKi“) du (4.20)

7r
) 1— —dr\ ~25 Hn Vi 1 — ed7

P(u) = e*™ S (1geg> erp (027—(& — poiu —d) + g—g(m — poiu + d)lgeed‘f) (4.21)

d =+/(poui — k)2 + o2 (iu + u?) (4.22)

K — poiu —d

= 4.23
9 K — poiu+d ()

where 7 is the complex number, Vj is the square of the initial volatility, » is the risk free rate, K
is the exercise price of the option and 7 is the time to maturity and.

Solving this complex integral requires a discretization strategy, as demonstrated in (Mikhailov and
Nogel, 2004). Five parameters have to be calibrated: &, p,0,0 and V. We calibrate the Heston

21

model on the last trading day prior to each test set using the Levenberg-Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963). The MSE loss function was used for the Levenberg-Marquardt
algorithm to maintain consistency with the loss function used during LSTM-MLP training and the
primary performance metric.

4.3.3 MLP

A standard MLP model is implemented as a benchmark model to understand the impact of sub-
stituting the explicit volatility input with the LSTM component of the LSTM-MLP model. The
MLP model uses historical volatility as volatility input, as also implemented in Iltiizer (2022).
The 30-day historical volatility calculated in Section 4.3.1 is used. The MLP model is developed
and trained following a similar methodological approach to that used for the LSTM-MLP model,
as detailed in Section 4.1. The MLP model undergoes its independent hyperparameter search,
conducted following the same process as that outlined for the LSTM-MLP model in Section 4.1.3.
Details of the hyperparameter search for the MLP model, including the final optimized hyperpa-
rameters, can be found in Appendix B.

4.4 Performance metrics
4.4.1 Pricing performance

To evaluate the pricing performance of the LSTM-MLP model and the benchmark models, we use
root mean squared error (RMSE) and mean absolute error (MAE). These metrics measure the
degree of pricing error, with lower values indicating better accuracy. RMSE is a quadratic scoring
rule which weighs large errors more heavily, thus punishing large outliers to a greater extent. MAE
is a linear scoring rule and therefore treats all individual differences equally in the average, resulting
in less sensitivity to outliers. By employing both metrics, we gain a nuanced perspective on the
model’s performance, considering both its overall predictive accuracy and its robustness to large
errors. RMSE and MAE are defined as:

RMSE = VMSE = (4.24)
MAE = — — (4.25)
m <

Where m is the total number of options, y; is the observed price, g; is the model price estimates.

To perform pairwise comparisons of the models, the Diebold-Mariano (DM) test is employed using
the MSE loss function to asses the equality of model predictions. For a given loss function (+), the
difference series, d, between the two prediction series is defined as:

di = UTi,1 —ye1) — UJi2 — vi2) (4.26)
Given the null hypothesis of:
Hy:E[d]=0 (4.27)
The DM test statistic is:

Lsmog,
DM = mZz:l

27 f4(0)/m

(4.28)

Where f4(-) is the spectral density of {d;}.

22

4.4.2 Trading performance

We assess the risk-adjusted performance of our options portfolio using several metrics: the Sharpe
ratio, the Sortino ratio, the Capital Asset Pricing Model (CAPM) «, returns and maximum draw-
down (MDD). These metrics are intended to assess both the trading returns and risks.

The Sharpe ratio, introduced by Sharpe (1966), is a measure of risk-adjusted return, taking into
account the total volatility of returns. The Sortino ratio, a variant of the Sharpe ratio intro-
duced by Sortino (1994), distinguishes harmful volatility from total volatility by considering only
the downside deviation. We compute the Sharpe and Sortino ratios using the daily returns and
annualize the measures. The formulas are given in:

R —
Sharpe Ratio = el (4.29)
Op

R,—1r
Sortino Ratio = —2—1 (4.30)
04
where R, is the return of the portfolio, ¢ is the risk-free rate, o, is the standard deviation of the
portfolio returns, o4 is the standard deviation of negative portfolio returns.

The CAPM « provides a measure of the value a portfolio manager adds over a benchmark, with a
positive « signifying market outperformance after adjusting for market risk. In the CAPM model,
« is the intercept in the linear OLS regression model that relates the excess return of a security or
portfolio (over the risk-free rate) to the excess return of the market (over the risk-free rate). The
« and B can be extracted from the following formula:

R,—rf=a+p0 (R, —Ryf) +e (4.31)

where R, is the return of the portfolio, ry is the one-month risk-free rate, R,, is the return of the
market, 8 represents the part of the excess return attributed to taking market risk and € is an
error term.

The annual portfolio returns are computed by determining the ratio of the ending balance to the
starting balance, subtracting 1 from the result. This provides a measure of the overall growth or
contraction of the portfolio over a year. Maximum drawdown, on the other hand, serves as an
assessment of risk. It quantifies the largest relative decline from a peak to a trough in the portfolio
value over the specified period. As such, it reflects the most severe potential loss that could have
been incurred, underlining the exposure of the portfolio to downside risk.

4.5 Interpretability analysis

Interpretability analysis using both SHAP and ALE is conducted to gain a better understanding
of the pricing behavior demonstrated by the LSTM-MLP model and to ensure a sanity check of its
behavior. As outlined in Section 2.4, SHAP and ALE distinguish themselves based on the local and
global scope of their interpretability respectively. Thus, the implementation of both these methods
makes our analysis more comprehensive: SHAP contributes insights at a granular level, revealing
individual instance-based characteristics, while ALE provides a broader perspective, capturing
average effects to illuminate overarching model behaviors. While there may be areas of overlap in
their analyses, the contrasting techniques of SHAP and ALE bring about a more comprehensive
and robust understanding of the LSTM-MLP model. This combination, in turn, bolsters the
reliability of our analysis and enriches the interpretability of our model in the complex domain of
option pricing.

For both the ALE and the SHAP method, we choose to use the training set of the model for the
interpretability analysis due to their larger size and a wider variety of feature values compared
to the test sets, which span only one month each. Our rationale is that a broader dataset would
better show the learned behavior by the model, which is the primary goal of the interpretability
analysis. This choice aligns with our focus on understanding the overall model behavior rather
than the specific pricing patterns in the shorter test periods. However, if the goal was to explain
specific pricing estimates on the test set, the test set could be employed.

23

4.5.1 SHapley Additive exPlanations (SHAP)

SHAP (Lundberg and Lee, 2017) serves as a unified measure for interpreting model predictions.
It was developed to consolidate the expanding number of interpretability methods, due to the lack
of understanding about their relationships and the criteria for choosing one over another. Rather
than depending on a single method, SHAP integrates six methods to offer a unified measure of
feature importance, which can be assigned individually to each feature.

In introducing these methods, SHAP treats every explanation of a model’s prediction as an expla-
nation model in its own right. All six methods that comprise SHAP utilize the same explanation
model. Mathematically, if f is the original prediction model to be explained and ¢ is the explana-
tion model, the explanation models generally transform the original inputs x through a mapping
function x = h,(2’) to acquire simplified inputs 2’. The explanation model g can then be expressed
as:

M
9(z') = ¢ + Y _ biz] (4.32)
=1

where 2/ € {0,1}™ M is the number of simplified input features, and ¢; € R is the effect attributed
to each feature by methods with explanation models matching Equation (4.32). For more detailed
explanations, see Lundberg and Lee (2017).

Given that SHAP is a local interpretability method it calculates the impact for each data point
individually, thus making it computationally intensive. In response to this, we apply SHAP using
K-means with k£ = 75 to identify representative option quotes from the training set for use by the
explainer. We then sample 10,000 options to compute SHAP values. The analysis is performed on
the final model trained on data from November 2019 - October 2022.

4.5.2 Accumulated Local Effects (ALE)

ALE (Apley and Zhu, 2016) provides an average measure of a feature’s influence on the predictions
of a machine learning model. ALE is a faster, and unbiased extension of Partial Dependence Plots
(PDP), which notably overcomes the inability of PDPs to account for correlations between input
features.

The ALE methodology can be broken down into several steps. Firstly, the values of the target
feature are divided into intervals. For the data within each interval, the difference in predictions
is calculated when the target feature value is replaced from the upper limit to the lower limit of
the interval. These differences are then accumulated to yield the uncentered ALE values. Mathe-
matically, this estimation process for the uncentered effect g; arg(-) can be expressed as:

kj (@)

gjaLe(z) = > nik)
P j

Z [f (zgraing) = f (2155 i) (4.33)

{i:@i,;€N; (k)}

—_

where f(-) is the function of the machine learning model, x; is the target feature, N;(k) is the k'"
interval, 2y ; is the limit value of feature j in the k" interval, and z; \; is the i*" sample excluding
feature j.

To ensure that the mean effect is zero, the computed ALE values are centered to form an ALE
curve. The centering process to estimate the main effect function f; arg(-) can be expressed as:

. A 1
fiaLe(x) = gjaLe(z) — - ; G5, ALE(Ti ;) (4.34)

where n is the number of samples. For a more comprehensive explanation, see Apley and Zhu
(2016).

We conduct the ALE method on the final model trained each year from 2015 to 2022. The feature
importance measures for each year are then averaged over the eight-year period. Even though ALE

24

is a global interpretability method and is therefore significantly quicker than local interpretability
methods such as SHAP, it can demand substantial GPU memory when processing large amounts
of data simultaneously. To tackle this issue, we opt to select a sample of 500,000 data points for
the ALE estimation of each model.

25

5 Results and discussion

This section measures the performance of the proposed LSTM-MLP model from three perspectives.
Section 5.1 analyzes pricing performance in terms of accurately estimating the market price. Sec-
tion 5.2 studies the predictive ability of option price movements, testing whether the model is able
to correctly identify overpriced or underpriced options. This is applied in practice in Section 5.3
with trading strategies based on the mispricings identified.

Comparisons are made between the proposed LSTM-MLP model and the benchmark models, as
well as other models in the literature. For comparisons with the literature, it should be noted that
fair comparison is limited due to the novelty of our approach. However, we believe it is still relevant
to compare our results to the literature, albeit on a more general basis due to the unavailability of
truly comparable model architectures, data sets, and time periods studied.

5.1 Pricing performance

Pricing results for the proposed LSTM-MLP model are generated by using it to price European
call options from 2015 to 2022, during which the model is evaluated using 96 sliding windows with
a one-month out-of-sample test period each. In total, 10,136,680 options are priced out-of-sample
by the LSTM-MLP model and each of the benchmark models.

In the following analysis, Section 5.1.1 evaluates the overall pricing performance across the full
test period from 2015 to 2022. Section 5.1.2 tests the robustness of the model in different market
conditions, including Covid-19 induced regime shifts, changes in underlying returns, and volatility
variations measured by the VIX index. Section 5.1.3 examines the pricing performance for different
levels of maturity and moneyness. Finally, Section 5.1.4 applies the XAI frameworks SHAP and
ALE to interpret the influence of input features on model output.

5.1.1 Overall pricing performance

Table 5.4 presents the overall pricing performance by each model from 2015 to 2022. The pro-
posed LSTM-MLP pricing model outperforms all benchmark models in terms of pricing accuracy
measured by RMSE and MAE. The Diebold-Mariano test confirms that these pricing differences
are statistically significant, as reported in Table 5.5.

Our finding that both neural network-based models perform better than BS is supported by mul-
tiple previous works in the literature (Hutchinson et al., 1994; Amilon, 2003; Ke and Yang, 2019;
Wang et al., 2022; Iltiizer, 2022). The observation that the LSTM-MLP, as a neural network-
based model, performs better than Heston is consistent with the general conclusion in Jerbi and
Chaabene (2020), which states that neural network-based approaches have higher pricing accuracy
than Heston. However, we also note that this is to some extent contradicted by the fact that our
MLP is beaten by the Heston implementation. Nonetheless, the positive results provide support-
ive evidence of the LSTM-MLP being able to capture useful relationships inherent in the options
market.

Table 5.4

RMSE and MAE values for the pricing performance by each pricing model
across the period from 2015 to 2022. The lowest (best) value for each metric is
highlighted in bold.

Metric BS 30-day BS GARCH BSIV Heston MLP LSTM-MLP

RMSE 35.92 36.26 20.42 13.15 17.10 11.84
MAE 15.48 15.52 10.78 7.47 8.86 6.61

26

Table 5.5
Diebold-Mariano test statistics for each pair of models. All values are significant at the
p < 0.01 level.

BS 30-day BS GARCH BSIV Heston MLP LSTM-MLP

BS 30-day 6.27 -255.91 -302.42 -271.42 -311.73
BS GARCH -6.27 -250.20 -281.67 -254.95 -288.92
BS IV 255.91 250.20 -325.54 -143.26 -368.01
Heston 302.42 281.67 325.54 266.82 -180.88
MLP 271.42 254.95 143.26 -266.82 -344.71
LSTM-MLP 311.73 288.92 368.01 180.88 344.71

The improved performance of the LSTM-MLP model compared to the BS models and the Heston
model is likely due to its ability to capture the complex, non-linear relationship between the input
variables and option prices. In comparison to the baseline MLP, the increased performance of
the LSTM-MLP suggests that the combination of two neural network architectures does enhance
pricing accuracy. More specifically, it demonstrates that an MLP with inputs from an LSTM
outperforms an MLP with a single 30-day historical volatility input. These findings contradict Ke
and Yang (2019) which found that a combined LSTM-MLP model could outperform the BS model,
but not the standalone MLP model. Our implementation of the LSTM-MLP is able to do this,
which hints at the proficiency of our model implementation described in Section 4.1, and suggests
their usage of only 20 timesteps was insufficient to extract time series information more valuable
than historical volatility. In contrast, we use 140 timesteps.

Figure 5.8 complements these results by illustrating the range of pricing differences defined by
the model price minus the market price. Most models exhibit a median pricing difference near
zero, with BS IV and Heston models slightly overpricing the median. Distinctively, the proposed
LSTM-MLP model displays a narrower range of pricing differences, signifying a more consistent
pricing behavior. These observations contribute to validating our hypothesis that the LSTM-MLP
model is able to adapt its pricing behavior to varying option characteristics and market conditions,
thereby minimizing the variability in pricing differences.

S
I
|

—
[=]

L
o

Pricing difference (Model price - Market price)
=]

0
o

BS 30-day BS GARCH BS IV Heston MLP LSTM-MLP
Model

Figure 5.8 Boxplot of pricing differences, defined as the model price minus the observed market price, in
terms of USD for all pricing models studied. The rectangular body represents the first and third quartiles of
the error distribution (interquartile range, or IQR), with a line indicating the median error. The whiskers
represent the minimum and maximum error within a conventional range, defined as 1.5 times the IQR
below the first quartile or above the third quartile.

27

5.1.2 Impact of market conditions over time on pricing performance

Covid-19 pandemic

Table 5.6 and Table 5.7 display RMSE and MAE pricing errors for all models per year. In every
year except 2022, our LSTM-MLP model is the top performer, achieving the lowest RMSE and
MAE in comparison to the benchmark models. In 2022, however, the Heston model marginally
surpasses the LSTM-MLP model. These findings align with the results documented in Gradojevic
and Kukolj (2022), where a neural network-based model more distinctly outperformed the BS
model before the Covid-19 pandemic. However, it’s worth noting that their findings are based on
a dataset limited to the first half of 2020.

Table 5.6

Pricing performance measured in RMSE for each pricing model. Results are
reported for each year between 2015 and 2022. For each year, the lowest value
is printed in bold to highlight the best-performing pricing model for the given
year.

Year BS 30-day BS GARCH BSIV Heston MLP LSTM-MLP

2015 11.99 13.99 8.70 6.55 7.10 3.12
2016 11.23 12.37 8.72 4.85 5.30 3.33
2017 11.79 9.81 9.03 3.81 3.41 3.20
2018 18.25 22.75 13.07 7.76 11.46 5.24
2019 19.82 18.50 12.51 6.52 7.32 6.12
2020 72.90 70.83 31.24 22.79 34.88 21.41
2021 36.57 34.66 25.98 16.15 14.39 12.54
2022 31.20 37.28 23.84 13.84 17.21 14.45
Table 5.7

Pricing performance measured in MAE for each pricing model. Results are
reported for each year between 2015 and 2022. For each year, the lowest value
is printed in bold to highlight the best-performing pricing model for the given
year.

Year BS 30-day BS GARCH BSIV Heston MLP LSTM-MLP

2015 6.91 7.18 5.51 4.47 4.11 2.19
2016 6.47 6.68 5.18 3.46 3.26 2.30
2017 5.83 5.04 4.98 2.92 2.39 2.28
2018 9.83 10.54 7.08 4.98 7.37 3.57
2019 10.58 9.72 7.28 4.68 5.02 4.42
2020 30.73 30.19 16.13 12.97 19.28 12.88
2021 20.87 19.9 16.41 10.53 9.71 8.38
2022 18.59 20.58 14.20 9.43 11.66 9.93

Up until 2022, the LSTM-MLP model consistently outperforms all benchmark models. This in-
dicates its effective learning of the relationship between market variables and option prices. It
exhibits flexibility in adapting to changing market conditions over time, demonstrated by its bet-
ter performance across these years. In contrast, the BS models and the Heston model cannot match
this adaptability. Their limitations potentially arise from the stringent statistical and economic
assumptions inherent in their designs.

Interestingly, despite its flexibility, the MLP model still falls short of consistently outperforming
the Heston model. One possible reason could be the reliance of the MLP on the 30-day historical
volatility, which might not capture rapid market changes effectively. It is conceivable that the
MLP could be improved with alternative volatility measures, but this raises a crucial point of
our research: the assumption-laden process of choosing specific volatility measures. Given this, it
might be more effective to enable the model to learn its own volatility representation, freeing it
from predefined assumptions.

The year 2020, characterized by unprecedented market volatility due to the Covid-19 pandemic,

28

posed a significant challenge for all pricing models. Although the Heston model was competitive, it
failed to match the LSTM-MLP’s robust performance. The LSTM-MLP model also demonstrated
better adaptability by displaying the smallest increase in RMSE from 2019 to 2020 compared to
other models, but a slightly higher increase in MAE than the Heston model.

Post-2020, we observe broader ranges of pricing differences for all models as illustrated in Figure 5.9,
signaling a shift in their performance. The difference in RMSE and MAE performance between
models also varies more during and post-Covid-19 than prior, implying varying consistency in
model performance. Heightened volatility during this period could contribute to these challenging
pricing conditions for all models and the subsequent fluctuation in relative model performance.
This change in trend might be due to the significant market transformations brought about by the
Covid-19 market crash and recovery period. Particularly for the deep learning models MLP and
LSTM-MLP, these changes might have hampered their ability to effectively apply pre-pandemic
historical data (Gradojevic and Kukolj, 2022).

One potential solution to enhance the model performance post-Covid-19 could involve adjusting the
length of the training window. A shorter window might allow the model to learn from and adapt
more rapidly to recent market trends. However, this approach comes with trade-offs. However, a
shorter training window might limit the diversity of training data, potentially negatively affecting
the overall model performance. Therefore, the selection of the training window length presents a
delicate balance: a longer window might enhance the model’s ability to generalize through exposure
to diverse market conditions, while a shorter window could facilitate quicker adaptation to recent
market trends.

29

BS 30-day BS GARCH

= W= B2

Pricing difference (Model price - Market price)

- 8 &
gl

il
H

-
e

— |

Pricing difference (Model price - Market price)
(=]

-40 ‘= -40

2015 2016 2017 2018 2019 2020 2021 2022 2015 2016 2017 2018 2019 2020 2021 2022
Year Year

BS IV Heston

%%—%%%%

‘2 a0 £ 40

Pricing difference (Model price - Market price)
o 5]

Pricing difference (Model price - Market price)
o 5]

Year Year

MLP LSTM-MLP

-20

-
- T

2015 2016 2017 2018 2019 2020 2021 2022 2015 2016 2017 2018 2019 2020 2021 2022
Year Year

Pricing difference (Model price - Market price)
o 5]
H
HH
_|
Pricing difference (Model price - Market price)
=]
ol
Hh
gl

Figure 5.9 Boxplot of pricing differences, defined as the model price minus the observed market price,
in terms of USD for all pricing models. Errors are reported for each year between 2015 and 2022. The
rectangular body represents the first and third quartiles of the error distribution (interquartile range, or
IQR), with a line indicating the median error. The whiskers represent the minimum and maximum error
within a conventional range, defined as 1.5 times the IQR below the first quartile or above the third
quartile.

SEP 500 index returns

Our analysis of the SP500 market conditions involves identifying three distinct regimes: stable,
upwards-trending, and downwards-trending. These regimes are established based on the Moving
Average Convergence/Divergence (MACD) technical indicator. In essence, we subtract the 26-day
exponential moving average of the SP500 index from its 12-day exponential moving average to get
the MACD. Then, we split the MACD range of all the test period days into three equal parts,
creating threshold values of 0.93 and 21.12. The MACD plot with these threshold values during
the testing period can be found in Appendix D.

The model performance under the three S&P500 return market regimes are presented in Table 5.8.
In all three market conditions, the LSTM-MLP model consistently surpasses all benchmark models.
Interestingly, underperformance by Heston is slightly lower in stable markets when evaluated on
RMSE and standard deviation of absolute errors. This suggests that the complexity of the LSTM-
MLP model may be less necessary in stable markets where the dynamics are simpler. Alternatively,
it could suggest that the assumptions for Heston hold more accurately in stable conditions, im-
proving the parameter estimation process and leading to better pricing performance.

30

In contrast, the MLLP model underperforms consistently compared to both Heston and LSTM-MLP
models across all market conditions. This performance gap is notably higher in both upward and
downward trending markets, where the pricing error for the MLP escalates to levels similar to
the BS IV model in downward trends. The MLP model’s underperformance could be attributed
to its dependence on the 30-day historical volatility measure, which does not account for market
movement direction. Consequently, it struggles to adjust promptly and accurately to the different
market directions. On the other hand, the LSTM-MLP model can leverage the capacity of the
LSTM component to memorize and exploit data temporal dependencies, potentially capturing and
reacting to underlying market trends, including direction, more accurately.

