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Abstract

The decreasing average size of oil and gas (O&G) discoveries on the Norwegian continental shelf

(NCS) has increased interest in mitigating the uncertainties involved in O&G investment decisions.

Marginal fields, in particular, will not be able to support the same data gathering as larger fields,

as the cost of appraisal wells may outweigh the potential revenues of the field. This lack of infor-

mation increases subsurface uncertainty, making the investment decision more complex. Therefore,

handling this uncertainty through realistic modeling and accounting for managerial flexibility is

essential when evaluating O&G investments. Using existing infrastructure through tiebacks is one

of the most cost-efficient solutions for developing smaller O&G discoveries. As many maturing

production facilities on the NCS obtain spare production capacity, tiebacks from marginal fields

to these facilities can be an appropriate investment option.

This paper presents a compound real options analysis (CROA) that evaluates a portfolio of two

marginal fields under reservoir- and oil price uncertainty. It allows us to identify the additional

value from managerial flexibility when investing in tiebacks to an existing host. Based on updates

of crude spot prices and sizes of the reservoirs, we apply a least-squares Monte Carlo algorithm

(LSM) to evaluate whether to exercise the option to invest in either field or wait and reevaluate

in consecutive years. A decision-maker has to choose which field should be tied back first while

knowing there is an option to develop the other field afterward. We analyze the parameters

influencing this choice and propose decision rules considering a portfolio view of O&G projects.

The CROA approach is applied to a realistic case study resulting in improved decisions and, thereby,

a return on investment of 25.4 % higher than the industry standard myopic valuation approach.

This increase in value origins from the ability the CROA has to 1) better adjust the investment

timing to what is favorable for the field given the current risk factors, 2) reduce downside risk

by never investing if the field never seems profitable, and 3) incorporate information about the

second tieback to better account for the total portfolio value. Overall, the paper provides a new

perspective on real options analysis (ROA) of a portfolio of marginal oil fields.

Keywords - Real options, compound options, petroleum economics, marginal fields, reservoir

uncertainty, price uncertainty
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Sammendrag

Den synkende, gjennomsnittlige størrelsen p̊a olje- og gassfunn p̊a den norske kontinentalsokkelen

har økt interessen for å redusere usikkerheten knyttet til investeringsbeslutninger innen olje- og

gasssektoren. Marginale felt vil spesielt ikke kunne forsvare den samme innsamlingen av data som

større felt, da kostnadene for brønnboring kan overstige de potensielle inntektene fra feltet. Denne

mangelen p̊a data øker usikkerheten p̊a havbunnen, noe som gjør investeringsbeslutningen mer

kompleks. Derfor er det essensielt å redusere denne usikkerheten gjennom realistisk modellering

og å ta hensyn til tidsfleksibilitet n̊ar man evaluerer investeringer i marginale oljefelt. Bruk av

eksisterende infrastruktur er en kostnadseffektiv løsning for utvikling av mindre olje- og gassfunn.

P̊a den norske kontinentalsokkelen er det mange produksjonsplattformer som f̊ar ledig produk-

sjonskapasitet etter hvert som de blir eldre, og tilknytning (tiebacks) av marginale felt til disse

installasjonene kan være et hensiktsmessig investeringsalternativ.

Denne artikkelen presenterer en analyse av sammensatte realopsjoner (CROA) som vurderer in-

vesteringer utsatt for usikkerhet knyttet til oljereservoaret og oljepriser for å identifisere den ek-

stra verdien av tidsfleksibilitet ved investeringer i en portefølje av to marginale felt. Basert p̊a

kontinuerlige oppdateringer av spotpriser og størrelser p̊a reservoarene, bruker artikkelen en least-

squares Monte Carlo-algoritme (LSM) for å vurdere om man skal innløse opsjonen til å investere

eller vente og revurdere p̊afølgende år. En beslutningstaker m̊a velge hvilket felt som skal knyttes

tilbake først, hensyntatt at det finnes en opsjon til å utvikle det andre feltet senere. Vi analy-

serer parametrene som p̊avirker dette valget og foresl̊ar derav beslutningsregler som tar hensyn

til porteføljeperspektivet i O&G-prosjekter. CROA-tilnærmingen blir brukt p̊a en syntetisk, men

realistisk casestudie som resulterer i forbedrede beslutninger og en økt avkastning p̊a investeringen

p̊a 25,4 % høyere enn bransjestandarden for verdivurderinger. Denne økningen i verdi stammer

hovedsakelig fra CROA sin evne til å 1) bedre justere investeringstidspunktet til det som er gunstig

for feltet gitt størrelsen p̊a risikofaktorene, 2) redusere nedsiderisikoen ved å ikke investere hvis

feltet ikke virker lønnsomt, og 3) inkludere informasjon om den antatte verdien p̊a det andre feltet

for å bedre ta hensyn til den totale porteføljeverdien. Totalt sett gir artikkelen et nytt perspektiv

p̊a realopsjonsanalyse av en portefølje av marginale oljefelt.

Nøkkelord - Realopsjoner, sammensatte opsjoner, petroleumsøkonomi, marginale oljefelt, reservoar-

risiko, pris-risiko

iii



Table of contents

List of Figures v

List of Tables vii

Acronyms viii

Selected symbols ix

1 Introduction 1

1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 6

3 Problem description 8

4 Methodology 11

4.1 Solution approach to the two-field decision problem . . . . . . . . . . . . . . . . . . 11

4.2 Oil price modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Reservoir uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Production profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 The ROA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6 Benchmarking the solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Case study 23

6 Results 26

6.1 Base case results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Investment thresholds and decision rules . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Decision statistics and drivers of field selection . . . . . . . . . . . . . . . . . . . . 35

6.4 The CROA versus Single ROA approach . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5 The CROA approach with perfect information . . . . . . . . . . . . . . . . . . . . 44

7 Final remarks 45

8 Conclusion 46

Bibliography 48

Appendices 54

A Active learning of reservoir size 54

A.1 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B Simulation robustness 59

C Additional sensitivities on drivers of field selection 62

iv



List of Figures

1 Decreasing size of discoveries on the Norwegian continental shelf . . . . . . . . . . 1

2 Visualization of a subsea tieback solution . . . . . . . . . . . . . . . . . . . . . . . 6

3 Problem situation with one host facility and two nearby marginal fields . . . . . . 9

4 Decision problem timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Detailed decision problem timeline with production overview . . . . . . . . . . . . 10

6 Example of a decision sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

7 Total compound real options analysis framework (CROA) . . . . . . . . . . . . . . 12

8 The Single real options analysis (ROA) . . . . . . . . . . . . . . . . . . . . . . . . 13

9 Price percentile plot calibrated on historical data . . . . . . . . . . . . . . . . . . . 15

10 Visualization of the assembly of a reservoir trajectory . . . . . . . . . . . . . . . . 17

11 Example including two volume trajectories of a reservoir . . . . . . . . . . . . . . . 18

12 Transitioning from EUR uncertainty to production rates . . . . . . . . . . . . . . . 19

13 Compound real options analysis case . . . . . . . . . . . . . . . . . . . . . . . . . . 21

14 Compound real option analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

15 Visualization of the increasing spare host capacity . . . . . . . . . . . . . . . . . . 26

16 Valuation of the portfolio comparing the CROA to the myopic approach . . . . . . 27

17 The optimal timing to invest in the first field as of the myopic approach . . . . . . 28

18 The optimal timing to invest in the first and second fields as of the CROA solution

approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

19 Value distributions of the myopic and the CROA approach . . . . . . . . . . . . . 29

20 Exercise timing of tying back the first field in the low and high for the CROA . . . 31

21 Investment thresholds for each year for the first field . . . . . . . . . . . . . . . . . 32

22 The collection of investment thresholds in years 1-6 specifying decision rules for the

first field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

23 Investment threshold summary plot for the first field in years 1-6 . . . . . . . . . . 34

24 Investment threshold plot for the second field in years 10-14 . . . . . . . . . . . . . 34

25 Value distribution from the CROA, divided into a lower and upper region . . . . . 36

26 Pathwise difference distribution of Field A-first compared to Field B-first values . . 36

27 Pathwise difference distribution divided into the lower and upper regions . . . . . . 37

28 CAPEX sensitivity of both fields in the portfolio . . . . . . . . . . . . . . . . . . . 38

29 Depletion rate sensitivity of both fields in the portfolio . . . . . . . . . . . . . . . . 39

30 Sensitivity on the initial oil price . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



31 Discount rate sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

32 Valuation of the portfolio comparing the CROA to the Single ROA approach . . . 42

33 The optimal timing for investment in the first for all simulation cases as of the Single

ROA and CROA approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

34 Spare host capacity with multiple variations . . . . . . . . . . . . . . . . . . . . . . 43

35 Visualization of the total portfolio value of the Single ROA and CROA approach

using three variations of the spare host capacity . . . . . . . . . . . . . . . . . . . . 44

36 Comparing CROA to a Perfect CROA for three SHC versions . . . . . . . . . . . . 45

37 Appraisal drilling example from drilling in year 5 for two trajectories . . . . . . . . 55

38 Visualization of data and feature analysis used in the data cleaning and data engi-

neering steps of ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

39 Regression tree for appraisal drilling example year 3 . . . . . . . . . . . . . . . . . 57

40 Drilling year sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

41 Convergence plot for the number of simulations in the LSM . . . . . . . . . . . . . 59

42 Optimal tieback timing - 1 000 simulations . . . . . . . . . . . . . . . . . . . . . . . 60

43 Optimal tieback timing - 10 000 simulations . . . . . . . . . . . . . . . . . . . . . . 61

44 Learning rate sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

45 Sensitivity on the lifetime of the host . . . . . . . . . . . . . . . . . . . . . . . . . . 62

46 Sensitivity on the oil price volatility . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



List of Tables

1 Variables as parameters for the optimization model . . . . . . . . . . . . . . . . . . 19

2 Terminology for real and financial options . . . . . . . . . . . . . . . . . . . . . . . 21

3 General parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Parameter values for oil price simulation . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Parameter values for generating production profiles . . . . . . . . . . . . . . . . . . 25

6 Parameter values for costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Most common tieback timing results of the myopic and CROA approach . . . . . . 28

8 Parameter values for generating production profiles in the Low and High case . . . 30

9 Expected NPV of the portfolio in MMUSD, resulting from the myopic and CROA

approach, respectively, for the three different volume cases . . . . . . . . . . . . . . 30

10 Most common tieback timing results for the three cases and two solutions approaches 31

11 CROA simulation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

12 Field selection drivers summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

13 Most common tieback timing results of the Single ROA and CROA approach . . . 43

14 Model performance measures for the test set for drilling in year 4 . . . . . . . . . . 58

vii



Acronyms

ABEX Abandonment expenditures

BBL Barrels of drilling fluids (oil)

CAPEX Capital expenditures

CF Cash flow

CROA Compound real options analysis

DA Decision analysis

DCF Discounted cash flow

E&P Exploration and production (oil and gas)

ESG Environmental, social, and governance

EUR Estimated ultimate recovery (of oil from a field)

GBM Geometric Brownian motion

LSM Least-squares Monte Carlo

MAE Mean absolute error

MC Monte Carlo (simulation)

ML Machine learning

MMUSD Million United States dollar

MSE Mean squared error

NCS Norwegian continental shelf

NN Neural network

NPD Norwegian petroleum directorate

NPV Net present value

NTNU Norwegian University of Science and Technology

O&G Oil and gas

OPEX Operational expenses

PDO Plan for development and operation

RMSE Root mean squared error

ROA Real options analysis

RoI Return on investment

SD Standard deviation

SHC Spare host capacity

Sm3 Standard cubic meters (SM3 in figures)

STLT Short-term/long-term (two-factor price model)

SVM vector-support machine

USD United States dollar

VoI Value of information

viii



Selected symbols

t a given year during the host’s lifetime

t0 the starting year in a given reference frame

T time in years

E expected value

Rα discrete discount rate

e Euler’s number

CFt cash flow throughout the year t

pt oil price at time t

qt quantity oil produced at time t

α inflation rate

γ continuous discount rate

J production start of the first field

K production start of the second field

ω project lead time

ϕ last investment year

L host facility abandonment year

M number of reservoir cases

N number of simulations

β0 fixed cost parameter (tariff/OPEX)

β1 variable, oil quantity-dependent cost parameter (tariff/OPEX)

β2 variable, oil price-dependent cost parameter (tariff)

χt short-term oil price parameter

ξt long-term oil price parameter

δ minimum uncertainty of reservoir trajectories

B(t) best guess reservoir size distribution

V the ”true” reservoir distribution

v* ”true” reservoir sample from V

I(t) trajectory-specific information distribution created around ν∗
i∗ reservoir information sample from I(t)

θ initial uncertainty of B(t0)

ϵ reservoir learning rate

µ mean of a given distribution

σ standard deviation of a given distribution

λ field depletion rate

F value of the option to invest

X state vector of a field

ν decision variable for the timing of the first field

ψ decision variable for the timing of the second field

Π payoff function in option evaluation

k second field value contribution bins

R2 the statistical measure R-squared

ix



1 Introduction

Since the first discovery of oil and gas (O&G) on the Norwegian continental shelf (NCS) in 1969,

the industry has played a critical role in developing Norway’s public welfare through its supply

chains, social spill-over effects, and a tax rate of 78 percent (The Norwegian Tax Administration,

2022). Today the Norwegian petroleum industry is being debated and scrutinized from different

perspectives in later years: the Norwegian government receives high revenues from O&G sales

due to political conflict (The Economist, 2022) and a global need to shift towards sustainable

and renewable energy sources (UN Secretary-General António Guterres, 2023). Despite global

technological advancements, many industries and countries still rely on O&G as primary input

factors and energy sources and are not yet in the position to be able to fully transition to electrified

systems (The International Energy Agency, 2022b). The Norwegian O&G sector has a lower carbon

footprint in production compared to most other producing regions in the world (Masnadi et al.,

2018; The International Energy Agency, 2022a). Thus, one could argue that the Norwegian O&G

sector plays a crucial role as a transitioning industry by offering hydrocarbons with a lower carbon

intensity during the transition period in the global economy. This includes serving people’s energy

needs and applications that cannot be readily replaced by alternatives to fossil fuels.

The NCS has matured as a basin, and there is a clear trend of diminishing average sizes of O&G

discoveries (see Figure 1). Following this trend, the interest in marginal field1 investments and the

subsequent decision process have increased. However, high investment costs related to delineation

and infrastructure make traditional standalone development for marginal fields often economically

unfeasible. One way to develop marginal fields is through tiebacks to existing facilities (The

Norwegian Petroleum Directorate, 2019). These hosts can provide spare capacity to neighboring

fields in return for economic compensation in the form of tariffs. When considering a decision to

tie in a new field, time is a critical component due to the limited lifetime of the host. Thus, finding

the optimal time to invest in a marginal field is highly important.

Specific to marginal fields, it is often very costly to gather additional data about the field, for

instance, by drilling appraisal wells before issuing a Plan for Development and Operation (PDO).

This results in greater exposure to uncertainty in terms of profitability for marginal fields compared

to larger ones, which impacts the field’s potential. This prompts the industry to find methods to

improve decision-making for marginal field development under uncertainty.

Figure 1: Decreasing size of discoveries on the Norwegian continental shelf. Visualization based
on publicly available discovery data from The Norwegian Petroleum Directorate (2019).

1Marginal oil fields are characterized by discoveries that have remained unexploited for various reasons. This
includes their limited reservoir sizes, high development costs, and technological limitations (Society of Petroleum
Engineers, 2023).
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In this paper, we consider optimal field development for a portfolio of marginal fields under uncer-

tainty. Specifically, we study the optimal tieback timing of two marginal fields to one available host

with capacity constraints under technical and market uncertainty. We aim to answer the following.

Firstly, how can this novel problem modeling and solution approaches better can answer whether,

when, and in what order to tie back the two fields accounting for more extensive uncertainty?

Additionally, in that regard, how the industry can apply this methodology to make better deci-

sions. Secondly, what key factors drive field selection for oil exploration and production (E&P)

companies, enabling them to make optimal decisions? We apply a real options analysis (ROA)

and adapt the widely recognized least-squares Monte Carlo simulation (LSM) solution approach

proposed by Longstaff and Schwartz (2001) to solve these questions.

We develop a methodology that allows valuing tieback investments while accounting for uncertainty

about future market prices and the estimated ultimate recovery (EUR) of the fields. Firstly, we

model future oil prices by using simulations of the two-factor price model of Schwartz and Smith

(2000). Secondly, we use continuously updated probability distributions of the EUR using Bayesian

updating to construct production rates. In order to model production rates resulting from the

Bayesian updating, we present an optimization model that accounts for constraints related to

spare host capacity, recoverable volume, and decline rate. The resulting production rates are then,

together with the market price simulations, used to calculate the project’s net present value (NPV).

To address the recurring evaluations of whether and when to tie back the two marginal fields, we

apply our custom LSM algorithm. Finally, we apply compound options to the ROA framework.

This makes a decision-maker able to concurrently and better evaluate whether, when, and in which

order the marginal field should be tied back to a host facility to maximize the expected return on

investment (RoI). The ROA framework allows us to quantify the value of timing flexibility in terms

of the tieback of the two fields. Additionally, it allows us to construct decision rules for management

to use in their investment evaluation. The proposed methodology provides practical implications

for stakeholders in the O&G industry, making it highly relevant for regulatory authorities such as

the Norwegian Petroleum Directorate (NPD) and E&P companies.

This paper presents a valuable contribution to the literature by addressing the portfolio challenge

of tieback investments under market price and reservoir uncertainty. This research extends to two

important aspects of the literature: 1) bridging the gap between market price and technical uncer-

tainty in a ROA by accounting for both at the same time and 2) proposing a novel ROA framework

applying compound options to address the problem of optimally allocating a project portfolio of

marginal fields under uncertainty. The contributions take an important step in accounting for mar-

ket and reservoir uncertainty utilizing our Bayesian learning modeling. We denote the framework

using compound options in ROA as compound real options analysis (CROA).

In order to validate the methodology, we compare our results to those resulting from a myopic

decision approach. We find that considering the optimal timing and the order of tiebacks for the

two fields has considerable value and allows us to reduce downside risk. Our findings consistently

demonstrate that flexibility holds greater value in the face of increased project risk. The robustness

of our ROA approach, combined with our risk modeling, ensures reliable and meaningful results.

The exploration of compound options for assessing the marginal field project portfolio has generated

interesting findings, opening up paths for future research in the field of ROA.

2



1.1 Literature review

This paper seeks to contribute to two key research domains. Firstly, we investigate the optimal

timing for developing tieback projects in marginal oil fields. Our approach integrates ROA to

account for managerial flexibility under oil price and reservoir uncertainty, ultimately maximizing

the project’s value. While previous works such as Fedorov et al. (2021, 2022a); Jafarizadeh and

Bratvold (2015, 2020); Sales et al. (2021); and Lin et al. (2013) have addressed closely related

aspects, none have encompassed all the aforementioned elements in their research. Secondly, our

work contributes to the literature by extending a classical ROA framework to a portfolio perspective

using compound real options. To the best of our knowledge, few studies have analyzed the optimal

allocation of a portfolio of O&G projects. Lin et al. (2013) presents a portfolio perspective that

accounts for multiple risk factors but does not utilize a ROA approach. We propose a novel

methodology for concurrently considering multiple fields, and we denote it as CROA, a compound

real options analysis framework.

Real options originated from the application of traditional financial options valuation methods to

project valuation. The term was first introduced by Myers (1977) and has since gained widespread

recognition for its ability to assess projects with significant risks and emphasize the value of in-

corporating risk through timing and managerial flexibility by viewing them as options. Tourinho

et al. (1979) was the first to apply ROA to the O&G industry, estimating the value of natural

resource reserves while accounting for price uncertainty. In 1988, Paddock et al. (1988) and Ek-

ern (1988) used ROA for O&G projects. Paddock et al. (1988) compares ROA to the traditional

discounted cash flow approach (DCF) and highlight its advantages, including the need for less

proprietary data, lower computational costs, reduced error susceptibility, guidance on investment

timing, and insights for government policy and company behavior. Ekern (1988) demonstrate how

an ROA gives different results than a DCF approach due to accounting for managerial flexibility

when choosing the timing of investment. His focus was on options related to the development and

operation of tiebacks for satellite fields. Dixit and Pindyck (1994) further expands the flexibility

of the ROA framework through a comprehensive review explicitly formulated using differential

equations. They concluded that ROA and Decision Analysis (DA) produce similar results when

DA can explicitly value the project. DA is a method used for decision-making, evaluating, and

comparing potential options, risks, and benefits, and is often employed for similar problems as

ROA. Galli et al. (1999) compare three solution approaches for ROA: Monte Carlo simulations

(MC), option pricing, and decision trees. Together with dynamic programming, these are the most

commonly used solution methods. This paper adopts a simulation-based approach to address our

decision problem, building upon the abovementioned studies.

ROA has gained significant traction in the O&G industry in recent decades, specifically for E&P

projects, due to their long time horizons, substantial capital expenditures (CAPEX), and the

ability to incorporate multiple uncertainties. Bjerksund and Ekern (1990) expand on previous

approaches, exploring various investment and operational options and their impact on project

value. Dias (1997) integrate market price and technical uncertainty in ROA, while Cortazar and

Schwartz (1998) assess the optimal timing for oil field production. Galli et al. (2001) study drilling

decisions, and Chorn and Shokhor (2006) use dynamic programming with ROA for exploration

opportunities. Jafarizadeh and Bratvold (2009, 2012, 2015) provide insights on timing, managerial

decision-making, and field sizes. Overall, ROA proves valuable for its ability to optimize timing

and valuation in the O&G sector.
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MC simulation, developed by John von Neumann and Stanislaw Ulam during World War II,

has been widely utilized in various research fields for many years (Eckhardt, 1987). Tilley (1993)

pioneers its use in valuing American Options, which laid the foundation for simulating real options.

Before this development, ROA faced several challenges. Lander and Pinches (1998) identifies the

most significant hurdles: limited understanding of ROA outside academia, violations of modeling

assumptions, and the inapplicability of additional mathematical constraints in real projects. A

significant breakthrough came with the introduction of the least squares Monte Carlo (LSM)

framework by Longstaff and Schwartz (2001). Utilizing a two-factor price model by Schwartz and

Smith (2000) to account for oil price uncertainty, their work propelled LSM as a state-of-the-art

evaluation method for real options. LSM enables unbiased consideration of multiple uncertainties

without excessive computational demands (Fedorov, 2021). Notable works employing LSM to

explore investment under uncertainty in the O&G sector include those by Fleten et al. (2011);

Jafarizadeh and Bratvold (2012, 2015), and Hong et al. (2019).

Reservoir uncertainty is a critical factor in evaluating the value of E&P projects, as the extractable

volume of a field highly impacts the revenues and costs. Dias (1997) pioneered the inclusion of both

price and technical uncertainty in ROA for E&P projects, emphasizing the importance of technical

uncertainties in exploration decisions and economic uncertainties in production decisions. Galli

et al. (2001) introduce a sequential updating approach using appraisal wells to mitigate technical

uncertainty, while Armstrong et al. (2004) incorporate Bayesian updating and copulas to refine

reservoir volume distributions. Santos et al. (2017, 2018) focus on robustness in well quantity

and placement, while Jafarizadeh and Bratvold (2020) update scenario probabilities with new well

drilling. Modeling reservoir size and production rates involved probabilistic and stochastic analysis

by Chang and Lin (1999) and Subbey et al. (2004), while Lin et al. (2012) have a mathematical

model to capture evolving reservoir uncertainty. Inspired by these works, we simulate different

realizations of our marginal field using Bayesian updating and an analytical approach similar to

Lin et al. (2012, 2013)’s method. We utilize a normal-normal conjugate pair of Bayesian updating

and incorporate it into a ROA framework.

As with reservoir uncertainty, O&G prices are also a main uncertainty driver of future revenues

in E&P projects. A common challenge in the industry is that O&G prices often are simplistically

represented in traditional valuation methods (Bickel and Bratvold, 2008). This motivates us to use

a stochastic price model to replicate the development of future oil prices. Early adoptions of price

uncertainty in ROA were to model the price of the O&G commodities as a GBM (Brennan and

Schwartz, 1985; Paddock et al., 1988). Later, studies like Pindyck (1999); Smith and McCardle

(1999) propose that commodities have a mean-reverting price property, as they often are balanced

by the mechanisms of supply and demand. Newer research combines the two abovementioned

properties in factor models, with two or more factors, to even further increase the realism of the

modeling. In this paper, we use the short-term/long-term (STLT) two-factor stochastic price model

as of Schwartz and Smith (2000) for modeling the oil prices. This model is calibrated on historical

oil prices using a Kalman filter. Including the two-factor model of Schwartz and Smith (2000) into

a ROA framework has become a standard in most of the recent literature on ROA that include

price uncertainty (Jafarizadeh and Bratvold, 2015; Fedorov et al., 2021; Bakker et al., 2021). We

apply the STLT two-factor model calibrated using a Kalman filter in our ROA.

Despite the popularity of ROA in E&P projects, the academic literature on ROA with marginal field

development is relatively sparse (Fedorov, 2021). For example, Laine (1997) analyze Norwegian

marginal fields and demonstrates ROAs relevance when valuing marginal fields. Lund (1999, 2000)
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emphasize the value of operational flexibility in marginal oil fields, while Stoisits et al. (2010)

recommend tiebacks as the most profitable approach. Fleten et al. (2011) evaluate a tieback offshore

development with expansion and early decommissioning options. Lin et al. (2013) explore subsea

tieback developments under uncertainty and showed how a portfolio view of this outperforms a

myopic benchmark with 76% in value. Jafarizadeh and Bratvold (2015) examine smaller, steeper-

decline marginal fields and compare their sensitivities to larger fields. Other studies focus on

mathematical modeling approaches (Lei et al., 2021) and combining ROA with Decision Analysis

(Fedorov, 2021). Additionally, Fedorov et al. (2022a) investigate tiebacks and their timing for

marginal fields. Lin et al. (2013) argue many smaller discoveries only make sense to evaluate as a

set. We extend this reasoning by addressing a portfolio view of marginal fields using the CROA

framework.

Evaluating project investments under uncertainty has been under scrutiny for a long time. The

seminal work on portfolio theory by such of Markowitz, Sharpe, Fama, and French2 provides

a foundation for understanding the benefits of diversification and risk management in project

selection and allocation of resources. In the world of physical investment projects, like allocating a

portfolio of investment opportunities in O&G, we find the research area of incorporating managerial

flexibility into the investment opportunities as under-examined. Anand et al. (2007) contributes

to the literature by exploring the concept of option portfolios, considering factors such as project

interdependencies and resource constraints. Lin et al. (2013) offer insights into the dynamic nature

of project portfolio selection, considering evolving uncertainties and decision-making over time

while using MC to simulate NPV outcomes. Fedorov et al. (2022a) provide a recent perspective

on portfolio optimization in the context of ROA, though optimizing the best total combination

of individual real option evaluations. Gamba (2003) offers a valuable and broad examination of

formulating ROA to be solved with LSM, including how to incorporate compound options. We

apply a compound real options approach equaling Gamba’s formulation of options on options to

adapt the LSM in our CROA framework.

This paper uses insights from the papers mentioned in this section. Drawing from the real options

literature, we incorporate ideas from papers such as Fedorov et al. (2021, 2022a), Jafarizadeh and

Bratvold (2015), and Longstaff and Schwartz (2001), which provide frameworks for determining

the optimal timing of portfolio investments through ROA and LSM. Additionally, we extend the

concept of marginal field tiebacks, as discussed in Lund (2000) and Fleten et al. (2011). We use the

STLT price modeling as proposed by Schwartz and Smith (2000), heavily applied throughout the

literature. We incorporate the principles of Bayesian updating as applied to the estimation of recov-

erable volumes, as demonstrated in Lin et al. (2013), Armstrong et al. (2004), and Bhattacharya

et al. (1986). Lastly, taking on a multiple-field portfolio perspective, we draw inspiration from

works by Gamba (2003), Lin et al. (2013), and Fedorov et al. (2022a), exploring how uncertainty

influences the value of portfolios comprising marginal fields.

2These influential fathers of portfolio theory enhanced the understanding of portfolio allocation, risk, diversifica-
tion, and valuation. Despite their work with liquid and market-priced assets, the application of their theories still
bleeds into project investment (Markowitz, 1991; Sharpe, 1963, 1964; Fama, 1970; Fama and French, 1993).
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2 Background

The relatively higher uncertainty in the development of marginal fields highlights the need for

innovative approaches for valuation and optimal investment timing. Subsea tiebacks are crucial

for developing marginal fields, connecting them to facilities over long distances and deep waters.

Despite technical challenges such as capacity constraints and flow assurance, they are often the only

economically viable solution3. According to Scott (2017); Maslin (2019), and Bacati et al. (2020),

the CAPEX for tiebacks depends on various factors, but ongoing technology developments aim to

improve productivity and reduce costs even further. Compared to other methods, tiebacks may

offer a 30% to 60% reduction in CAPEX. Figure 2 illustrates an example of a tieback connecting

a field to its host facility in the Gulf of Mexico.

Figure 2: Visualization of a subsea tieback solution. Showing the PowerNap tieback to Olympus in
the Gulf of Mexico. The Figure is retrieved from Dittrick (2019) published in the OIL & GAS JOURNAL.

Historically, the O&G industry standard for project evaluation only considers a limited number of

scenarios for recoverable volumes of a field, these being the base-, high-, and low-case scenarios.

Often this is not the fault of reservoir engineers but rather the link between their technical modeling

and economic management. This simplification limits decision-making, as it leaves out useful

information. To overcome this limitation, this paper adopts the approach of representing reservoir

uncertainty as evolving probability distributions, as in Armstrong et al. (2004) and Lin et al.

(2012). To model the uncertainty in recoverable volumes of reservoirs, the literature presents a

few different approaches (Ian and Noeth, 2004; Sales et al., 2021; Lin et al., 2012). Some studies,

like Armstrong et al. (2004), use Bayesian updating to account for volume uncertainty while using

a simple triangular probability distribution, which is updated when learning about the field. We

incorporate Bayesian learning, similar to Lin et al. (2012), applying Bayesian updating to create a

reverse Wiener process with jumps. We will refer to the potential oil that can be extracted from

a field as the estimated ultimate recovery (EUR), thus modeling evolving EUR distributions.

3For further reading, technical challenges with tiebacks have been studied previously by Lin et al. (2013); Lei
et al. (2021), and Husy (2011)
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The O&G industry faces high uncertainty in revenues due to unpredictable oil prices and recov-

erable reserves. Price volatility is attributed to the low responsiveness of supply and demand to

short-term price changes (US. Energy Information Administration, 2022). Thus, O&G prices are

relatively more volatile compared to other commodities (World Bank Group, 2014). DCF analysis,

resulting in project NPV estimates, is the industry standard for O&G project valuation. In this

approach, the expected cash flows of a project are discounted and summed over the lifetime of the

project. However, this simple and intuitive method has limitations when the cash flows are subject

to high risks. The NPV formula is given by:

NPV =

T∑
t=t0

E(CFt)
(1 +Rα)t

(1)

where E(CFt) is the expected cash flow of period t, t0 is the timing of the investment decision, T

is the number of periods, and Rα is the discount rate that risk-adjusts the project for the time

value of money and risk (Brealey et al., 2012). We will refer to the DCF approach producing an

NPV estimate as the myopic approach.

The myopic approach is a straightforward method for calculating project value in stable and

predictable conditions. However, it has limitations, as it assumes that all decisions are made with

only the available information at the time of evaluation. Research by Paddock et al. (1988) and

Cortazar and Schwartz (1998) shows that waiting for more information can add significant value to

investments in O&G projects. This idea is supported by Fedorov et al. (2021) and other studies on

flexible strategies. Infrastructure investments are often irreversible, making it unlikely to recover

the entire capital amount if resold (Dixit and Pindyck, 1994). Irreversibility in the O&G industry,

combined with large technical and market risks, increases the value of flexibility and the incentive

to utilize other methods.

The ROA approach is a more precise method to evaluate project value than the myopic approach

when dealing with uncertain revenues, costs, and irreversible investments (Dixit and Pindyck,

1994). This approach factors in managerial flexibility and waiting for new information, which is

crucial in the O&G industry with high uncertainty. Therefore, we adopted ROA in our study,

which builds on DCF calculations as part of the methodology. The NPV of the tieback solution

used further in a ROA is given by:

NPVfield =

T∑
t=t0

(qoilt · poilt − CAPEXt − tarifft −OPEXt −ABEXt) · e(α−γ)·t (2)

where t is the given year, t0 is the investment year, T is the life expectancy of the host, the

quantity of oil produced is qoilt , the oil price is given by poilt , CAPEXt is a fixed investment cost for

developing each field, tarifft is the bilateral lease agreement between the host and field operator,

OPEX is the variable cost of operating the field dependent on qoilt , ABEXt is a fixed abandonment

cost for decommissioning production infrastructure, α is the inflation, and γ is the cost of capital.

CAPEXt and ABEXt only apply at t = t0 and t = T , respectively. In contrast, the host’s expected

profits come from the annual tariff paid by all partnering field operators. Hence, the NPV for the

host will be:
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NPVhost =
∑
fields

T∑
t=t0

tarifft · e(α−γ)·t (3)

We extend the use of ROA to evaluate both market and technical uncertainty, bridging the technical

and economic perspectives of marginal field development in our paper. Therefore, this paper aims

to position itself at the crossroads between the technical and economic perspectives of marginal

field development in O&G. We further explore the untapped potential of analyzing marginal field

investment opportunities as compound real options, referring to unlocking the opportunity to tie

back the second field once you have invested in the first one.

In a problem involving multiple hosts and fields, stakeholders are anticipated to have diverse

objectives and advocate for their own favorable conditions. In our problem perspective, we assume

the host companies’ economic objective is to maximize the tariff received from the fields, limited

by what is regulated. Thus, the host is incentivized to tie in as many marginal fields as early as

possible. On the other hand, NPD would, from a regulator perspective, aim to maximize the total

value creation in the area. We simplify this to the sum of the value of the fields and host facility.

Thus, NPD’s perspective does not necessarily need to align with the host’s. When we specifically

examine a case where two companies hold licenses for all hosts and marginal fields, the complexity

of the problem is reduced. Consequently, the companies share a mutual interest in connecting

as many fields as possible, with minor deviations in timing being of relatively minor significance.

However, if different combinations of controlling entities were involved, it could lead to misaligned

interests and, thereby, introduce elements of competition.

Typically, joint ventures are given the right to operate licenses on the NCS. As a simplification,

we will in this paper refer to the licensees of the host facility as the host or host operator(s) and

the licensees of the discovery and developers of a field as the field operator(s).

The paper proceeds with a problem description in Section 3. The methodology in Section 4 covers

the general premises, modeling, and solution approach. Moreover, the case study in Section 5

introduces parameters to apply for the methodology before results and sensitivities are presented

and discussed in Section 6. Limitations of our work are discussed in Section 7 before concluding

with potential future work and a summary in Section 8.

3 Problem description

To solve the portfolio problem, we consider the partial decision problem with the opportunity to

invest in two production facilities exposed to technical and market uncertainty. We subsequently

evaluate the expected return on investment (RoI) from our proposed decision sequence compared to

a myopic benchmark. The modeling approach of the problem is chosen to highlight the novelty of

using compound options with both market and technical uncertainty. Our modeling of the problem

realistically allows decision-makers the flexibility to invest in any of the two projects at any time

step, thus making a substantial contribution to solving the project portfolio allocation problem in

the literature. We present our CROA solution approach in Section 4, enabling E&P companies to

consider investments in multiple assets ahead of time, leading to more optimal decisions.
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We consider the decision situation with one host facility and two nearby marginal fields, which

we will refer to as Field A and Field B, respectively. In the context of our study, we make the

assumption that the two fields are technically compatible for tiebacks to the infrastructure of

the host. The problem situation is illustrated in Figure 3. We assume one operator to own and

operate the host facility (Company I) and a separate operator owning and considering developing

the licenses to the marginal fields available (Company II). Later in this paper we simply refer to

these as the host and the field operator, respectively. This removes the complexity of competition

in the problem and presents a clearer image of the problem aspects we focus on. Three terms of

factors restrict the tieback decision. These are the SHC of the host, the market price uncertainty

of future oil prices, and the reservoir uncertainty of the size of each field in the portfolio.

Figure 3: Problem situation with one host facility and two nearby marginal fields. The host
and the fields are controlled by different entities.

The host opens up for tiebacks toward the end of its life when it gradually frees up its SHC 4. The

field operator has to decide whether and when to invest in either or both of the marginal fields,

free of any ordering constraint. The investment decision is reconsidered once a year, accounting

for the updated external uncertainties and the host’s SHC. In Figure 4, we illustrate the timeline

of the decision problem. Phase 1 and Phase 2 describe the decision sequence of the problem of

connecting the first field and the second field, respectively. We examine the time period starting

from when the host possesses spare capacity until the end of its operational lifespan (L). The final

year for any investment is L− ϕ years before the host’s abandonment. In mathematical terms, we

can write this as t ∈ [1, ϕ], ϕ < L, where ϕ is the last year investment from the field operator can

occur, and L is the host’s lifetime.

4A host usually experiences SHC after some years of production, depending on its EUR, as the original production
declines (The Norwegian Petroleum Directorate, 2022).
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Figure 4: Decision problem timeline. It depicts two project phases, one for each field being connected.

In Figure 5, we illustrate the decision problem in more detail with visualized production rates. At

each year 0 < t < J − ω, the field operator receives information regarding risk factors and can

choose whether to exercise the option to invest in the first tieback development based on the new

information. The risk factors include the current oil price in the market, an updated EUR estimate,

and an expected value contribution for connecting the second alternative field later. We denote

the investment decision timing of tying back the first field by t1 = J − ω. At year t2 = K − ω,

the second field is chosen to be tied back to the host based on its updated EUR and oil price

information. Notably, t1 and t2 can be inapplicable if investment conditions are unfavorable. We

assume oil production starts with a lead time of ω years later for both fields; thus, the first and

second filed start producing at time t = J and t = K, respectively.

Figure 5: Detailed decision problem timeline with production overview. In the context of two
production phases, we provide an overview of the sequence of decisions in our problem.

To make our model computationally feasible, we have made several assumptions. Most notably, we

assume that the field operator begins learning passively about reservoir uncertainty for the second

field only. This means we model reservoir uncertainty differently for the two fields depending on

their order and characteristics, as described in detail in Section 4.3. We assume the SHC of the

host to be known and deterministic before any tiebacks. As a simplification, we model it such that

the host has shared the fixed terms for utilizing its spare capacity with the field operator(s) with

licenses for the neighboring marginal fields. Thus, the field operator decides the timing of tiebacks

to its fields in our model.
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Figure 6 exemplifies a case where the option to tie back is exercised for Field A and Field B

with a two years difference. For this example, we can assume Field A is tied back first. The

production of Field B is choked5 in the first years, whereas Field A’s production still takes up most

of the available capacity. In this case, the combined volume of both fields is extracted prior to the

decommissioning of the host in year L.

Figure 6: Example of a decision sequence. It exemplifies a total production volume when both
marginal fields are developed. The first field’s production is shown in teal, after receiving investment in
year J − ω and starting production in year J . The second field is invested in at year K − ω and starts
production in year K.

4 Methodology

This section describes how we solve the decision problem. Section 4.1 introduces the overall model

and framework for estimating the value and optimal tieback timing of connecting Fields A and B.

Then we present the market price model in Section 4.2 and explain how reservoir uncertainty and

optimization of the production profiles are modeled in Section 4.3 and Section 4.4. The integration

of all components in the CROA, including the valuation, optimal timing, and field order within our

project portfolio, is detailed in Section 4.5 using the LSM method as a solution approach. Lastly,

Section 4.6 describes the benchmarks we use to evaluate our proposed model.

4.1 Solution approach to the two-field decision problem

In the following, we introduce the proposed model to optimally evaluate whether and when to tie

back either Field A, Field B, both, or neither of them to the host facility. The possibility of tying

back a field under uncertainty regarding future framework conditions is similar to an investment

option and, therefore, eligible to be evaluated with a ROA. Since ordering the two fields is flexible,

the case can be viewed as two compound options where either is connected first. To the best of

our knowledge, this is a novel usage of compound options in a real options framework accounting

5When a field holds an unrestricted production rate surpassing the host’s extraction capacity, taking control of
the oil extraction rate becomes viable. This can be achieved by implementing measures to restrict the flow of oil,
thereby preventing excessive production. This is called to choke the field.
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for project portfolio allocation. Going forward, we will denote this approach as a compound real

options analysis (i.e. CROA), shown in the gray CROA boxes in Figure 7.

Due to its computational demand, the reservoir uncertainty of the first field is strenuous to consider

as anything other than a static value. Thus, to account for reservoir uncertainty for the first field,

we run M cases shown in Figure 7, one for each EUR guess of the first field. We return to a detailed

framework described in the real options section in Section 4.5.

Figure 7: Total compound real options valuation and timing framework (CROA). We model
two compound options to account for both possible order sequences of the fields. We can extend the
framework with M cases to account for multiple first-field volumes.

The structure and components of our Single ROA approach are illustrated in Figure 8. This model

is equivalent to each of the teal ROA boxes showing individual ROAs in Figure 7 with different input

parameters. We start with the modeling of the size of the field, equivalent to the reservoir engineers’

best guess. This is assumed to be constant for the first field while represented as a probability

distribution for the second field, as we have started to learn about its size after tying back the

first. Utilizing our present belief of the reservoir EUR, we construct the production rates for the

field by applying a production optimization model. The objective of this model is to maximize

the potential production rate, considering the constraints imposed by the available capacity of

the host and the declining field deliverability of oil, which will be explained in Section 4.3 and

Section 4.4. Thirdly, we model the project’s cash flows and deploy an LSM as a solution approach

to evaluate the project, as described in Section 4.5. Finally, we solve the ROA with the LSM using

N simulations to see the marginal fields under different price- and reservoir realizations.
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Figure 8: The Single real options analysis (ROA). The approach acts both as an independent
solution approach and as a modular part of the CROA framework.

Figure 8 illustrates the different components of the Single ROA. Within the dashed, gray cir-

cumference, we observe the components of the reservoir model, as described in Section 4.3. The

estimated production profiles influence the following revenue prediction, tariff, and OPEX. The

revenue results from the field operator’s sale of O&G and is the product of price and quantity in

the revenue prediction component. The oil price is simulated with the Schwartz and Smith (2000)

two-factor model, as described in Section 4.2.

The tariff represents a mutual agreement between a field operator and a host operator, as they are

separate entities in our case. The tariff function, illustrated in Equation 4, follows a commonly

employed format in practical applications (Fedorov et al., 2022a). In this function, β0 denotes a

fixed fee, while β1 and β2 represent coefficients for the oil volume and oil price, respectively:

tarifft = β0 + β1 · qoilt + β2 · poilt (4)

We model OPEX to encompass multiple components that combine various operational expenses

into an annual cost. Primarily, these costs include staffing, fuel, facility maintenance, and leasing

of storage vessels. This approach imitates a realistic representation of the overall operational

expenditures. As these costs normally increase with higher production volumes, we assume OPEX

consists of a fixed and an oil quantity-dependent component similar to Fedorov et al. (2021), and

is represented as the components β0 and β1, respectively. Hence, the OPEX is given by:

OPEXt = β0 + β1 · qoilt (5)

In our modeling, both CAPEX and ABEX are regarded as one-time costs associated with the

establishment and abandonment of production infrastructure, with the possibility of ABEX being

positive in certain cases. We assume that OPEX and tariff are influenced by the production

profiles, as larger production volumes naturally entail higher costs for managing increased product

quantities. However, for the sake of simplification, we assume that CAPEX and ABEX remain

unaffected by the production rates.
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4.2 Oil price modeling

In this section, we detail our approach to modeling market uncertainty in our analysis, with a

focus on the risk associated with oil prices. To simulate this uncertainty, we employ a stochastic

price model while conducting the ROA. The paper utilizes the Schwartz-Smith two-factor model to

represent the future oil price. This model incorporates short-term deviations from a constant long-

term equilibrium, as suggested by Schwartz and Smith (2000). This approach accounts for both a

short-term mean-reversion effect and uncertainty in the long-term equilibrium. The mathematical

expression for the Schwartz-Smith two-factor model is as follows:

ln(St) = χt + ξt (6)

where χt is the short-term deviation from the long-term equilibrium ξt. This deviation allows

for short-term mean-reverting behavior, which enables producers to respond to changes in market

conditions. On the other hand, the long-term equilibrium prices are modeled as Brownian motion.

This modeling accounts for adjustments to changes in supply and demand, macroeconomic factors,

technological developments, and other relevant variables over the long term.

dχt = −κχtdt+ σχdzχ (7)

The short-term deviations from the long-term equilibrium price are described in Equation 7. These

deviations are expected to converge to zero over time, like an Ornstein-Uhlenbeck process. The

parameters of this process include the mean-reversion coefficient κ and the volatility parameter

σχ.

dξt = µξdt+ σξdzξ (8)

The long-term equilibrium price is described in Equation 8. This is modeled as a Brownian motion

process with a drift rate µξ and volatility σξ. The correlated increments of the Brownian motion

processes are represented by dzξ and dzχ and are correlated with dzξdzχ = ρξχdt.

dχt = (−κχt − λχ)dt+ σχdz
∗
χ (9)

dξt = (µξ − λξ)dt+ σξdz
∗
ξ (10)

In our analysis, we adopt a risk-neutral pricing approach to account for uncertainty in the invest-

ment’s market and technical aspects, as proposed by Cox et al. (1985). This approach enables us

to risk-adjust the cash flows, and we make adjustments to Equation 7 and Equation 8 as shown

in Equation 9 and Equation 10. In these adjusted equations, dz∗ξ and dz∗χ represent the correlated

increments of standard Brownian motion processes, and they are correlated by dz∗ξdz
∗
χ = ρξχdt.

We introduce risk premiums λξ and λχ, subtracted from the mean µ to adjust for risk. In the

short term, the risk-adjusted premium reverts to −λχ/κ. In the long term, we obtain a drift of

µ∗
ξ = (µξ − λξ).
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χ∗
t = χ∗

t−1e
−κ∆t − (1− e−κ∆t)

λχ
κ

+ σξϵξ

√
1− e−2κ∆t

2κ
(11)

ξ∗t = ξ∗t−1 + µ∗
ξ∆t+ σξϵξ

√
∆t (12)

We must discretize the prices and cash flows when conducting the Monte Carlo simulations. The

price modeling’s short- and long-term components are discretized as shown in Equation 11 and

Equation 12. In each time period, ϵξ and ϵχ represent correlated standard normal random variables

with a coefficient of correlation ρξχ.

Summarizing this subsection, we have two initial values, ξ0 and χ0, and seven parameters (κ, ωξ, ωχ,

µξ, λχ, λξ, ρξχ) that need to be estimated. These are usually estimated through a Kalman filter
6. As of Goodwin (2013), the Kalman filter is used to tune the parameters for a set of historical

spot or future price data. The output is a posterior conditional distribution of the historical data.

Figure 9 visualizes our price simulation by percentiles after 2015. We adopt the two-factor modeling

approach because it is considered superior to one-factor models, as it can account for both short-

and long-term uncertainty. Additionally, the two-factor model is relatively easy to calibrate and

communicate (Fedorov et al., 2021). The parameters used in our case are further described in

Section 5.

Figure 9: Price percentile plot calibrated on historical data.

4.3 Reservoir uncertainty

As we model the reservoir uncertainty for the first field in M cases of fixed sizes, as of Section 4.1,

we will, in this subsection, focus on the modeling of reservoir uncertainty for the second field.

This involves assigning a probability distribution to the possible values of the EUR based on the

information available. This distribution is updated as more information becomes available, such as

from drilling results, production data, and seismic surveys. The intention is to model the reservoir

uncertainty in a way that mimics how a company’s belief of the field’s EUR updates over time. In

6The Kalman filter is an estimation technique that estimates state variables in a continuous and changing
environment. It is often used in commodity market price modeling Fedorov et al. (2021); Schwartz and Smith
(2000); Rankin (1986); Neumann et al. (2006)
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this paper, the EUR is modeled using a normal distribution with a mean and standard deviation

(SD) that are updated using Bayesian learning as more information becomes available. The mean

and standard deviation of the prior distribution are determined based on the current geological and

engineering knowledge, while the posterior distribution is an updated distribution that adjusts the

prior distribution to the new information we just received. The result is a probability distribution

of possible EUR values that reflects the current state of knowledge and uncertainty about the

reservoir that develops over time.

The firm receives information through the production of the first field. This allows the field operator

to better assess the EUR of the second field. We make the assumption that the field operator revises

its EUR once per year. This updated information can lead to the field operator’s EUR expectation

being lower, higher, or unchanged in comparison to the current belief. To model this process,

we consider that reservoir engineers are more likely to obtain increasingly certain information

over the course of time. We incorporate incremental reservoir learning, where the uncertainty

progressively decreases each year until reaching a minimum level that cannot be further reduced

through passive learning (represented as SDmin := δ). As a result, we anticipate more significant

variations between the updated information during the initial years compared to the subsequent

years.

We adopt a reversed Wiener process to model the EUR, similar to Lin et al. (2012, 2013). In our

simulation, we generate realizations of the oil reservoir, each commencing from the initial estimate

at time t = 0 and updating until it reaches convergence around the true value, guided by the

acquisition of information. Each of these realizations is referred to as a trajectory. To capture a

broader range of scenarios for the reservoir’s EUR, the model simulates N trajectories for the same

reservoir. These N trajectories align with the N simulation paths utilized in oil price simulations

and the LSM, enabling their integration into the ROA and CROA frameworks.

The process of updating the belief about the EUR starts at the initial time step t0, where we have

a probability distribution of the EUR B(t0), representing the initial best guess from the reservoir

engineers. We sample a true value of the EUR v∗ from a distribution V containing all possible

EURs that the reservoir may have. For each year t, we draw a sample from a normal distribution

I(t) centered around the true value v∗ of the EUR for each trajectory. The standard deviation of

I(t) is decreasing over time, reflecting the rate of human learning. We update the belief about the

EUR for each trajectory at time t by combining the sample from I(t) with the belief at the previous

time B(t−1) using Bayesian learning. The resulting distribution B(t) is the posterior distribution

of the EUR at time t given the information up to that point. This procedure is repeated for each

subsequent year until the end of the investment horizon. In Figure 10, we visualize this process.

Mathematically, this can be written as such:

1. Define an initial probability distribution B(t0) of EUR based on the reservoir engineer’s best

guess at time t0. B(t0) is normally distributed with mean µB(t0) and SD σB(t0).

2. Set a true value v∗ for each trajectory, drawn from a distribution V ∼N(µV , σV ). For sim-

plicity, we set V to be the same as B(t0).

3. Construct a distribution I(t) representing the origin of the yearly signal information, with

mean µI(t) = v∗ and standard deviation σI(t) = v∗ · θ · ϵt, where θ is the initial standard

deviation as a percentage of the mean, and ϵ is the learning rate for each year t that passes.

Finally, we sample the yearly information i∗ from I(t).
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4. Update the distribution from B(t− 1) to B(t) at each year t using Bayesian updating with

B(t− 1) as the prior distribution and i∗ as the new information.

5. Produce N trajectories to depict diverse realizations of the reversed Wiener process B(t).

(a) (b)

Figure 10: Visualization of the assembly of a reservoir trajectory. Figure 10a refers to the first
and second steps, and Figure 10b refers to the third and fourth steps described above.

Bayesian updating, as performed in Step 4 above, is a method used to update our belief of a certain

parameter or hypothesis as new information becomes available. In this case, we are updating

our belief about the EUR of the reservoir based on new information obtained each year, using

Equation 13 and Equation 14 that is based upon Moldovan (2010). The updating of the posterior

mean of B(t) is based on B(t − 1) ∼ N(µB(t−1), σB(t−1)) and our new information i∗. The prior

and the signal distribution are both normally distributed, forming a normal-normal conjugate pair,

which also implies that the posterior is normally distributed. The equation is as follows:

µB(t)|B(t− 1), I(t) =
σ2
I(t)

σ2
I(t) + σ2

B(t−1)

· (i∗) +
σ2
B(t−1)

σ2
I(t) + σ2

B(t−1)

· (µB(t−1)) (13)

where σB(t−1) is the standard deviation of the prior distribution B(t − 1), and σI(t) is the stan-

dard deviation of the new-information distribution I(t). The updating of the posterior standard

deviation of B(t) is given by:

σB(t)|B(t− 1), I(t) =
σI(t) + σB(t−1)

2
(14)

where σB(t−1) and σI(t) are the standard deviations of the prior and evidence distributions, respec-

tively. For simplicity, we assume that σB(t) is equal to the average of σI(t), the signal σI(t), which

is assumed to decrease over time. Thus, σB(t−1) declines as t grows. We adjust the updating of

17



σB(t) to align with our problem while considering our intuition regarding the impact of the signal

on B(t). With the reduction of uncertainty in the EUR over time, the current best guess B(t)

provides a more accurate estimate of the field’s true volume as t increases.

The term ”reversed” in reversed Wiener process is used to indicate that each trajectory in the

ensemble converges to its true value instead of diverging from a starting value, as in a standard

Wiener process (Lin et al., 2013). This property of a reversed Wiener process allows us to model

the uncertainty in the estimates of the EUR of a reservoir while also ensuring that each trajectory

converges towards a single true value. The initial distribution of the reversed Wiener process is

chosen to be the same for each trajectory, and the true value for each trajectory is drawn from a

distribution, which retains the diffusion property of a standard Wiener process. In Figure 11, we

present two realizations of a field’s EUR modeled through this process.

Figure 11: Example including two volume trajectories of a reservoir. Showing how a company’s
belief about the EUR of the second field develops over time. In this example, we invest in the first field in
year 4, resulting in the start of reservoir learning shown in the figure.

According to Lin et al. (2013), our model preserves the random walk characteristic of the Wiener

process but with decreasing volatility that follows an exponential pattern over time. The damping

factor of this decline in volatility is interpreted as the speed of human learning. The collection

of all trajectories provides decision-makers with insight into the evolution of the EUR trajectories

over time. We draw samples from these trajectories to optimize production, which in turn becomes

an input for the LSM solution approach.

4.4 Production profiles

To determine the optimal timing and value of a potential tieback at each time step, we sample a

reservoir volume from the most recent EUR distribution at time t, denoted as soil. This distribution

is taken from the trajectory at time t. Subsequently, using a production optimization model,

we convert the new volume estimate, soil, into production profiles, given the constraints of the

host. The aim is to maximize the total volume extracted, subject to the field potential and host

constraints. The entire process is depicted in Figure 12 and elaborated further in the subsequent

paragraphs.
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Figure 12: Transitioning from EUR uncertainty to production rates. We model the EUR
uncertainty over time by sampling the B(t) distribution. Our proposed optimization model takes in the
sampling and produces the production rates used for decision-making at time t.

The production optimization model aims to optimize the quantity of oil produced based on the

EUR and capacity constraints from the field and the host over the host’s lifetime. The model is

presented in Equation 15 through Equation 21 and is accompanied by Table 1, which explains the

variables and parameters utilized in the model. The model is based on Hyldmo and Skudal (2022).

Table 1: Variables as parameters for the optimization model. Similar to the variables and
parameters as used in Hyldmo and Skudal (2022).

Model input Type Description Unit
qoilt Variable Oil production rate at time t Sm3

foilt Variable Field oil potential at time t Sm3

soil Parameter Sample from an EUR distribution Sm3

Coilt Parameter SHC of oil at time t Sm3

λ Parameter Reservoir depletion rate %
ω Parameter Oil production lead time years
T Parameter Lifetime of host years
TCAPEX Parameter Year of investment year

max
qoilt

T∑
t=0

qoilt · e−γ·t (15)

foilt = λ · (soil −
t−1∑
t=0

qoilt ), ∀t ∈ T (16)

foilt = 0, ∀t ∈ [0, TCAPEX + ω] (17)

qoilt ≤ foilt , ∀t ∈ T (18)
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qoilt ≤ Coilt , ∀t ∈ T (19)

T∑
t=0

qoilt ≤ soil, ∀t ∈ T (20)

qoilt , foilt ≥ 0, ∀t ∈ T (21)

The primary goal of the production optimization model is achieved through the objective function

defined in Equation 15, where the total oil production is maximized while taking into account

the time value of oil. To achieve this, the quantity produced is discounted using γ to account for

that present oil is worth more than future oil. In this paper, we assume that the production is

maximized without considering the economical aspect. However, optimizing the total profit would

be an intuitive decision. We suggest to address this in future work, perhaps through the ability to

purchase futures contracts enabling profit-based optimization.

The constraints of the production optimization model take into account the field potential, which

is modeled by its decline rate (λ), and the host’s capacity to receive oil (Coilt ). The first two

constraints, presented in Equation 16 and 17, define the nature of the field potential at time t

(foilt ). Constraint Equation 16 specifies that the field potential at time t cannot exceed λ (in %) of

the remaining oil volume at that time. Equation 17 ensures that the field does not start production

before the year of investment (TCAPEX) or before a lead time after the investment decision is made

(ω). Subsequently, Equation 18 limits the oil production (qoilt ) at time t by the field potential

(foilt ). The constraints are simplified by assuming that the depletion rate λ already accounts for

well capacity and well placement.

As stated, we assume that the SHC is deterministic and known before considering the tieback

developments. In Equation 19, the oil production at time t (qoilt ) is restricted to the host’s capacity

(Coilt ). Additionally, a limit for the accumulated production volume is added to avoid exceeding

the initial oil in place. This constraint is included in Equation 20. Finally, Equation 21 imposes

non-negativity constraints on the variables to ensure the model’s validity.

As a simplification, we will assume a deterministic, exponentially declining production rate, similar

to the approach taken by Thakur (2017). This assumption implies that we obtain perfect informa-

tion about the true reservoir size and subsequent production profiles in the year we begin exploiting

the field. In this paper, we run the model independently for Field A and Field B when determining

their production profiles. The resulting production profiles are then used further in the ROA as

the quantity of oil produced at each possible investment year, as explained in Section 4.5.

4.5 The ROA implementation

The potential upside of using real options in O&G investment decisions is highly acknowledged

(Paddock et al., 1988; Cortazar and Schwartz, 1998; Lund, 2000; Jafarizadeh and Bratvold, 2009;

Fedorov et al., 2021). ROA allows for accounting for managerial flexibility and, thus, positioning

itself as a preferred choice of analysis faced with substantial uncertainty and irreversible decisions.
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Modeling our problem of allocating the project portfolio as cases with two compound options allows

us great flexibility in our solution. In this section, we propose a CROA framework combining

individual ROA instances to decide the timing and valuation of two marginal fields. We divide

the framework into three main components: a CROA case (∈ M cases), a CROA, and a Single

ROA. These components are outlined from a top-down perspective, where the Single ROA is highly

modular throughout the framework. Our CROA case is illustrated in Figure 13. It is referred to

as a case due to its assumed fixed reservoir EUR for the first field in Phase 1. Phases 1 and 2

depict the first and second field being tied in to the host facility. The result of each case stems

from the maximum function used on the result of the two compound options representing each

ordering of the fields, where we select the ordering which, on average, yields the highest value.

Specifically, this means we select the ordering of the fields that is preferred in the realization of

uncertain parameters.

Figure 13: Compound real options analysis case. We zoom in on each case and describe its
components in detail.

In our context, for each of the Single ROA instances, the decision of whether to invest or not is

evaluated once a year when receiving updated uncertainty parameters. This evaluation is similar

to a financial Bermudan option, which can be exercised once every year. How the terms from real

options investment projects relate to financial options is summarized in Table 2.

Table 2: Terminology for real and financial options. We can view opportunities to invest in O&G
field development as call options. The translations and table format are inspired by McDonald (2013).

Financial option term ROA in O&G terms
Call Option Investment in the field development project
Strike Price CAPEX
Underlying Asset Price Present value of the project
Expiration The lifetime of the host or field

Longstaff and Schwartz (2001)’s least squares Monte Carlo (LSM) approach is chosen as the solution

approach to evaluate our Single ROA instances. LSM is based on generating numerous simulations

of the underlying asset to calculate the present value of the option value to invest at each timestep.

For each simulation, the option to invest can be exercised at any timestep until maturity, which

means that we estimate both the immediate payoff and the value of keeping the option alive, the

continuation value, for each year. The determination of exercise boundaries involves a backward

analysis, where we examine the values of risk factors to identify the conditions under which the

option should be exercised. For each path, the optimal exercise time is determined by identifying

the earliest time the path value crosses the exercise threshold, where the investment value exceeds
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the continuation value of waiting an additional year. The final option value is computed by taking

the average of the present value of all the payoffs from the various paths.

We have adjusted the LSM to fit the requirements and circumstances challenging our O&G environ-

ment. For all investment options in this paper, the immediate payoff of the project is unavailable.

Jafarizadeh and Bratvold (2009) suggest regressing the continuation value and the immediate pay-

off separately on the information from each timestep. We implement these regressions as well.

However, in our implementation with Bayesian learning, we have information that is correlated

with the immediate payoff. We refer to the current best guess of the EUR of the reservoir, which

is an indication of the true size of the reservoir, and today’s oil price, which is an indication of

future oil prices. We apply these variables in the regressions.

The following paragraphs highlight the differences between the real options estimates we use in

Phase 1 and Phase 2 in the CROA for our real options implementation. Gamba (2003) formulated

the adjusted Bellman equation7 for accounting for an additional option ahead in time, here shown

in Equation 22 and Equation 23, where t is the current year of evaluation, υ is the investment year

of the first field, ψ is the investment year of the second field, X is the current information of the

fields, and T is the last investment years of either field. F (t,X) represents the option value given

the time step and the state of the fields.

FPhase 1(t,Xt) = max
υ∈{t,TPhase 1}

{e−r(υ−t) · E[ΠPhase 1(υ,Xυ) + FPhase 2(υ,Xυ)], 0} (22)

FPhase 2(υ,Xυ) = max
ψ∈{υ,TPhase 2}

{e−r(ψ−υ) · E[ΠPhase 2(ψ,Xψ)], 0} (23)

To obtain a portfolio view of the value of the first option, we adjust the ROA in Phase 1 (ROA

1) in Equation 22 to account for the future option values from Phase 2 (ROA 2) in Equation 23.

This means the payoff and regression in ROA 1 add the final values from ROA 2, shown as

FPhase 2(ψ,Xψ). This also implies that we need an estimate of ROA 2 before ROA 1 when

making the investment decision of the first field. As the decision-maker does not hold perfect

information about the second field, our approach is to simulate an estimation of the value of the

option to add the second field later by binning the true value into k bins.

As the field operator has the ability to trade oil futures based on the current observable oil prices

at the time of investment, it follows a correlation between today’s oil price and the compound

value of adding the second field later. Thus, a decision-maker may base such a guess of the value

of the second field on the information about the current belief of the EUR and future oil prices.

Given that the decision-maker manages to get a best-effort estimate of the second field contribution

within a rough range for ROA 2, the CROA can incorporate this value and impact the exercise

decision in ROA 1.

Given this adjustment of ROA 1, we create a compound real option for a given ordering of the

fields. Thus, it will resemble what is visualized in Figure 14, where we first compute the values of

different simulations of the second field, conditioned on various tieback years of the first field. This

7The Bellman equation is expressed by the value of a state which equals the maximum of the immediate reward
and the value of future states (Dixit and Pindyck, 1994). In our context, the LSM is using the least-squares regression
estimate of the continuation value versus the immediate payoff to decide on the investment timing providing the
best total expected profit (Gamba, 2003).
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comes together to form our CROA evaluation of the total portfolio. In the Single ROA benchmark,

we use two equations identical to Equation 23 for both phases.

Figure 14: Compound real option analysis. We closely examine how each compound option is
modeled.

Recalling the model overview in Figure 7, Section 4.1, we assemble both ROA 1 and ROA 2 and

further into the compound real options cases, finally making up our total model.

4.6 Benchmarking the solution approach

We have included two benchmarks as reference points to showcase how the CROA works regarding

total valuation, timing, and the value of flexibility under uncertainty. First, we include a benchmark

valuation with a myopic view of marginal field development with tiebacks. The benchmark utilizes

the NPV approach, as presented in Equation 2, and uses the expected size of the reservoirs and

the mean of the future price paths, as described in Section 4.2 and Section 4.3, to calculate the

expected revenues and costs for investment in each year. To catch the portfolio view of this, we

have tested the combination of all investment years for Field A and Field B and selected the

combination yielding the highest value as the benchmark.

Second, we include the Single ROA as a benchmark. The Single ROA approach is based on the

same assumptions and methodology as the CROA. However, we first optimize Field A using ROA

without considering that we can add Field B later. Then we utilize a second ROA to optimize the

timing and value of Field B before adding these values together as the portfolio’s value. Hence,

the reader should be aware that the Single ROA is also an approach proposed by this paper, which

works perfectly if one is to only optimize the tieback of a single field. Moreover, one can view

the Single ROA approach as natural for what would happen if the two fields were operated by

two distinct field operators, where each wants to optimize their tieback developments, regardless

of their competitor.

5 Case study

We analyze a case study with one host and two marginal fields, similar to the one found in Hyldmo

and Skudal (2022), using the methodology described in Section 4. Although the data is synthetic,

the case resembles real development projects on the NCS and is designed together with O&G

experts at NTNU. The case highlights the critical aspects of a typical O&G project, and the paper

aims to demonstrate the relevance and validity of the methodology proposed.
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Case description and general economic parameters

We assume that both the host and the fields are feasible for a tieback and that all licenses and

permissions are in place. In our case, we have set the lead time ω to 1 year. We learn about the size

of the second field from the same year as the investment in the first field. The decommissioning

of the host will occur in year 20, meaning that year 20 is the last year available for production.

Moreover, we have set the last possible investment year in either field to be year 18.

We use a discount rate of 7%, following Fedorov et al. (2022a) and the recommendation from

The Norwegian Petroleum Directorate (2020) for the risk-adjusted discount rate. The literature

suggests using a risk-free rate in ROA under the assumptions of efficient markets. As the markets

are non-efficient and the literature does not offer a way to adjust appropriately for this (Jafarizadeh

and Bratvold, 2015), we choose to use the discount rate noted above, although it may be argued

to be slightly too high. The inflation rate in Norway and the United States is set to 2%, assuming

the Norwegian Central Bank and The Federal Reserve meet their long-term goals (Norges Bank,

2022; Federal Reserve, 2020). The inflation rate is represented by α.

To calculate the myopic benchmark, we use the expected EUR of our current best information B(t)

and apply it in the optimization model to generate production rates. The NPV is then calculated

using these production rates and the mean of the simulated oil price paths. We iterate through

all possible exercise years and select the highest NPV as our benchmark. For both the myopic

approach and the real options approaches, we use N = 10 000 simulated paths for the oil price and

the second field’s EUR8.

Recall that we place the expected second field value contribution into bins when evaluating the

investment decision of the first field. The estimating of the second field’s value is binned into k = 3

bins. In our case, these are yearly selected to be the P20, P50, and P80 of the estimated value

distribution of the second field. We do this to obtain a rough but still broad representation of the

full state space of possible second-field valuations. This binning is necessary to make the model

applicable to a field operator to utilize in a real use case. Our main message is not to use these

percentiles exactly but rather to showcase the concept of a rough estimation of the compound

option value and how it affects the CROA. These aforementioned general parameters for the case

study are summarized in Table 3.

Table 3: General parameter values

.

Parameter Value
Lead time (ω) 1 year
Last possible year of exercising (ϕ) Year 18
Lifetime Host (L) Year 20
Discount rate (γ) 7%
Inflation rate (α) 2%
Number of simulations (N) 10 000
Number of cases (M) 1
Bins of the value of the second field (k) 3 - {P20, P50, P80}

8We choose 10 000 simulations based on robustness tests performed with the algorithm. However, for making
the sensitivity analysis in Section 6.3 computationally feasible, we have used 1 000 simulations. A more detailed
summary can be found in Appendix B.
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Oil price simulation

Applying the STLT two-factor price model of Schwartz and Smith (2000), we use a Kalman filter to

calibrate the parameters from historical oil prices. As this paper aims to find interesting patterns

in our ROA and CROA approaches, we use the same parameters previously estimated within our

team and earlier presented in Fedorov et al. (2022b). These parameters were estimated with Brent

crude oil spot prices from March 2006 to June 2021 and are listed in Table 4.

Table 4: Parameter values for oil price simulation.

Two-factor parameter Value
ξ0 4.07
χ0 0.10
σξ 0.12
σχ 0.56
λχ 0.11
µ∗
ξ -0.0045

κ 0.45
ρξχ 0.12

Production profiles and host constraints

We assume a learning rate of 20% for the production profiles, giving us ϵ = 0.8. The minimum

uncertainty for each trajectory is set to 25 % of the initial uncertainty (B(t0)), representing a

field operator never can become certain of a field’s EUR. The depletion rate λ, used to generate

production profiles, is set to 20 %. That assumes a maximum extraction rate of 20% of the

remaining EUR for each field per year. All parameters related to production profiles, sizes, and

uncertainty of the fields are summarized in Table 5.

Table 5: Parameter values for generating production profiles.

.

Parameter Value
Depletion rate (λ) 20 %
Minimum uncertainty (δ) 25 %
Information volatility discount factor (ϵ) 0.80 -

First field when Field A - EUR 6.0 million Sm3

First field when Field B - EUR 5.5 million Sm3

Second field when Field A - EUR N(6.0, 1.80) million Sm3

Second field when Field B - EUR N(5.5, 1.65) million Sm3

As the original production of the host decreases over time, it leaves capacity that can be utilized

by Field A and Field B. We denote the SHC for the base case as increasing, reflected by its shape

shown in Figure 15. We assume the SHC to consist of oil volumes, having already taken into

consideration the water and fluid constraints of the host. The increasing case is modeled to reflect

a maturing host with available oil capacity and not so much of a water constraint.
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Figure 15: Visualization of the increasing spare host capacity.

Costs and abandonment

Table 6 lists fixed tariff, OPEX, CAPEX, and ABEX parameters. The beta parameters describing

the tariff and OPEX, earlier mentioned in Equation 4 and Equation 5, are selected to make as

realistic costs as possible.

Table 6: Parameter values for costs.

.

Parameter Field β0 β1 β2 Value
CAPEX A - - - 600 MMUSD
CAPEX B - - - 550 MMUSD
ABEX A&B - - - 100 MMUSD
Tariff A&B 20.0 3.0 0.03 - MMUSD/year
OPEX A&B 10.0 5.0 - - MMUSD/year

6 Results

Key to stakeholders of this decision problem is whether and when to invest in either field. Applying

the methodology to the case presented in Section 5, we first derive the total value and optimal

timing for a portfolio of two marginal fields and one host in Section 6.1. Secondly, in Section 6.2,

we examine decision rules and the practical application of our proposed CROA approach. Thirdly,

we analyze the decision of which field to tie back first and explore how important model parameters

affect this choice in Section 6.3. Further, we dedicate a section comparing the CROA to a Single

ROA approach and evaluate its robustness for different SHC variations in Section 6.4. Finally, in

Section 6.5, we further compare the CROA to a CROA which has perfect information about the

value of the second field when making its decision to invest in the first field.
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6.1 Base case results

The results for the base case with an increasing SHC are presented in Figure 16. The figure displays

the total value estimate for the portfolio for the CROA and the myopic benchmark, including the

average percentage value contribution of both fields to the total value. The valuation of the fields

stems from choosing to tie back Field A before Field B for those simulation paths where investment

was considered optimal, as most simulations results in a higher valuation with this ordering of fields.

How the ordering results from the CROA approach can be interpreted is discussed in Section 6.3.

Figure 16: Valuation of the portfolio comparing the CROA to the myopic approach. This
reflects the average expected valuation from choosing Field A first and then having the option of investing
in Field B later.

The myopic approach yields a portfolio value of 447.8 MMUSD, with an average composition of

65.6% profits from Field A and 34.4% from Field B. In contrast, utilizing the CROA approach for

investment in the two fields results in an expected value of 581.2 MMUSD, representing a 29.8%

increase compared to the myopic approach. On average, this valuation comprises 61.8% profits

from Field A and 38.2% from Field B.

An overview of the solution approaches’ most common investment timing statistics can be found

in Table 7. The statistics need proper context to be a valuable comparison due to the nature of

both approaches. For the myopic approach, the displayed years are the timing yielding the highest

expected portfolio value. This suggests decision-makers use the most common investment timing

for all future realizations. In contrast, the CROA results suggest investments are more probable to

occur in some years compared to others. This does not suggest any specific decisions for a decision-

maker today but rather gives a picture of likely outcomes in the future. The investment decisions,

according to the CROA framework, should be made by observing risk factors and applying decision

rules resulting from the analysis. That means a decision-maker today believes it is optimal for the

myopic approach to invest in Field A in year 6 and in Field B in year 13, regardless of future

observable risk factors. Most likely, a decision-maker will tend to invest in both fields earlier by

applying the CROA approach but will observe risk factors and follow decision rules to make the

final decision.

In Figure 17, we present a visualization of the different realizations of the DCF calculations in the

myopic approach. Investing in Field A in year 6 yields the highest valuation, but the expected

value in years 4, 5, and 7 is close to this optimum. The dark line shows the expected Field B

contribution for each investment decision for the first field. The second field timing is conditioned

on the decision for the first field, leading to investment in Field B in year 13.
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Table 7: Most common tieback timing results of the myopic and CROA approach. In the
majority of the simulation cases, it is optimal to start with tying back Field A.

Solution approach
Most common investment Most common investment

year for the first field year for the second field

Myopic 6 13
CROA 1 12

Figure 17: The optimal timing to invest in the first field as of the myopic approach. It shows
all cash flow combinations of each investment year. The results suggest investing in year 6 in Field A and
in year 13 for Field B as a direct consequence.

A visualization of the investment timing of the CROA is illustrated in Figure 18. The timing

results for Field A as the field first field and Field B as the second field is shown in Figure 18a

and Figure 18b, respectively. One notable difference from the myopic approach is that in certain

simulation paths of the CROA, none of the fields are selected for investment. In the case of the

CROA, it is optimal to invest in Field A in the majority of simulation cases as opposed to not

doing so. Specifically, it is optimal to invest in year 1 for 24.4% of the simulation cases, in year 2

for 15.9% of the simulation cases, and so forth, while never investing in 13.2%. This is shown in

Figure 18a. For the CROA, Figure 18b shows the investment timing for Field B, conditioned on the

investment in Field A in year 1. Recall that we calculate all conditional results, and therefore we

choose to present the most common condition. Interestingly, we can note that the most probable

outcome for the CROA is that Field B is exercised in years 10 to year 13, but with year 12 as the

most common investment year. Moreover, ∼30% of the simulations will never be invested in.
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(a) Share of simulations for investing in the first field,
showing the average contribution of the second field.

(b) Share of simulations for investing in the second field,
given that we invest in the first field in year 1.

Figure 18: The optimal timing to invest in the first and second fields as of the CROA solution
approach.. Given all simulation cases, the results show the share of simulations exercised at each time
step or not at all. The results do not suggest an investment timing today but rather probable future
outcomes. The CROA generates decision rules based on risk factors, and these are outlined in Section 6.2.

When comparing the simulation outcomes of the CROA and the myopic approach from applying the

respective timing results, a decision-maker will observe significant differences in the distribution

of values. By applying the price paths from Section 4.2 and the true values v∗ for field EUR

from Section 4.3, we can simulate the outcomes of making these respective decisions. Figure 19

shows how these outcomes compare in a histogram of possible values. The timing suggestions

from the myopic approach often turn out as non-profitable outcomes represented by the left tail

of the distribution. Meanwhile, the CROA approach limits the downside by not investing when

the simulations reflect a negative expected cash flow. The yearly reevaluation of the CROA allows

for a good hedge against the downside when the investment decision is deferred. Moreover, the

CROA has a rightmost skew representing a higher probability of capturing upside potential from

the investment. This value comes from adjusting the investment year based on finding a state

profitable enough to justify the downside risk of the investment.

Figure 19: Value distributions of the myopic and the CROA approach. The histplot shows how
the values originating from the suggested decisions of the myopic and the CROA approach result for all
simulations. The respective darker lines illustrate the cumulative distributions.

29



The CROA approach identifies additional value in timing flexibility amid market and reservoir

uncertainty, mitigating monetary risks while capturing upside potential. This value is evident in

three key aspects: 1) Some paths are never exercised, avoiding unprofitable reservoirs. 2) Paths are

exercised earlier than the myopic approach suggests, capitalizing on high expected revenues due

to a favorable size of the risk parameters. 3) Paths can be exercised after the myopic approach’s

indicated year, benefiting from receiving information and deferred decision-making. Thus, the

CROA enables field operators to optimize investment strategies and increase the portfolio value of

marginal fields.

Results using three EUR cases

Thus far, we have considered the results for the base case. We now analyze how the expected value

changes when increasing or decreasing the EUR of the first fields by 50%. We choose to adjust the

second field’s EUR distribution mean correspondingly. This is equivalent to increasing the number

of volume cases to M = 3. Our methodology can be straightforwardly applied to any other choice

of EUR volume cases. We choose M = 3 to showcase the concept and still prioritize examining

other aspects of the approach, like decision thresholds and field selection drivers. The reasoning

for choosing 50% up or down is to present two extreme cases compared to the nuanced parameters

characterizing the base case. We introduce a high case and low case in terms of size for both fields.

The high case represents an increase of the fields EUR by 50% of the size of the base case, while

the low case is a decrease of 50%. The new case parameters are displayed in Table 8.

Table 8: Parameter values for generating production profiles in the low and high case.

.

Parameter Low High

Field A when first - EUR 3.0 9.0 million Sm3

Field B when first - EUR 2.25 8.25 million Sm3

Field A when second - EUR N(3.0, 0.90) N(9.0, 2.70) million Sm3

Field B when second - EUR N(2.25, 0.68) N(8.25, 2.48) million Sm3

Case probability weights 20 20 %

These changes in expected EUR for both fields have significant implications for both valuation

and optimal timing results, which are presented Table 9 and Table 10. Interestingly, the most

common timing decision clearly changes in the base case but not in the two others. This supports

our initial presumptions about the relevance of the use of real options in edge cases evaluating

marginal fields. Using the probability weights from our case study section (low - 20%, base - 60%,

and high - 20%), Section 5, we can estimate a more realistic valuation of the portfolio using domain

knowledge about future scenarios of outcomes. Our weighted portfolio results in 556.1 MMUSD,

a 25.2% increase compared to the myopic approach.

Table 9: Expected NPV of the portfolio in MMUSD, resulting from the myopic and CROA
approach for the three different volume cases, respectively.

Solution approach Low Base High Weighted average
Myopic 0 447.8 877.6 444.2
CROA 56.1 581.2 980.7 556.1 (+25.2%)

For the high case, the estimated value applying the CROA is equal to 980.7 MMUSD, while an

expected NPV of 877.6 MMUSD results from the myopic approach. In both cases, it is optimal to
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Table 10: Most common tieback timing results for the three cases and two solutions ap-
proaches. We present the timing results for tying back Field A first, as this is optimal in the majority of
the simulations.

EUR case Solution approach
Most common timing Most common timing

first field second field

Low
Myopic Never Never
CROA model Never Never

Base
Myopic 6 13
CROA model 1 12

High
Myopic 1 13
CROA 1 13

immediately invest in year 1 and in the second field in year 13 for the majority of simulation cases.

The EURs for the low case result in the optimal decision to never invest in any of the fields for

both solution approaches. The CROA will, for most of the simulations, never exercise the option

to invest in the first field. Consequently, we are most likely to never exercise the second field,

either. However, in case the oil price rises sufficiently high in later years, it may invest in the first

field later, most commonly made around years 10 through 14. The resulting total project value is

equal to 56.1 MMUSD, showing the value of incorporating the yearly reevaluation in our solution

approach, compared to the static decision in the myopic approach, which is zero. More detailed

timing results for the low and high cases regarding the aforementioned discussion are shown in

Figure 20.

(a) Low case timing (b) High case timing

Figure 20: Exercise timing of tying back the first field in the low and high for the CROA. In
both cases, Field A is developed first and Field B second.

Our findings demonstrate the substantial value gained by incorporating flexibility in investment

timing. Specifically, our analysis reveals that the project value derived from the CROA consistently

exceeds that obtained through a myopic investment approach across all EUR cases examined. We

emphasize the significant disparity in investment timing between CROA and the myopic approach,

with the former suggesting earlier investment for the first field. This distinction bears profound

implications for the decision-making process undertaken by field operators.
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6.2 Investment thresholds and decision rules

We now analyze the investment thresholds and decision rules for the CROA approach in detail.

We answer for which values of risk factors have the LSM regressions estimated that it is optimal to

invest as opposed to deferring. First, we present the optimal exercise thresholds for all years using

the expected future revenues. The optimal timing of investment for a field can vary substantially

for different simulation paths, depending on the combination of the current oil price, the current

best guess of field EUR, and the binned expected value of the second field. In Figure 21, we

illustrate this exercise threshold as a function of the expected revenue calculated at every time

step. As we are unable to see the true profit of a path at the decision point, we use the expected

revenue in our regressions in the LSM as an indicator of the true profit for a path, as the expected

revenue is observable and the true profit of a path is not. We have explored different versions of

regressions that can be a good indicator of the true profit of a path, and the expected revenue had

the best and most stable performance regarding this estimation of the true profit for a path. The

expected revenue is calculated as the sum of produced oil, based on the current best guess of the

EUR, multiplied by today’s observable oil price and added to the binned expected value of tying

back the second field later.

Figure 21: Investment thresholds for each year for the first field. The expected revenue is relative
to each year it is considered, e.g., revenue in year 8 is discounted back to year 8.

The data points are divided into two groups: an upper investment region, where the optimal

decision at this state is to invest, and a lower continuation region indicating where it is optimal to

defer and reconsider investment next year. The boundary between these two regions indicates the

investment threshold. In our base case, the investment threshold is downward-sloping. This is due

to the upward-sloping SHC, indicating that there is value in waiting to invest when the host has

more available capacity in later years.

We can examine in more detail how regression in the CROA approach derives the investment

decision using the exogenous risk factors that together compose the expected revenues. The risk
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factor for tying back the first field will be the oil price and the value of the second field, as the EUR

of the first field is static for each of the M scenarios in the CROA approach. Recall the binning of

the expected value of adding the second field later into k bins, as of Section 4.5. Given that we can

roughly estimate the value of adding the second field later, the model can present clear decision

rules for decision-makers regarding the necessary oil price needed to invest for each bin.

In Figure 22, we present the proposed decision rules following the investment threshold for tying

back the first field, given the available risk factors present at the time of evaluation. For a decision-

maker to make use of these decision rules, we propose they should consider the figure for the current

year and see if the combination of today’s oil price and the expected value of tying back the second

field suggests exercising the option to invest or to defer and reevaluate again next year. Given

our three expected binned values of the second field, a decision rule in the form of a threshold oil

price is found on the y-axis. For example, in year 2 in Figure 22b, the oil price is approximately

75 USD/bbl for the P20, 70 USD/bbl for the median, and 63 USD/bbl for the P80. Similar to

Figure 21, we see the pattern of a decreasing investment threshold for the increment of years.

(a) Investment threshold for
Field A in year 1

(b) Investment threshold for
Field A in year 2

(c) Investment threshold for
Field A in year 3

(d) Investment threshold for
Field A in year 4

(e) Investment threshold for
Field A in year 5

(f) Investment threshold for
Field A in year 6

Figure 22: The collection of investment thresholds in years 1-6 specifying decision rules for
the first field. The evaluation uses the oil price and the estimated second field value contribution. The
percentiles are recalculated for each year as the second field contribution distribution is adjusted when
conditioned on the first field.
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The overall trend of the investment threshold for the first field is summarized in Figure 23. We

generally observe a trade-off between the required oil price and the required expected value of tying

back the second field. This means that a field operator can lower the required current oil price if

the expected value contribution of the second field is significantly large.

Figure 23: Investment threshold summary plot for the first field in years 1-6. It displays the
annual exercise thresholds for the first field using the oil price and estimated second field value contribution.

When considering tying back the second field, the evaluation is conditioned on the decision to

tie back the first field and the updated SHC. In this decision situation, the only risk factors to

consider are the oil price at this time and the best guess of the second field’s EUR. These both

can be observed by a decision-maker in reality. Thus, we can present investment thresholds for the

second field in Figure 24, having the field’s best guess EUR on the x-axis and the oil price on the

y-axis. For a field operator, the decision rule comes from selecting the current year and best-guess

EUR leading to the threshold oil price on the y-axis. For example, in year 12, the investment

threshold for the oil price is approximately 55 USD/bbl, given a best-guess EUR of 4 million Sm3.

Figure 24: Investment threshold plot for the second field in years 10-14. It displays the annual
exercise thresholds for the second field using the oil price and the second field’s best guess reservoir volume.
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In Figure 24, we also observe the trade-off between risk factors, but now considering a single option

to invest, we can use today’s oil price and the current best guess of the recoverable volume of oil.

This investment threshold is non-linear and convex, showing the trade-off between the required

current oil price and belief of the size of the field to invest in each year. Moreover, the general

threshold decreases with time. As the visualizations for both the first and second fields clearly

show a decision boundary, we encourage decision-makers to apply CROA decision rules in order

to invest appropriately based on the risk factors present at the time.

Decision rules from ROA and CROA equip decision-makers with a comprehensive and flexible

framework to evaluate investment opportunities by explicitly considering the option value. This

approach enables informed decisions aligned with effective risk management and maximized value

creation. By acknowledging embedded real options, a field operator can assess investments within

a dynamic environment and adapt to changing circumstances.

6.3 Decision statistics and drivers of field selection

Essential to our problem is whether we want to tie back Field A or Field B first. The CROA

model provides insight into this by outputting statistics of how our simulations pathwise compare

when choosing Field A or Field B first. This is done by pathwise selecting the one with the highest

present value. Table 11 show these statistics for the CROA in the base case. For a decision-maker

who wants to order fields that result in the highest average value, this decision almost always

corresponds to the statistics of what share of simulations pathwise is higher than the other.

Table 11: CROA simulation statistics. We include the weighted column as a tool to decide the field
ordering if a decision-maker wants to account for future outcomes

Low case Base case High case Weighted
A first 14.4 55.7 73.7 51.0 %
B first 10.2 31.4 24.6 25.8 %
Both zero 75.4 12.9 1.8 23.2 %

Vital for a decision-maker is also the risk of their investments and the relative risk from comparable

investment alternatives. I.e., what risk am I, as a decision-maker, facing if I make the alternative

choice rather than what is suggested as the most profitable by the model, given that I will invest?

Choosing whether to go with Field A or Field B first could result in substantially different outcomes.

A decision-maker does not know at the time of investment if the true outcome of choosing A first

or B first is higher or lower than what is recommended as the highest average value. In the base

case, choosing to tie back Field A first gives the highest average portfolio value. We simulate that

we move forward with this decision and see how it pathwise compares to the alternative ordering

of choosing to tie back Field B first.
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Figure 25: Value distribution from the CROA, divided into a lower and upper region. It
shows a histogram of pathwise maximum values from the simulations. The average of 581.2 MMUSD is
the artificial average value if we were able to pathwise always select the highest valued ordering of the
fields for all simulations.

Figure 25 displays the resulting RoI for the CROA from each simulation, similar to Figure 19,

but highlighting a lower region below the average payoff of 581.2 MMUSD and an upper region

above this average. First, we will analyze the general trend in Figure 26. Later, we find different

characteristics for choosing between Field A or Field B first in these two regions, which we will

discuss later, based on Figure 27.

Figure 26: Pathwise difference distribution of Field A-first compared to Field B-first values.
The histogram shows how much better it is to choose Field A first compared to choosing Field B first.
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By visually representing the subtracted simulation outcomes of tying back Field A before Field

B, Figure 26 shows the quantitative benefit of this decision. We can see a difference between the

right and left sides of the distribution around zero, but it is not that substantial. The right side of

the distribution contains slightly higher values than the left. That means both orderings provide

both an upside potential and a downside risk with either order, but Field A first yields a higher

value on average. This can be seen by carefully inspecting the figure or by comparing the absolute

values of the percentiles noted on the figure. The reader should note that the equivalent figure of

comparing the selection of tying back Field B before Field A would be the same as Figure 26, but

mirrored.

(a) Lower region (b) Upper region

Figure 27: Pathwise difference distribution divided into the lower and upper regions. The
histograms show how much better it was to choose Field A first compared to choosing Field B first in both
regions.

Figure 27 presents a histogram illustrating subsets categorized into the upper and lower regions.

The decision is based on whether the simulation path results in a portfolio value below or above

the average. We see the same patterns as in Figure 26 regarding the difference between the left

and right sides of the distribution around zero, where the right tail is slightly larger than the left

tail. This pattern is also validated by the percentiles shown in each figure. However, comparing

the lower region to the upper region, we see substantial differences in terms of risk. In the lower

region, the differences between choosing Field A or Field B first are not that large, indicated by

the spike in values around zero. In the upper region, the consequence of making the wrong choice

is larger in absolute terms. The nature of larger portfolio values in the upper region explains why

the deviation is higher. However, we encourage decision-makers to exercise caution when selecting

the ordering of fields, particularly in scenarios where the total portfolio value is substantial and

the disparity in downside risk associated with the choice of field sequence is comparatively greater.

As the modeling that leads to the statistics of tying back Field A or Field B first is rather complex,

it is challenging to isolate specific circumstances that influence the optimal field order. Thus, we

choose the order sequence with the highest average value. With this in mind, we want to run

sensitivities on parameters from the case study in Section 5 to find patterns in what parameters

are more important for the choice of tying back either field first.
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Drivers of field selection

Moreover, we aim to answer what parameters are most influential when deciding to tie back Field

A or Field B first. This is intended to answer the problem an oil producer faces when needing to

know what field it wants to start tying back among a portfolio of alternatives. Perhaps the most

natural parameter is the field EUR, and hence to tie back the field with the largest EUR. We have

tested this in the base case in Section 6, where Field A and Field B have different sizes. This favors

Field A in 55.7% and Field B in 31.4% of the simulations. While the EUR of the field may be

the most influential factor, the following paragraphs will see how other parameters influence the

choice of what field to exercise first.

Figure 28: CAPEX sensitivity of both fields in the portfolio. While the fields’ CAPEX values are
shown in the xy-plane, we can observe the expected portfolio value on the z-axis. Additionally, the share
of simulations suggesting Field B first is represented by the color grading.

Firstly, we analyze the sensitivity of the fields’ CAPEX. CAPEX is a parameter that can be

considered field-specific. Figure 28 shows how the dynamic of altering the CAPEX of the two

fields does have a substantial impact on which field to tie back first. If the CAPEX of Field A is

relatively high compared to Field B, we will go with Field B first in most cases. As expected from

an essential cost parameter, lower CAPEX values result in a higher portfolio valuation and vice

versa.
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Figure 29: Depletion rate sensitivity of both fields in the portfolio. While the fields’ depletion
rates are shown in the xy-plane, we can observe the expected portfolio value on the z-axis. Additionally,
the share of simulations suggesting Field B first is represented by the color grading.

Secondly, we look at the sensitivity of the depletion rate for each field. This parameter is also

field-specific. We see the same pattern as with the CAPEX and EUR, as an increased depletion

rate for a field favors selecting that field first, as we can see in Figure 29. When more oil can be

recovered earlier, the cash flow turns positive at an earlier point in time, which favors the biggest

field the most.

Figure 30: Sensitivity on the initial oil price. We can observe the expected portfolio value on the
leftmost y-axis. The rightmost y-axis represents the share of simulations. This is used to show both the
share of simulations suggesting Field B first and the share of simulations never exercised.
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Thirdly, Figure 30 shows the sensitivity of the oil starting price, ξ0. This parameter can be

characterized as exogenous as it stems from the market pricing of oil. This means that it will

affect both fields similarly and that it is not dependent on the field itself. The trend is that a

higher ξ0 increases the portfolio’s total value and increases the relative share of choosing Field B

first. The percentage of never-exercised paths decreases as the ξ0 increases. In the far left end, few

simulations prefer Field B first. We interpret this as the model favoring the bigger field when the

surroundings tend towards non-profitability.

Figure 31: Discount rate sensitivity. We can observe the expected portfolio value on the leftmost
y-axis. The rightmost y-axis represents the share of simulations. This is used to show both the share of
simulations suggesting Field B first and the share of simulations never exercised.

Moreover, we want to show a sensitivity analysis on the discount rate in Figure 31. This is also

an exogenous parameter, regardless if a risk-free or risk-adjusted rate is utilized. However, this

parameter acts differently compared to the starting price sensitivity displayed above. As the

discount rate increases, the portfolio’s total value decreases, and the share of choosing B first and

the percentage of paths never exercised increase. We believe that it is crucial to consider the

increasing SHC as a key factor in explaining this trend. A higher discount rate lowers the present

value of future revenues and costs. This can be troublesome if we pay a high CAPEX today while

the revenues arrive far in the future, which could be the case with the increasing SHC. Thus, the

model regression prioritizes tying back the field with the lowest EUR and the lowest CAPEX first

and then allowing tying back the larger field later on. Then the available SHC is higher, and the

costs and revenues can occur closer in time. Thus, the model’s regression estimates a higher value

for tying back Field B first when the discount rate increases as the SHC increases.

Based on our CROA approach, we have performed three additional sensitivities: the learning rate,

the host’s lifetime, and the volatility of the oil price in both the short and long term. As they

mostly follow the same patterns as the field-specific and exogenous parameters shown above, we

have put them in Appendix C to strengthen our results and to still keep this section concise and

to the point.
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Table 12: Field selection drivers summary. Based on the presented sensitivities and their impact on
selecting which field to tie back first. The order of the parameters is intended to be in prioritized order of
significance. The bottom three sensitivities are included in Appendix C.

Driver Type Impact Decision-making insights

Field EUR Field-specific Yes, clear The largest field EUR is favored.

CAPEX Field-specific Yes, clear Lower CAPEX is favored.

Depletion
rate (λ)

Field-specific Yes, clear High depletion rate is favored.

Initial oil
price (ξ0)

Exogenous Yes, some Overall, the largest field is favored. The
trend is stronger when the initial oil price is
low.

Discount
rate (γ)

Exogenous Yes, some Incentivizes tying back a large proportion of
the available EUR, translating to revenues,
close to the time of paying the CAPEX.

Learning
rate (ϵ)

Field-specific Yes, some Overall, the largest field is favored. Higher
learning for the second field means the
coherent first field will be slightly favored.

Host lifetime
(L)

Exogenous Yes, some Overall, the largest field is favored. The
trend is stronger when the lifetime of the
host is shorter.

Oil price
volatility (σξ
and σχ)

Exogenous Yes, minor Overall, the largest field is favored. The
trend is stronger when the volatility is low,
especially the long-term volatility.

Table 12 summarizes our insights from all sensitivities outlined in this section. Each parameter is

categorized as what type of parameter it is and how much impact they have on the choice of field

to tie back first and commented on how altering the parameter affects the field selection. Based

on this insight, we see patterns of field-specific and exogenous parameters influencing choosing

which field to tie back first. When adjusting field-specific parameters, the field that exhibits the

most favorable parameter in terms of profitability tends to be prioritized for development. When

altering the exogenous parameters, the largest field tend to be relatively more preferred when the

exogenous parameters indicate lower portfolio values. A symptom of a portfolio’s transitioning

towards lower portfolio values is an increase in the percentage of paths never exercised. As the

exogenous parameters shift the total portfolio value upwards, the relative share of selecting the

smallest field first rises until reaching a threshold of about 35-40%. In summary, the field with

the largest EUR is preferred unless field-specific parameters tilt the favor otherwise. The solution

approach may prefer to first tie back the smallest field for the right field-specific and exogenous

parameters. Also, the probability of this outcome is reduced if exogenous parameters transition

the portfolio toward lower values.
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6.4 The CROA versus Single ROA approach

In Section 6.1, we presented our results and discussed the implications of our CROA methodology

compared to the myopic approach. In the essence of further evaluating our CROA approach, it

is natural to also question how it weighs up against another ROA approach that disregards the

value of the second field when making the decision to invest in the first one. In our case, this

is the single ROA approach, which adopts the methodology of this paper and is based upon the

concept of ROA already shown to be effective within O&G (Fleten et al., 2011; Jafarizadeh and

Bratvold, 2020; Fedorov et al., 2021). We show the CROA model compares to a single ROA in

terms of valuation and optimal investment timing. Furthermore, we explore this comparison under

different variations of the SHC to see how these models perform in different environments.

Figure 32 shows the portfolio’s total value for both the single ROA and the CROA approaches. A

single ROA approach of each field individually results in a total value of 558.2 MMUSD. This can

be compared to the results of the CROA that had an expected portfolio value of 581.2 MMUSD,

4.1% higher compared to the single ROA. Moreover, we see that the value of the first field in the

Single ROA is larger than the the first field in the CROA. However, the contribution of the second

field for each approach on average values only 31.7% of the total for the single ROA, while being

38.0% of the total value for the CROA. Thus, the value of the second field outweighs the loss of the

first field from the single ROA to the CROA, bringing the total value of the CROA to be higher.

Figure 32: Valuation of the portfolio comparing the CROA to the Single ROA approach.
Equal to the previous benchmark, this reflects the average expected valuation from choosing Field A first
and then having the option of investing in Field B later.

Compared to the Single ROA, the CROA more often finds it optimal to invest earlier in the first

field, as can be seen in Figure 33. The early investment is to provide enough time to develop both

fields before the host is decommissioned. Thus, if a decision maker neglects the second field in its

decision on when to tie back the first, it would tie back the first field too late for the second to

produce sufficiently within the lifetime of the host. Furthermore, we continue by looking at the

conditional investment timing of the second field, given that the licensees have decided to invest

in the first field in year 1, the most common timing of the first field in the CROA, and in year 9,

which is the most common timing for the first field in the single ROA. Investment in the first field

in year 1 results in about 75.1% of the simulation cases for the second field being invested in at a

later stage. The equivalent decision to invest in the first field in year 9 for the single ROA results

only in a share of 63.9% of the simulations being exercised for the second field, which is much lower

than the CROA. The most common tieback timing results are summarized in Table 13.
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(a) Increasing with Single ROA (b) Increasing with CROA

Figure 33: The optimal timing for investment in the first for all simulation cases as of the
Single ROA and CROA approach. Equal to the CROA approach, the Single ROA approach generates
decision rules based on risk factors. The Single ROA lacks the second field contribution estimation as it
does not incorporate this in its evaluation.

Table 13: Most common tieback timing results of the Single ROA and CROA approach. In
the majority of the simulation cases, it is optimal to start with tying back Field A.

Solution approach
Most common investment Most common investment

year for the first field year for the second field

Single ROA 9 13
CROA 1 12

While other papers have studied the production constraint of oil, water, and gas (see Fedorov et al.

(2022a)), we have chosen to focus on production optimization on oil volumes. To still include the

perspective on the mix of oil, water, and gas, we introduce three sensitivities of the SHC to show

how water constraints affect the available production capacity. In Figure 34, we introduce two other

shapes of the SHC to further investigate how the CROA and Single ROA behave under different

conditions. We introduce a constant flat high SHC, reflecting a host with a lot of available capacity

and not so much of a water constraint. Furthermore, we also introduce a decreasing decreasing

SHC, reflecting a host with a restrictive future water constraint that limits the oil production.

Figure 34: Spare host capacity with multiple variations. We now include a flat high and decreasing
SHC to evaluate the robustness of the CROA framework.
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In Hyldmo and Skudal (2022), we analyzed the effects of altering the SHC’s shape and size in our

ROA approach under reservoir uncertainty. The findings indicate a strong relation to the increasing

value of waiting when the SHC has a positive slope. We see this also in Figure 35, where we present

the valuation results by comparing the Single ROA and CROA approach for the three variations

of the SHC. It shows how the CROA approach captures additional value in the increasing and the

flat high case and is equal in the decreasing case. The performance is percentage-wise the strongest

when there is value in waiting to invest, as with the increasing case.

Figure 35: Visualization of the total portfolio value of the Single ROA and CROA approach
using three variations of the spare host capacity. The marginal benefit of applying the CROA
approach is decreasing along with the incentive to invest later.

Figure 35 shows a comparison of the Single ROA to the CROA for the different SHCs. The results

show that the CROA percentage-wise outperforms the single ROA the most in the increasing case.

In the flat high and the decreasing case, there is generally an incentive for both models to invest

as early as possible. In the flat high case, the incentive to exercise early is partly outweighed by

the ability to wait for better oil prices and more learning of the reservoir EUR for the second field,

making the CROA slightly outperform the single ROA. In the decreasing case, the incentive of

early exercise is so strong that 99.6% of the simulations are exercised in the first year for both

models, meaning that the exercising and the total portfolio value for both approaches are exactly

the same. Thus, this indicates that the CROA has a robust performance under different SHCs.

6.5 The CROA approach with perfect information

Until now, we have used a version of CROA with only a rough estimate of the value of the second

field to mimic decision-making under uncertainty. However, we will show how this applied version

of CROA compares to a CROA with perfect information about the value of the second field (Perfect

CROA). We will do this for the same SHC versions as presented in Section 6.4. The corresponding

valuation results can be seen in Figure 36.
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Figure 36: Visualization of the total portfolio value of the Perfect CROA and CROA approach
using three variations of the spare host capacity. The Perfect CROA has perfect information on
the simulated value distribution of the second field when making investment decisions.

The CROA is slightly lower or equal to the Perfect CROA in all cases. For the increasing and

flat high cases, the CROA shows a slightly lower total result than the Perfect CROA. This comes

from the binning effect of guessing the size of the second field in the CROA, where some of the

simulations will be binned to a higher or lower second field value of what is exactly true. This

may cause the simulation to be exercised slightly earlier or later than what it would optimally be

with perfect information. However, this does not seem to impact the average values significantly.

For the decreasing SHC case, both solution approaches score precisely the same when the result

is reduced to three significant figures. In the same way as in Section 6.4, all approaches find no

value in waiting to invest, and nearly all exercise in the first possible year. Thus, these empirical

results conclude that the CROA approximates the Perfect CROA well.

The CROA approach demonstrates remarkable robustness when applied to multiple variations of

the SHC. From comparing the CROA approach to the single ROA and the Perfect CROA, we

observe a trend of CROA being valuable and robust in altering SHC variations. These findings

highlight the strength and versatility of the CROA approach, making it a valuable tool for various

applications requiring robust analysis and decision-making in dynamic market environments.

7 Final remarks

Real options analysis serves as a valuable instrument for assessing the optimal timing and valuation

of marginal fields. Nevertheless, it is important to acknowledge that it also has its limitations.

Our problem modeling simplifies a complex environment and does not account for all relevant risk

factors. Therefore, an interesting avenue for future work would be to incorporate additional risk

factors into the model to enhance its accuracy and robustness. Specifically, we suggest reservoir

modeling and accounting for operational risk in more detail.

Quality and selection of parameter values used in testing the solution approach are of utmost

importance for the model’s validity. The simplification of parameters, such as static field potential

and discount rate, may not fully capture the dynamic nature of the O&G industry. It is crucial

to recognize that the accuracy of ROA is highly dependent on the input parameters, which can be

challenging to estimate accurately in advance. Limiting our study is the potential bias in selecting

parameters used in the base case, as they are based on subjective expert knowledge and intuition.

To address this limitation, we recommend that companies adopting our methodology customize the
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parameter set to their specific case and perform stress-testing and sensitivity analysis accordingly,

ensuring a more unbiased and tailored analysis.

A characteristic of the CROA approach is the necessary assumption about a static EUR of the

first field. This is a limiting factor, as we optimally would like to model this EUR estimate as a

distribution similar to the second field. This assumption can be relaxed by including multiple EUR

cases for the first field. This equals increasing M, as we have done withM = 3. With computational

capabilities, it is possible to extend this model with many more. Another possibility is to explore

heuristics in how the second field contribution is incorporated into the ROA of the first field. We

suggest such an endeavor as future work to be especially beneficial to the literature.

Several minor factors limiting the methodology can easily be addressed in future work. A limitation

lies in the assumption that all costs related to infrastructure removal will be handled at the end

of the host’s lifetime. In reality, the timing of infrastructure decommissioning can vary, and this

aspect should be considered on a case-by-case basis. At the current state, the tieback to both fields

inherent equal tariff policy and assumed OPEX model. Realistically, these will differ, which can

be reflected in future research. Other considerations could include modeling the CAPEX and the

host’s lifetime as stochastic processes. These limitations highlight areas for further research and

improvement in real options analysis for evaluating marginal field investments.

8 Conclusion

This paper has investigated the application of ROA and CROA to optimize economic value and

make better decisions related to marginal O&G development. By examining a case of one host

and two marginal fields, we have contributed to the research by showing the significant impact

of accounting for uncertainties in oil prices, field EUR, and the value of later adding a second

field to decision-making processes. The paper focused on two main objectives; developing novel

modeling and solution approaches that lead to better decision-making and providing insight into

field selection drivers. We address this by 1) assessing the ability of the CROA-adjusted LSM to

capture the value of managerial flexibility by determining the optimal exercise timing, 2) exploring

decision rules resulting in a superior valuation of marginal fields in a project portfolio, and 3)

stress-testing the LSM model to identify under what circumstances one field should be tied back

before another, contributing to the understanding of field selection drivers.

Firstly, we designed a Single ROA model accounting for oil price simulations with a two-factor

stochastic model and a Bayesian learning model of field EUR. Internally in the ROA, we utilized

an optimization model to generate production profiles based on the updated estimates of the fields’

EUR. The ROA model was solved using an LSM solution approach. We expanded this framework

by creating a CROA, a compound options approach incorporating ROA evaluations of the second

field while analyzing the decision for the first field. We ran one CROA for each order of choosing

to tie back Fields A and B before choosing the ordering yielding the highest value. To assess the

effectiveness of our approach, we compared the results against a Single ROA approach, based on

the same methodology as here, but without the portfolio view, and a myopic approach, which is

widely utilized in the O&G industry.
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The results demonstrate that our methodology is a valuable decision-making tool in the O&G

industry. By including an estimate of the value of the second field in the LSM, we observed

significant improvements in the evaluation of timing and valuation for marginal fields, leading to

reduced downside potential and enhanced consideration of managerial flexibility. Following the

optimal decision rules with regard to timing from the weighted CROA model, the average portfolio

valuation is 25.4 % higher than the myopic DCF approach. Our sensitivity analysis further supports

the model validity, which examined the effects of various factors such as CAPEX, depletion rate,

and discount rate and how they affect the choice of which field to tie back first. We also found

that higher risk corresponds to a higher economic value of managerial flexibility.

Additionally, we explore the concept of active learning of field EUR by gathering more data about

the marginal field by adding the option to drill an appraisal well. This can be found in Appendix A.

Here, decision-makers are able to purchase reduced reservoir uncertainty by gathering more infor-

mation about the field, which they can use in the decision-making process. The approach utilizes

machine-learning techniques and a regression decision tree to establish an investment policy for

appraisal wells based on the current price and reservoir information available. Our findings indicate

that the quality of the data obtained through our modeling approach lacks the reliable attributes

necessary for constructing a robust and dependable ML model. This work contributes to exploring

what data and analysis models may prove effective for evaluating options to drill appraisal wells.

Several intriguing directions for future research can be pursued based on this paper to further

enhance the realism of the decision problem. Besides the future work suggested in relation to the

mentioned limitations of the methodology, we propose the following. Firstly, it would be interesting

to see how different tariff policies impact the selection of which field to tie back first. Secondly,

incorporating more market uncertainty factors, such as making the costs, for instance, the CAPEX,

be correlated with the market prices to better account for the supply and demand effects of the

costs. Thirdly, adding gas and water production to the model can make the production rates

and constraints applied in the optimization model more appropriate. Furthermore, the integration

of environmental, social, and governance (ESG) parameters into the model can provide another

perspective on the decision problem. Finally, the exploration of competition modeling can shed

light on the decision strategies employed by fields and hosts in forming partnerships.

Our CROA offers a valuable tool for decision-makers, enabling them to assess the economic via-

bility of a portfolio of assets more effectively and holistically. By considering multiple risk factors

and incorporating the value of waiting to invest, our methodology enhances decision-making and

leads to more optimal outcomes. These findings have important implications for regulators, field

operators, and host operators. Our study provides valuable insights into the importance of ac-

counting for uncertainty and the benefits of employing a concurrent portfolio perspective using a

CROA approach in the O&G industry.
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Appendices

A Active learning of reservoir size with appraisal well op-

tions - A machine learning approach

In the paper, we have presented a robust framework for evaluating marginal oil fields using com-

pound real options with LSM as a solution approach. Still, we do not consider any possibilities

to reduce the EUR uncertainty further. Hence, we want to test the effect of doing active learning

on fields, i.e., gathering further data through, for example, the drilling of an appraisal well. The

benefit of drilling an appraisal well is to reduce the uncertainty of the size of the reservoir. In our

case, this reduces the standard deviation of the current best guess distribution. Such a possibility

can be modeled as a periodical, in our case annual, option to reduce EUR uncertainty in exchange

for the cost of drilling such a well. Thus, the challenge becomes when to drill an appraisal well

and if our solution approach is appropriate to indicate optimal decisions.

We analyze the problem from the perspective of decision tree regression from the field of supervised

machine learning (ML). Decision trees are a powerful ML tool that can help with ”(...) data mining

and knowledge discovery tasks” (IBM, 2023). At their core, decision tree regression is a series of

interconnected nodes representing splits into attributes that aim to increase the purity of the

subsequent nodes.

The main advantage of decision trees is their simplicity and interpretability. They provide a clear

and intuitive way to understand how a particular decision was made, which can be especially helpful

for decision-making in complex scenarios. Our regression tree splits nodes on the attribute most

predictive of dividing the expected value of drilling into separate baskets. We have an intuitive

understanding of when appraisal wells can be worthwhile to drill, and this is reflected in our

hypothesis for this approach:

Hypothesis

We presume it only should be useful to drill in certain cases. The decision maker has

lower incentives to drill the appraisal wells when new information is less likely to change

the initial investment decision: when the best guess predicts either a large or a small

reservoir. In contrast, information about middle-sized reservoirs close to a break-even

state will yield a high value to obtain. In general, it is beneficial to drill as early as

possible.

A.1 Solution approach

We assume that drilling an appraisal well will reveal each path’s true volume (v∗). For all available
exercise years, we do a path-wise evaluation of whether it was beneficial to drill an appraisal well

or not.
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From there, the active-learning path will converge to the true size of the reservoir, while in the

passive-learning path, the decision maker will remain uncertain about the true volume, still learning

about it passively in the following years. This is illustrated in Figure 37.

Figure 37: Appraisal drilling example from drilling in year 5 for two trajectories.

To find out whether drilling a well is valuable, we make a path-wise comparison of the active-

learning paths to the passive-learning paths. The value of information (VoI) is then calculated

from the following equation:

VoI = Vappraisal − Vno appraisal (24)

Reward = VoI− Cdrilling (25)

where V is the project value with and without drilling, and C is the cost of drilling the appraisal

well. We want to train an ML model, more specifically, a decision tree regression, to make a rule

of whether and when to invest. As far as we know, this is a new contribution to the literature and

has never been done before. After conducting the decision tree analysis, trying other supervised

learning algorithms is also relevant.

We want to force active learning on all paths to see the behavior of the results. Moreover, we want

to do this for all paths in all available years for investment. Each state is represented by the year,

current oil price, and current best guess of the reservoir size. The goal is to evaluate the path-wise

reward, as shown in the equation above. We input the state and the corresponding reward to the

decision tree, and the tree chooses the best splitting points by Mean Squared Error (MSE) as a

purity criterion for splitting the nodes. We have two alternative decision tree models.

We train on 90% of our simulations and test our model on 10% of our simulations to verify our

results. Thus, the verified model visualizes decision rules appropriate for decision-makers facing

the challenge of investing in an appraisal well.

55



A.2 Results

The hypothesis cannot be confirmed at this time due to the lack of distinct patterns in the results.

Despite extensive efforts, including the implementation of Decision trees and parameter tuning,

the intended result was unfortunately not achieved. Our efforts to improve the accuracy of our

model were hampered by several factors, including the quality of available data, the performance

limitations of the Decision tree we used, and the complexity of the problem we were trying to

solve. Most profoundly, we postulate that the data quality generated through our LSM solution

approach does not allow us to provide any significant pattern due to the complexity of the problem.

Naturally, our attributes of the main uncertainties seem to be too weak indicators of whether it is

beneficial to drill an appraisal well or not.

In Figure 38, we present our training data used and the subsequent feature importance analysis

performed on our parameters. The data is generated from drilling in year 3, as an example repre-

sentative of other drilling years. Figure 38b shows our parameters’ relative importance and does

not directly indicate how well they predict our target data, i.e., the VoI from drilling. Noteworthy

still is best guess EUR minuscule impact on prediction. We can view the parameters in the context

of two-parameter pairs with a random reference. The current oil price and best guess EUR are

values we know in the model at any point in time. These are related to expected future oil prices

and real EUR, respectively, which are unknown to the model but that we include highlighting their

impact.

(a) Training data with attributes (year 3). (b) Feature importance (year 3).

Figure 38: Visualization of data and feature analysis used in the data cleaning and data
engineering steps of ML.

As expected, we observe that real EUR is more critical for performance than best guess EUR.

Additionally, the expected future oil prices are higher than the current oil price. In Figure 39,

we observe an example of a regression decision tree generated from the training data shown in

Figure 38a. This is an example tree showing the outcome of drilling in year 4. We can seemingly

spot a degree of conformity with our hypothesis in the tree. In particular, the most distinct, orange

node represents the highest average VoI of drilling an appraisal well.
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Figure 39: Regression tree for appraisal drilling example year 3.

Figure 40: Drilling year sensitivity.

One result that makes sense is sensitivity to the drilling year. Figure 40 shows that, on average,

early drilling seems profitable. This indicates that you should do it early if you want to drill.

Furthermore, we want to try to relax the constraint of getting the true volume t∗ after drilling the

appraisal well. As perfect information about the reservoir size is the most valuable, as of Hyldmo

and Skudal (2022), we would expect the value of drilling to decrease if the standard deviation is

not zero after drilling. Thus, driving the standard deviation up to 5% of the size of the true field

after drilling lowers the value of drilling from 21.3 MMUSD down to 19.3 MMUSD when drilling

in year 2 and from 6.0 MMUSD down to 4.0 MMUSD when drilling in year 5.

However, looking closer into trees with different shuffles of data in the train and test sets, our

study suggests that the current approach using decision trees is insufficient to provide accurate

predictions. We highlight three considerations confirming that the proposed method is a poor fit

for our problem: (1) inconsistent categorization of valuable states, (2) too high error and error

variance, and (3) the model does not differentiate cases with a high enough value on average to

break even with the costs of a realistic appraisal well.

The categorization inconsistency is observed from tweaking model parameters, and we experience

high sensitivity to any change. Given a new random state in the train-test-split function, we can
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obtain different root splits. This means minor differences in training data result in a separate main

decision point, pointing to a lack of robustness.

In Table 14, we can see the performance measure of the model. When examining regression models,

R2 is the most common statistic as it measures the goodness of fit. We find it startlingly low, as

it resides between zero and one, and one reflects a perfect fit.

Table 14: Model performance measures for the test set for drilling in year 4.

Performance measure Value Unit
R-squared (goodness of fit) 0.01
Mean Squared Error (MSE) 20 163
Root Mean Squared Error (RMSE) 142 MMUSD
Mean Absolute Error (MAE) 72 MMUSD

None of the other measures speaks up for the model either, with them all being immense. Root

Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are most easily interpretable, as

these are denoted in MMUSD. RMSE is more sensitive to outliers, but both show a monetary

measure of the average error of the model. Comparing these to the highest-valued average node

at 43 MMUSD, we can see the downside stretches far down. Recall that we are talking about the

VoI; thus, this substantial downside risk is present before any cost is accounted for. Lastly, the

MSE score in Table 14 only represents the average, but this error equates to double that for the

most interesting node. It results in a node RMSE of 226.5 MMUSD.

A.3 Conclusions

In this section, we proposed an active learning approach to reduce EUR uncertainty through drilling

appraisal wells using ML techniques. We used a regression decision tree to create a policy for when

to invest in an appraisal well, but the modeling did not verify our hypothesis. We found that data

quality obtained through our modeling approach does not hold enough reliable attributes to build

a trustworthy ML model.

For future work, we recommend revisiting the topic of active learning through the option to drill an

appraisal well in depth. As we propose that our data quality is our main challenge, we encourage

future studies to examine realistic models of the decision problem with data attributes more potent

for an ML approach, for instance, by adding more geological-dependent attributes. Additionally, it

could prove efficient to expand on the complexity of decision trees or explore other ML approaches,

such as neural networks (NN) and support-vector machines (SVM).
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B Simulation robustness

Assessing the model’s robustness is essential when making investment decisions in ROA. A robust

model can produce consistent and dependable results even when underlying assumptions or input

parameters vary. This helps decision-makers identify potential risks and opportunities associated

with investment projects and make informed decisions. In the LSM solution approach, model

robustness is closely linked to the number of simulations (N) used in the analysis. The number

of simulations required in LSM can affect the accuracy and precision of the results, making it

crucial to consider when evaluating investment projects. In this section, we summarize our model’s

robustness and discuss the impact of the number of simulations on LSM’s accuracy and reliability.

In Figure 41, we see a convergence in the results as N increases sufficiently. Above 1 000 simulations,

the increment in simulations does not affect the validity of the valuation results to any large degree.

Figure 41: Convergence plot for the number of simulations in the LSM. It shows the value
output for our model in MMUSD for different numbers of simulations.
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This trend is also visible when examining the exercise times for the three scenarios in the CROA.

However, small changes are visible in the timing results from 1 000 to 10 000 simulations. This is

shown in Figure 42 and Figure 43, for 1 000 and 10 000 simulations, respectively. As expected, the

curves are more smooth for a higher number of simulations.

(a) Low case timing for each investment year (b) Base case timing for each investment year

(c) High case timing for each investment year

Figure 42: Optimal tieback timing - 1 000 simulations.
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(a) Low case timing for each investment year (b) Base case timing for each investment year

(c) High case timing for each investment year

Figure 43: Optimal tieback timing - 10 000 simulations.

Therefore, we employ a total of 10 000 simulations to evaluate all our results in Section 6. How-

ever, for the sensitivity analysis, we find it appropriate to proceed with 10 000 simulations. This

number allows us to effectively illustrate the desired patterns while maintaining a manageable

computational workload.
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C Additional sensitivities on drivers of field selection

As a continuation to Section 6.3, we present an additional three sensitivities on a hunt to see what

parameters affect the choice of which field to tie back first.

Figure 44: Learning rate sensitivity.

Figure 44 show a general pattern that learning is valuable. This confirms the intuition highlighted

by the learning rate sensitivity in Hyldmo and Skudal (2022). Moreover, the trend is that relatively

bigger field-specific learning of Field B compared to Field A increases the relative value of Field

B compared to Field A. As our model is such that it first learns of Field B after tying back Field

A, an increase in the relative value of Field B will imply that we more often tie back Field A first

such that we can benefit from the increased learning in Field B.

Figure 45: Sensitivity on the lifetime of the host.
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Secondly, we have a sensitivity to the lifetime of the host. The host’s lifetime is an exogenous

parameter outside the field operator’s control. Figure 45 shows that the portfolio’s total value

decreases as both the value of flexibility, the amount of oil the field operator can extract, and the

probability of tying back the second field decreases. Consequently, we see that the share of paths

never exercised goes up as the host’s lifetime goes down. We also see that the relative share of

choosing to tie back Field B goes down with the decrease in profitability.

Figure 46: Sensitivity on the oil price volatility.

Finally, we also see the sensitivity of the oil price volatility. Based on Figure 46, we can see a

weak pattern of the share of choosing Field B first going down when the volatility goes down. This

makes sense, as the quantity produced will be relatively more important for the revenues when the

oil prices are flatter. Thus, we would expect the share of choosing the bigger field to go up, which

makes sense with what we see in Figure 46. Moreover, we see the same pattern as of Dixit and

Pindyck (1994), where a general increase in both the short- and long-term volatility increases the

portfolio’s total profitability.
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