
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f M
at

er
ia

ls
 S

ci
en

ce
 a

nd
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Kseniia Koseniuk

Computational Modelling of Mass
Transfer in Molten Salt Electrolyte for
Na-Zn Liquid Metal Batteries

Master’s thesis in Materials Science and Engineering
Supervisor: Kristian Etienne Einarsrud
Co-supervisor: Omar Emmanuel Godinez Brizuela
June 2023

Kseniia Koseniuk

Computational Modelling of Mass
Transfer in Molten Salt Electrolyte for
Na-Zn Liquid Metal Batteries

Master’s thesis in Materials Science and Engineering
Supervisor: Kristian Etienne Einarsrud
Co-supervisor: Omar Emmanuel Godinez Brizuela
June 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Materials Science and Engineering

Preface

Background for the report

This thesis is submitted as a partial requirement for obtaining the Master of Science in Engi-
neering degree at the Norwegian University of Science and Technology. The thesis is awarded
30 credits, corresponding to approximately 800 hours of work carried out throughout 20 weeks
of the 10th and last semester (spring 2023) of the degree at the Department of Material Science
and Engineering. The report contains the theoretical framework and numerical implementation
for creating transient simulations of electrokinetic transport in the molten salt electrolyte layer
of the Na-Zn liquid metal battery using OpenFOAM computations fluid dynamics software.
The work was carried out under the supervision of Professor Kristian Etienne Einarsrud and
Postdoctoral fellow Omar Emmanuel Godinez Brizuela.

Acknowledgements

Firstly, I would like to thank my supervisor Kristian Etienne Einarsrud for giving me the op-
portunity to work on such an interesting subject that has sparked so much love for CFD in
my heart. I am grateful for all the feedback and help you have given me always responding
unreasonably quickly.

I want to also thank my co-supervisor Omar Emmanuel Godinez Brizuela for sharing the sacred
knowledge of OpenFOAM with me and always making the time to help me and give me valuable
feedback whenever I endured yet another crisis.

I thank my friends and classmates for all the fun times and struggles we have experienced
together. It would not have been the same without you.

Finally, I want to thank my aunt and uncle for giving me the opportunity to get my higher
education in Norway. I will always be grateful for the life this chance they took on me enables
me to have.

i

Abstract

Liquid metal batteries (or LMBs) are an emerging battery technology gaining relevance for large-
scale on-grid energy storage. This storage could contribute to decreasing the fluctuations in
power supply resulting from the introduction of intermittent renewable energy sources, bridging
the gap between energy supply and demand. The Na-Zn LMB has shown some potential for
providing cheap energy storage employing highly abundant non-toxic materials. However, this
battery exhibits high rates of self-discharge and other significant limitations. The electric current
through the molten salt electrolyte layer is realised by the transport of ions, which thus has a
significant impact on the battery’s functioning and properties, such as coulombic efficiency,
electrolyte resistance, potential drop, maximum charge and discharge currents and more. This
report presents the modelling of the mass transport in said electrolyte layer including diffusion
and migration mechanisms to provide a deeper understanding of the ways this transport can be
simulated, how its behaviour is affected by the presence of a porous diaphragm, and its impact
on the resistance present. This insight can help expand the existing knowledge on LMBs and
ensure optimal performance for grid energy storage. In the present work, OpenFOAM software
was used to create a solver that was used to model the described transport in the molten salt
electrolyte layer of Na-Zn LMB with a diaphragm in place. It can be further expanded and
applied in different ways than done in this project in future research. A modified version of the
solver was used to test the approach against existing results in aqueous solution systems. Results
under various conditions, representing the electrolyte layer during charging and discharging of
the battery with various applied electric current densities and potential differences, have been
produced and discussed. Different diaphragm properties were also tested and their impact on
the mass transport was evaluated. The results provide insight into the ways the implementation
of the model can be realized in OpenFOAM and into the behaviour of the transport under
various conditions to allow for more efficient control of the process in the future for better
battery operation. In future research, the model should be expanded to account for various
mechanisms of convection, test different boundary condition implementations, and include all
chemical compounds present in the electrolyte.

All used OpenFOAM solver codes and some example case setups can be accessed on GitHub:
https://github.com/XeniaKos/master

ii

https://github.com/XeniaKos/master

Sammendrag

Flytende metall-batterier (eller FMB-er) er en fremvoksende batteriteknologi som blir stadig
mer relevant for storskala energilagring p̊a strømnettet. Denne lagringen kan bidra til å re-
dusere variasjonene i strømforsyningen for̊arsaket økt bruk av fornybar energi, og dermed øke
sammenfallet mellom energitilbud og etterspørsel. Na-Zn FMB har potensial for å tilby kostef-
fektiv energilagring ved å bruke ikke-giftige materialer som har stor tilgjengelighet. Imidlertid
har denne type batteri en høy grad av selvutladning og andre betydelige begrensninger. Den
elektriske strømmen gjennom det smeltede saltet i elektrolyttlaget drives av ionetransport, noe
som dermed har betydelig innvirkning p̊a batteriets drift og egenskaper, som koulombisk effek-
tivitet, elektrolyttmotstand, elektrisk potentialfall, maksimale ladnings- og utladningsstrømmer
og mer. Denne rapporten presenterer modelleringen av masseoverføringen i nevnte elektrolytt-
laget, inkludert diffusjon og migrasjon, for å gi en dypere forst̊aelse av hvordan denne transporten
kan simuleres, hvordan den p̊avirkes av en porøs diafragm tilstedte, og dens innvirkning p̊a mot-
standen som oppst̊ar. Denne innsikten kan bidra til å utvide den eksisterende kunnskapen om
FMB-er og sikre optimal ytelse for energilagring p̊a strømnettet. I arbeidet utført ble Open-
FOAM programvaren brukt til å opprette en numerisk løser som ble brukt til å modellere den
beskrevne transporten i elektrolytten til Na-Zn FMB med en diafragm. Denne løseren kan videre
utvides og anvendes p̊a ulike m̊ater enn det som er gjort i dette prosjektet i fremtidig forskning.
En modifisert versjon av løseren ble brukt til å teste tilnærmingen mot eksisterende resultater
i vannbaserte elektrolytter. Resultater under ulike forhold, som representerer elektrolyttlageret
under ladding og utladning av batteriet med ulike p̊aførte elektriske strømtettheter og poten-
sialforskjeller, er blitt produsert og diskutert. Forskjellige diafragmsegenskaper ble ogs̊a testet,
og deres innvirkning p̊a masseoverføringen ble evaluert. Resultatene gir innsikt i hvordan mod-
ellen kan gjennomføres i OpenFOAM og i transportens atferd under ulike forhold for å tillate
mer effektiv styring av prosessen i fremtiden for bedre batteridrift. I fremtidig forskning bør
modellen utvides for å ta hensyn til ulike konveksjonsmekanismer, teste ulike implementeringer
av randbetingelser og inkludere alle kjemiske forbindelser som er tilstede i elektrolytten.

Alle utviklede OpenFOAM løsere samt med scalarTransportFoam løser som var brukt som
grunnlag til de utviklede løsere og enkelte eksempeler er tilgjengelig p̊a GitHub:
https://github.com/XeniaKos/master

iii

https://github.com/XeniaKos/master

Contents

Preface i

Abstract ii

Sammendrag iii

Figure list vii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Na-Zn Liquid Metal Battery . 2
1.3 Aim and scope of the present work . 4

2 Literature review and state of the art 5
2.1 Liquid Metal Batteries . 5
2.2 Modelling of electrokinetic transport . 6

3 Theory 11
3.1 Dissolved species transport . 11
3.2 Summary . 16

4 Numerical approach 17
4.1 Finite volume method . 17
4.2 Time advancements . 21

4.2.1 Forward Euler Scheme . 21
4.2.2 Backward Euler Scheme . 22

4.3 Meshing . 22
4.4 Convergence . 22
4.5 Error and uncertainty . 23
4.6 Summary . 23

5 Implementation of the models in OpenFOAM 24
5.1 OpenFOAM environment . 24

5.1.1 Meshing in OpenFOAM . 25
5.2 ScalarTransportFoam - the basis for the developed solvers 25
5.3 SlayFoam solver for implementation testing . 28
5.4 SaltyFoam for electrokinetic transport in molten salt 31

5.4.1 Implementation of concentration boundary conditions in OpenFOAM . . 33

6 Case setups 37
6.1 Aqueous simulations . 37

6.1.1 Mesh . 37
6.1.2 Physical properties . 38
6.1.3 Boundary and initial conditions . 40
6.1.4 Solution and time controls . 40

iv

6.2 Darcy-scale molten salt simulations . 41
6.2.1 Mesh . 43
6.2.2 Physical properties . 44
6.2.3 Boundary and initial conditions . 45
6.2.4 Solution and time controls . 48

7 Results 51
7.1 Verification of the results . 51
7.2 Molten salt electrolyte simulation results . 54

7.2.1 Convergence testing . 54
7.2.2 Fixed current simulations . 56
7.2.3 Fixed potential difference simulations . 62
7.2.4 Diaphragms’ parameter study . 66

8 Discussion 69
8.1 Aqueous model and simulations . 69

8.1.1 Errors and uncertainties . 69
8.2 Molten salt simulations . 70

8.2.1 Errors and uncertainties . 71

9 Concluding remarks 74

10 Future work 75

Bibliography 76

11 Appendix 81
11.1 Code: unedited scalarTransportFoam solver . 81

11.1.1 scalarTransportFoam.C . 81
11.1.2 createFields.H . 83
11.1.3 Make/files . 84
11.1.4 Make/options . 84

11.2 Code: slayFoam solver . 84
11.2.1 slayFoam.C . 84
11.2.2 createFields.H . 86
11.2.3 Make/files . 88
11.2.4 Make/options . 88

11.3 Code: saltyFoam solver . 89
11.3.1 saltyFoam.C . 89
11.3.2 createFields.H . 91
11.3.3 Make/files . 94
11.3.4 Make/options . 95

11.4 Case setup: Permanganate tracer simulation compatible with the slayFoam solver 95
11.4.1 0 directory . 95
11.4.2 constant directory . 97
11.4.3 system directory . 98

11.5 Case setup: FCD100 simulation compatible with the saltyFoam solver 103
11.5.1 0 directory . 103
11.5.2 constant directory . 109
11.5.3 system directory . 109

11.6 Case setup: FPD0.018 simulation compatible with the saltyFoam solver 114
11.6.1 0 directory . 114
11.6.2 constant directory . 121

v

11.6.3 system directory . 122

vi

Figure list

1.1 Na-Zn liquid metal battery diagram [18]. 2

2.1 Schematic visualizations of the Darcy scale (left) and pore scale (right), where
on the Darcy scale porous medium is described by porosity instead of an actual
structure. 8

2.2 Schematic diagram showing the experimental setup for the work conducted by
Rolle et al. [49], inspired by the diagram presented by Rolle et al. [49]. 10

4.1 An illustration of a 2D meshed solution domain. Computational nodes in the cell
centres are shown in pink and are denoted with capital letters. Cell faces centres
of the CVs/cells are denoted by lowercase letters. Vector n⃗e is an example of a
vector normal to face hosting the point e (also referred to as face e). 18

4.2 A close-up illustration of the 2D meshed solution domain presented in Figure 4.1
illustrating the used notation. 20

5.1 Diagram showing a general structure of an arbitrary simulation directory in Open-
FOAM. 24

5.2 A flowchart illustrating the algorithm of scalarTransportFoam and the developed
solvers. 27

5.3 Diagram showing the structure of an OpenFOAM simulation directory typical for
the simulations created in the present work. 33

6.1 An illustration on the computational domain used in aqueous simulations: the
type of the pink top and bottom boundaries is set to wall, the type of the blue left
and right boundaries is set to patch, while the clear front and back boundaries
are set as empty. 38

6.2 Mesh used for the aqueous simulations created using blockMesh with 280 divisions
in the x-direction and 150 - in the y-direction (blue lines). 38

6.3 An illustration on the computational domain used in molten salt simulations:
the pink top and bottom boundaries are defined as walls, the blue left and right
boundary types are set to patch, while the clear front and back boundaries are
set as empty. 44

6.4 Initial concentration conditions for Na+ and Zn2+ ions for discharge process sim-
ulations (all FCD and FPD simulations). 46

7.1 Results of the permanganate tracer simulation from [49] (a) compared to the
results of the permanganate simulation produced using slayFoam solver (b). . . . 52

7.2 Results of the Allura Red tracer simulation from [49] (a) compared to the results
of the Allura Red simulation produced using slayFoam solver (b). 53

7.3 Results of the New Coccine tracer simulation from [49] (a) compared to the results
of the New Coccine simulation produced using slayFoam solver (b). 54

vii

7.4 Relative error in the resistance measurement compared to the next tested grid
refinement after 15000 s. The pink line corresponds with simulations (G1, G3,
G6, G7, G9, G11) where all tested meshes had cells aligning with the diaphragms’
boundaries, while for the tests represented with the purple line (G2, G4, G5, G7,
G8, G9, G10, G11), not all did. 55

7.5 Relative error in the resistance measurement compared to the next tested time
step size after 30000 s using a charging current density of 100 mA/cm2 and a
mesh with 80000 cells. 56

7.6 Relative error in the resistance measurement compared to the next tested time
step size after 110 s using a charging current density of 2000 mA/cm2 and a mesh
with 80000 cells. 56

7.7 Molar concentration distributions for fixed current charging battery simulations
FCC100, FCC1000, and FCC2000 at the time the Na+ concentration has passed
zero (the dashed lines indicate the diaphragm’s location). 57

7.8 Molar concentration distributions for fixed current discharging battery simula-
tions FCD100, FCD1000, and FCD2000 at the time the Zn2+ concentration has
passed zero (the dashed lines indicate the diaphragm’s location). 58

7.9 Electric potential at the non-zero boundary normalized against the first recorded
value as a function of time normalized by the end time for simulations C100,
C1000, and C2000. 59

7.10 Electric potential at the non-zero boundary normalized against the first recorded
value as a function of time normalized by the end time for simulations D100,
D1000, and D2000. 59

7.11 Electrolyte resistance values for fixed current charging and discharging simula-
tions plotted against time normalized by the end time for each simulation. 60

7.12 Electrolyte conductivity values for fixed current charging and discharging sim-
ulations plotted across the electrolyte layer thickness at the end time for each
simulation (the dashed lines indicate the diaphragm’s location). 61

7.13 Electrolyte resistivity, r, values for fixed current charging simulations plotted
across the electrolyte layer thickness at the end time for each simulation (the
dashed lines indicate the diaphragm’s location). 61

7.14 Molar concentration distributions for fixed electric potential difference charging
battery simulations FPC0.025, FFC0.333, and FPC0.679 at the selected end times
(the dashed lines indicate the diaphragm’s location). 62

7.15 Molar concentration distributions for fixed electric potential difference discharging
battery simulations FPD0.018, FPD0.236, and FPD0.48 at the selected end times
(the dashed lines indicate the diaphragm’s location). 64

7.16 Molar concentration distributions for 0.99 V fixed electric potential difference
charging and discharging battery simulations (FPC0.99 and FPD0.99) at the
selected end times (the dashed lines indicate the diaphragm’s location). 64

7.17 Electrolyte resistance values for fixed potential difference charging and discharging
simulations plotted against time normalized by the end time for each simulation. 65

7.18 Electrolyte conductivity values for fixed potential difference charging and dis-
charging simulations plotted across the electrolyte layer thickness at the end time
for each simulation (the dashed lines indicate the diaphragm’s location). 66

7.19 Electrolyte resistance plotted against time normalized by the end time for each
of simulations PT0.6, PT0.85, and PT0.95. 67

7.20 Absolute values of mol% change in the amount of Cl− ions in the electrolyte
against the simulation end times for fixed electric current (FC), fixed potential
difference (FP, excluding cases FPC0.025 and FPD0.018), and diaphragm param-
eter testing (PT) simulations with trend lines for FC and FC cases. 68

viii

8.1 Molar concentration distributions for discharging 0.99 V fixed electric potential
difference simulation (FPD0.99) at the end time (a dip in Na+ concentration is
highlighted by the red circle and arrow). 72

ix

List of Tables

5.1 Information about the objects defined in the createFields.H file of the scalarTrans-
portFoam solver. 28

5.2 The notation of variables used in solver codes and the corresponding notation
used in the equations in the report together with the physical meaning behind
them. 29

5.3 Summary of changes made to variables and constants in scalarTransportFoam
when creating slayFoam. 31

6.1 Transport properties used for the aqueous simulations. 39
6.2 A summary of constants used in all aqueous simulations. 39
6.3 Porous matrix tortuosity, τ2, and background electrolyte conductivity, kap, values

used in simulations with permanganate, Allura Red, and New Coccine tracer
plumes. 39

6.4 Initial concentrations of tracer plumes. 40
6.5 Fixed value left and right boundary conditions for the electric potential for all

aqueous cases. 40
6.6 Parameters used for matrix solution algorithms for aqueous simulations. 41
6.7 Numerical schemes used in aqueous solution simulations done using the slayFoam

solver. 41
6.8 Summary of the notation used for convergence testing simulations run under fixed

current conditions for a charging battery, where GCT stands for Grid Convergence
Testing and TSCT stands for Time-Step Convergence Testing. 42

6.9 Summary of the notation used for fixed current density and fixed potential dif-
ference charging and discharging simulations. 43

6.10 Summary of the notation and parameters used for diaphragm properties’ testing
fixed current density charging simulations. 43

6.11 Diffusion coefficients used in all molten salt electrolyte simulations for the three
modelled ionic species. 44

6.12 A summary of universal constants used in all molten salt simulations. 45
6.13 The overview of the concentration boundary condition types used for Na+ and

Zn2+ ions. 46
6.14 Values used for the fixed gradient concentration BCs for the fixed current density

simulations. 47
6.15 Electric potential fixed gradient boundary condition values for the left boundary

for all fixed current density molten salt electrolyte simulations. 47
6.16 Values used for fixed value potential BCs and in initial distribution conditions for

the fixed electric potential difference simulations. 48
6.17 Time controls used for the convergence testing simulations. 49
6.18 Time controls used for the fixed current density, fixed potential difference, and

diaphragm testing simulations. 50

7.1 Values of the centre of mass displacements reported by Rolle et al. [49] (S) and
achieved in the conducted simulations (S′). 51

x

7.2 The relative change in the number of mols of Cl− in the electrolyte between the
beginning and the end time of the fixed current simulations. 62

7.3 The relative change in the number of mols of Cl− in the electrolyte between the
beginning and the end time of the fixed electric potential difference simulations. . 66

7.4 The relative change in the number of mols of Cl− in the electrolyte between the
beginning and the end time of the diaphragm parameters testing simulations. . . 67

xi

1 Introduction

1.1 Background and motivation

The demand for a reliable supply of electricity has been increasing for many decades. Simulta-
neously, the desire to reduce the strain of energy production on the environment has pushed a
transition from fossil fuel to renewable sources [1]. Such sources, like wind or solar, are highly
intermittent and less reliable. The previously existing fluctuations in energy demand are now
accompanied by fluctuations in supply, making the balance between the two even more chal-
lenging to achieve [2]. Large-scale on-grid energy storage is important for achieving this balance
and would improve the grid’s resilience [3]. However, for the most part, electrical grids have
limited energy storage capacity often with low energy efficiency and form flexibility [4].

The necessary grid flexibility today is for the most part achieved by employing either Pumped
Hydro Energy Storage (PHES) or traditional power plants. PHES allows one to store energy
in form of the potential energy of water by pumping it to a higher altitude. Although PHES
exhibits high efficiency (about 80% [5]) and is cheap, especially if used for a long time, it is space-
and water-demanding, making it impossible to realize in certain cases. On the other hand, when
traditional thermal power plants are used to provide grid flexibility they are forced to operate
in part-load mode, making them less efficient, polluting the environment with emissions even
more than they normally would [5].

These issues are a part of the reason for the increased interest in battery grid energy storage
in recent years which promise features of flexibility, high energy efficiency and long cycle life.
However, not all battery technologies are optimal for this kind of storage for various reasons. For
example, the popular Li-ion battery dominating the market for portable electronics has more
than good enough electrical properties for grid storage but due to the high cost of such storage
[6], limited resources of Li [7], and safety concerns associated with the use of organic solvers it
is not the best choice for on-grid storage [2].

Liquid Metal Batteries (LMBs) have emerged as a technology potentially suitable for large-scale
on-grid storage [8, 9]. As the name suggests, the three electro-active components of these bat-
teries, the two electrodes and the electrolyte, are liquid during operation. These components
naturally separate into three layers due to immiscibility and density differences between them
at the working temperatures [10]. The liquid state of the battery comes with some physical ad-
vantages. The charge transfer is very fast due to the electrode-electrolyte interface being liquid,
vastly reducing the charge transfer resistance and the associated charge transfer overpotential
[11]. In addition, the molten salt electrolyte has high conductivity and allows for rapid mass
transfer. These properties in turn result in low ohmic and mass transfer potential losses. This
allows LMBs to achieve relatively high voltage efficiencies even at high current densities [12].
These batteries also have longer service life than their solid-state counterparts. The end of life
in solid-state batteries is often caused by microstructural degradation of the electrode which of
course cannot take place in the liquid state [13]. A longer lifetime contributes to a lower total
cost and emissions per use [2]. Another advantage of LMBs is their potential for very low cost
compared to other battery technologies due to their use of inexpensive active materials [14, 15].

1

Some of the main disadvantages of LMBs are high rates of self-discharge (discharge over time with
no connection to an external circuit), high operating temperatures, unwanted solid formation,
and corrosion of the components [15, 10, 16]. These issues must be addressed before the potential
application of such cells, by carefully investigating the causes and gaining an understanding of
the ways they can be managed.

The present work is a part of the SOLISTICE project [17] that has 12 partners from 7 European
countries, including NTNU in Trondheim. The objective of the project is to solve the discrepancy
between energy supply and demand by developing Na-Zn LMB for stationary energy storage.
Therefore, Na-Zn LMB is in focus in this thesis. The other partners of SOLISTICE are working
on other aspects of Na-Zn LMB, like container materials, electrolyte composition, battery cell
experiments, the socio-economic implications of Na-Zn LMB use, and more.

1.2 Na-Zn Liquid Metal Battery

Figure 1.1: Na-Zn liquid metal battery diagram [18].

Na-Zn LMB consists of three layers of electroactive components placed in a container, as illus-
trated by Figure 1.1. The positive liquid Zn electrode with the highest specific mass rests at
the bottom of the cell in contact with the graphite crucible which also serves as the positive
current collector. On top of the Zn electrode rests a NaCl-CaCl2-ZnCl2 molten salt electrolyte
inside of which lays a diaphragm composed of a porous ceramic material. Finally, at the top
floats the low-density liquid Na electrode. A molybdenum wire has been used as the negative
current collector inserted around 2cm into the electrolyte in the discharged state. Alloying of
Mo with Zn resulting in solid formation has been reported [10], indicating a need for a better

2

choice of current collector material. It is important to note that the sides of the container are
insulated with alumina to prevent electrical contact between the two electrodes that would result
in short-circuit [19]. The approach of using alumina for insulation can prove too expensive and
fragile for grid-scale applications, with other LMB designs using metal foam to avoid contact
between the negative electrode and the vessel walls [13]. In addition, sodium reactions with the
alumina lining have been reported, making the selection of a more optimal insulating material
more so relevant [10].

The cell reactions of the Na-Zn LMB are as follows [10]:

Negative electrode:

2Na
discharge−−−−−−⇀↽−−−−−
charge

2Na+ + 2 e− (1.1)

Positive electrode:

Zn2+ + 2 e−
discharge−−−−−−⇀↽−−−−−
charge

Zn (1.2)

Total cell reaction:

ZnCl2 + 2Na
discharge−−−−−−⇀↽−−−−−
charge

Zn + 2NaCl (1.3)

As illustrated by the reaction equations (1.1)-(1.3), during the charging of the battery Na+ ions
in the electrolyte gain electrons and get reduced to Na metal forming the negative electrode.
Simultaneously, on the positive electrode Zn metal gets oxidized to Zn2+ in the electrolyte
[19]. During discharge, the given reactions proceed in the opposite direction. The current flow
through the electrolyte layer between the electrodes happens by means of ion transport, making
it critical for the functioning of the battery and its’ optimization.

The high rate of self-discharge is a significant drawback of Na-Zn LMBs. The self-discharge rate
is generally dictated by the battery’s storage temperature, electrode and electrolyte composi-
tions, and the current collector. The main source of self-discharge in Na-Zn LMB is considered
to be the loss of Na. The main mechanisms for this loss are the evaporation of Na metal, the dis-
solution of Na metal into the electrolyte, and a reaction of Na with ZnCl2 in the electrolyte. It is
hypothesized that the last-mentioned mechanism can be suppressed by controlling the transport
of ZnCl2 into the upper compartment of the cell by optimizing the diaphragm properties [10].
The high cell temperature increases the rate of loss of Na by allowing for a prolonged reaction of
Na with ZnCl2, accelerating the Na dissolution, and increasing the vapour pressure of Na. Thus,
developing an electrolyte with a lower melting point to decrease the operating temperature is
important moving forward [19].

Because the current flow through the electrolyte layer is carried by ions, their transport is im-
portant to understand to better the battery operation. It bears great significance for the crucial
battery properties including the ohmic drop in the electrolyte, achievable current densities, and
coulombic efficiency (which can be defined as the ratio of the total charge extracted from the
battery to the total charge previously put into the battery over a full cycle [20]). The effects of
the diaphragm on this transport must be better understood for optimal battery performance.
Modelling of ionic transport can provide insight into its performance under various conditions
and help guide experimental work in the right direction. Most of the simulation work on mass
transport in LMBs is focused on advection and does not consider the presence of a porous di-
aphragm [11, 13, 21, 22]. However, convection is not the only transport phenomenon that is
present and needs to be accounted for. Migration is a significant contributor to the dissolved
species transport inside the electrolyte layer of LMB, making it an important transport mech-
anism to consider [11]. Migration is present both in the open electrolyte volume and in the

3

electrolyte taking up the pore space of the porous diaphragm. This project is focused mainly
on modelling migration and diffusion in the molten salt electrolyte layer in the Na-Zn LMB,
accounting for the presence of porous media to expand the existing knowledge on the subject
and help improve the battery’s properties.

1.3 Aim and scope of the present work

The overall objective of this thesis is to extend the existing body of knowledge related to mass
transport in Liquid Metal Batteries. This will be achieved by:

1. Providing an overview of electrokinetic mass transfer in molten salt systems with a porous
material obstruction

2. Creating a transient Darcy-scale model for electrokinetic mass transport in molten salt
electrolyte with a porous obstruction in place, enforcing electroneutrality in the bulk fluid

3. Testing the model under a relaxed electroneutrality condition against existing results for
a similar model of electrically driven transport through a porous medium

4. Applying the model to the Na-Zn LMB electrolyte layer under charging and discharging
conditions taking a porous diaphragm into consideration testing both fixed electric current
density and fixed electric potential difference conditions

5. Investigating the effects of porous diaphragms’ properties on ion transport and the resis-
tance in the electrolyte layer.

The simulations in the present work are realized using OpenFOAM [23] version 2212, an open-
source computational fluid dynamics software. The software has an extended array of features
and solvers that can be used to create models for a wide range of fluid dynamics and transport
problems. In addition, it lets users create new solvers, that employ the pre-existing functionali-
ties to better suit the specific problems.

4

2 Literature review and state of the art

2.1 Liquid Metal Batteries

In the sixties, LMBs were a topic of active research, with interest fading in the seventies, due
to LMBs’ low specific energy and unsuitability for mobile applications. The interest has spiked
again recently due to LMBs’ potential in low-cost grid-scale applications [21]. Many potential
LMB chemistries have been and are being investigated [15, 24, 25]. Some of the most important
properties potential active materials should have are low melting temperature and low price,
but other aspects like corrosivity and toxicity should be considered. There must also be a
substantial difference in the electronegativity of the electrode materials in order to drive the
electrochemical process and allow for a favourable open circuit voltage (OCV) which is commonly
used to evaluate the electrical potential capability of batteries. In addition, the densities of the
electrode and electrolyte materials must be suitable to achieve the separation of the layers. The
most commonly considered LMB chemistries are Li, Na, K, Mg, or Ca-based [24].

Lithium is a material of interest due to it having the lowest oxidation potential of all elements,
providing a possibility for producing high OCV when combined with various different cathode
materials. It has a low melting temperature at 180 °C [24]. However, Li is a low-abundance
[7] relatively high-price [26] material in high demand due to alternative competing battery
technologies, such as Li-ion. Li-Bi, Li-Te, Li-Sb, and Li-Sn-Pb are the most commonly considered
Li-based LMB cell options. For these systems, open circuit voltage varies from around 0.75 V for
Li-Pb to 1.7 V for Li-Te cells. Te has a high cost and low abundance reducing the prospects of its
use. Bi and Sb are attractive candidates due to their relatively low cost and high OCV. Although
the Li-Bi cells show good rate capability and long cyclic performance, the price of Bi is too high
for large-scale storage [24]. Sb has a relatively high melting temperature (631°C) resulting in
higher operational costs, corrosion, and design issues [24]. This temperature, however, can
be reduced to 450°C by alloying Sb with Pb without compromising the battery’s OCV and
Coulombic efficiency [24].

Sodium is an attractive choice for electrode material because of its high abundance [7], low cost,
low melting temperature, relatively low oxidation potential, and low environmental impact,
promising great scalability. Commonly researched material combinations for Na-based LMBs
are Na-Bi, Na-Sn, and Na-S (only a partially liquid cell) [24]. The Na-Sn cell showed relatively
low OCVs (0.33 - 0.43 V) and required a quite high operational temperature of 700 °C. Na-Bi
cells showed superior properties in comparison but exhibited high rates of self-discharge caused
by high Na solubility in the electrolyte. This is an important issue when using Na as the anode,
making suppression of Na solubility necessary. This can be done by optimizing the electrolyte
composition or reducing the operational temperature (although it is hard to go below 500 °C).
This issue can also be combated by introducing a solid ion selective membrane, eliminating the
need for electrolyte [24]. This has been done in Na-S cells (also known as ZEBRA batteries)
that have shown good cell performance with nearly no self-discharge [27]. However, these cells
come with some disadvantages as well, like additional costs of high-quality membranes and weak
cell robustness with the possibility of membrane cracking [28].

Calcium is a highly abundant element [7], however, the Ca-based LMB cells like Ca-Bi, Ca-Sb,

5

and Ca-Mg are held back by calcium’s high melting temperature. The high solubility of Ca in
molten salt electrolytes is also a challenge when it comes to the coulombic efficiency of these
batteries [24].

The reactions taking place in LMBs, allowing them to be charged and discharged, are controlled
by the mass transport of reactants and products at the electrode-electrolyte interfaces. It has
been reported that the majority of the voltage drop in LMBs can be caused by poor mass
transport, especially at high current densities [29]. Specie and potential distribution models
in Li-Bi LMB done by Duczeka et al. [30] have shown that mass transport and concentration
gradients significantly affect the cell overpotentials and thus the cell voltage and performance.
The maximum cell current is also known to be mass transport-limited [30]. In addition, un-
derstanding and controlling mass transfer in LMBs is crucial for avoiding dendrite formation,
short-circuiting, phase segregation, and other potential issues and for ensuring highly efficient
functioning of the batteries. However, the mass transfer phenomenon in LMBs is highly com-
plex with the coupling of magnetohydrodynamic, heat transfer and electrokinetic effects present,
making its’ optimization far from trivial [31, 32].

With ions being charged particles, electrokinetically driven transport plays an important role in
the total mass transfer in the electrolyte layer of LMBs. Electrokinetic transport includes phe-
nomena such as electromigration, electrophoresis, electroosmosis, and other electrically driven
flows.

2.2 Modelling of electrokinetic transport

A significant amount of research on the modelling of mass transport in LMBs, including elec-
trokinetic transport in the molten salt electrolyte, exists. However, most of the research on
mass transport in the electrolyte layer is focused on different types of convection, since it is an
important contribution and has a significant impact on the functioning of LMBs [11, 32, 33].
In addition, the considerations of a porous media present in the electrolyte layer are normally
missing [13, 21, 22, 34]. This can be explained by the fact that most LMB technologies do not
employ such porous diaphragms as Na-Zn LMBs do [24, 25], making it especially interesting to
investigate.

On the other hand, modelling electrokinetic transport (also in porous media) outside of LMB
applications is an active area of research. It has gained a lot of attention in the micro- and
nanofluidics applications, especially in recent years proving relevant for water purification and
desalination, soil remediation, nanoelectronics and energy conversion, ion-selective transport sys-
tems and many others [35, 36, 37]. A typical model used when studying electrokinetic transport
is the Poisson-Nernst-Planck model. This model couples the Poisson equation for the electric po-
tential distribution with the Nernst-Planck equation for the concentration distribution to model
the transport behaviour of charged species [38].

A considerable amount of research on electrokinetic transport in porous media and tight channels
has been focusing on dilute aqueous solutions due to a wide range of applications [35, 37]. A
phenomenon called electroosmosis is of great importance in this field because it makes these
applications possible, requiring a deeper understanding of the subject. Electroosmotic flow is of
relevance for polar solvent systems and has been extensively studied and modelled throughout
the years [35, 36]. The modelling of mass transport in ionic mixtures, in general, is better
described for dilute systems since the assumption of a dilute solution simplifies the modelling
approach and equations used significantly. Since the electrolyte in the LMBs is composed of
molten salts, electroosmotic flow is not expected (due to the solvent not being polar and ion

6

concentrations being very high). In addition, molten salt mixtures do not constitute dilute
solutions and behave differently from commonly modelled dilute aqueous solutions.

This project focuses mainly on developing a model of migration- and diffusion-dominated mass
transport in a molten salt electrolyte in Na-Zn LMBs considering the presence of porous media
to bridge the gap in the present knowledge.

Modelling of charged species transport can be conducted in numerous ways. As done by Yeh
et al. [35], ion transport modelling is often categorised into three approaches based on the
scale they consider: continuum, mesoscopic and molecular modelling. The continuum models
provide information on macroscopic transport phenomena. This approach normally can be used
when the length scale is greater than 1nm. Fluid can be treated as a continuum on this scale,
which allows for employing the Navier-Stokes equation to describe the fluid flow. The results are
often obtained relatively quickly, due to the coarseness of the scale used during computations.
Molecular dynamics modelling is used when molecular behaviour and interactions are of interest,
normally on a much smaller scale. This approach provides detailed information about transport
taking all microscopic effects into consideration but is much more time and resource intensive.
This makes this approach not favourable for describing ”the big picture”. Mesoscopic modelling
can be described as the link between the two previously mentioned approaches, where the
continuity and momentum equations are solved by tracking the movements of the molecule
groups [35]. Considering that the length scales for the system investigated in this project are
much larger than 1 nm, continuum modelling is the preferred approach.

In continuum modelling of the mass transport through a porous medium, it is convenient to
differentiate between two scales illustrated in Figure 2.1: pore scale and macro scale (or Darcy
scale). On the pore scale, each point in space is occupied by a specific phase, fluid or solid,
applying the continuum assumption to each phase separately. Thus the relevant spatial structure
of the porous material must be resolved in order to model on this scale. This allows one to
capture local interactions between the phases and the transport mechanisms. On the contrary,
the Darcy scale treats porous medium as a continuum where at each point in space both liquid
and solid states exist simultaneously. The effects of the porous obstruction on the transport are
then captured by using materials’ bulk properties, such as porosity and tortuosity. This provides
information about the averaged transport behaviour, blind to the local effects and interactions.
As indicated in Figure 2.1, the Darcy scale is normally used on systems with a high ratio of
total system size to the average pore size. This ensures a volume of porous material big enough
to be representative, making the transport less dependent on local variations [39].

7

fluid

solid

Figure 2.1: Schematic visualizations of the Darcy scale (left) and pore scale (right), where on the
Darcy scale porous medium is described by porosity instead of an actual structure.

The Nernst-Planck equation is commonly used to describe the transport of charged species in
various scenarios with promising results [35, 40, 41, 42]. The main advantage of the Nernst-
Planck model is that it is accurate even with some deviations from the necessary assumptions,
while not requiring a lot of unknown variable properties [43].

With process-based modelling of electrokinetic transport in heterogeneous porous medium Sp-
rocati and Rolle [44] have proven the interplay between advection, electroosmosis and electro-
migration to be highly complex even for dilute aqueous solutions. This helped them conclude
that multidimensional numerical simulations are necessary to better understand the transport
mechanisms and interpret observed behaviour [44].

Huang et al. [38] have shown that the Nernst-Planck model is also valid for reactive transport
cases with reaction-driven convection. This was done by conducting numerical simulations and
comparing the results to those acquired from physical experiments and previously verified models
[38].

Novotny and Gas [40] have created a mathematical model capable of calculating concentration
profiles, electric potential and volume charge density of all electrolytes in the diffuse part of the
electrical double layer that allows for deviation from electroneutrality. This model is based on
the Poisson-Nernst-Planck equations. They have produced results by employing this model in
COMSOL Multiphysics [45] CFD software.

Pimenta and Alves have developed implementations of electrically-driven flow models in Open-
FOAM [46]. The charged specie transport model was based on the Poisson-Nernst-Planck equa-
tions as well and was coupled with the Navier-Stokes equations for the fluid flow modelling.
Their work provides valuable insight into boundary condition implementation and discretiza-
tion for such models. Zero flux boundary conditions in the present work were realized in a way
similar to the one used by Pimenta and Alves [46].

In their works, Zadin et al. [47] and Danilov et al. [48] have modelled ionic transport in batteries
mathematically using the Nernst-Plank equation. In the model, they apply fixed concentration
gradient boundary conditions at the electrode-electrolyte boundaries, where the gradients’ value
is calculated using a given electric current, assuming diffusion-dominated transport through the
boundary. This approach is also implemented in the present work.

Successful simulations of ion transport in LMBs exist. Duczeka et al. [30] have simulated

8

the potential and species distribution in Li-Bi LMB in 1D using OpenFOAM finite volume
method-based solver. The specie transport model was also based on the Poisson-Nernst-Planck
equations with enforced electroneutrality, similar to the molten salt model presented in this
thesis. The results were verified in a comparative study against COMSOL Multiphysics [45]
finite element method-based solver results, showing a great correspondence between the methods.
Experimentally obtained values were also used to assess the quality of the results, proving a fairly
good fit.

Zhou et al. [32] have created a 2D multi-field coupled model for the Li-Bi LMB that included
thermal convection, electro-vortex flow, solutal convection, diffusion, and electromigration (gov-
erned by the Nernst-Planck equation). Simulated discharge curves were verified against the
experimental ones with small error, which is thought to mostly be caused by insufficient accu-
racy of material properties. They have concluded that thermal convection was the dominant
flow mechanism in the molten salt electrolyte of a Li-Bi LMB cell and thus had the greatest
contribution to the transport of ions. This notion is widely accepted in the literature [11, 13, 30].
This implies that, in general, convection can not be simply neglected unless one aims to isolate
the effects of another mass transport mechanism for various purposes.

Rolle et al. [49] have investigated the influence of species-specific properties like valence and
diffusivity on macroscopic electromigration. This was done by conducting both physical exper-
iments and simulations (with equivalent setups) observing the displacement of tracer plumes
under the influence of an electric field. Although the model presented in the article somewhat
differs from the main molten salt model showcased in the present work, the results of the article
were used to test the created model and validate that the modelled transport behaves in an
expected way, by creating a similar solver with more relaxed electroneutrality requirement and
comparing the results. This approach was chosen due to the fact that more suitable results of
models of electrokinetic transport in molten salt systems and their comparison to physical ex-
periments with as much data presented were not found. Therefore this article shall be discussed
in more detail.

An illustration of the experimental setup used in the article inspired by the diagram created by
Rolle et al. [49] is presented in Figure 2.2. The setup used consisted of a 30 cm long compartment
filled with a porous glass medium placed in a glass tank filled with an aqueous electrolyte. The
volumetric porosity, or ratio of void space and total available space in the compartment, was
equal to 0.4. Two electrodes were placed one on each side of the compartment 40 cm apart
with a potential difference of 200 V. The potential difference was measured across 28 cm. The
different tracer compounds investigated and their valences were permanganate (-1), Allura Red
(-2), and New Coccine (-3). Four different electrolyte composition scenarios were considered.

9

Figure 2.2: Schematic diagram showing the experimental setup for the work conducted by Rolle
et al. [49], inspired by the diagram presented by Rolle et al. [49].

The model used for simulations was based on the Poisson-Nernst-Planck equations (3.9) (3.15)
(3.16) (notice that the absolute permittivity of the system should reflect the presence of a porous
material). The simulations were performed with NP-Phreeqc-EK, which is a sequential coupling
of COMSOLMultiphysics [45] and PhreeqcRM [50]. The first is used to solve the Poisson-Nernst-
Planck equations, while the second one can be used for describing many different equilibrium and
kinetics-controlled reactions. The simulation domain was 2D spanning over 28x15 cm discretized
into 13400 triangles. The initial radiuses of the tracers drop were 2.15 cm. The tortuosity of
the porous material was used as a fitting parameter, with the best correspondence between
simulation and experimental results achieved with tortuosity values of 1.3-1.43.

The results of this study have confirmed the validity of the Poisson-Nernst-Planck model for
multicomponent electrokinetic transport of ions in dilute aqueous solutions in porous media.
They have also provided evidence of the effects of diffusivity and ion valence in electromigration.
These properties impact the mass distribution, mass spreading in both longitudinal and lateral
directions, plume displacement velocities, shapes of the plume fronts and tails, and dilution of
the injected solution. These differences depend on the charge of the ionic species, their mobility,
as well as their coulombic interactions, and the fulfilment of the electroneutrality condition on
the pore scale [49].

10

3 Theory

The transport of ions in a solution is a complex phenomenon that depends heavily on the
properties of the system and the ions themselves. No analytical model capturing this process is
therefore plausible, making approximate numerical solutions of governing equations the closest
alternative. Thus, the theoretical background is of vital importance to correctly apply the model
and interpret the results.

In the following section, background on the physical phenomena and an overview of the governing
equations are presented.

3.1 Dissolved species transport

The dissolved species transport can be modelled by describing the concentration as a function
of time and space employing a general mass balance equation [51]:

∂ci
∂t

+∇ · Jtoti = ri, (3.1)

where ci is the molar concentration of dissolved component i, t is time, Jtoti is the total mass
flux of i and ri is the source/sink term, associated with chemical reactions.

Mass transport mechanisms

The total mass flux, Jtoti , of an interacting specie i in a solution under an applied electric field,
can be described by the extended Nernst-Planck equation [52]:

Jtoti = −uici∇µi + vci = −Di∇ci −Dici∇ ln γi − ziuiFci∇ϕ+ vci, (3.2)

where ui is the mobility of component i, ∇µi is the gradient of its electrochemical potential,
Di is denoting the diffusion coefficient of the component i in the liquid phase, γi is its activity
coefficient, zi is the charge of the component, F is the Faraday constant, R is the universal gas
constant, T is the absolute temperature, ϕ denotes the electric potential and v is the velocity of
the bulk fluid. Mobility ui relates to how fast an ion moves in response to an electric field. It
can be related to the diffusivity in dilute solutions with the Nernst-Einstein equation [43]:

ui =
Di

RT
. (3.3)

The expression (3.2) is valid for all mobile species in ideal systems (no ion-ion interactions etc
[52]). For dilute solutions with low ionic strength, I = 1

2

∑
i ciz

2
i , in isothermal conditions,

the gradients of ionic strength can be assumed small. This means that the gradients of the
logarithms of the activity coefficients and their contributions to the total flux are small and can
be neglected, resulting in the following expression:

11

Jtoti = −Di∇ci︸ ︷︷ ︸
Jdif
i

−ziuiFci∇ϕ︸ ︷︷ ︸
Jmig
i

+vci︸ ︷︷ ︸
Jadv
i

, (3.4)

where Jdifi is the diffusive flux, Jadvi is the advective flux and Jmigi represents the migration flux.

Diffusion of a fluid property (such as temperature, solute concentration and others) is its’ net flux
realized by thermal vibration in said fluid. The driving force for chemical compound diffusion is
the chemical activity gradient, with specie travelling from regions with higher concentration to
ones with lower concentration, reducing the Gibb’s free energy for the solution [53]. Advection
describes the mechanical transport of a fluid property along the bulk fluid flow. The driving
force behind the fluid flow itself is the pressure gradient, which in turn can have a plethora
of different causes, such as temperature differences, concentration differences and others [53].
Finally, migration is defined as the movement of ions in response to an electric field [43]. For this
transport mechanism, the electric potential gradient is the driving force. In electrochemistry,
this gradient is often caused by surfaces being polarized, inducing an electric field.

The velocity required for solving this equation for systems that include convection can be found
by solving the Navier-Stokes equations [43]. For the purposes of describing migration, the
velocity is set to zero for all cases in this work.

The electric current, i realized by the movement of charged particles in the solutions can be
calculated in the following way:

i = F
∑
i

ziJ
tot
i = −F

∑
i

ziDi∇ci − F 2∇ϕ
∑
i

z2i uici + Fv
∑
i

zici. (3.5)

The ionic conductivity of the solution, κ, is often introduced to this equation:

κ = F 2
∑
i

z2i uici. (3.6)

The conductivity of a material can also be derived from Ohm’s law:

κ =
i

−∇ϕ
. (3.7)

Electric potential in dilute solutions

Since ions carry charge they affect the electric field and, in multicomponent systems, experience
coulombic interactions with each other. These effects are necessary to consider in an accurate
model of transport. This means that equation (3.4) must be solved for all chemical components
simultaneously and the effect of charge distribution on the electric field must be accounted for.
The relation between the electric field and charge (or ionic specie concentration) distribution in
homogeneous systems can be described with Poisson’s law [43, 54]:

∇ · (ϵ∇ϕ) = −F
N∑
i=1

zici = −ρe, (3.8)

where ϵ is the absolute permittivity of the system, N is the total number of charged species in the
fluid and ρe is commonly referred to as charge density. For systems with uniform permittivity,
this equation can be rewritten as follows:

12

∇2ϕ = −ρe
ϵ
. (3.9)

For dilute systems, local deviations from electroneutrality are accepted due to low concentra-
tions. This can, for example, be inside the double layer near electrodes or other boundaries. This
means that equation (3.9) should be used for modelling such systems on the micrometre scale,
where deviations from electroneutrality are important and must be resolved. This provides a
two-way coupling between the electric field and ion concentration distribution and ensures that
their effect on each other is captured. Thus, to apply this equation when modelling, one has to
spatially resolve the areas with deviations from electroneutrality, such as the electrical double
layer. Still, the electroneutrality condition must be met at the scale of the total system. This
condition can mathematically be expressed in the following way [43]:

N∑
i=1

zici = 0. (3.10)

This equation is also valid for concentrated electroneutral solutions.

Molten salt considerations

The Nernst-Planck equation (3.4) is, in principle, valid only for dilute solutions. There are
several reasons for this. Firstly, migration and diffusion fluxes must be defined with respect to
some average velocity of the fluid. In dilute systems, only the solvent velocity contributes to this
average velocity, but that is not the case in concentrated solutions. In addition, as previously
stated, the simplification of equation (3.2) leading to a more commonly known and used equation
(3.4) is based on the assumption of a dilute solution. The driving force for diffusion is the gradient
of chemical potential which is related to the activity gradient. The activity gradient is equal to
the concentration gradient only in extremely dilute solutions. Finally, the transport properties
used only consider interactions and friction between a solute component and the solvent, while
inter-component interactions are substantial in concentrated solutions [43].

The equations for material balance (3.1), current flow (3.5), and electroneutrality (3.10) remain
valid for concentrated solutions, but the described issues demand changes to the flux equation.
The mentioned difficulties can be avoided by replacing the Nernst-Planck equation (3.4) for the
total flux with the multicomponent diffusion equation [43]:

ci∇µi =
∑
j

Kij(vj − vi) = RT
∑
j

cicj
cTDij

(vj − vi), (3.11)

where Kij are friction or interaction coefficients, vi is the velocity of component i (not for each
molecule but average for the species), cT =

∑
i ci is the total concentration, Dij is a diffusion

coefficient that describes the interaction of the components i and j. This equation is more
general than the Nernst-Planck equation since it relates the driving force (the left-hand side
of the equation) to a linear combination of resistances for the movement of i (the right-hand
side of the equation) instead of just one resistance coming from the solvent. In order to use
this equation for each of the components together with the material balance equation (3.1),
they must be inverted to express the components’ flux densities in terms of the driving forces.
These inversions and the resulting expressions get increasingly more convoluted with every new
component introduced to the system. More components also imply more unknown properties
like Dij , which can be difficult or impossible to measure.

13

Still, equation (3.4) is generally used for most cases with migration transport and is very preva-
lent in the literature. This is due to its’ simplicity and relative accuracy even with broken
assumptions [43]. It is also more convenient to use because the physical properties it requires
are more often known and are easier to measure than the ones needed when using equation
(3.11).

Molten salts can be considered to be highly concentrated solutions. Thus, the condition of
electroneutrality for the mixture must apply both locally and at the continuum scale, as the
net charge of the molten salt electrolyte should be zero and high concentrations of different
ions are available to balance each other out locally [30]. These solutions are not necessarily
homogeneous (especially when it comes to electrical properties), since concentration gradients
can affect the properties like, for example, conductivity, significantly. When ionic transport is
present, these variations in properties can also change with time. This makes Poisson’s equation
(3.8) inapplicable for these solutions. Therefore, a different approach must be used to determine
the electric potential distribution.

As ions travel they transport charge. This charge must be conserved. One can rewrite the
mass conservation equation (3.1) as a charge conservation equation by multiplying it with ziF
(summing up the contribution of all chemical components for convenience):

∂

∂t
F
∑
i

zici = −∇ · F
∑
i

ziJ
tot
i . (3.12)

Under the assumption of electroneutrality, the left-hand side of the equation is equal to zero.
Inserting equation (3.5) into equation (3.12) transforms the expression to:

∇ · (κ∇ϕ) + F
∑
i

zi∇ · (Di∇ci)︸ ︷︷ ︸
Diffusion current

+F
∑
i

zi∇ · (vci) = 0, (3.13)

which can be used for calculating the potential distribution in an electrolyte. The magnitude of
the electric field is not its’ only important parameter for migration, its direction and variation
thereof must also be considered [55].

Assuming both bulk and local electroneutrality, equation (3.13) can also be used to describe
dilute aqueous solutions with inhomogeneous conductivity caused by the concentration varia-
tions throughout the volume. With no fluid flow present (third term of equation (3.13)) and a
negligible sum of diffusion currents (second term of the equation), this equation can be reduced
to:

∇ · (κ∇ϕ) = 0. (3.14)

The sum of diffusion currents is often negligible when the contributions of the different com-
pounds cancel each other out. This can be assumed to be the case when the diffusion coefficients
of the compounds are approximately equal.

Porosity considerations

The porous diaphragm located in the molten salt electrolyte layer of the Na-Zn LMB affects
the transport of ions. Instead of introducing an actual porous geometry to the simulations, one
can look at the transport on the Darcy scale, where the porous material is treated as a volume,

14

which affects the transport properties. Then, instead of resolving the transport at the pore scale,
one can capture the effects of the porous material on the transport by accounting for them in
the governing equations.

When describing the macroscopic mass transfer through a porous medium instead of free space
on the Darcy scale, equation (3.1) becomes:

∂ωci
∂t

+∇ · Jtoti = ri, (3.15)

and equation (3.4) transforms into:

Jtoti = −ωD′
i∇ci︸ ︷︷ ︸

Jdif
i

−ωziu′iFci∇ϕ︸ ︷︷ ︸
Jmig
i

+q∗ci︸ ︷︷ ︸
Jadv
i

, (3.16)

where ω is the porosity accessible to the fluid, D′
i is the effective diffusion coefficient, ui’ is the

effective ion mobility and q∗ is the specific solute flux. Note that here it is implied that the
volumetric accessible porosity (volume fraction of accessible empty space in the material) is equal
to the areal accessible porosity (ratio between the accessible pore area and total area of a cross-
section of the material) everywhere throughout the material. Otherwise, the accumulation term
in equation (3.15) would be affected by the volumetric accessible porosity, while the macroscopic
fluxes in equation (3.16) would depend on the areal accessible porosities of the media. In these
equations describing the total macroscopic transport through the material one value of the
porosity is enough to consider. This is due to the areal porosities of the areas normal to the
transport direction averaged over the thickness of the material being equal to the volumetric
porosity of the material.

The macroscopic diffusion coefficient D′
i can be calculated using the following relation: D′

i =
Di/τ

2, where τ2 is tortuosity, which has many definitions, the one used here being:

τ2 =

(
Ls
L

)2

, (3.17)

where Ls is the length of the path taken by species through the porous medium and L is the
distance between the paths’ start and end [49, 56].

The mobility u′i can be determined by inserting the macroscopic diffusion coefficient D′
i into the

Nernst-Einstein relation (3.3).

Specific solvent flux can also be understood as the average velocity of the fluid across the whole
area normal to the direction of the flow, including the area unavailable to the flow, which equals
to the average velocity of the fluid multiplied by the areal porosity of the material, which can
often be assumed to be equal to volumetric porosity.

By affecting the transport of ions, the presence of a porous matrix also alters the current density:

i = F
∑
i

ziJ
tot
i = −F

∑
i

ziωD
′
i∇ci − F 2∇ϕ

∑
i

z2i ωu
′
ici + Fq∗

∑
i

zici. (3.18)

The ionic conductivity through a saturated insulating porous medium with no surface conduc-
tance, κ′, can be calculated as follows [57]:

15

κ′ = F 2ω
∑
i

z2i u
′
ici. (3.19)

It is important to note, that on the pore scale even in a porous medium, the regular governing
equations (3.1), (3.4), and (3.13) are valid because no effects are averaged over the system and
are rather resolved locally throughout the entire domain.

3.2 Summary

In this section, the necessary theoretical background for the simulations conducted in the present
work is described. This includes all the equations needed for the created models.

Altogether, the concentration distributions of ionic species in dilute aqueous solutions can be
described using equations (3.1) and (3.4). The electric potential distribution in those cases
can be described using many different equations depending on the assumptions made. This
includes equations (3.9) (allowing for local deviations from electroneutrality), (3.13), and (3.14)
(enforcing electroneutrality everywhere throughout the solution). Although equation (3.9) can
provide a more accurate picture of potential distribution when modelling ionic transport in
dilute aqueous solutions, equation (3.14) was used. This was done to avoid the need to resolve
the electrical double layer, which is necessary when using equation (3.9), because it is highly
computationally demanding due to the very low scale of the double layer relative to the size of
the modelled systems.

The appropriate scaling of the equations and the parameters should be done when dealing with
transport through a porous medium, replacing equations (3.1) and (3.4) with equations (3.15)
and (3.16). The presence of a porous matrix must also be reflected in calculations of ionic
conductivity, replacing equation (3.6) with equation (3.19).

The concentration distributions of ionic species in molten salts can be described using equation
(3.11). However, due to the complexity of this approach and its’ demand for parameters com-
monly unknown, its use was omitted. Instead, equations (3.1) and (3.4) are commonly used, due
to their simplicity and their relative accuracy even under broken assumptions [43]. Potential
distribution equation (3.13) is well-suited for molten salt modelling, enforcing electroneutrality
on both the local and the Darcy scales. Again, porosity must be accounted for when necessary,
scaling the equations and the parameters used.

16

4 Numerical approach

Flow and transport phenomena can often be described using systems of non-linear partial dif-
ferential equations (PDEs), which seldom have analytical solutions. It is, however, possible to
approximate the solutions by employing numerical methods with the help of computers.

These approximations rely on a process called discretization, during which a continuous PDE
solution is split into a finite number of values existing at discrete locations on the time and
space domains. Many discretization methods exist, such as Finite Element Method (FEM),
Finite Difference Method (FDM), and Finite Volume Method (FVM). The FVM is one of the
most popular methods for CFD for multiple reasons. Its’ main advantage is that the produced
discretization is automatically conservative due to the mathematical formulation of the method,
which mirrors the principles of the conservation laws. The following section will present a brief
overview of relevant CFD principles and describe the applied algorithms.

4.1 Finite volume method

The Finite Volume Method is a discretization method used to approximate PDE solutions by
transforming them into systems of algebraic equations, which can then be solved by a computer.
This is done over the entire computational space and/or time domain by dividing it into discrete
volumes(cells)/intervals and solving the conservation equations for each of them [58].

As the first step of the FVM process, the solution domain is divided into small contiguous
non-overlapping control volumes (CVs), or cells, illustrated in Figure 4.1.

17

OW

N

E

S

n

e

s

w

x

y

ne

Figure 4.1: An illustration of a 2D meshed solution domain. Computational nodes in the cell
centres are shown in pink and are denoted with capital letters. Cell faces centres of
the CVs/cells are denoted by lowercase letters. Vector n⃗e is an example of a vector
normal to face hosting the point e (also referred to as face e).

Thereafter, the equations are discretized. A feature specific to the FVM is the fact that it
considers the integral form of the conservation equations. For a generic quantity ψ, the integral
form of its’ conservation equation can be written as:

∫
V

∂(ρψ)

∂t
dV︸ ︷︷ ︸

transient tern

=

∫
S
ρψv · ndS︸ ︷︷ ︸

convective tern

−
∫
S
Γ∇ψ · ndS︸ ︷︷ ︸

diffusive term

+

∫
V
rψdV︸ ︷︷ ︸

source term

, (4.1)

where ρ is density, v is velocity, n is a vector normal to surface S, Γ is the diffusivity for the
quantity ψ, rψ is a source or sink of ψ and V is volume.

The conservation equation (4.1) applies to the entire domain and to all CVs individually. The
global conservation equation can be obtained by summing the integrals for all CVs since they
are contiguous and negative surface flux out of one CV cancels out with that same flux entering
the neighbouring CV that shares a face with it.

The total surface integral for each of the CVs can thus be expressed as a sum of integrals over
all faces of that CV:

∫
S
ρψu · n dS −

∫
S
Γ∇ψ · n dS =

∑
j

∫
Sj

ρψu · nj dSj −
∑
j

∫
Sj

Γ∇ψ · nj dSj (4.2)

where j is the number of faces of the relevant cell. The surface and volume integrals for each cell
can then be approximated using different numerical methods like midpoint or trapezoid rules

18

transforming them into a system of algebraic equations. This system of equations can be written
in matrix form and solved using given boundary conditions. Since these matrices can normally
consist of a high number of values direct inversion methods like Gaussian elimination are not
optimal to use. Therefore, different more effective iterative solvers have been developed, such
as GAMG, PCG, PBiCG and more. GAMG solver is used for simulations conducted in this
project.

Integral approximation

Since the exact values of the variable ψ across all boundaries of a given CV are not known,
the integrals in the equation (4.2) have to be approximated. The only known ψ values are in
the cell nodes, calculated from the previous cell (or from the boundary conditions). In order to
approximate the integrals the unknown values of the fluxes, and thus the conserved variables,
at cell faces are required (for example, at the cell face centres). An example of such surface
integral approximation can be the midpoint rule, illustrated here for a flux component f (which
can be convective or diffusive by nature), normal to a surface e with an area Se, one of the j
total surfaces:

∫
Se

fdS = feSe ≈ feSe, (4.3)

where subscript e indicates the centre location on a specific face of the CV (see Figure 4.1) and
fe is the average value of flux f over the entire face e. The unknown cell face centre fe flux
value needed to approximate the integral can be obtained from the known cell node value using
interpolation schemes [59].

Volume integrals (like the one in equation (4.2)) must also be approximated since again, the
values of the variables throughout the entire cell volume are unknown, with only the nodal
values available. This can easily be done without interpolation, by approximating the average
integrand value over the cell volume to be equal to the known cell centre value [59]:

∫
Vi

qdV = qVi ≈ qOVi, (4.4)

where i indicates the i-th cell with volume Vi, q is the integrand (which can be the source/sink
term as in equation (4.2)), and qO represents the cell centre point value of q (see Figure 4.1). If q
is constant or varies linearly throughout the CV this approximation actually provides the exact
solution for the integral. This is a second-order approximation, thus, otherwise, a second-order
error will be present. Approximation methods of higher orders exist. They produce results with
higher accuracy but require q values at more locations than just the cell centres. This process
again requires interpolation in order to acquire those values [59].

Interpolation schemes

Numerous interpolation schemes of varying accuracy exist and in FVM are used for approxi-
mating the unknown values needed for integral calculations. The discussed fluxes f normally
contain several variables or variable gradients, like density, velocity, and conserved quantity ψ
for convective flux. Often variables like density or diffusivity are assumed to be constant for the
entire volume, making their values on the cell faces known. Sometimes the velocity values are
also known. However, the value of the generic quantity ψ, the conservation of which is described
by the governing equation (4.2) is what we normally are trying to determine. Thus the cell face
values of ψ and its’ gradient normally have to be expressed in terms of cell centre values using
interpolation.

19

The schemes used for interpolating the cell face values of the gradients of the relevant quantity are
often (and further in this thesis) referred to as gradient schemes. Equivalently, Laplacian values
are estimated using Laplacian schemes, divergence - with divergence schemes. The schemes
employed for estimating the cell face value of the quantity ψ itself, are referred to as simply
interpolation schemes.

Central-difference scheme (CDS) or linear interpolation is the simplest second-order interpolation
scheme that is widely used in CFD [60]. It is also the interpolation scheme used predominantly
in the simulations conducted for this project. As an example of the way these schemes operate
mathematically, this scheme will be described closer. Applying this method, the desired value of
ψe located on a cell face can be expressed in terms of the known cell node values in the following
way:

ψe = ψEΛe + ψO(1− Λe), (4.5)

where Λe is defined as

Λe =
xe − xO
xE − xO

, (4.6)

where x indicates the x-axis position for a point indicated by the subscript (see Figure 4.2)
[59]. This, of course, can be done in other directions equivalently. Notice that this approach
approximates the variable profile between the centroids with a straight line, while higher-order
schemes employ higher-order polynomials. This method, as all other second-order schemes, may
produce oscillatory or unstable solutions. The stability of such methods oftentimes comes at the
expense of accuracy [61]. For that reason, other higher-order schemes are often used.

O E

n

e

s

x

w

ne

sesw

nw

xO xe xE

Figure 4.2: A close-up illustration of the 2D meshed solution domain presented in Figure 4.1
illustrating the used notation.

20

4.2 Time advancements

For transient simulations, time discretization of the governing equations is necessary in addi-
tion to the previously discussed space discretization. In CFD time is treated as an additional
coordinate along which the integral of the transient term is evaluated.

A governing equation describing transient behaviour for a general case takes on the following
form:

∂(ρψ)

∂t︸ ︷︷ ︸
transient term

+L(ψ) = 0, (4.7)

where the function L(ψ) is a spatial operator that includes non-transient terms (advection,
diffusion, sources and others, presented in equation (4.1)) [58]. After spatial discretization
around the centroid, O, of a CV cell with volume VO, this expression becomes

∂(ρOψO)

∂t
VO + L(ψtO) = 0, (4.8)

where L(ψtO) is the spatial discretization operator at some reference time t. It is common to
treat the transient term using the finite difference method because the grid in the transient space
is structured. Further, the space operator L(ψ) is discretized as described before at some time
t, while the transient term is estimated using one of the various existing transient schemes [58].
The most relevant of these schemes for the present work are described next.

4.2.1 Forward Euler Scheme

When using the Forward Euler scheme, the expansion of the transient term around time t is
done in a forward manner. The first-order approximation of the time derivative of some function
K using a forward time step Taylor expansion of K can be expressed as follows [58]:

∂K(t)

∂t
=
K(t+∆t)−K(t)

∆t
+O(∆t), (4.9)

where ∆t is the time step and O(∆t) is the error term resulting from the higher order terms being
neglected. Using this approach on the transient term of the relevant equation (4.8), provides us
with the discretized equation:

(ρOψO)
t+∆t − (ρOψO)

t

∆t
VO + L(ψtO) = 0. (4.10)

Here, all the spatial terms are evaluated at the old time t, making it possible to compute the
value of ψO at time t+∆t explicitly, based on those known old values, without the need to solve
a system of equations. Therefore, this method belongs to the class of explicit transient schemes
and is also referred to as the Explicit Euler Scheme [58]. Such methods have high computational
efficiency. However, few commercial CFD software use this approach, due to its’ stability issues.
These methods are only conditionally stable, with the conditions limiting the size of the time
step severely, especially for cases with high spatial resolution. When dealing with more complex

21

problems with various transport mechanisms present, the choice of the time step becomes far
from straightforward. Simultaneously, an inadequate choice of ∆t will cause oscillations in the
results. Thus, this method is not recommended for general transient problems [62].

4.2.2 Backward Euler Scheme

The Backward Euler scheme is based on time discretization in the opposite direction from the
Forward Euler scheme. Here, the approximation of the time derivative uses Taylor expansion of
the function at time t−∆t as the starting point, taking on the following form [58]:

∂K(t)

∂t
=
K(t)−K(t−∆t)

∆t
+O(∆t). (4.11)

Applying this to the governing equation (4.8), the fully discretized equation becomes

(ρOψO)
t − (ρOψO)

t−∆t

∆t
VO + L(ψtO) = 0. (4.12)

Thus, evaluating the ψ field at a new time step requires solving a system of equations. This
type of scheme is called implicit. This method is always stable, regardless of the size of the time
step, enabling the solution to proceed rapidly in time. However, this scheme is still low-order,
producing low accuracy results, unless a small time step is used [58].

This scheme was used in all simulations conducted in the present work due to its’ unconditional
stability and adequate accuracy with the use of appropriate time steps.

4.3 Meshing

The process of dividing the computational domain into discrete non-overlapping consecutive
control volumes is called meshing. This process creates a grid, or mesh, discretizing the space.
This enables one to apply the finite volume method for solving equations over the domain
and conducting CFD simulations. This step is very important since the size of the error in
FVM computations, as well as computational time depends on the size and shape of the grid. In
general, using a coarser mesh with large cells will yield less accurate approximation results, while
applying a finer mesh will result in more accurate results, but will require more computations.

4.4 Convergence

A numerical model is said to be convergent if and only if the solution of the discretized equations
asymptotically approaches some fixed value as the spacial grid cell size and time step used for
discretization approach zero. The solution is called consistent when that value is equal to the
exact solution of the differential equation [59, 63].

A common way to check if a model is convergent is to acquire multiple solutions using different
values of spatial and temporal steps and then compare the produced results. The model has
converged if further refinement of time and distance steps does not result in a significant change
in the results. This ensures that there is no dependence of the solution on the used discretization
[59, 63].

22

4.5 Error and uncertainty

Simulations can be a useful tool to provide insight into various transport phenomena, however,
computational modelling is not free of errors and uncertainties. Understanding the source of
these deficiencies and their magnitude is therefore important.

As done by Versteeg and Malalasekera [62], error in a CFD model can be defined as a recogniz-
able deficiency that is not a result of a lack of knowledge. These deficiencies include numerical
errors, such as discretization and roundoff errors, as well as convergence errors of iterative meth-
ods, coding errors resulting from mistakes in the software, and user errors due to incorrect use
of the software.

Uncertainty on the other hand, are potential deficiencies in a model that are stemming from
a lack of knowledge [62]. Typical sources of uncertainty can be identified as input uncertaity
caused by a lack of available information about or approximation of boundary conditions, domain
geometry, compound properties and other aspects of the model and physical model uncertainty
that are a result of misrepresentation of the transport processes or their simplification in the
model.

4.6 Summary

In this chapter, an introduction to numerical methods for solving systems of partial differen-
tial equations, including the finite volume method are presented. These tools allow one to
approximate the solution to the governing equations and create simulations. The FVM solves
the integral form of the governing equations, providing a solution where the relevant quantities
are conserved for each control volume cell across the computational domain. The coupled set
of algebraic equations is then written in a matrix form, which is in this project solved using
the geometric agglomerated algebraic multigrid (GAMG) solver [64]. A review of the algebraic
multigrid approach is given by Stüben [65], while Behrens [64] provides a closer overview of
GAMG.

The central-difference scheme [60] was the spatial discretization tool of choice for all terms except
for migration, which was discretized using the Van Leer scheme [66]. Van Leer method was used
for migration terms since they otherwise suffered from oscillations. Van Leer is a second-order
scheme, that does not have the same disadvantages as CDS. A review of the Van Leer scheme
is provided by van Leer [66].

Temporal discretization is carried out by means of the Backward Euler scheme, ensuring the
stability of the solutions unconditioned by the size of the time step.

23

5 Implementation of the models in
OpenFOAM

In order to create simulations based on the discussed governing equations, new OpenFOAM
solvers were developed. A solver, in the OpenFOAM sense, is an application for numerically
solving a set of governing equations using user-defined properties as well as boundary and ini-
tial conditions. In this section, the general structure of OpenFOAM cases and solvers are
described. This includes a preexisting OpenFOAM solver for diffusive-advective transport of a
scalar (named scalarTransportFoam) since it was used as the basis for the created solvers. This
is done to provide some insight on how these solvers are structured and function in general. The
developed solvers for electrokinetic transport in aqueous solutions (slayFoam) and molten salts
(saltyFoam) are also described.

5.1 OpenFOAM environment

Many software for solving systems of partial differential equations numerically exist. The one
chosen for this thesis is OpenFOAM. OpenFOAM is an open-source CFD software. It is com-
monly used by scientists and engineers for solving various PDE-based problems, which include,
but are not limited to fluid dynamics [23].

Firstly, some background on the general structure of OpenFOAM-based simulations shall be
explained to provide context. The purpose of all used dictionaries and files is explained as well.

Simulation name

0

initial and boundary conditions for all used fields

constant

mesh

constant properties

system

mesh controls

simulation controls

numerical schemes

matrix solution algorithms

instructions for eventual additional functions

Figure 5.1: Diagram showing a general structure of an arbitrary simulation directory in Open-
FOAM.

24

Figure 5.1 showcases the type of files that can be found in a generic OpenFOAM simulation
directory. The three main directories that must be included are ”0”, ”constant”, and ”system”.
Directory ”0” serves as the initial time step of the simulation, storing initial and boundary
conditions for the variables used in the simulation. The ”constant” directory stores properties
that remain constant during the simulation, such as the eventually generated mesh and physical
constants. Finally, the ”system” directory stores the necessary instruction files. This includes the
controls for the meshing process and the time aspects of the simulation, discretization schemes
controls, allowing the user to choose the schemes used for every part of the equations, matrix
inversion method controls, and other dictionaries containing instructions for any additional
functionalities used. These files can easily be changed by the user and allow for a high level of
control over a specific case.

5.1.1 Meshing in OpenFOAM

Many methods for meshing exist. The goal is to choose the meshing method capable of pro-
ducing accurate enough results, without using unreasonable computational resources. Due to
the simplicity of the geometries investigated in the present work, OpenFOAMs’ blockMesh is
adequate.

The blockMesh utility allows one to generate a cartesian mesh consisting of three-dimensional
hexahedral blocks in accordance with the user-defined specifications. It writes out the mesh
data for points, faces, cells, and boundaries in a directory called polyMesh that are later used
for computations. The polyMesh directory contains the mesh as a set of hierarchical lists that
define the computational grid. This way, the mesh is defined by a list of volumes, where each
volume is defined by a list of planar surfaces, and subsequently each surface is defined by a list
of points. The size, shape and number of divisions of the mesh as well as boundary types are
chosen by the user.

5.2 ScalarTransportFoam - the basis for the developed solvers

Many OpenFOAM solvers, including scalarTranportFoam, consist of three main parts collected
in a main directory: a file containing the code solving the equations in .C format (scalarTrans-
portFoam.C), a file defining all the necessary fields and constants in .H format (createFields.H)
and a Make directory, containing files needed for compiling the code, transforming it into a
program one can run.

ScalarTransportFoam is based on the advection-diffusion equation:

∂T

∂t
= ∇ · (Dt∇T)−∇ · (vT), (5.1)

where T is originally temperature but can be replaced with any scalar property of the fluid
transported by advective and diffusive fluxes (concentration, for example), Dt is the thermal
diffusivity of the fluid, which again can be replaced with diffusivity corresponding with the
transported scalar property, and v is the velocity of the fluid.

The software solves this equation with the FVM by approximating it as a system of algebraic
equations written in a matrix form. This form of the equation (5.1) is located in the scalar-
TransportFoam.C file of the solver, written in a way illustrated in a code listing 5.1, with ”//”
indicating a comment explaining the code. The full scalarTransportFoam.C file, together with

25

all other solver files and three example case setups relevant to this report, can be found in the
Appendix.

1 whi le (s imple . loop ()) // time loop
2 {
3 Info<< ”Time=” << runTime . timeName () << nl << endl ;
4

5 whi le (s imple . correctNonOrthogonal ()) // c o r r e c t i o n loop
6 {
7 f vSca la rMatr ix TEqn
8 (
9 fvm : : ddt (T) // accumulation

10 + fvm : : div (phi , T) // advect ion
11 − fvm : : l a p l a c i a n (DT, T) // d i f f u s i o n
12 ==
13 fvOptions (T)
14) ;
15

16 TEqn . r e l ax () ;
17 fvOptions . c on s t r a i n (TEqn) ;
18 TEqn . s o l v e () ;
19 fvOptions . c o r r e c t (T) ;
20 }
21

22 runTime . wr i t e () ;
23 }

Listing 5.1: A part of the scalarTransportFoam.C file that solves equation (5.1) for all mesh cells
and time steps one by one (hence the while (simple.loop()) for time steps).

It is important to discuss the OpenFOAM notation for the matrix form of the equations to
draw parallels between the code and the advection-diffusion equation. fvm is a namespace that
contains the code for calculating the matrix coefficients for the different discretized operators
(here ddt - time derivative, div - divergence, and laplacian is self-explanatory). A namespace
fvc (not used here, but equally as important) contains the code for calculating the actual field
values for various operators using current values.

The equation to be solved is located inside an inner correction loop located inside the outermost
time loop. Thus, this solution is approximated for the whole computational domain for each
time step. Within a time step the equation may be solved several times, corrected in each loop
to achieve a more accurate result. The number of corrector loops applied is defined by the
user. The overall algorithm for scalarTransportFoam, and the developed solvers based on it, is
visualized in Figure 5.2.

26

Figure 5.2: A flowchart illustrating the algorithm of scalarTransportFoam and the developed
solvers.

As illustrated by Figure 5.2, the first step of the solution process is to access all the needed vari-
ables and constants, after which the equations are solved for all time steps. The instructions for
this process are contained in a header file createFields.H. The type of each variable or constant
has to be given. The types used in the present work are volScalarField, surfaceScalarField,
volVectorField, dimensionedScalar, and IOdictionary. The names provide some information
about the variables. ”vol” indicates that the values of the field are given for the cell centres,
as opposed to ”surface” fields, which contain values projected on the cell faces. ”Scalar” and
”Vector” indicate whether the values are scalar or vector. Constants are normally defined as
dimensionedScalars, including dimensionless constants for which all units are to zero. IOdirec-
tory type is used as a placeholder for files that normally contain values of different parameters.
This is done, so that the parameters can be easily changed in the simulation directory, without
having to change and compile the solver files.

Additional information about the variables besides their type is required in the header file. This
is illustrated using a concentration field as an example, presented in the code listing 5.2. This
looks slightly different for dimensionedScalars because they are constant. There, only the object
name, dimensions, and the location file have to be listed besides the constant’s type and name.
In scalarTransportFoam the IOdictionary is defined in a way similar to the fields, except it is
located in the constant directory instead of the timeName directory, doesn’t have to be written
for each time step, and must only be read if modified.

Once a variable is defined, upon running the simulation, OpenFOAM will search for its’ value
in the indicated directory.

27

1 vo l S c a l a rF i e l d C1 // va r i ab l e type and name
2 (
3 IOobject
4 (
5 ”C1” , // f i l e name conta in ing va lue s
6 runTime . timeName () , // d i r e c t o r y to search f o r C1 in
7 mesh , // i nd i c a t i n g mesh ob j e c t
8 IOobject : :MUSTREAD, // f requency o f va lue read ing
9 IOobject : :AUTOWRITE // frequency o f va lue output

10) ,
11 mesh
12) ;

Listing 5.2: Example of a field definition located in createFields.H file.

The objects defined for scalarTransportFoam solver, their types, and locations are presented in
Table 5.1.

Table 5.1: Information about the objects defined in the createFields.H file of the scalarTrans-
portFoam solver.

Object Symbol Type Location

Temperature T volScalarField time directory
Velocity U volVectorField time directory

Transport properties transportProperties IOdictionary constant directory
Conductivity DT dimensionedScalar transportProperties

In order for the scalarTransportFoam.C file to access the information about the variables stored
in the createFields file, it must be called in the code. This is done prior to the introduction of the
equations by adding a line: ”#include ”createFields.H” ”. In the same way, other instructions,
or code, need to be included, ensuring the functioning of the time and correction loops, different
fvm and fvc operators, and more.

5.3 SlayFoam solver for implementation testing

To test the created modelling approach, a slayFoam solver was developed and the simulations
from Scenario 1 presented by Rolle et al. [49] were replicated. SlayFoam solver is essentially
based on the same model as the saltyFoam solver, except the electroneutrality condition is
less strict (making it more suitable for modelling aqueous solutions) and diffusion current is
neglected.

The article [49] investigates ion transport in a dilute aqueous solution through porous media.
Thus, equations (3.9),(3.15) and (3.16) can be employed to model this process resulting in a two-
way coupling between the ion concentrations and the electric field. This is done by the articles’
authors. In order for a simulation based on these equations to produce a stable solution, the
electrical double layer must be resolved. This is computationally costly when working on systems
0.28 m by 0.15 m in size, since the electrical double layer is very small for such systems, and
would require a very fine mesh to be resolved. Therefore, the equation (3.9) was replaced with
equation (3.13), avoiding this issue.

There are two additional differences between the slayFoam model used during the testing and
the one presented in the article [49]. Firstly, the articles’ authors modelled all 16 of the ions
present in the solution. Doing so is not strictly necessary to get qualitatively similar results

28

and capture the main effects of the electrokinetic transport. Simply neglecting the presence of
background ions would not result in a physically attainable model, due to a high inhomogeneity
of the systems’ properties. Thus, the background ions present in the electrolyte were taken into
account mathematically by adding a quantitative contribution they had to the total conductivity
of the solution κ or kappa in code. This background electrolyte conductivity was given the name
kap.

The final difference between the models lies in the fact that the original model from the paper
[49] takes reactions and interactions between the ionic compounds into consideration, and the
developed model does not. These changes were introduced to reduce the computational demand
but will result in less accurate results.

Table 5.2: The notation of variables used in solver codes and the corresponding notation used
in the equations in the report together with the physical meaning behind them.

Notation in
the report

Notation
in code

Physical meaning

ci C1 and C2 Molar concentration
ϕ Fi Electric potential
Di DC1 and DC2 Diffusion coefficient
zi z1 and z2 Ionic charge
ω p Volumetric porosity
κ kappa Ionic conductivity
τ2 tau*tau Tortuosity

p
τ2

Gamma
Coefficient accounting

for porous material effects

∇ϕ gradFi
Gradient of electric potential

(projected on cell faces)

∇ϕ vgradFi
Gradient of electric potential

(cell center values)

- kap
Conductivity of the

background electrolyte

SlayFoam solver is structured in a way similar to the scalarTransportFoam solver, containing
the slayFoam.C and createFields.H files, as well as the Make directory. This solver is based on
the Nernst-Planck and Laplace equations. Thus, two coupled equations must be solved: one
for the concentration distribution (equation (3.16) inserted into equation (3.15)) and one for
the electric potential distribution (equation (3.14)). The equations are again written in matrix
form, as illustrated by the code listing 5.3. The notation of variables used in the code and their
correspondence to the notation used when describing the equations in the present report are
explained in Table 5.2.

Several changes are introduced in this solver when compared to the scalarTransportFoam. The
differences in the mass balance equation codes correspond to the differences between equations
(3.1 and 5.1) and (3.15 and 3.16). The advective term is neglected and a migration term is added
to the specie balance equation on line 13 of the code listing 5.3. The temperature, T , is replaced
with concentration and a second species balance equation is added on lines 23-35 to allow the
user to model the transport of up to two different ionic compounds. Moreover, the Darcy-scale
effects of a porous medium are accounted for by scaling the relevant equations and constants
with constants p and Gamma. In addition, an equation for calculating the electric potential
field is added in line 41 representing the matrix form of the equation (3.14). Finally, all the
necessary new parameters and variables are added as well, such as gradFi (gradient of electric

29

potential on the cell faces) on line 7 and kappa on line 37, calculated using equation (3.19). A
field named vgradFi was added on line 45 which was not necessary for the computations but
was helpful during post-processing providing insight into nodal values of the electric potential
gradient.

1 whi le (s imple . loop ())
2 {
3 In f o << ”Time=” << runTime . timeName () << nl << endl ;
4

5 whi le (s imple . correctNonOrthogonal ())
6 {
7 s u r f a c e S c a l a rF i e l d gradFi=fvc : : snGrad (Fi) ∗mesh . magSf () ;
8

9 f vSca la rMatr ix C1Eqn
10 (
11 p∗fvm : : ddt (C1)
12 − fvm : : l a p l a c i a n (Gamma∗DC1, C1)
13 − z1∗F∗fvm : : div (Gamma∗mu1∗gradFi ,C1) //migrat ion
14 ==
15 fvOptions (C1)
16) ;
17

18 C1Eqn . r e l ax () ;
19 fvOptions . c on s t r a i n (C1Eqn) ;
20 C1Eqn . s o l v e () ;
21 fvOptions . c o r r e c t (C1) ;
22

23 f vSca la rMatr ix C2Eqn
24 (
25 p∗fvm : : ddt (C2)
26 − fvm : : l a p l a c i a n (Gamma∗DC2, C2)
27 − z2∗F∗fvm : : div (Gamma∗mu1∗gradFi ,C2)
28 ==
29 fvOptions (C2)
30) ;
31

32 C2Eqn . r e l ax () ;
33 fvOptions . c on s t r a i n (C2Eqn) ;
34 C2Eqn . s o l v e () ;
35 fvOptions . c o r r e c t (C2) ;
36

37 kappa=kap+F∗F∗(z1∗ z1∗Gamma∗mu1∗C1+Gamma∗ z2∗ z2∗mu2∗C2) ;
38

39 f vSca la rMatr ix FiEqn
40 (
41 fvm : : l a p l a c i a n (fvc : : i n t e r p o l a t e (kappa) , Fi)
42) ;
43 FiEqn . s o l v e () ;
44

45 vgradFi=fvc : : grad (Fi) ; // c e l l c en t e r va lue s o f g rad i ent o f
e l e c t r i c p o t e n t i a l added to he lp monitor the va lue s

46 }
47 runTime . wr i t e () ;
48 }

Listing 5.3: Equations of the slayFoam solver written in matrix form located in the slayFoam.C
file.

Corresponding changes were made to the createFields.H file, summarized in Table 5.3. The new
constants were stored in the ”properties” IOdictionary for convenience as well. The variables
and constants were assigned types that were appropriate for them and can be found in the

30

Appendix 11.2.2.

Table 5.3: Summary of changes made to variables and constants in scalarTransportFoam when
creating slayFoam.

Variable/constant in
scalarTransportFoam

Replaced with variable/
constant in slayFoam

New variables New constants

T C1, C2 Fi, gradFi,
z1, z2

mu1, mu2,

DT DC1, DC2 kappa
p, Gamma
F, T, R, kap

5.4 SaltyFoam for electrokinetic transport in molten salt

To be able to describe a molten salt electrolyte-based system, adjustments to the solver had to
be made. Parts of these adjustments correspond with the differences between modelling molten
salt solutions and aqueous ones described in the theory section, while parts are made to better
suit the Na-Zn LMB electrolyte modelling.

The matrix forms of the equations used were written in a way shown in the code listing 5.4.

1 whi le (s imple . loop ())
2 {
3 In f o << ”Time=” << runTime . timeName () << nl << endl ;
4

5 whi le (s imple . correctNonOrthogonal ())
6 {
7 Gamma=p/(tau∗ tau) ;
8 s u r f a c e S c a l a rF i e l d gradFi=fvc : : snGrad (Fi) ∗mesh . magSf () ;
9 f vSca la rMatr ix C1Eqn

10 (
11 p∗fvm : : ddt (C1)
12 − fvm : : l a p l a c i a n (Gamma∗DC1, C1)
13 − z1∗F∗fvm : : div (fvc : : i n t e r p o l a t e (Gamma) ∗mu1∗gradFi ,C1)
14 ==
15 fvOptions (C1)
16) ;
17

18 C1Eqn . r e l ax () ;
19 fvOptions . c on s t r a i n (C1Eqn) ;
20 C1 . s o l v e () ;
21 fvOptions . c o r r e c t (C1) ;
22

23 f vSca la rMatr ix C2Eqn
24 (
25 p∗fvm : : ddt (C2)
26 − fvm : : l a p l a c i a n (Gamma∗DC2, C2)
27 − z2∗F∗fvm : : div (fvc : : i n t e r p o l a t e (Gamma) ∗mu2∗gradFi ,C2)
28 ==
29 fvOptions (C2)
30) ;
31

32 C2Eqn . r e l ax () ;
33 fvOptions . c on s t r a i n (C2Eqn) ;
34 C2Eqn . s o l v e () ;
35 fvOptions . c o r r e c t (C2) ;
36

37 C3 = (−z1∗C1−z2∗C2) /z3

31

38

39 kappa=F∗F∗(z1∗ z1∗mu1∗Gamma∗C1+z2∗ z2∗mu2∗Gamma∗C2+z3∗ z3∗mu3∗Gamma∗C3) ;
40 //k i s introduced to check the e l e c t r o n e u t r a l i t y o f the s o l u t i o n
41 k=z1∗C1+z2∗C2+z3∗C3 ;
42

43 f vSca la rMatr ix FiEqn
44 (
45 fvm : : l a p l a c i a n (fvc : : i n t e r p o l a t e (kappa) , Fi)
46 + F∗ f v c : : l a p l a c i a n (z1∗Gamma∗DC1,C1)
47 + F∗ f v c : : l a p l a c i a n (z2∗Gamma∗DC2,C2)
48 + F∗ f v c : : l a p l a c i a n (z3∗Gamma∗DC3,C3)
49) ;
50 FiEqn . s o l v e () ;
51

52 vgradFi=fvc : : grad (Fi) ;
53

54 i d i f = −F∗(z1∗DC1∗Gamma∗ f v c : : grad (C1)+z2∗DC2∗Gamma∗ f v c : : grad (C2)+
55 z3∗DC3∗Gamma∗ f v c : : grad (C3)) ;
56

57 i t o t = i d i f −F∗F∗ f v c : : grad (Fi) ∗(z1∗ z1∗mu1∗Gamma∗C1+z2∗ z2∗mu2∗Gamma∗C2
58 +z3∗ z3∗mu3∗Gamma∗C3) ;
59 }
60

61 runTime . wr i t e () ;
62 }

Listing 5.4: Equations of the saltyFoam solver written in matrix form located in the saltyFoam.C
file.

Firstly, this solver is made with the capability of modelling the 3 ions. This was done in order
to capture the transport of the ions essential for the functioning of a Na-Zn LMB: Na+, Zn2+,
and Cl−. So compared to the slayFoam solver, it includes an additional equation for calculating
the concentration of a third ion (Cl−) based on the electroneutrality condition (equation (3.10)),
shown on line 37 in code listing 5.4 below. C1 was used for Na+ concentration, C2 - for Zn2+,
and C3 - for Cl−.

Secondly, a property k was added on line 41 measuring the charge present in the solution used
to check if the electroneutrality condition is properly enforced.

Additionally, since this solver is made for molten salt modelling, equation (3.13) was used to
calculate the electric potential field and enforce electroneutrality replacing equation (3.14) used
in slayFoam on lines 45-48 of code listing 5.4.

The same equation (3.19) is used to calculate the electrolyte conductivity, kappa, however, no
background electrolyte is present, and thus, its’ conductivity, kap, is not present. In this equa-
tion, the conductivity of the porous material comprising the diaphragm was assumed negligible
in comparison to the conductivity of the molten salt, because alumina has previously been used
for this purpose [10] and it has a low conductivity [67].

Finally, new functionalities calculating the total, itot, and the diffusion, idif, currents are added
on lines 54-58, based on equation (3.18) with no advection.

Porosity and tortuosity are changed from constants to scalar fields (volScalarField) when com-
pared to the slayFoam solver to enable them to have different values in different locations in
space. This allows the user to introduce a portion of space that mathematically behaves as a
porous medium while keeping the rest of the space unchanged.

For a molten salt case simulated in this project, the simulation directory could initially look in the
way presented in Figure 5.3. This structure in particular was used for the fixed potential charging

32

and discharge simulations done with the saltyFoam solver. Here, C1, C2, Fi, p, and tau are
variable fields used in the simulation. In the constant directory, PolyMesh stores the generated
mesh files, while the properties file stores the physical constants. BlockMeshDict contains the
meshing parameters. ControlDict includes time and results-generation controls. FvSchemes and
fvSolution files store interpolation schemes for all equation terms and matrix inversion methods
respectively. SetFieldsDict stores controls for an additional functionality allowing the user to
assign fields different values in specified areas of the mesh. Finally, setExprFieldsDict also
contains the controls for a functionality that enables one to initiate variable fields where the
resulting values are a function of space and/or time. If a simulation employs coded boundary
conditions, upon starting a simulation, a new directory called dynamicCode, storing instructions
for coded boundary conditions, will be created in addition to the existing main three. Thereafter,
new directories with calculated fields will be produced for different timesteps, with the frequency
specified by the user.

Simulation name

0

C1

C2

Fi

p

tau

constant

polyMesh

properties

system

blockMeshDict

controlDict

fvSchemes

fvSolution

setFieldsDict

setExprFieldsDict

Figure 5.3: Diagram showing the structure of an OpenFOAM simulation directory typical for
the simulations created in the present work.

5.4.1 Implementation of concentration boundary conditions in OpenFOAM

Concentration boundary conditions for the molten salt simulations done with the saltyFoam
solver can be categorized into four types: zero gradient, fixed gradient, calculated gradient, and
zero flux. The two lastly-mentioned BC types require more than simple value input, and the
implementation of all these types will be described further.

Zero gradient BC is a pre-existing OpenFOAM BC type, that ensures no gradient of a property

33

over a distance from a cell next to a boundary to the boundary itself. Thus, it simply extrapolates
the value to the patch from the nearest cell. It is well-suited for boundaries that do not affect
the transport.

Fixed gradient BC for concentration is based on the value of the applied fixed current density,
as expressed by the following relation used for calculating its’ value [47, 48]:

∇ci,f · nf =
if

zFDi
, (5.2)

where nf is a vector normal to the boundary and the subscript f , in general, indicates a value
being evaluated at the boundary f . The resulting numerical values used for the simulations are
summarized in Table 6.14. This condition is based on the assumption that close to the surface
of an electrode a diffusion-dominated boundary layer exists, where the migrations contribution
to the total flux is negligible, caused by it being close to a metallic electrode that is a lot
more conductive. The current density through the boundary remains fixed, while the potential
difference varies accordingly. This approach can be commonly found in the literature on ionic
transport in the electrolyte layer of batteries [47, 48].

Calculated concentration gradient BC expands the fixed gradient approach, to fit the fixed
potential condition. Thus, here the current density is allowed to vary as a function of time and
space, while the potential difference across the electrolyte is kept constant. This condition can
be expressed mathematically with the given equation:

∇ci,f · nf =
κf∇ϕf
zFDi

, (5.3)

which is equation (5.2) combined with Ohm’s law (3.7).

Since the values of the conductivity and the potential gradient at the boundary are not explicitly
known at the start of the simulations, this condition can not be set by a simple value as with
fixed gradient BCs. Rather, it must be coded, using the discretized version of equation (5.3),
with the necessary values at the boundary being calculated and updated each time step. In
OpenFOAM, this can be done using codedMixed BC type. The implementation is shown in
code listing 5.5, using Na+ concentration as an example.

1

2 i n l e t
3 {
4 type codedMixed ;
5

6 r e fVa lue uniform 0 . 0 ;
7 r e fGrad i ent uniform 0 . 0 ;
8 va lueFract ion uniform 0 . 0 ;
9

10 name NaFlux ;
11

12 code
13 #{
14 // t ranspor t p r op e r t i e s
15 const s c a l a r z = 1 ;
16 const s c a l a r D1 = 8.01 e−09;
17 const s c a l a r F = 96485;
18

19 // va lue s o f v a r i a b l e s at the patch
20 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,
21 s ca l a r >(”Fi ”) ;
22

34

23 // va lue s o f v a r i a b l e s at the c e l l c en t r e next to boundary patch
24 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
25 const tmp<s c a l a rF i e l d>& kappa O = patch () . lookupPatchField<

vo lS ca l a rF i e l d , s ca l a r >(”kappa”) . pa t ch In t e rna lF i e l d () ;
26

27

28 f o rA l l (patch () . Cf () , faceID)
29 {
30 th i s−>r e fVa lue () = 0 . 0 ;
31 th i s−>va lueFract ion () = 0 . 0 ;
32 th i s−>refGrad () = (kappa O . r e f () [faceID] ∗ (Fi O . r e f () [faceID] −
33 Fi [faceID]) ∗ th i s−>patch () . d e l t aCoe f f s ()) /(z∗F∗D1) ; // the

concent ra t i on grad i en t exp r e s s i on
34 }
35 #};
36

37 codeInc lude
38 #{
39 #inc lude ”fvCFD .H”
40 #};
41

42 codeOptions
43 #{
44 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
45 −I$ (LIB SRC) /meshTools/ ln Inc lude \
46 #};
47 }

Listing 5.5: Calculated gradient boundary condition for Na+ concentration at the left boundary
(next to Na electrode) located in the C1 file in the 0 directory.

Zero flux BC ensures no flux of concentration across a boundary. For cases with no advection,
the migration and the diffusion fluxes must cancel each other out to result in zero total. This
can be expressed mathematically in the following way:

Jtoti = [Di∇ci + ciui∇ϕ]f · nf = 0, (5.4)

Formally, this is a Robin-type (or mixed-type) boundary condition for concentration because
it is a function of both the concentration and its gradient. However, equation (5.4) can be
rewritten into a Neumann-type BCs for easier implementation [46]:

∇ci,f · nf = −ci,f
ui
Di

∇ϕf · nf . (5.5)

Here, the subscript f represents the boundary cell face location.

The implementation of this approach for defining the boundaries was again conducted using
codedMixed BC type. The code listing 5.6 provides an example of what this implementation
looks like for the Na+ ion at the boundary next to the Na electrode in the OpenFOAM case
setup.

35

1 ou t l e t
2 {
3 type codedMixed ;
4

5 r e fVa lue uniform 0 . 0 ;
6 r e fGrad i ent uniform 0 . 0 ;
7 va lueFract ion uniform 0 . 0 ;
8

9 name zeroNaFlux ;
10

11 code
12 #{
13 // t ranspor t p r op e r t i e s
14 const s c a l a r Mu1 = 1.16 e−12;
15 const s c a l a r D1 = 8.01 e−09;
16

17 // va lue s o f v a r i a b l e s at the patch
18 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”Fi ”) ;
19 const s c a l a rF i e l d& C1 = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”C1”) ;
20

21 // va lue s o f v a r i a b l e s at the c e l l c en t e r next to boundary patch
22 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
23

24

25 f o rA l l (patch () . Cf () , faceID)
26 {
27 th i s−>r e fVa lue () = 0 . 0 ;
28 th i s−>va lueFract ion () = 0 . 0 ;
29 th i s−>refGrad () = −(C1 [faceID]∗Mu1/D1) ∗(Fi [faceID] − Fi O . r e f () [

faceID]) ∗ th i s−>patch () . d e l t aCoe f f s () ;
30 // the concent ra t i on grad i ent exp r e s s i on
31 }
32 #};
33

34 codeInc lude
35 #{
36 #inc lude ”fvCFD .H”
37 #};
38

39 codeOptions
40 #{
41 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
42 −I$ (LIB SRC) /meshTools/ ln Inc lude \
43 #};
44 }

Listing 5.6: Zero flux boundary condition for Cl− ions located in the C3 file in the 0 directory.

36

6 Case setups

6.1 Aqueous simulations

Models corresponding to the Scenario 1 simulations conducted by Rolle et al. [49] were created.
One simulation was conducted for each of the three experiments of Scenario 1 (permanganate,
allura red, and new coccine tracer experiments) resulting in a total of 3 simulations. The
simulations implement the approach used in the paper when it comes to treating tortuosity as a
fitting parameter to achieve the centre of mass displacements equal to the ones calculated from
the experiments.

6.1.1 Mesh

The simulations were conducted over a rectangular 2D domain. BlockMesh was chosen as the
meshing method for the conducted simulations due to the simplicity of the shape of the com-
putational domain. It is important to note, that OpenFOAM always uses 3D meshes, however,
2D simulations can be conducted by setting the boundaries normal to the third dimension as
”empty” (front and back boundaries for the relevant simulations). No mesh refinement is neces-
sary for that third direction, since no gradients will be present there and it will not be included
in the computations. This approach also allows properties like current density to be meaningful.
The top and bottom boundary types were set as walls, while the left (inlet) and right (outlet)
boundary types were defined as patches. The boundaries and their types are illustrated by
Figure 6.1.

37

Bottom

Le
ft

Ri
gh
t

Top

x

y

z

Figure 6.1: An illustration on the computational domain used in aqueous simulations: the type
of the pink top and bottom boundaries is set to wall, the type of the blue left and
right boundaries is set to patch, while the clear front and back boundaries are set as
empty.

The same mesh was used for the migration simulations of all three tracers. The computational
domain size was set to 28x15 cm (in correspondence with the experiments of Rolle et al. [49])
with 280x150 mesh divisions. This mesh is presented in Figure 6.2. These parameters resulted
in a mesh finer than the one used in the paper by Rolle et al. [49] and should therefore be
fine enough to produce the desired results. The mesh resolution was equal in both directions to
ensure no dependence of the numerical error on the directions in space.

Figure 6.2: Mesh used for the aqueous simulations created using blockMesh with 280 divisions
in the x-direction and 150 - in the y-direction (blue lines).

6.1.2 Physical properties

The values of the simulation-specific ionic property constants used in the three simulations done
when verifying the model against the results from the Rolle et al. paper [49] are presented in
Table 6.1. These values correspond with the ones used in the article. Number 1 in the names of

38

the properties indicates the main tracer chemical, while number 2 is reserved for the properties
of a supporting traces compound where relevant.

Table 6.1: Transport properties used for the aqueous simulations.

Simulation/
tracer chemical

z1
[-]

z2
[-]

DC1
[m2/s]

DC2
[m2/s]

mu1
[s·mol/kg]

mu2
[s·mol/kg]

Permanganate -1 0 1.5·10−9 0 6.12·10−13 0
Allura Red -2 -2 5.46·10−10 9.83·10−10 2.23·10−13 4.01·10−13

New Coccine -3 -2 4.06·10−10 9.83·10−10 1.66·10−13 4.01·10−13

The constants equal for the three cases are presented in Table 6.2.

Table 6.2: A summary of constants used in all aqueous simulations.

Constant Value Significance

R 8.314 kg·m2/s2·K·mol
the universal
gas constant

T 295 K temperatue
F 96485 A·s/mol Faraday constant
ω 0.4 porosity

The values of fitted tortuosity, τ2, and estimated background electrolyte conductivity, kap, for
all simulations, are presented in Table 6.3.

Table 6.3: Porous matrix tortuosity, τ2, and background electrolyte conductivity, kap, values
used in simulations with permanganate, Allura Red, and New Coccine tracer plumes.

Simulation
τ2

[-]
kap
[S/m]

Permanganate 1.44 2.91·10−2

Allura Red 1.18 2.92·10−2

New Coccine 1.29 3.07·10−2

The background electrolyte conductivity, kap, was estimated using the average values of the re-
ported experimental current and electric potential measurements [49] together with the physical
dimensions of the system and applying the extended version of equation (3.7):

kap =
Il

∆ϕA
, (6.1)

where l is the distance across which the electric potential is measured and A is the estimated
area perpendicular to the current flow taken up by the electrolyte. The following relation was
used as an estimate for A:

A = Htω, (6.2)

where H is the hight of the system, t is its’ thickness and ω is the accessible area porosity of
the matrix material. Since accessible area porosity is unknown for the system, it was assumed
to be equal to the known accessible volumetric porosity.

39

The conductivity of the porous matrix itself is neglected since the conductivity of glass is nor-
mally much lower than the contribution of the dissolved salts [68]. In addition, this way of
estimating the conductivity of the system accounts for the contribution of the surface conduc-
tivity, which is an important term, that would not be accounted for if the conductivity was
estimated from the ionic concentrations using equation (3.19) [69].

6.1.3 Boundary and initial conditions

Concentrations

Table 6.4 presents the initial concentrations of the tracer plumes. The concentration of these
ions in the rest of the solution outside of the plume was set to 0. C1 here is the concentration
of the main tracer compounds like permanganate, Allura Red or New Coccine, while C2 is
the concentration of SO2−

4 that was present in the plumes during the 2 out of 3 experiments.
ZeroGradient concentration boundary condition was applied in the top, bottom, left, and right
boundaries.

Table 6.4: Initial concentrations of tracer plumes.

Simulation
C1

[mM]
C2

[mM]

Permanganate 3 0
Allura Red 2.4 0.6
New Coccine 2.25 1.125

setExprFields functionality was used in order to achieve the desired tracer concentrations in the
plumes while keeping them 0 elsewhere.

Electric potential

Dirichlet-type boundary conditions (BCs) for electric potential were used on the left and right
boundaries. The values on the left side were set to 0 as a reference point for all simulations,
while on the right side, they were set to a value corresponding to the average measured potential
reported for each of the experiments by Rolle et al. [49]. These values are presented in Table
6.5. The top and bottom boundaries were set to zeroGradient.

Table 6.5: Fixed value left and right boundary conditions for the electric potential for all aqueous
cases.

Simulation
Left Fi BC

[V]
Right Fi BC

[V]

Permanganate 0 143.2
Allura Red 0 158.9
New Coccine 0 146.1

6.1.4 Solution and time controls

The GAMG solver was used for solving the matrix form of the equations for C1, C2, and Fi. The
parameters used with GAMG are listed in Table 6.6 in a way they are listed in the fvSolution
file.

40

Table 6.6: Parameters used for matrix solution algorithms for aqueous simulations.

C1 and C2
solver GAMG

smoother DILU
tolerance 10−6

reltol 0
Fi

solver GAMG
smoother GaussSeidel
tolerance 10−8

reltol 0

The numerical schemes used for approximating all needed values are summarized in Table 6.7.
The schemes recommended for scalarTransportFoam (given in a tutorial case for that solver)
were used for all terms of the equations except the new migration term added in the slayFoam
solver. The divergence schemes necessary for solving the migration term were set to the vanLeer
scheme since it was found to produce stable results.

Table 6.7: Numerical schemes used in aqueous solution simulations done using the slayFoam
solver.

Time schemes
default Euler

Gradient schemes
default Gauss linear

Divergence schemes
default Gauss vanLeer

Laplacian schemes
default Gauss linear corrected

Interpolation schemes
default linear

Surface gradient schemes
default corrected

All simulations were run for a total transport time of 7200 s each (corresponding with the work
presented by Rolle et al. [49]) with a time advancement step size of 10 s.

6.2 Darcy-scale molten salt simulations

A total of 42 simulations of ion transport in molten salt electrolyte were conducted. Firstly, 11
simulations to check grid convergence were created, distinguished by a letter G in their names
(for example G1, G2 and so on). Additionally, 14 simulations were run to check for time step
convergence (8 with a current density of 100 mA/cm2 and 6 with a current density of 2000
mA/cm2), indicated by the letter T in their names and a number reflecting the current density
used (for example T100.1, T100.2 and so on and T2000.1, T2000.2 and so forth). This notation
for the convergence testing simulations is summarized in Table 6.8.

41

Table 6.8: Summary of the notation used for convergence testing simulations run under fixed
current conditions for a charging battery, where GCT stands for Grid Convergence
Testing and TSCT stands for Time-Step Convergence Testing.

Simulation
name

Number of
grid divisions

Time step
size [s]

i
[mA/cm2]

Purpose

G1 48x24 5 100 GCT
G2 50x25 5 100 GCT
G3 96x48 5 100 GCT
G4 100x50 5 100 GCT
G5 200x100 5 100 GCT
G6 240x120 5 100 GCT
G7 400x200 5 100 GCT
G8 600x300 5 100 GCT
G9 800x400 5 100 GCT
G10 1000x500 5 100 GCT
G11 1200x600 5 100 GCT

T100.1 400x200 1000 100 TSCT
T100.2 400x200 500 100 TSCT
T100.3 400x200 100 100 TSCT
T100.4 400x200 50 100 TSCT
T100.5 400x200 10 100 TSCT
T100.6 400x200 5 100 TSCT
T100.7 400x200 1 100 TSCT
T100.8 400x200 0.5 100 TSCT
T2000.1 400x200 5 2000 TSCT
T2000.2 400x200 1 2000 TSCT
T2000.3 400x200 0.5 2000 TSCT
T2000.4 400x200 0.1 2000 TSCT
T2000.5 400x200 0.05 2000 TSCT
T2000.6 400x200 0.01 2000 TSCT

Three different fixed current densities were investigated under both charging and discharging bat-
tery conditions. These simulations are named FCC100, FCC1000, FCC2000, FCD100, FCD1000,
and FCD2000, where the letters FC in the names stand for ”fixed current”, the third letters
C and D indicate the charging and discharging states respectively and the numbers correspond
with the current density used (i.e. 100 mA/cm2, 1000 mA/cm2, and 2000 mA/cm2).

Four charge and four discharge simulations under fixed potential differences were conducted,
named FPC0.025, FPC0.333, FPC0.679, FPC0.99 and FPD0.018, FPD0.236, FPD0.48, and
FPD0.99, named using the same principle as for fixed current simulations, where the letters FP
now stand for ”fixed potential”, while the numbers reflect the magnitude of the applied fixed
electric potential difference between the left and right boundaries. The notation used for simula-
tions run under fixed current density and fixed potential difference conditions is summarized in
Table 6.9. The three lowest potential differences used in charging and discharging fixed poten-
tial difference cases correspond with the average potential differences observed during the fixed
current density simulations. More specifically, for simulation FPC0.025 the used voltage of 0.025
V corresponds with the average potential difference observed for simulation FCC100 over time.
Equivalently, FPC0.333 corresponds with FCC1000, FPC0.679 - with FCC2000, FPD0.018 -
with FCD100, FPD0.236 - with FCD1000, and finally FPD0.48- with FCD2000. The remaining
two fixed potential difference simulations, FPC0.99 and FPD0.99, apply a potential difference

42

that is based on the voltages recorded in lab-scale physical experiments done on the Na-Zn LMB
cell by Xu et al. [10].

Table 6.9: Summary of the notation used for fixed current density and fixed potential difference
charging and discharging simulations.

Simulation
name

Fixed
parameter

Process
Fixed i

[mA/cm2]
Fixed ∆ϕ

[V]

FCC100 Current Charging 100 -
FCC1000 Current Charging 1000 -
FCC2000 Current Charging 2000 -
FCD100 Current Discharging 100 -
FCD1000 Current Discharging 1000 -
FCD2000 Current Discharging 2000 -
FPC0.025 Potential Charging - 0.025
FPC0.333 Potential Charging - 0.333
FPC0.679 Potential Charging - 0.679
FPC0.99 Potential Charging - 0.99
FPD0.018 Potential Discharging - 0.018
FPD0.236 Potential Discharging - 0.236
FPD0.48 Potential Discharging - 0.48
FPD0.99 Potential Discharging - 0.99

Finally, different diaphragm parameters were investigated by conducting simulations PT0.6,
PT0.85, and PT0.95, where the number in the name indicates the diaphragm porosity used.
Aside from varying porosity and tortuosity values, these cases had the same setup as simulation
FCC100, with case PT0.85 being the same as FCC100 except for the chosen end time. The
parameters used for these simulations are summarized in Table 6.10. The tortuosity values used
were based on a tortuosity-porosity relation (valid for ω ∈[0.5,1]) described by Matyka et al.
[70]:

τ = a(1− ω) + 1, (6.3)

where a is a fitting parameter, equal to 0.38 for the conducted simulations, calculated using
the original values of ω = 0.85 and τ2 = 1.12, chosen based on the results from previous work
conducted on the solute transport through a porous diaphragm in Na-Zn LMB [18].

Table 6.10: Summary of the notation and parameters used for diaphragm properties’ testing
fixed current density charging simulations.

Simulation
name

Porosity,
ω

Tortuosity,
τ2

Fixed i
[mA/cm2]

PT0.6 0.6 1.32 100
PT0.85 0.85 1.12 100
PT0.95 0.95 1.04 100

6.2.1 Mesh

The computational domain size was set to 8 cm in the x-direction and 4 cm in the y-direction.
The domain was divided into 80000 cells, 400 in the x-direction and 200 in the y-direction for

43

all simulations except the simulations done for grid convergence investigation. As illustrated in
Figure 6.3 the left and right patches were set to represent the electrolyte next to the Na and Zn
electrodes respectively. Top and bottom boundaries were defined as walls, while front and back
boundaries were kept empty to keep the simulations 2D.

Bottom

Le
ft

(N
a

el
ec

tr
od

e
si

de
)

Ri
gh

t (
Zn

 e
le

ct
ro

de
 si

de
)Top

x

y

z

Figure 6.3: An illustration on the computational domain used in molten salt simulations: the
pink top and bottom boundaries are defined as walls, the blue left and right boundary
types are set to patch, while the clear front and back boundaries are set as empty.

6.2.2 Physical properties

The temperature was set to 833 K for all simulations corresponding to the temperature used
during physical experiments on the Na-Zn LMBs [10].

All the compound-specific variables and constants were distinguished by numbers in the names.
Number 1 corresponds with Na+ ion (meaning properties like C1, z1, mu1 and so on belong to
the Na+ ion), 2 - with Zn2+, and 3 - with Cl−.

Transport properties of the modelled species are comprised in Table 6.11. These values are based
on the available data at 1100K in NaCl [71]. The value used for Zn is the diffusion coefficient
for cadmium due to more appropriate values being unavailable.

Table 6.11: Diffusion coefficients used in all molten salt electrolyte simulations for the three
modelled ionic species.

Ion
Used diffusion

coefficient [m2/s]

Na+ 8.01·10−9

Zn2+ 6.35·10−9

Cl− 7.45·10−9

The diaphragm properties were kept constant, with ω = 0.85 and τ2 = 1.12 for all simulations,
except simulations PT0.6, PT0.85, and PT0.95, where those were varied in ways described
earlier. The chosen porosity of 0.85 is based on the porosity of the diaphragm used in physical

44

experiments done on the Na-Zn LMB cell, while the tortuosity of 1.12 corresponds with the
value estimated for such diaphragm in earlier work [18].

The universal constants used in all molten salt simulations are given in Table 6.12.

Table 6.12: A summary of universal constants used in all molten salt simulations.

Constant Value Significance

R 8.314 kg·m2/s2·K·mol
the universal
gas constant

F 96485 A·s/mol Faraday constant

6.2.3 Boundary and initial conditions

Concentration

The initial concentration distributions differ for charge and discharge simulations. For the
charging simulations, the initial concentration of Zn2+ ions in the electrolyte was set to 0. NaCl
was assumed to be the only salt present in the electrolyte to simplify the system since CaCl2
is not involved in the cell reaction. The initial concentration Na+ ions was calculated from the
available data on the density of molten NaCl and its’ molar mass according to equation (6.4):

cion = xion
ρsalt
Msalt

, (6.4)

where xion is the stochiometric coefficient of the considered ion in the relevant salt (equal to 1
for both Na+ and Cl− in NaCl), ρsalt is the density of the salt, andMsalt is its’ molar mass. The
value of molten NaCl density at 1100 K was used, ρNaCl = 1542 kg/m3 instead of the working
temperature of 833 K. This was the lowest temperature at which the density data was available,
mostly due to the pure NaCl being solid at temperatures below 1074 K under atmospheric
pressure [72].

For discharge simulations, the initial concentration on the left side of the diaphragm was set to
100 mol% NaCl, while inside of the diaphragm and on its right size, it was set to around 43
wt% NaCl and 57 wt% ZnCl2. Using NaCl-ZnCl2 salt mixture density data at 843 K and 53.3
mol% ZnCl2 reported by Janz et al. [73] ρmixture = 2331 kg/m3, this corresponds with 17111.6
mol NaCl/m3 salt and 9766.2 mol ZnCl2/m

3 in terms of molar concentration, calculated using
the following relation:

csalt = wsalt
ρmixture
Msalt

, (6.5)

where wsalt is the weight fraction of a specific salt in the salt mixture. These initial concentration
distributions are illustrated in Figure 6.4. No initial conditions for Cl− ion concentration were
needed, because it was calculated from the electroneutrality condition.

45

Figure 6.4: Initial concentration conditions for Na+ and Zn2+ ions for discharge process simula-
tions (all FCD and FPD simulations).

The boundary condition types for Na+ and Zn2+ concentrations used for all simulations are
summarized in Table 6.13. No boundary conditions were necessary for the calculation of the
Cl− concentration field, since it was based on the electroneutrality condition and not a mass-
balance equation.

Table 6.13: The overview of the concentration boundary condition types used for Na+ and Zn2+

ions.

Simulations
cNa+ (C1) BC type cZn2+ (C2) BC type

Left boundary Right boundary Left boundary Right boundary

G1-G11
T100.1-T100.8

T2000.1-T2000.6
All FCC
All FCD
All PT

Fixed gradient,
calculated using
equation (5.2)
(based on fixed

current)

Zero flux,
based on

equation (5.5),
implementation
shown in code
listing 5.6

Zero flux Fixed gradient

All FPC
All FPD

Calculated gradient,
based on

equation (5.3),
implementation
shown in code
listing 5.5

(based on fixed
potential)

Zero flux Zero flux
Calculated
gradient

For simulations with fixed applied current, the fixed concentration gradient BCs based on the
applied current were used for both ionic specie at the boundaries across which they are trans-
ported. Their values, calculated using equation (5.2), are presented in Table 6.14.

46

Table 6.14: Values used for the fixed gradient concentration BCs for the fixed current density
simulations.

Simulation
∇cNa+ , [mol/m4]

at the left boundary
∇cZn2+ , [mol/m4]

at the right boundary

FCC100 -1.29·106 6.96·105
FCC1000 -1.29·107 6.96·106
FCC2000 -2.59·107 1.39·107
FCD100 1.29·106 -6.96·105
FCD1000 1.29·107 -6.96·106
FCD2000 2.59·107 -1.39·107

As presented in Table 6.13, both Na+ and Zn2+ were set to experience zero flux at the electrode
opposite of their own. ZeroGradient BC was applied at the top and bottom boundaries.

Electric potential

For convergence testing and the fixed current simulations, Neumann-type BCs were used for
the electric potential on the left patch, meaning the electric potential gradient was given at that
boundary. This was implemented using fixedGradient boundary condition type in OpenFOAM.
The value of the gradient at the boundary on the electrolyte side was assumed to be equal to
the gradient at that boundary on the electrode side. This assumption is equivalent to assuming
no charge-transfer overpotential, which is believed to be very low in LMB due to liquid-liquid
interfaces. This approach avoids the use of the variable conductivity of salt. It was therefore
calculated for a given current density with the conductivity of Na metal using Ohm’s law:

∇ϕ = − i

κ
. (6.6)

The conductivity of Na at 873 K was used, κ873KNa = 3.1 ·106S/m. The resulting electric potential
gradient values for the different current densities used are presented in Table 6.15. The potential
BC at the right boundary was given as a fixed value of 0 V, while the top and bottom boundaries
were set to zeroGradient.

The initial electric potential for the fixed current simulations was set to 0 everywhere besides
the boundaries.

Table 6.15: Electric potential fixed gradient boundary condition values for the left boundary for
all fixed current density molten salt electrolyte simulations.

Simulations
Current density,
i [mA/cm2]

∇ϕ, [V/m]
at the left boundary

FCC100
G1-G11

T100.1-T100.8
PT0.6, PT0.85, PT0.95

100 3.23·10−4

D100 100 -3.23·10−4

C1000 1000 3.23·10−3

D1000 1000 -3.23·10−3

C2000
T2000.1-T2000.6

2000 6.45·10−3

D2000 2000 -6.45·10−3

47

For the fixed electric potential difference simulations, the potential values at the left and
right boundaries were set using fixedValue BC type in OpenFOAM. The right boundary was kept
at 0 V for all cases, while the value at the left boundary was adjusted to fit the desired potential
difference. An initial linear potential distribution was introduced between the boundaries to
avoid a large potential jump at the beginning of the simulation, destabilizing the solution to the
model. This was done using the setExprFields functionality in OpenFOAM. After the first time
step, the potential distribution is calculated and updated to match the actual solution to the
model. The potential boundary and initial conditions for these simulations are summarized in
Table 6.16.

Table 6.16: Values used for fixed value potential BCs and in initial distribution conditions for
the fixed electric potential difference simulations.

Simulation
name

ϕ at the left
boundary [V]

ϕ at the right
boundary [V]

Initial ϕ
distribution [V]

FPC0.025 0.025 0 0.025-0.3125x
FPC0.333 0.333 0 0.333-4.1625x
FPC0.679 0.679 0 0.679-8.4875x
FPC0.99 0.99 0 0.99-12.375x
FPD0.018 0.018 0 0.018-0.225x
FPD0.236 0.236 0 0.236-2.95x
FPD0.48 0.48 0 0.48-6x
FPD0.99 0.99 0 0.99-12.375x

6.2.4 Solution and time controls

The GAMG solver was used for solving the matrix form of the equations for C1, C2, C3, and
Fi. The parameters used with the GAMG solver were unchanged from the ones used for the
aqueous solution simulations listed in Table 6.6, except for the fact that C3 field was added
following the same setup as C1 and C2.

The numerical schemes used for these simulations were kept the same as for the aqueous simu-
lations as well and can be found in Table 6.7.

The chosen time controls for convergence testing simulations are presented in Table 6.17. The
output frequency was adjusted to fit the end time well, resolving the variations in time, without
producing unnecessary high amounts of data. The values are not mentioned here, because they
do not affect the computational process itself. The rest of the time controls were left unchanged
from the recommended values from the scalarTransportFoam tutorial case.

48

Table 6.17: Time controls used for the convergence testing simulations.

Simulation
name

Time step
size [s]

End time
[s]

G1 5 15000
G2 5 15000
G3 5 15000
G4 5 15000
G5 5 15000
G6 5 15000
G7 5 15000
G8 5 15000
G9 5 15000
G10 5 15000
G11 5 15000

T100.1 1000 30000
T100.2 500 30000
T100.3 100 30000
T100.4 50 30000
T100.5 10 30000
T100.6 5 30000
T100.7 1 30000
T100.8 0.5 30000
T2000.1 5 140
T2000.2 1 140
T2000.3 0.5 140
T2000.4 0.1 140
T2000.5 0.05 140
T2000.6 0.01 140

At a certain point in time during the charging of the battery, the concentration of Na+ ions
at the left boundary reaches zero, as a consequence of Na+ being consumed at that boundary.
The last reported time step before that point for each simulation was used as the ending point
or end time. Equivalently, for the discharging battery simulations the last reported time step
before the time at which the Zn2+ concentration has reached zero was used as the end time.
An exception was made for simulations FPC0.025 and FPD0.018 where an end time of 46000 s
was chosen since the driving force was low and the process was slow. The chosen end times and
time step sizes for the rest of the molten salt simulations are listed in Table 6.18.

49

Table 6.18: Time controls used for the fixed current density, fixed potential difference, and di-
aphragm testing simulations.

Simulation
name

Time step
size [s]

End time
[s]

FCC100 5 46000
FCC1000 0.2 460
FCC2000 0.1 110
FCD100 5 22000
FCD1000 0.2 255
FCD2000 0.1 72
FPC0.025 10 46000
FPC0.333 1 6800
FPC0.679 0.5 1100
FPC0.99 0.1 420
FPD0.018 10 46000
FPD0.236 2 12200
FPD0.48 1 2800
FPD0.99 0.1 610
PT0.6 5 11200
PT0.85 5 10200
PT0.9 5 10000

50

7 Results

7.1 Verification of the results

The expected displacements of the plum’s centres of mass, S, (as reported by Rolle et al. [49])
and the displacements achieved in the conducted simulations, S′, are presented in Table 7.1.
With the chosen tortuosity values, τ2, the achieved centre of mass displacement values are equal
to the reported ones (to the extent of the accuracy of the reported values).

Table 7.1: Values of the centre of mass displacements reported by Rolle et al. [49] (S) and
achieved in the conducted simulations (S′).

Tracer chemical
Reported
S [cm]

Simulated
S′ [cm]

Permanganate 14 14
Allura Red 12.5 12.5
New Coccine 12 12

51

Figure 7.1: Results of the permanganate tracer simulation from [49] (a) compared to the results
of the permanganate simulation produced using slayFoam solver (b).

From the results presented in Figures 7.1, 7.2, and 7.3 it is apparent that the model created
in the present work exhibits similar transport behaviour as the model created by Rolle et al.
[49]. The plume’s centres of mass are transported a distance equal to the reported values and
in the same direction as them. The tortuosity values used in the conducted simulations (τ2 ∈
[1.29, 1.44]) are close to the ones used in the article [49] (τ2 ∈ [1.30, 1.43]) as well. However,
the resulting shapes and sizes of the plumes differ noticeably from the ones achieved by Rolle
et al. [49]. For permanganate tracer simulation the observed plume shapes themselves and the
concentration distribution within them are similar to the reported ones, in contrast with their
size (of the degree of tracer spreading out), which is smaller in the present work. The shapes
observed in allura red and new coccine simulation’s results are less round or symmetrical and
have a more uneven concentration distribution than that of the results reported by Rolle et al.
[49]. Thus, the model implemented in the slayFoam solver underpredicts the degree of tracer
spreading for all tested tracer compounds. This could be the result of the simplifications and
assumptions introduced to the model. The concentrations of all compounds present in the back-
ground electrolyte were assumed constant and homogeneous and the interspecies interactions

52

with the background electrolyte species were neglected. However, the electrostatic interactions
between charged components are known to affect the transport of multicomponent electrolytes
in saturated porous media [41].

Figure 7.2: Results of the Allura Red tracer simulation from [49] (a) compared to the results of
the Allura Red simulation produced using slayFoam solver (b).

53

Figure 7.3: Results of the New Coccine tracer simulation from [49] (a) compared to the results
of the New Coccine simulation produced using slayFoam solver (b).

7.2 Molten salt electrolyte simulation results

7.2.1 Convergence testing

For convergence testing, the value of the total resistance in the system was calculated for sim-
ulations done using different mesh resolutions and time step sizes. The resistance was chosen
as the test parameter because it is affected by all concentration distributions and is therefore
expected to converge to a single value as the concentration results converge.

54

Figure 7.4: Relative error in the resistance measurement compared to the next tested grid re-
finement after 15000 s. The pink line corresponds with simulations (G1, G3, G6, G7,
G9, G11) where all tested meshes had cells aligning with the diaphragms’ bound-
aries, while for the tests represented with the purple line (G2, G4, G5, G7, G8, G9,
G10, G11), not all did.

The results for the grid convergence testing are presented in Figure 7.4. They reveal that the
alignment of the grid with the diaphragms’ boundaries is essential when seeking convergence.
The convergence of the results is much more noticeable and quick, and the relative change in the
resistance measurement is in general lower when only using meshes that resolve the diaphragms’
sides. Based on these results, a grid with 400 divisions in the x-direction and 200 divisions in
the y-direction (G7) was chosen for all other simulations since it resolves the boundaries of the
diaphragm and produces a converged solution, while not being unnecessarily refined.

The results for the time step convergence testing with current densities of 100 mA/cm2 and
2000 mA/cm2 under charging conditions are presented in Figures 7.5 and 7.6 respectively. The
results appear to have converged when using a 5 s time step with i = 100 mA/cm2 and 0.1 s
with i = 2000 mA/cm2. The time step sizes for all other simulations were chosen based on these
results. More specifically, 5 s for simulations with i = 100 mA/cm2, 0.1 s for the ones done with
i = 2000 mA/cm2, and the time step sizes for other simulations were chosen relative to these
values based on how much faster or slower the process progressed in comparison.

55

Figure 7.5: Relative error in the resistance measurement compared to the next tested time step
size after 30000 s using a charging current density of 100 mA/cm2 and a mesh with
80000 cells.

Figure 7.6: Relative error in the resistance measurement compared to the next tested time step
size after 110 s using a charging current density of 2000 mA/cm2 and a mesh with
80000 cells.

7.2.2 Fixed current simulations

The plots of molar concentration distributions recorded at the end time for simulations FCC100,
FCC1000, and FCC2000 are presented in Figure 7.7. The equivalent is done for simulations
FCD100, FCD1000, and FCD2000 in Figure 7.8.

What can be clearly seen from these plots is that the simulations done with lower current
densities exhibit smaller gradients in concentration near the left and right boundaries, meaning
the transport is not as strongly dominated by migration as for the simulations run with higher
current densities, and more diffusion has time to take place.

Under closer inspection, it is visible that the plots in Figures 7.7 and 7.8 indicate that the
solution is electroneutral. This was further investigated, and for all molten salt simulations, the
electrolyte solution was indeed electroneutral over the entire area at all recorded times.

56

(a) FCC100 after 46000 s (b) FCC1000 after 460 s

(c) FCC2000 after 110 s

Figure 7.7: Molar concentration distributions for fixed current charging battery simulations
FCC100, FCC1000, and FCC2000 at the time the Na+ concentration has passed
zero (the dashed lines indicate the diaphragm’s location).

For the high fixed current density charging simulations (Figure 7.7), a dip in Na+ concentration
in the vicinity of the right boundary is observed. In contrast, a relatively smaller increase in
Na+ concentration near the right boundary is present for high fixed current discharge simulations
(Figure 7.8).

57

(a) FCD100 after 22000 s (b) FCD1000 after 255 s

(c) FCD2000 after 72 s

Figure 7.8: Molar concentration distributions for fixed current discharging battery simulations
FCD100, FCD1000, and FCD2000 at the time the Zn2+ concentration has passed
zero (the dashed lines indicate the diaphragm’s location).

The electric potential values at the non-zero boundary were recorded over time for all fixed
current simulations. Their values normalized against the starting electric potentials plotted
against dimensionless time (normalized against the total time for each simulation) are presented
in Figures 7.9 and 7.10 for charging and discharging simulations respectively. The relative
decrease in the electric potential difference observed appears to scale linearly with inversed
current density for both the charging and discharging processes simulated.

58

Figure 7.9: Electric potential at the non-zero boundary normalized against the first recorded
value as a function of time normalized by the end time for simulations C100, C1000,
and C2000.

Figure 7.10: Electric potential at the non-zero boundary normalized against the first recorded
value as a function of time normalized by the end time for simulations D100, D1000,
and D2000.

The resistance in the molten salt electrolyte layer was recorded over time and plotted against
time normalized against the total time for each simulation. These results are presented in
Figure 7.11. These relative changes in the resistance values appear to correspond with the
relative changes in the voltage discussed earlier.

59

(a) Charging simulations (b) Discharging simulations

Figure 7.11: Electrolyte resistance values for fixed current charging and discharging simulations
plotted against time normalized by the end time for each simulation.

The conductivity values across the length of the electrolyte layer (x-axis) at the last time step for
all fixed current simulations are presented in Figure 7.12. The jumps in the conductivity values
in the middle of the electrolyte layer are caused by there being less electrolyte volume in this
region due to the presence of the porous diaphragm. Figure 7.13 shows the plot of resistivity
values at the end time for fixed current charging simulations. These results are included to
provide further insight into the conductivity and the resistance measurements. By looking
at the conductivity plots alone, the reason why simulation FCC100 experiences the highest
resistance might not be obvious since it appears to have a slightly higher average conductivity
than simulations FCC1000 and FCC2000. This is because the resistance is not a function of the
average conductivity, rather it is equal to the integral of resistivity averaged over the cross area
across the length of the electrolyte layer.

One can think of a solution as multiple resistors connected in series in the direction of the current
flow, each adding their contribution to the total resistance. By comparing the conductivity
and resistivity plots presented in Figures 7.12a and 7.13 one can see that intervals with low
concentration, and thus low conductivity, have a much larger contribution to the resistivity, and
thus the total resistance, than the rest of the solution. Simultaneously, the intervals with high
conductivity, do not cancel out those effects, they do not increase the total resistance. Thus
solutions that end up with larger intervals with low concentration and low conductivity end up
with the highest resistance.

60

(a) Charging simulations (b) Discharging simulations

Figure 7.12: Electrolyte conductivity values for fixed current charging and discharging simula-
tions plotted across the electrolyte layer thickness at the end time for each simula-
tion (the dashed lines indicate the diaphragm’s location).

Figure 7.13: Electrolyte resistivity, r, values for fixed current charging simulations plotted across
the electrolyte layer thickness at the end time for each simulation (the dashed lines
indicate the diaphragm’s location).

Cl− ions are neither consumed nor produced by the cell reactions during charge and discharge.
Therefore the amount of Cl− in the solution should stay constant. This was checked for all
simulations comparing the amount of Cl− at the beginning of the simulations and at the end
time. The relative change in the amount for fixed current simulations is presented in Table 7.2.
The observed values are low corresponding well with the expected results. Out of all molten salt
simulations conducted in the present work, the only simulations that exhibited a reduction in
the amount of Cl− in the electrolyte were fixed current charging simulations with a current of
100 mA/cm2 (FCC100, PT0.6, PT0.85, and PT0.95) and fixed current discharging simulation
with a current of 2000 mA/cm2 (FCD2000). The values in general, do not appear random,
rather they seem to be affected by the conditions under which the simulations are run. The
relative change of the amount of Cl− for the fixed current density simulations is the highest for
the cases with the lowest applied current density (cases where diffusion is more dominant).

61

Table 7.2: The relative change in the number of mols of Cl− in the electrolyte between the
beginning and the end time of the fixed current simulations.

Simulation
∆cCl−
[mol%]

FCC100 -0.818
FCC1000 0.010
FCC2000 0.061
FCD100 0.548
FCD1000 0.039
FCD2000 -0.052

7.2.3 Fixed potential difference simulations

The produced molar concentration distributions for simulations created under the fixed potential
difference conditions with values corresponding with the potentials differences observed during
the fixed current experiments are presented in Figures 7.14 and 7.15 for charge and discharge
processes respectively. The concentration distribution results for simulations done with the
potential difference value corresponding to the reported values from the physical cell experiments
[10] (0.99 V) are presented in Figure 7.16 both for charging and discharging.

(a) FPC0.025 after 46000 s (b) FPC0.333 after 6800 s

(c) FPC0.679 after 1100 s

Figure 7.14: Molar concentration distributions for fixed electric potential difference charging
battery simulations FPC0.025, FFC0.333, and FPC0.679 at the selected end times
(the dashed lines indicate the diaphragm’s location).

62

In Figure 7.14 (fixed potential difference charging simulations) an increase in Na+ concentra-
tion near the right boundary is seen for the two simulations with higher potential differences
(FPC0.333 and FPC0.679). A decrease in Na+ concentration is seen in Figure 7.15 in the same
location is seen for fixed potential difference discharge simulations with the two higher potential
difference cases (FPD0.236 and FPD0.48). The same trends are observed for the charge and
discharge simulations done with the highest potential difference (FPC0.99 and FPD0.99) show-
cased in Figure 7.16. It should be noticed that these observations are opposite to the ones done
for the fixed current simulations, where a decrease of Na+ concentration was seen for charging
simulations and an increase for discharging.

The fixed electric potential difference simulations done with the potential differences corre-
sponding to the ones observed for the fixed electric current density cases (FPC0.025, FPC0.333,
FPC0.679 and FPD0.018, FPD0.236, FPD0.48) exhibit higher end times than the corresponding
fixed current density simulations. This is an expected trend caused by the differences in the
boundary conditions. For fixed current simulations the concentration gradients at the bound-
aries are set, so the rate of diffusion transporting the ions through the boundary has a constant
(relatively high) rate. This is the result of the diffusion-dominated boundary layer assump-
tion. For fixed potential difference cases, the concentration gradient is created by migration
and diffusion is merely a response to that gradient, thus much less diffusive transport through
the boundary is present, and it is migration-dominated. This notion was confirmed with the
total and diffusion current density measurements at the boundaries. Thus, only a (smaller) part
of the potential difference goes to the migration current, resulting in a smaller concentration
gradient and less active transport through the boundary.

63

(a) FPD0.018 after 46000 s (b) FPD0.236 after 12200 s

(c) FPD0.48 after 2800 s

Figure 7.15: Molar concentration distributions for fixed electric potential difference discharging
battery simulations FPD0.018, FPD0.236, and FPD0.48 at the selected end times
(the dashed lines indicate the diaphragm’s location).

(a) FPC0.99 after 420 s (b) FPD0.99 after 610 s

Figure 7.16: Molar concentration distributions for 0.99 V fixed electric potential difference charg-
ing and discharging battery simulations (FPC0.99 and FPD0.99) at the selected end
times (the dashed lines indicate the diaphragm’s location).

The resistance of the electrolyte layer measurements for all fixed electric potential difference
cases across the time normalized by the end time values for each simulation are presented in
Figure 7.17. Figure 7.18 shows the conductivity measurements for these simulations recorded

64

at the last time steps and plotted across the length of the domain. In Figure 7.17 one can see
that the charge and discharge simulations run with the lowest potential differences (FPC0.025
and FPD0.018) exhibit a time-dependent behaviour different to all other simulations. For these
cases, the resistance decreases with time. These results go hand in hand with the concentration
and conductivity distributions for these simulations presented in Figures 7.14a, 7.15a and 7.18.
Due to the low potential difference values in these cases, the driving force for migration is low,
resulting in small concentration gradients at the boundaries that the diffusion is capable of
smoothing over even further. Thus, no regions with a low abundance of charged species are
present for the low-potential cases, preventing the resistance from increasing.

For the rest of the fixed potential difference simulations, the resistance in general increases
with decreasing potential difference used. This, again is explained by the conductivity results
shown in Figure 7.18. For the high potential cases, the intervals with low conductivity are much
smaller, thus they have a smaller contribution to the total resistance. The size of these intervals
increases with decreasing potential differences used since diffusion has enough time to broaden
them.

As illustrated by Figure 7.17b, for the discharging battery fixed potential difference cases
FPD0.236, FPD0.48, and FPD0.99, the resistance values cross at a certain time. In the be-
ginning, the resistance is the highest for the case with the highest potential difference and
decreases with decreasing potential. This is likely due to the fact that in the beginning, the
diffusion has not had enough time to make the intervals with low conductivity large enough for
cases with lower potential differences to have a greater impact on the total resistance than the
intervals with low conductivity of the high potential difference cases.

From concentration distributions plots shown in Figures 7.15 and 7.16b, one can see that by the
end of the discharge simulations, the number of ions present for conduction on the right side from
the diaphragm is much lower for the low potential difference cases, but in the beginning that
is not the case. More ions have time to escape by means of diffusion before the concentration
at the right boundary reaches zero, decreasing the conductivity. While in the beginning of the
simulations, more ions get enough time to exit the area by means of migration for the high
potential difference cases, due to a larger driving force.

(a) Charging simulations (b) Discharging simulations

Figure 7.17: Electrolyte resistance values for fixed potential difference charging and discharging
simulations plotted against time normalized by the end time for each simulation.

65

(a) Charging simulations (b) Discharging simulations

Figure 7.18: Electrolyte conductivity values for fixed potential difference charging and discharg-
ing simulations plotted across the electrolyte layer thickness at the end time for
each simulation (the dashed lines indicate the diaphragm’s location).

The relative changes in the number of moles of Cl− ions in the electrolyte layer throughout
the simulation time for fixed electric potential difference simulations are presented in Table 7.3.
The calculated changes are low, indicating that the amount of Cl− is relatively well conserved.
For the fixed current density simulations, the cases with the lowest applied current densities
exhibited the highest relative change of the amount of Cl−, which would correspond with fixed
potential difference simulations FPC0.025 and FPD0.018. However, the two fixed potential
difference simulations exhibiting the highest degree of deviation from full Cl− conservation were
cases FPC0.333 and FPD0.236. Their values are the highest out of all molten salt simulations
conducted in the present work, indicating that the initial and boundary conditions used for Na+

and Zn2+ concentrations as well as for the electric potential affect these results.

Table 7.3: The relative change in the number of mols of Cl− in the electrolyte between the
beginning and the end time of the fixed electric potential difference simulations.

Simulation
∆cCl−
[mol%]

FPC0.025 0.230
FPC0.333 1.101
FPC0.679 0.622
FPC0.99 0.445
FPD0.018 0.635
FPD0.236 1.263
FPD0.48 0.657
FPD0.99 0.313

7.2.4 Diaphragms’ parameter study

For the diaphragm parameter investigation simulations, the recorded resistance measurements
are plotted against the dimensionless time normalized by the total time for each simulation
and presented in Figure 7.19. The decrease in porosity and increase in tortuosity values of
the diaphragm result in an increase in the total resistance of the electrolyte layer. This trend
is expected since this increases the degree of obstruction for ion transport and the resistance

66

contribution of the diaphragm itself increases, due to less volume being available for conducting
fluid.

The time until the breakthrough of Zn2+ concentration through the left side of the diaphragm,
which can be used as a measure of how well the diaphragm prevents the mixing of solutes in
the two compartments of the electrolyte, increases with increasing tortuosity, which is expected
because ions are forced to travel a longer distance, which takes more time. The relative increase
in time, however, is not equal to the relative increase in tortuosity. The likely explanation for
this discrepancy lies in the porosity values. Tortuosity is higher for the diaphragms with lower
porosity, where the Zn2+ concentration has less volume to fill up until breakthrough, which
takes less time. The relative increase in breakthrough time (0.12) is close to the value relative
increase in tortuosity (0.27) multiplied by the relative decrease in porosity (0.37) between the
most extreme cases tested (ω = 0.6 and ω = 0.95).

Figure 7.19: Electrolyte resistance plotted against time normalized by the end time for each of
simulations PT0.6, PT0.85, and PT0.95.

The relative increase in the total resistance is higher than the relative increase in the time
it takes Zn2+ to reach the left compartment of the electrolyte layer which is unfortunate for
the battery’s properties. Ideally, the diaphragm would prevent the movement of Zn2+ ions to
prevent Zn co-deposition on the Na electrode and reduce self-discharge without increasing the
resistance too much. To achieve that a faradaically selective membrane would be ideal.

The relative changes in the number of moles of Cl− ions in the electrolyte layer across the
simulation time for the diaphragm properties testing simulations are presented in Table 7.4.
The values are negative indicating a reduction in the amount of Cl− present. However, these
values are still relatively low indicating a high degree of Cl− mass conservation.

Table 7.4: The relative change in the number of mols of Cl− in the electrolyte between the
beginning and the end time of the diaphragm parameters testing simulations.

Simulation
∆cCl−
[mol%]

PT0.6 -0.317
PT0.85 -0.298
PT0.95 -0.294

67

These Cl− conservation results for the molten salt simulations are summarized in Figure 7.20,
excluding simulations FPC0.025 and FPD0.018 since they were not stopped at the time the
reactant was depleted at the boundary like the rest of the simulations because the transport
was slow for these simulations. For a given simulation type (either fixed current density or fixed
potential difference) the absolute value of the relative change in the amount of Cl− appears
to increase with increasing end time. In addition, the fixed potential difference simulations
exhibited higher degrees of deviation from total Cl− conservation and a stronger dependence of
it on the end time. This might be the result of the boundary condition implementation.

The fixed potential difference cases employ coded boundary conditions on both the left and the
right boundaries simultaneously, while the fixed current density cases only use coded BC on one
of these boundaries at a time. These coded BCs use discretized forms of equations (5.3) and
(5.5) which results in numerical error. Even though no boundary conditions were applied for
the Cl− concentration equation, its solution is still affected by them, because it is calculated
from the Na+ and Zn2+ concentration solutions that are based on these BCs. The charge in the
amount of Cl− reflects the discrepancy between the change in the amount of Na+ and the change
in the amount of Zn2+, which should correspond with half of the change in Na+ to conserve
the charge but in reality, some deviations are present. The comparison of the degree of Cl−

conservation in the fixed current density and fixed potential difference cases indicates that the
Calculated concentration gradient BC introduced in the fixed potential difference simulations
might have a greater influence of the deviations from full Cl− conservation than the Zero flux
BC used in both simulation types.

The end-time dependency of these deviations might be explained by numerical errors adding up
and growing over time, doing so more quickly for the fixed potential difference cases due to those
cases employing two coded BCs simultaneously instead of one as done in fixed current density
cases.

Figure 7.20: Absolute values of mol% change in the amount of Cl− ions in the electrolyte against
the simulation end times for fixed electric current (FC), fixed potential difference
(FP, excluding cases FPC0.025 and FPD0.018), and diaphragm parameter testing
(PT) simulations with trend lines for FC and FC cases.

68

8 Discussion

8.1 Aqueous model and simulations

Overall, a good agreement is observed between the results generated by the model implemented
in the slayFoam solver and the results reported by Rolle et al. [49]. The tracer plumes exhibit
similar behaviour to the reported ones, with equal centre of mass displacements in the correct
direction produced using fitted tortuosity values (1.29-1.44) very close to the ones used in the
paper (1.3-1.43). However, the shapes and sizes of the plumes differ from the reported ones and
are in general smaller and for the divalent and trivalent tracer compounds less symmetrical as
well. Permanganate tracer exhibited a shape most similar to the reported ones, which is likely
due to it being a monovalent ion. The charges of the ions affect the concentration distributions
because of interspecies interactions [49]. These interactions were neglected in the model, but
that effect was likely the weakest for the monovalent ion, resulting in a more similar plume
shape.

8.1.1 Errors and uncertainties

Numerical error

Iterative error from the matrix solutions for these simulations was kept low at 10−6 for concentra-
tion equations and 10−8 for the electric potential. Thus, it is likely not the greatest contribution
to the total error of the solutions.

The values of the discretization errors are not known for the aqueous solution simulations, since
convergence testing was not conducted due to limitations within the time budget. However,
the orders of accuracy of the discretization methods used are known and can provide some
insight into the error present. The temporal discretization is first-order accurate (O(∆t)), while
the interpolation, gradient, divergence and Laplacian schemes were all second-order accurate
(O(∆x2)). The error from the temporal discretization is estimated from the time step size to be
in the order of 10 (notice that this error size is relevant for the time in the simulations, not the
concentrations even though it contributes to it) whereas the error due to spatial discretization
is estimated to be in the order of 10−6.

Uncertanties

Several assumptions and simplifications were made in the model. Firstly, the ions present in the
background electrolyte were not modelled. Thus, their concentration was assumed to be constant
and homogeneous, and their presence was only accounted for in terms of their contribution to
the electric conductivity of the system. As a result, the interspecies interactions were neglected
and the background conductivity was assumed constant and homogeneous. This assumption
and its implications are likely the largest contributors to the uncertainty in the system and are
the probable explanation for the discrepancy in the shapes and sizes of the plumes.

Secondly, the contribution of the sum of diffusion currents in the electric potential equation
(3.14) was neglected assuming that the contributions of the different compounds cancel each

69

other out. However, the diffusion coefficients of ions present in the solution were not equal with
some being around three times higher than others (for Na+ and New Coccine3+), meaning this
assumption contributed to the uncertainty in the simulations. In addition, this form of the
electric potential equation was used to avoid resolving the electrical double layer and reduce
computational time. Meanwhile, Rolle et al. [49] employed a different form of the electric
potential equation (3.9). This can also be a possible explanation for the observed discrepancies
in the shapes and sizes of the plumes.

The same compound (such as diffusivities and mobilities) and system properties (such as domain
size, 2D simplification, and system temperature) were used in the present work as in the work of
Rolle et al. [49]. The fitted tortuosity values were also very similar to the reported ones. Thus,
these simplifications likely did not introduce significant uncertainty to the simulations when
compared to the simulations presented in the article. However, they do result in deviations from
the results of the conducted physical experiments.

The concentration boundary conditions likely did not have a large impact on the uncertainty
in the system as well, since the properties investigated (plume concentrations) did not cross or
interact with any boundaries. The potential boundary conditions were simplified and average
values of the recorded experimental electric potential values were used. This could have an
impact on the migration and is a source of uncertainty.

8.2 Molten salt simulations

The created model is capable of simulating Na+, Zn2+, and Cl− concentration distributions in the
electrolyte layer of the Na-Zn LMB under various conditions, such as charging and discharging
battery with either fixed electric current density or fixed electric potential difference applied.
However, it can be applied to other systems with three ionic species being transported by
migration and diffusion.

The aqueous simulations provided insight that even with uncertainties present and simplifica-
tions introduced an ionic transport model based on the Nernst-Planck equation coupled with an
equation for electric potential can be implemented in OpenFOAM software producing relatively
accurate results. However, the executed implementation has certain limitations.

One of the limitations of the developed model is its’ lack of consideration of density gradients
and volume changes. As a result, the simulations must be stopped when the concentrations start
to reach zero at either the left of the right boundary, making it impossible to model the full
processes of charge and discharge. This limits the highest electric current density or voltage that
can be applied in the model because the concentrations reach zero at the boundaries rapidly.
This effect is not physical, because advection would prevent such density gradients from taking
place.

In the results, a trend is observed that in cases with a lower applied current density or a lower
fixed electric potential difference across the electrolyte, the mass transport is more strongly
influenced by diffusion. Migration becomes more pronounced with increasing electric current
and electric potential differences. These effects correspond well with the way migration and
diffusion are understood in the literature [40, 43]. In addition, for all cases, the concentrations
of the reactive species sink where they are consumed and increase where they are produced.
These results help confirm that in general, the solutions to the model behave in ways they are
expected to.

The resistance and potential difference measurements illustrate that the concentration distribu-

70

tions (and thus the mass transport) have a large influence on the properties of the electrolyte
important to the functioning of the battery, such as the total resistance, the ohmic drop, and thus
the coulumbic efficiency of the battery. Avoiding the formation of regions with low concentra-
tions of highly-conductive species is expected to help keep the total resistance of the electrolyte
layer minimal. No regions with very low total concentration would form in real life as they do in
the simulations because convection would prevent this from happening. However, regions with
low concentrations of the reacting species would still increase the resistivity (or concentration
overpotential) and are thus unwanted. This illustrates the fact that even though a separation
of the electolyte layer into two compartments is wanted for decresing self-discharge rate and the
amount of Zn co-deposition on the Na electrode, a certain degree of electrolyte mixing is desired
to minimize the resistance.

What can clearly be seen from the results of the diaphragm parameter testing simulations
is that the total resistance of the electrolyte layer with a diaphragm in place increases with
decreasing diaphragm porosity (and the following increase in tortuosity). This corresponds with
the behavior expected from the literature [43]. The resulting increase in the resistance was
higher than the resulting increase in the time passed until Zn2+ has exited the left side of the
diaphragm. This indicates that a porous diaphragm might not be the best choice of a separator
in the battery. However, in physical cells with convection in place, the diaphragm might reduce
the advective transport of Zn2+ ions to the electrolyte close to the Na electrode more effectively
than it does migration and diffusion, proving it to be a very effective choice. This makes models
that include migration, diffusion, and advection more so interesting to investigate.

8.2.1 Errors and uncertainties

Numerical error

The iterative error for the molten salt model simulations was set to 10−6 for the mass balance
equations and 10−8 for the electric potential. These values are low and likely do not affect the
results significantly.

The discretization error was estimated and managed by means of grid and time step convergence
testing. By using the grid resolution and time steps at which the solution appeared to have
converged discretization error was kept minimal.

Uncertanties

The model was built under the assumption that the Nernst-Planck equation is valid for the
modelled system. Nevertheless, the used form of the Nernst-Planck equation is only valid for
dilute ideal solutions, which does not reflect the modelled system. However, the Nernst-Planck
equation is considered to exhibit good accuracy even with deviations from the necessary as-
sumptions [43] and in the literature on modelling of migration and diffusion in LMB electrolyte
layer based on the Poisson-Nernst-Planck model using OpenFOAM the simulation results were
validated against experimentally obtained data with a fairly good agreement [30]. Still, the
degree of uncertainty in the present work resulting from these assumptions is difficult to access
quantitatively due to the lack of experimentally obtained results.

The advective flux was neglected in the constructed model, which not only results in limitations
for the model but also contributes to its uncertainty. Advection is expected in a fully liquid cell
[13] and would contribute to the solute transport and thus resistance as well.

In addition, the created models are realized on a quasi-2D domain, while the batteries con-
structed in real life are, of course, three-dimensional. The uncertainty caused by neglecting the

71

3D effects is difficult to quantify. However, the boundary and initial conditions for the mod-
els would be constant in the third neglected direction and are not expected to contribute with
significant new effects.

In the constructed Na-Zn LMB cells CaCl2 is present in the electrolyte layer [10, 19]. In the
model, however, NaCl and ZnCl2 were assumed to be the only salts composing the electrolyte.
This simplification affects the accuracy of the results because all interspecies interactions as well
as conductivity contributions of CaCl2 are being neglected.

The way the initial concentrations on the right side of the diaphragm for the discharging battery
simulations were chosen, used values that were not well corresponding with each other. Density
data with different concentrations was used due to human error, and in hindsight, it would
be better to just use 50 mol% ZnCl2. However, these concentrations are in a way arbitrary,
since different concentrations can be observed in the electrolyte depending on how charged or
discharged it is and where it is in the process. The density might not be realistic, but convection
was not modelled, so these effects were not as important.

The diffusion coefficients are assumed to be constant scalar properties for all conducted sim-
ulations, which is not the case in reality. Most of the material properties used were taken at
different temperatures that do not correspond with the temperature of the modelled cell, due to
the unavailability of the desired data, caused by neglecting the presence of CaCl2. In addition,
due to the lack of data for the diffusivity of Zn2+ ions in NaCl molten salt, the diffusivity of Cd2+

was used, contributing to the uncertainty of the simulations. Including CaCl2 in the simulations
would allow one to use more accurate data for material properties to decrease the uncertainty.

The reported dips and increases in Na+ concentration near the right boundary observed for
higher current density and potential difference cases (FCC1000, FCC2000, FCD1000, FCD2000,
FPC0.333, FPC0.679, FPC0.99, FPD0.236, FPD0.48, and FPD0.99) did not have any obvious
physical reason and are likely a result of the Na+ concentration boundary condition at the left
boundary. An example of such Na+ concentration dip is presented in Figure 8.1 for the FPD0.99
case. The zero flux BC is applied for Na+ at the right boundary near this region. This condition
likely forced such concentration gradients to prevent the migration and diffusion of the Na+ ions
through the right boundary and they are likely an artefact of the zero flux boundary condition
implementation.

Figure 8.1: Molar concentration distributions for discharging 0.99 V fixed electric potential dif-
ference simulation (FPD0.99) at the end time (a dip in Na+ concentration is high-
lighted by the red circle and arrow).

72

The degree of deviation from the total conservation of the non-reacting Cl− ions (and thus the
deviation from the conservation of charge) for the molten salt simulations was likely caused
by the uncertainty introduced by the boundary condition implementation. This would explain
the fixed potential difference simulations having a lower degree of conservation, since they, in
addition to the coded zero flux BC, employ the coded calculated concentration gradient BC. In
it, the value of conductivity in the cell centre next to the boundary patch is used for computation,
since using its value at the patch would result in the concentration gradient at the patch being
calculated from the conductivity value that is in turn calculated using the concentration values
at the patch that are not known. Using the value close to the patch thus introduces uncertainty
that comes in addition to the uncertainty caused by the use of the discretized value of the
electric potential gradient that is present in both the calculated gradient and zero flux BCs.
Nevertheless, the total deviations of the amount of Cl− are generally low, but could still be
improved by finding a different way of approaching the BC implementation.

73

9 Concluding remarks

In the present work, the electrokinetic transport of ionic species in the molten salt electrolyte
of the Na-Zn liquid metal battery with a porous diaphragm in place was investigated by means
of numerical modelling.

Firstly, an overview of and some general background on the electrokinetic mass transfer in
aqueous solutions and molten salt systems with a porous material obstruction were given. Based
on this knowledge, two Darcy-scale models were implemented in an open-source computational
fluid dynamics software OpenFOAM. One solver for simulating transient electrokinetic transport
in aqueous solutions in the presence of a porous obstruction and one for doing so with molten salt
solutions. The aqueous solution model can be thought of as a special case of the main Poisson-
Nernst-Planck molten salt model with relaxed electroneutrality condition and was created to
test and verify the transport behaviour predicted by the model against the results reported
in the literature. These tests have revealed that the model predicted the transport of ions
relatively well, with them moving the expected distance in the correct direction. However, this
model systematically underpredicted the amount of spreading of the tracer compounds and thus
did not produce expected plume shapes and sizes. This was likely a result of the simplifications
introduced in the created model and caused by not modelling the ions present in the background
electrolyte and using a different electric potential equation than the one used in the article [49].

The molten salt model was applied to the simplified Na-Zn LMB electrolyte layer with a porous
diaphragm under various conditions: fixed current density at the boundaries for charging and
discharging processes, fixed electric potential difference across the system for charging and dis-
charging processes. Different diaphragm porosity and tortuosity values were tested as well under
charging fixed current density conditions. This provided insight into ways these processes can be
modelled and the impact various boundary and initial conditions as well as diaphragm properties
have on the transport.

Additionally, some interesting observations were made. The concentration distributions appear
to have a significant influence on the resistance in the electrolyte layer, making the transport of
ions important to understand and manage. The diaphragms’ properties affect the mass transport
and electrolyte layer properties as well. A decrease in porosity and an increase in tortuosity
resulted in an increase in resistivity and in the time it takes Zn2+ to cross the diaphragm.
However, the observed relative increase in the total resistance was higher than the relative
increase in the time it took Zn2+ to break through the diaphragm and reach the left compartment
electrolyte layer. Since one of the main purposes of the diaphragm is to control the transport
of Zn2+ ions and a minimal resistance in the electrolyte layer is desired, such porous diaphragm
is thus not the optimal choice for a separator in a Na-Zn LMB cell where the mass transport
is dominated by diffusion and migration. However, it may perform much better in its role as
a separator in a cell with convection, making such scenarios important to investigate before
drawing final conclusions concerning its use in physical Na-Zn LMBs.

74

10 Future work

Because advection is believed to be the dominating mass transport mechanism in the molten salt
electrolyte layer of LMBs, it is important to include it in future modelling work and create models
with both electrokinetic and advective transport mechanisms while taking the presence of a
porous diaphragm into consideration. The ways a porous diaphragm would affect the convection
in the cell are of great interest since they would impact the important properties of the cell,
such as concentration distributions, resistance, coulombic efficiency and more. Accounting for
advection would also decrease the limitations of the model and allow one to run simulations under
higher current density or electric potential difference conditions by evening out the observed
unrealistic density gradients.

Future models including CaCl2 as a part of the molten salt electrolyte of the Na-Zn liquid metal
battery should be investigated. This will help reduce the uncertainty and produce more accurate
results. Expanding the model implementation shown in the present work can be a possible way
of doing so.

To combat the uncertainties introduced by the boundary condition implementation in the molten
salt simulations likely causing the deviations from Cl− and charge conservation as well as un-
expected behaviour of Na+ concentration near the right boundary, new ways of implementation
should be investigated.

Verifying the model against experimental results for a molten salt system would help provide
more insight into the discrepancy in results introduced by uncertainties of the model. This,
however, can prove practically challenging, due to high temperatures and would likely only be
possible for a model that includes advection, eliminating the possibility of investing diffusion
and migration alone.

In general, recreating the previous work on the modelling of different mechanisms of mass
transport in LMBs under various conditions and now including a porous diaphragm would be
interesting to further understand its impact on mass transport and battery properties, enabling
one to optimize them.

75

Bibliography

[1] S. Bilgen. Structure and environmental impact of global energy consumption. Renewable
and Sustainable Energy Reviews, 38:890–902, oct 2014.

[2] M. M. Rahman, A. O. Oni, E. Gemechu, and A. Kumar. Assessment of energy storage
technologies: A review. Energy Conversion and Management, 223:113–295, nov 2020.

[3] M. S. Whittingham. History, evolution, and future status of energy storage. Proceedings of
the IEEE, 100(Special Centennial Issue):1518–1534, May 2012.

[4] H. S. Hirsh, Y. Li, D. H. S. Tan, M. Zhang, E. Zhao, and Y. S. Meng. Sodium-ion batteries
paving the way for grid energy storage. Advanced Energy Materials, 10(32):2001274, 2020.

[5] A. Blakers, M. Stocks, B. Lu, and C. Cheng. A review of pumped hydro energy storage.
Progress in Energy, 3(2):022003, March 2021. Publisher: IOP Publishing.

[6] X. Fan, B. Liu, J. Liu, J. Ding, X. Han, Y. Deng, X. Lv, Y. Xie, B. Chen, W. Hu,
and C. Zhong. Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage.
Transactions of Tianjin University, 26(2):92–103, April 2020.

[7] A. A. Yaroshevsky. Abundances of chemical elements in the Earth’s crust. Geochemistry
International, 44(1):48–55, January 2006.

[8] K. Wang, K. Jiang, B. Chung, T. Ouchi, P. J. Burke, D. A. Boysen, D. J. Bradwell, H. Kim,
U. Muecke, and D. R. Sadoway. Lithium–antimony–lead liquid metal battery for grid-level
energy storage. Nature, 514(7522):348–350, oct 2014.

[9] J. G. Simpson, G. Hanrahan, E. Loth, G. M. Koenig, and D. R. Sadoway. Liquid metal
battery storage in an offshore wind turbine: Concept and economic analysis. Renewable
and Sustainable Energy Reviews, 149:111–387, oct 2021.

[10] J. Xu, O. S. Kjos, K. S. Osen, A. M. Martinez, O. E. Kongstein, and G. M. Haarberg.
Na-Zn liquid metal battery. Journal of Power Sources, 332:274–280, nov 2016.

[11] P. Personnettaz, S. Landgraf, M. Nimtz, N. Weber, and T. Weier. Mass transport in-
duced asymmetry in charge/discharge behavior of liquid metal batteries. Electrochemistry
Communications, 105:106496, August 2019.

[12] H. Kim, D. Boysen, J. Newhouse, B. Spatocco, B. Chung, P. Burke, D. Bradwell, K. Jiang,
A. Tomaszowska, K. Wang, W. Wei, L. Ortiz, S. Barriga, S. Poizeau, and D. Sadoway.
Liquid Metal Batteries: Past, Present, and Future. Chemical reviews, 113, nov 2012.

[13] D. H. Kelley and T. Weier. Fluid mechanics of liquid metal batteries. Applied Mechanics
Reviews, 70(2), January 2018.

[14] R. D. Deshpande, J. Li, Y.-T. Cheng, and M. W. Verbrugge. Liquid metal alloys as self-
healing negative electrodes for lithium ion batteries. Journal of The Electrochemical Society,
158(8):A845, May 2011. Publisher: IOP Publishing.

76

[15] S. Zhang, Y. Liu, Q. Fan, C. Zhang, T. Zhou, K. Kalantar-Zadeh, and Z. Guo. Liquid
metal batteries for future energy storage. Energy & Environmental Science, 14(8):4177–
4202, August 2021. Publisher: The Royal Society of Chemistry.

[16] H. Zhou, H. Li, Q. Gong, S. Yan, X. Zhou, S. Liang, W. Ding, Y. He, K. Jiang, and
K. Wang. A sodium liquid metal battery based on the multi-cationic electrolyte for grid
energy storage. Energy Storage Materials, 50:572–579, September 2022.

[17] Solstice project. https://www.solstice-battery.eu.

[18] K. Koseniuk. Modelling of mass transport through porous diaphragms in na-zn liquid metal
batteries. Project thesis, 2022.

[19] J. Xu, A. M. Martinez, K. Sende Osen, O. S. Kjos, O. E. Kongstein, and G. M. Haarberg.
Electrode Behaviors of Na-Zn Liquid Metal Battery. Journal of The Electrochemical Society,
164(12):A2335, August 2017. Publisher: IOP Publishing.

[20] A. Tornheim and D. C. O’Hanlon. What do Coulombic Efficiency and Capacity Retention
Truly Measure? A Deep Dive into Cyclable Lithium Inventory, Limitation Type, and
Redox Side Reactions. Journal of The Electrochemical Society, 167(11):110520, July 2020.
Publisher: IOP Publishing.

[21] T. Weier, A. Bund, W. El-Mofid, G. M. Horstmann, C.-C. Lalau, S. Landgraf, M. Nimtz,
M. Starace, F. Stefani, and N. Weber. Liquid metal batteries - materials selection and fluid
dynamics. IOP Conference Series: Materials Science and Engineering, 228(1):012013, July
2017. Publisher: IOP Publishing.

[22] W. Herreman, S. Bénard, C. Nore, P. Personnettaz, L. Cappanera, and J.-L. Guermond. So-
lutal buoyancy and electrovortex flow in liquid metal batteries. Phys. Rev. Fluids, 5:074501,
Jul 2020.

[23] OpenFOAM. https://www.openfoam.com, December 2022.

[24] H. Li, H. Yin, K. Wang, S. Cheng, K. Jiang, and D. R. Sadoway. Liquid Metal Electrodes
for Energy Storage Batteries. Advanced Energy Materials, 6(14):1600483, 2016.

[25] H. Kim, D. A. Boysen, J. M. Newhouse, B. L. Spatocco, B. Chung, P. J. Burke, D. J.
Bradwell, K. Jiang, A. A. Tomaszowska, K. Wang, W. Wei, L. A. Ortiz, S. A. Barriga,
S. M. Poizeau, and D. R. Sadoway. Liquid Metal Batteries: Past, Present, and Future.
Chemical Reviews, 113(3):2075–2099, March 2013. Publisher: American Chemical Society.

[26] M. Azevedo, N. Campagnol, T. Hagenbruch, K. Hoffman, A. Lala, and O. Ramsbottom.
Lithium and cobalt. A Tale of Two Commodities, 2018.

[27] T. Oshima, M. Kajita, and A. Okuno. Development of Sodium-Sulfur Bat-
teries. International Journal of Applied Ceramic Technology, 1(3):269–276, 2004.
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1744-7402.2004.tb00179.x.

[28] K. B. Hueso, M. Armand, and T. Rojo. High temperature sodium batteries: status, chal-
lenges and future trends. Energy & Environmental Science, 6(3):734–749, 2013.

[29] H. Kim, D. A. Boysen, T. Ouchi, and D. R. Sadoway. Calcium–bismuth electrodes for
large-scale energy storage (liquid metal batteries). Journal of Power Sources, 241:239–248,
November 2013.

[30] C. Duczek, N. Weber, O. E. Godinez-Brizuela, and T. Weier. Simulation of potential and
species distribution in a Li|| Bi liquid metal battery using coupled meshes. Electrochimica

77

https://www.solstice-battery.eu
https://www.openfoam.com

Acta, 437:141413, 2023.

[31] D. Agarwal, R. Potnuru, C. Kaushik, V. R. Darla, K. Kulkarni, A. Garg, R. K. Gupta,
N. Tiwari, and K. S. Nalwa. Recent advances in the modeling of fundamental processes
in liquid metal batteries. Renewable and Sustainable Energy Reviews, 158:112–167, April
2022.

[32] X. Zhou, C. Gao, Y. Shen, H. Li, S. Yan, H. Zhou, K. Wang, and K. Jiang. Multi-field
coupled model for liquid metal battery: Comparative analysis of various flow mechanisms
and their effects on mass transfer and electrochemical performance. Energy Reports, 8:5510–
5521, November 2022.

[33] R. F. Ashour and D. H. Kelley. Convection-Diffusion Model of Lithium-Bismuth Liquid
Metal Batteries. In G. Lambotte, J. Lee, A. Allanore, and S. Wagstaff, editors, Materials
Processing Fundamentals 2018, The Minerals, Metals & Materials Series, pages 41–52,
Cham, 2018. Springer International Publishing.

[34] N. Weber, V. Galindo, F. Stefani, and T. Weier. The Tayler instability at low magnetic
Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New Journal
of Physics, 17(11):113013, October 2015. Publisher: IOP Publishing.

[35] H.-C. Yeh, M. Wang, C.-C. Chang, and R.-J. Yang. Fundamentals and Modeling of Elec-
trokinetic Transport in Nanochannels. Israel Journal of Chemistry, 54(11-12):1533–1555,
2014.

[36] A. Alizadeh, W.-L. Hsu, M. Wang, and H. Daiguji. Electroosmotic flow: From microfluidics
to nanofluidics. ELECTROPHORESIS, 42(7-8):834–868, 2021.

[37] J. Isidro, R. López-Vizcáıno, A. Yustres, C. Sáez, V. Navarro, and M. A. Rodrigo. Recent
progress in physical and mathematical modelling of electrochemically assisted soil remedi-
ation processes. Current Opinion in Electrochemistry, 36:101115, December 2022.

[38] P.-W. Huang, B. Flemisch, C.-Z. Qin, M. O. Saar, and A. Ebigbo. Validating the Nernst-
Planck transport model under reaction-driven flow conditions using RetroPy v1.0. EGU-
sphere, pages 1–39, November 2022. Publisher: Copernicus GmbH.

[39] S. Molins, C. Soulaine, Ni. I. Prasianakis, A. Abbasi, P. Poncet, Anthony J. C. Ladd,
V. Starchenko, S. Roman, D. Trebotich, H. A. Tchelepi, and C. I. Steefel. Simulation
of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of ap-
proaches and benchmark problem set. Computational Geosciences, 25(4):1285–1318, August
2021.

[40] T. Novotný and B. Gaš. Mathematical model of electromigration allowing the deviation
from electroneutrality. ELECTROPHORESIS, 42(7-8):881–889, 2021.

[41] M. Rolle, R. Sprocati, M. Masi, B. Jin, and M. Muniruzzaman. Nernst-Planck Based
Description of Transport, Coulombic Interactions and Geochemical Reactions in Porous
Media: Modeling Approach and Benchmark Experiments. Water Resources Research, 54,
April 2018.

[42] M. Muniruzzaman, C. Haberer, P. Grathwohl, and M. Rolle. Multicomponent ionic dis-
persion during transport of electrolytes in heterogeneous porous media: Experiments and
model-based interpretation. Geochimica et Cosmochimica Acta, 141:656–669, September
2014.

[43] J. Newman and K.E. Tomas-Alyea. Electrochemical systems, chapter 11, 12. John Wiley

78

and Sons, New Jersey, 3 edition, 2004.

[44] R. Sprocati and M. Rolle. On the interplay between electromigration and electroosmosis
during electrokinetic transport in heterogeneous porous media. Water Research, 213:118161,
April 2022.

[45] COMSOL Multiphysics. https://www.comsol.com.

[46] F. Pimenta and M.A. Alves. Numerical simulation of electrically-driven flows using open-
foam, 2018.

[47] V. Zadin, D. Brandell, H. Kasemägi, A. Aabloo, and J. O. Thomas. Finite element modelling
of ion transport in the electrolyte of a 3D-microbattery. Solid State Ionics, 192(1):279–283,
June 2011.

[48] D. Danilov and P. H. L. Notten. Mathematical modelling of ionic transport in the electrolyte
of Li-ion batteries. Electrochimica Acta, 53(17):5569–5578, July 2008.

[49] M. Rolle, M. Albrecht, and R. Sprocati. Impact of solute charge and diffusion coeffi-
cient on electromigration and mixing in porous media. Journal of Contaminant Hydrology,
244:103933, January 2022.

[50] D. L. Parkhurst and L. Wissmeier. PhreeqcRM: A reaction module for transport simulators
based on the geochemical model PHREEQC. Advances in Water Resources, 83:176–189,
September 2015.

[51] C. Liu, J. Shang, and J. M. Zachara. Multispecies diffusion models: A study of uranyl
species diffusion. Water Resources Research, 47(12), 2011.

[52] P. Rasouli, C. I. Steefel, K. U. Mayer, and M. Rolle. Benchmarks for multicomponent
diffusion and electrochemical migration. Computational Geosciences, 19(3):523–533, June
2015.

[53] J. Bear. Modeling Phenomena of Flow and Transport in Porous Media. Springer, January
2018.

[54] B. J. Kirby. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices.
Cambridge University Press, Cambridge, 2010.

[55] C. Peng, J. O. Almeira, and A. Abou-Shady. Enhancement of ion migration in porous media
by the use of varying electric fields. Separation and Purification Technology, 118:591–597,
October 2013.

[56] L. Shen and Z. Chen. Critical review of the impact of tortuosity on diffusion. Chemical
Engineering Science, 62(14):3748–3755, July 2007.

[57] J. Cai, W. Wei, X. Hu, and David A. Wood. Electrical conductivity models in saturated
porous media: A review. Earth-Science Reviews, 171:419–433, August 2017.

[58] F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in Computational
Fluid Dynamics. Springer Cham, 1 edition, 2015.

[59] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer, Berlin,
Heidelberg, 2002.

[60] F. Moukalled, L. Mangani, and M. Darwish. Gradient Computation. In F. Moukalled,
L. Mangani, and M. Darwish, editors, The Finite Volume Method in Computational Fluid

79

https://www.comsol.com

Dynamics: An Advanced Introduction with OpenFOAM® and Matlab, Fluid Mechanics
and Its Applications, pages 273–302. Springer International Publishing, Cham, 2016.

[61] P. Chévrier and H. Galley. A Van Leer finite volume scheme for the Euler equations on
unstructured meshes. M2AN - Modélisation mathématique et analyse numérique, 27(2):183–
201, 1993.

[62] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics:
The Finite Volume Method. Pearson Education, 2007.

[63] D. B. Thompson. Numerical methods 101—convergence of numerical models. 1992.

[64] T. Behrens. Openfoam’s basic solvers for linear systems of equations. Chalmers, Department
of Applied Mechanics, 18(02), 2009.

[65] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied Math-
ematics, 128(1):281–309, March 2001.

[66] Bram van Leer. Towards the ultimate conservative difference scheme. II. Monotonicity
and conservation combined in a second-order scheme. Journal of Computational Physics,
14(4):361–370, March 1974.

[67] M. Michálek, J. Sedláček, M. Parchoviansky, M. Michálková, and D. Galusek. Mechanical
properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT
composites. Ceramics International, 40(1, Part B):1289–1295, January 2014.

[68] J. M. Stevels. The Electrical Properties of Glass. In O. Madelung, A. B. Lidiard,
J. M. Stevels, and E. Darmois, editors, Electrical Conductivity II / Elektrische
Leitungsphänomene II, Handbuch der Physik / Encyclopedia of Physics, pages 350–391.
Springer, Berlin, Heidelberg, 1957.

[69] D. L. Johnson and P. N. Sen. Dependence of the conductivity of a porous medium on elec-
trolyte conductivity. Physical Review B, 37(7):3502–3510, March 1988. Publisher: American
Physical Society.

[70] M. Matyka, A. Khalili, and Z. Koza. Tortuosity-porosity relation in porous media flow.
Physical review. E, Statistical, nonlinear, and soft matter physics, 78:026306, September
2008.

[71] G. J. Janz and N. P. Bansal. Molten Salts Data: Diffusion Coefficients in Single and Multi-
Component Salt Systems. Journal of Physical and Chemical Reference Data, 11(3):505–693,
July 1982.

[72] W.M. Haynes (ed.). CRC Handbook of Chemistry and Physics. CRC Press LLC, Boca
Raton, Florida, 94th edition, 2013-2014.

[73] G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey, Jr., G. L. Garner, U. Krebs,
and S. K. Singer. Molten salts: Volume 4, part 2, chlorides and mixtures—electrical con-
ductance, density, viscosity, and surface tension data. Journal of Physical and Chemical
Reference Data, 4:871–1178, October 1975.

80

11 Appendix

11.1 Code: unedited scalarTransportFoam solver

11.1.1 scalarTransportFoam.C

1 /∗
−−−∗\

2 ========= |
3 \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O pera t i on |
5 \\ / A nd | www. openfoam . com
6 \\/ M an ipu l a t i on |
7 −−−
8 Copyright (C) 2011−2017 OpenFOAM Foundation
9 −−−

10 License
11 This f i l e i s part o f OpenFOAM.
12

13 OpenFOAM i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify i t
14 under the terms o f the GNU General Publ ic L i cense as publ i shed by
15 the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
16 (at your opt ion) any l a t e r v e r s i on .
17

18 OpenFOAM i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but WITHOUT
19 ANY WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or
20 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Publ ic L i cense
21 f o r more d e t a i l s .
22

23 You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
24 along with OpenFOAM. I f not , s e e <http ://www. gnu . org / l i c e n s e s />.
25

26 Appl i ca t ion
27 scalarTransportFoam
28

29 Group
30 grpBas i cSo lve r s
31

32 Desc r ip t i on
33 Pass ive s c a l a r t ranspo r t equat ion s o l v e r .
34

35 \heading So lve r d e t a i l s
36 The equat ion i s g iven by :
37

38 \ f [
39 \ddt{T} + \div \ l e f t (\ vec{U} T\ r i g h t) − \div \ l e f t (D T \grad T \ r i g h t)
40 = S {T}
41 \ f]
42

43 Where :
44 \ var tab l e
45 T | Pass ive s c a l a r
46 D T | Di f f u s i on c o e f f i c i e n t
47 S T | Source

81

48 \ endvartab le
49

50 \heading Required f i e l d s
51 \ p l a i n t ab l e
52 T | Pass ive s c a l a r
53 U | Ve loc i ty [m/ s]
54 \ endp la in tab l e
55

56 \∗−−−∗/
57

58 #inc lude ”fvCFD .H”
59 #inc lude ” fvOptions .H”
60 #inc lude ” s impleContro l .H”
61

62 // ∗ //
63

64 i n t main (i n t argc , char ∗argv [])
65 {
66 a rgL i s t : : addNote
67 (
68 ”Pass ive s c a l a r t ranspor t equat ion s o l v e r . ”
69) ;
70

71 #inc lude ”addCheckCaseOptions .H”
72 #inc lude ” setRootCaseL i s t s .H”
73 #inc lude ” createTime .H”
74 #inc lude ” createMesh .H”
75

76 s impleContro l s imple (mesh) ;
77

78 #inc lude ” c r e a t eF i e l d s .H”
79

80 // ∗ //
81

82 Info<< ”\ nCalcu la t ing s c a l a r t ranspor t \n” << endl ;
83

84 #inc lude ”CourantNo .H”
85

86 whi le (s imple . loop ())
87 {
88 Info<< ”Time = ” << runTime . timeName () << nl << endl ;
89

90 whi le (s imple . correctNonOrthogonal ())
91 {
92 f vSca la rMatr ix TEqn
93 (
94 fvm : : ddt (T)
95 + fvm : : div (phi , T)
96 − fvm : : l a p l a c i a n (DT, T)
97 ==
98 fvOptions (T)
99) ;

100

101 TEqn . r e l ax () ;
102 fvOptions . c on s t r a i n (TEqn) ;
103 TEqn . s o l v e () ;
104 fvOptions . c o r r e c t (T) ;
105 }
106

107 runTime . wr i t e () ;
108 }
109

110 Info<< ”End\n” << endl ;

82

111

112 re turn 0 ;
113 }
114

115

116 // ∗∗∗ //

11.1.2 createFields.H

1

2 Info<< ”Reading f i e l d T\n” << endl ;
3

4 vo l S c a l a rF i e l d T
5 (
6 IOobject
7 (
8 ”T” ,
9 runTime . timeName () ,

10 mesh ,
11 IOobject : :MUSTREAD,
12 IOobject : :AUTOWRITE
13) ,
14 mesh
15) ;
16

17

18 Info<< ”Reading f i e l d U\n” << endl ;
19

20 vo lVec to rF i e ld U
21 (
22 IOobject
23 (
24 ”U” ,
25 runTime . timeName () ,
26 mesh ,
27 IOobject : :MUSTREAD,
28 IOobject : :AUTOWRITE
29) ,
30 mesh
31) ;
32

33

34 Info<< ”Reading t r an spo r tP rope r t i e s \n” << endl ;
35

36 IOd ic t ionary t r an spo r tP rope r t i e s
37 (
38 IOobject
39 (
40 ” t r an spo r tP rope r t i e s ” ,
41 runTime . constant () ,
42 mesh ,
43 IOobject : : MUST READ IF MODIFIED,
44 IOobject : :NOWRITE
45)
46) ;
47

48

49 Info<< ”Reading d i f f u s i v i t y DT\n” << endl ;
50

51 dimens ionedSca lar DT(”DT” , dimViscos i ty , t r an spo r tP rope r t i e s) ;
52

53 #inc lude ” createPh i .H”

83

54

55 #inc lude ” createFvOptions .H”

11.1.3 Make/files

1 scalarTransportFoam .C
2

3 EXE = $ (FOAMAPPBIN) / scalarTransportFoam

11.1.4 Make/options

1

2 EXE INC = \
3 −I$ (LIB SRC) / f in i teVolume / ln Inc lude \
4 −I$ (LIB SRC) /meshTools/ ln Inc lude \
5 −I$ (LIB SRC) / sampling / ln Inc lude
6

7 EXE LIBS = \
8 −l f i n i t eVo lume \
9 −l f vOpt ions \

10 −lmeshTools \
11 −l sampl ing

11.2 Code: slayFoam solver

11.2.1 slayFoam.C

1 /∗−−−∗\
2 ========= |
3 \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O pera t i on |
5 \\ / A nd | www. openfoam . com
6 \\/ M an ipu l a t i on |
7 −−−
8 Copyright (C) 2011−2017 OpenFOAM Foundation
9 −−−

10 License
11 This f i l e i s part o f OpenFOAM.
12

13 OpenFOAM i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify i t
14 under the terms o f the GNU General Publ ic L i cense as publ i shed by
15 the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
16 (at your opt ion) any l a t e r v e r s i on .
17

18 OpenFOAM i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but WITHOUT
19 ANY WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or
20 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Publ ic L i cense
21 f o r more d e t a i l s .
22

23 You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
24 along with OpenFOAM. I f not , s e e <http ://www. gnu . org / l i c e n s e s />.
25

26 Appl i ca t ion
27 scalarTransportFoam
28

29 Group

84

30 grpBas i cSo lve r s
31

32 Desc r ip t i on
33 Pass ive s c a l a r t ranspo r t equat ion s o l v e r .
34

35 \heading So lve r d e t a i l s
36 The equat ion i s g iven by :
37

38 \ f [
39 \ddt{T} + \div \ l e f t (\ vec{U} T\ r i g h t) − \div \ l e f t (D T \grad T \ r i g h t)
40 = S {T}
41 \ f]
42

43 Where :
44 \ var tab l e
45 T | Pass ive s c a l a r
46 D T | Di f f u s i on c o e f f i c i e n t
47 S T | Source
48 \ endvartab le
49

50 \heading Required f i e l d s
51 \ p l a i n t ab l e
52 T | Pass ive s c a l a r
53 U | Ve loc i ty [m/ s]
54 \ endp la in tab l e
55

56 \∗−−−∗/
57

58 #inc lude ”fvCFD .H”
59 #inc lude ” fvOptions .H”
60 #inc lude ” s impleContro l .H”
61

62 // ∗ //
63

64 i n t main (i n t argc , char ∗argv [])
65 {
66 a rgL i s t : : addNote
67 (
68 ”Pass ive s c a l a r t ranspor t equat ion s o l v e r . ”
69) ;
70

71 #inc lude ”addCheckCaseOptions .H”
72 #inc lude ” setRootCaseL i s t s .H”
73 #inc lude ” createTime .H”
74 #inc lude ” createMesh .H”
75

76 s impleContro l s imple (mesh) ;
77

78 #inc lude ” c r e a t eF i e l d s .H”
79

80 // ∗ //
81

82 In f o << ”\ nCalcu la t ing s c a l a r t ranspor t \n” << endl ;
83

84 whi le (s imple . loop ())
85 {
86 In f o << ”Time = ” << runTime . timeName () << nl << endl ;
87

88 whi le (s imple . correctNonOrthogonal ())
89 {
90 s u r f a c e S c a l a rF i e l d gradFi=fvc : : snGrad (Fi) ∗mesh . magSf () ;
91 f vSca la rMatr ix C1Eqn
92 (

85

93 p∗fvm : : ddt (C1)
94 − fvm : : l a p l a c i a n (Gamma∗DC1, C1)
95 − z1∗F∗fvm : : div (Gamma∗mu1∗gradFi ,C1)
96 ==
97 fvOptions (C1)
98) ;
99

100 C1Eqn . r e l ax () ;
101 fvOptions . c on s t r a i n (C1Eqn) ;
102 C1Eqn . s o l v e () ;
103 fvOptions . c o r r e c t (C1) ;
104

105

106 f vSca la rMatr ix C2Eqn
107 (
108 p∗fvm : : ddt (C2)
109 − fvm : : l a p l a c i a n (Gamma∗DC2, C2)
110 − z2∗F∗fvm : : div (Gamma∗mu2∗gradFi ,C2)
111 ==
112 fvOptions (C2)
113) ;
114

115 C2Eqn . r e l ax () ;
116 fvOptions . c on s t r a i n (C2Eqn) ;
117 C2Eqn . s o l v e () ;
118 fvOptions . c o r r e c t (C2) ;
119

120 kappa=kap+F∗F∗(z1∗ z1∗Gamma∗mu1∗C1+z2∗ z2∗Gamma∗mu2∗C2) ;
121

122 f vSca la rMatr ix FiEqn
123 (
124 fvm : : l a p l a c i a n (fvc : : i n t e r p o l a t e (kappa) , Fi)
125) ;
126

127 FiEqn . s o l v e () ;
128 vgradFi=fvc : : grad (Fi) ;
129 }
130

131 runTime . wr i t e () ;
132 }
133

134 Info<< ”End\n” << endl ;
135

136 re turn 0 ;
137 }

11.2.2 createFields.H

1

2 Info<< ”Reading f i e l d C1\n” << endl ;
3

4 vo l S c a l a rF i e l d C1
5 (
6 IOobject
7 (
8 ”C1” ,
9 runTime . timeName () ,

10 mesh ,
11 IOobject : :MUSTREAD,
12 IOobject : :AUTOWRITE
13) ,
14 mesh

86

15) ;
16

17

18 Info<< ”Reading f i e l d C2\n” << endl ;
19 vo l S c a l a rF i e l d C2
20 (
21 IOobject
22 (
23 ”C2” ,
24 runTime . timeName () ,
25 mesh ,
26 IOobject : :MUSTREAD,
27 IOobject : :AUTOWRITE
28) ,
29 mesh
30) ;
31

32

33 Info<< ”Reading f i e l d Fi\n” << endl ;
34

35 vo l S c a l a rF i e l d Fi
36 (
37 IOobject
38 (
39 ”Fi ” ,
40 runTime . timeName () ,
41 mesh ,
42 IOobject : :MUSTREAD,
43 IOobject : :AUTOWRITE
44) ,
45 mesh
46) ;
47

48 vo lVec to rF i e ld vgradFi
49 (
50 IOobject
51 (
52 ”vgradFi ” ,
53 runTime . timeName () ,
54 mesh ,
55 IOobject : : READ IF PRESENT,
56 IOobject : :AUTOWRITE
57) ,
58 f v c : : grad (Fi)
59) ;
60

61 Info<< ”Reading p r op e r t i e s \n” << endl ;
62

63 IOd ic t ionary p r op e r t i e s
64 (
65 IOobject
66 (
67 ” p r op e r t i e s ” ,
68 runTime . constant () ,
69 mesh ,
70 IOobject : : MUST READ IF MODIFIED,
71 IOobject : :NOWRITE
72)
73) ;
74

75 dimens ionedSca lar DC1(”DC1” , dimensionSet (0 , 2 , −1, 0 , 0 , 0 , 0) , p r op e r t i e s) ;
76

77 dimens ionedSca lar DC2(”DC2” , dimensionSet (0 , 2 , −1, 0 , 0 , 0 , 0) , p r op e r t i e s) ;

87

78

79 dimens ionedSca lar z1 (”z1” , dimensionSet (0 , 0 , 0 , 0 , 0 , 0 , 0) , p r op e r t i e s) ;
80

81 dimens ionedSca lar z2 (”z2” , dimensionSet (0 , 0 , 0 , 0 , 0 , 0 , 0) , p r op e r t i e s) ;
82

83 dimens ionedSca lar F(”F” , dimensionSet (0 , 0 , 1 , 0 , −1, 1 , 0) , p r op e r t i e s) ;
84

85 dimens ionedSca lar T(”T” , dimensionSet (0 , 0 , 0 , 1 , 0 , 0 , 0) , p r op e r t i e s) ;
86

87 dimens ionedSca lar R(”R” , dimensionSet (1 , 2 , −2, −1, −1, 0 , 0) , p r op e r t i e s) ;
88

89 dimens ionedSca lar mu1(”mu1” , dimensionSet (−1 , 0 , 1 , 0 , 1 , 0 , 0) , p r op e r t i e s) ;
90

91 dimens ionedSca lar mu2(”mu2” , dimensionSet (−1 , 0 , 1 , 0 , 1 , 0 , 0) , p r op e r t i e s) ;
92

93 dimens ionedSca lar kap (”kap” , dimensionSet (−1 , −3, 3 , 0 , 0 , 2 , 0) , p r op e r t i e s) ;
94

95 dimens ionedSca lar Gamma(”Gamma” , dimensionSet (0 , 0 , 0 , 0 , 0 , 0 , 0) , p r op e r t i e s) ;
96

97 dimens ionedSca lar p(”p” , dimensionSet (0 , 0 , 0 , 0 , 0 , 0 , 0) , p r op e r t i e s) ;
98

99 vo l S c a l a rF i e l d kappa
100 (
101 IOobject
102 (
103 ”kappa” ,
104 runTime . timeName () ,
105 mesh ,
106 IOobject : : READ IF PRESENT,
107 IOobject : :AUTOWRITE
108) ,
109 kap+F∗F∗(z1∗ z1∗Gamma∗mu1∗C1+z2∗ z2∗Gamma∗mu2∗C2)
110) ;
111

112 #inc lude ” createFvOptions .H”

11.2.3 Make/files

1 slayFoam .C
2

3 EXE = $ (FOAM USER APPBIN) /slayFoam

11.2.4 Make/options

1 EXE INC = \
2 −I$ (LIB SRC) / f in i teVolume / ln Inc lude \
3 −I$ (LIB SRC) /meshTools/ ln Inc lude \
4 −I$ (LIB SRC) / sampling / ln Inc lude
5

6 EXE LIBS = \
7 −l f i n i t eVo lume \
8 −l f vOpt ions \
9 −lmeshTools \

10 −l sampl ing

88

11.3 Code: saltyFoam solver

11.3.1 saltyFoam.C

1 /∗−−−∗\
2 ========= |
3 \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O pera t i on |
5 \\ / A nd | www. openfoam . com
6 \\/ M an ipu l a t i on |
7 −−−
8 Copyright (C) 2011−2017 OpenFOAM Foundation
9 −−−

10 License
11 This f i l e i s part o f OpenFOAM.
12

13 OpenFOAM i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify i t
14 under the terms o f the GNU General Publ ic L i cense as publ i shed by
15 the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
16 (at your opt ion) any l a t e r v e r s i on .
17

18 OpenFOAM i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but WITHOUT
19 ANY WARRANTY; without even the impl i ed warranty o f MERCHANTABILITY or
20 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Publ ic L i cense
21 f o r more d e t a i l s .
22

23 You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
24 along with OpenFOAM. I f not , s e e <http ://www. gnu . org / l i c e n s e s />.
25

26 Appl i ca t ion
27 scalarTransportFoam
28

29 Group
30 grpBas i cSo lve r s
31

32 Desc r ip t i on
33 Pass ive s c a l a r t ranspo r t equat ion s o l v e r .
34

35 \heading So lve r d e t a i l s
36 The equat ion i s g iven by :
37

38 \ f [
39 \ddt{T} + \div \ l e f t (\ vec{U} T\ r i g h t) − \div \ l e f t (D T \grad T \ r i g h t)
40 = S {T}
41 \ f]
42

43 Where :
44 \ var tab l e
45 T | Pass ive s c a l a r
46 D T | Di f f u s i on c o e f f i c i e n t
47 S T | Source
48 \ endvartab le
49

50 \heading Required f i e l d s
51 \ p l a i n t ab l e
52 T | Pass ive s c a l a r
53 U | Ve loc i ty [m/ s]
54 \ endp la in tab l e
55

56 \∗−−−∗/
57

58 #inc lude ”fvCFD .H”

89

59 #inc lude ” fvOptions .H”
60 #inc lude ” s impleContro l .H”
61

62 // ∗ //
63

64 i n t main (i n t argc , char ∗argv [])
65 {
66 a rgL i s t : : addNote
67 (
68 ”Pass ive s c a l a r t ranspor t equat ion s o l v e r . ”
69) ;
70

71 #inc lude ”addCheckCaseOptions .H”
72 #inc lude ” setRootCaseL i s t s .H”
73 #inc lude ” createTime .H”
74 #inc lude ” createMesh .H”
75

76 s impleContro l s imple (mesh) ;
77

78 #inc lude ” c r e a t eF i e l d s .H”
79

80 // ∗ //
81

82 In f o << ”\ nCalcu la t ing s c a l a r t ranspor t \n” << endl ;
83

84 //#inc lude ”CourantNo .H”
85

86 whi le (s imple . loop ())
87 {
88 In f o << ”Time = ” << runTime . timeName () << nl << endl ;
89

90 whi le (s imple . correctNonOrthogonal ())
91 {
92 Gamma=p/(tau∗ tau) ;
93 s u r f a c e S c a l a rF i e l d gradFi=fvc : : snGrad (Fi) ∗mesh . magSf () ;
94 f vSca la rMatr ix C1Eqn
95 (
96 p∗fvm : : ddt (C1)
97 − fvm : : l a p l a c i a n (Gamma∗DC1, C1)
98 − z1 ∗(F/R) ∗(1/T) ∗fvm : : div (fvc : : i n t e r p o l a t e (Gamma) ∗DC1∗gradFi ,C1)
99 ==

100 fvOptions (C1)
101) ;
102

103 C1Eqn . r e l ax () ;
104 fvOptions . c on s t r a i n (C1Eqn) ;
105 C1Eqn . s o l v e () ;
106 fvOptions . c o r r e c t (C1) ;
107

108 f vSca la rMatr ix C2Eqn
109 (
110 p∗fvm : : ddt (C2)
111 − fvm : : l a p l a c i a n (Gamma∗DC2, C2)
112 − z2 ∗(F/R) ∗(1/T) ∗fvm : : div (fvc : : i n t e r p o l a t e (Gamma) ∗DC2∗gradFi ,C2)
113 ==
114 fvOptions (C2)
115) ;
116

117 C2Eqn . r e l ax () ;
118 fvOptions . c on s t r a i n (C2Eqn) ;
119 C2Eqn . s o l v e () ;
120 fvOptions . c o r r e c t (C2) ;
121

90

122 C3 = (−z1∗C1−z2∗C2) /z3 ;
123

124 kappa=F∗F∗(z1∗ z1∗mu1∗Gamma∗C1+z2∗ z2∗mu2∗Gamma∗C2+z3∗ z3∗mu3∗Gamma∗C3) ;
125

126 k=z1∗C1+z2∗C2+z3∗C3 ;
127

128 f vSca la rMatr ix FiEqn
129 (
130 fvm : : l a p l a c i a n (fvc : : i n t e r p o l a t e (kappa) , Fi)
131 + F∗ f v c : : l a p l a c i a n (z1∗Gamma∗DC1,C1)
132 + F∗ f v c : : l a p l a c i a n (z2∗Gamma∗DC2,C2)
133 + F∗ f v c : : l a p l a c i a n (z3∗Gamma∗DC3,C3)
134) ;
135

136 FiEqn . s o l v e () ;
137 vgradFi=fvc : : grad (Fi) ;
138

139 i d i f=−F∗(z1∗DC1∗Gamma∗ f v c : : grad (C1)+z2∗DC2∗Gamma∗ f v c : : grad (C2)+z3∗DC3∗
Gamma∗ f v c : : grad (C3)) ;

140

141 i t o t = i d i f −F∗F∗ f v c : : grad (Fi) ∗(z1∗ z1∗mu1∗Gamma∗C1+z2∗ z2∗mu2∗Gamma∗C2+
z3∗ z3∗mu3∗Gamma∗C3) ;

142

143 }
144

145 runTime . wr i t e () ;
146 }
147

148 Info<< ”End\n” << endl ;
149

150 re turn 0 ;
151 }

11.3.2 createFields.H

1

2 Info<< ”Reading f i e l d C1\n” << endl ;
3

4 vo l S c a l a rF i e l d C1
5 (
6 IOobject
7 (
8 ”C1” ,
9 runTime . timeName () ,

10 mesh ,
11 IOobject : :MUSTREAD,
12 IOobject : :AUTOWRITE
13) ,
14 mesh
15) ;
16

17

18 Info<< ”Reading f i e l d C2\n” << endl ;
19

20 vo l S c a l a rF i e l d C2
21 (
22 IOobject
23 (
24 ”C2” ,
25 runTime . timeName () ,
26 mesh ,
27 IOobject : :MUSTREAD,

91

28 IOobject : :AUTOWRITE
29) ,
30 mesh
31) ;
32

33 Info<< ”Reading f i e l d Fi\n” << endl ;
34

35 vo l S c a l a rF i e l d Fi
36 (
37 IOobject
38 (
39 ”Fi ” ,
40 runTime . timeName () ,
41 mesh ,
42 IOobject : :MUSTREAD,
43 IOobject : :AUTOWRITE
44) ,
45 mesh
46) ;
47

48 vo lVec to rF i e ld vgradFi
49 (
50 IOobject
51 (
52 ”vgradFi ” ,
53 runTime . timeName () ,
54 mesh ,
55 IOobject : : READ IF PRESENT,
56 IOobject : :AUTOWRITE
57) ,
58 f v c : : grad (Fi)
59) ;
60

61 Info<< ”Reading p r op e r t i e s \n” << endl ;
62

63 IOd ic t ionary p r op e r t i e s
64 (
65 IOobject
66 (
67 ” p r op e r t i e s ” ,
68 runTime . constant () ,
69 mesh ,
70 IOobject : : MUST READ IF MODIFIED,
71 IOobject : :NOWRITE
72)
73) ;
74

75 dimens ionedSca lar DC1(”DC1” , dimensionSet (0 , 2 , −1, 0 , 0 , 0 , 0) , p r op e r t i e s) ;
76

77 dimens ionedSca lar DC2(”DC2” , dimensionSet (0 , 2 , −1, 0 , 0 , 0 , 0) , p r op e r t i e s) ;
78

79 dimens ionedSca lar DC3(”DC3” , dimensionSet (0 , 2 , −1, 0 , 0 , 0 , 0) , p r op e r t i e s) ;
80

81 dimens ionedSca lar F(”F” , dimensionSet (0 , 0 , 1 , 0 , −1, 1 , 0) , p r op e r t i e s) ;
82

83 dimens ionedSca lar T(”T” , dimensionSet (0 , 0 , 0 , 1 , 0 , 0 , 0) , p r op e r t i e s) ;
84

85 dimens ionedSca lar R(”R” , dimensionSet (1 , 2 , −2, −1, −1, 0 , 0) , p r op e r t i e s) ;
86

87 dimens ionedSca lar mu1(”mu1” , dimensionSet (−1 , 0 , 1 , 0 , 1 , 0 , 0) , p r op e r t i e s) ;
88

89 dimens ionedSca lar mu2(”mu2” , dimensionSet (−1 , 0 , 1 , 0 , 1 , 0 , 0) , p r op e r t i e s) ;
90

92

91 dimens ionedSca lar mu3(”mu3” , dimensionSet (−1 , 0 , 1 , 0 , 1 , 0 , 0) , p r op e r t i e s) ;
92

93 dimens ionedSca lar z1 (”z1” , dimensionSet (0 , 0 , 0 , 0 , 0 , 0 , 0) , p r op e r t i e s) ;
94

95 dimens ionedSca lar z2 (”z2” , dimensionSet (0 , 0 , 0 , 0 , 0 , 0 , 0) , p r op e r t i e s) ;
96

97 dimens ionedSca lar z3 (”z3” , dimensionSet (0 , 0 , 0 , 0 , 0 , 0 , 0) , p r op e r t i e s) ;
98

99 Info<< ”Reading f i e l d C3\n” << endl ;
100

101 vo l S c a l a rF i e l d C3
102 (
103 IOobject
104 (
105 ”C3” ,
106 runTime . timeName () ,
107 mesh ,
108 IOobject : :NO READ,
109 IOobject : :AUTOWRITE
110) ,
111 (−z1∗C1−z2∗C2) /z3
112) ;
113

114 #inc lude ” createFvOptions .H”
115

116 vo l S c a l a rF i e l d p
117 (
118 IOobject
119 (
120 ”p” ,
121 runTime . timeName () ,
122 mesh ,
123 IOobject : : READ IF PRESENT,
124 IOobject : :AUTOWRITE
125) ,
126 mesh
127) ;
128

129 vo l S c a l a rF i e l d tau
130 (
131 IOobject
132 (
133 ” tau” ,
134 runTime . timeName () ,
135 mesh ,
136 IOobject : : READ IF PRESENT,
137 IOobject : :AUTOWRITE
138) ,
139 mesh
140) ;
141

142 vo l S c a l a rF i e l d Gamma
143 (
144 IOobject
145 (
146 ”Gamma” ,
147 runTime . timeName () ,
148 mesh ,
149 IOobject : :MUSTREAD,
150 IOobject : :AUTOWRITE
151) ,
152 p/(tau∗ tau)
153) ;

93

154

155 vo l S c a l a rF i e l d kappa
156 (
157 IOobject
158 (
159 ”kappa” ,
160 runTime . timeName () ,
161 mesh ,
162 IOobject : : READ IF PRESENT,
163 IOobject : :AUTOWRITE
164) ,
165 F∗F∗(z1∗ z1∗mu1∗Gamma∗C1+z2∗ z2∗Gamma∗mu2∗C2+z3∗ z3∗mu3∗Gamma∗C3)
166) ;
167

168 vo l S c a l a rF i e l d k
169 (
170 IOobject
171 (
172 ”k” ,
173 runTime . timeName () ,
174 mesh ,
175 IOobject : : READ IF PRESENT,
176 IOobject : :AUTOWRITE
177) ,
178 z1∗C1+z2∗C2+z3∗C3
179) ;
180

181 vo lVec to rF i e ld i d i f
182 (
183 IOobject
184 (
185 ” i d i f ” ,
186 runTime . timeName () ,
187 mesh ,
188 IOobject : : READ IF PRESENT,
189 IOobject : :AUTOWRITE
190) ,
191 −F∗(z1∗DC1∗Gamma∗ f v c : : grad (C1)+z2∗DC2∗Gamma∗ f v c : : grad (C2)+z3∗DC3∗Gamma∗ f v c : :

grad (C3))
192) ;
193

194 vo lVec to rF i e ld i t o t
195 (
196 IOobject
197 (
198 ” i t o t ” ,
199 runTime . timeName () ,
200 mesh ,
201 IOobject : : READ IF PRESENT,
202 IOobject : :AUTOWRITE
203) ,
204 i d i f −F∗F∗ f v c : : grad (Fi) ∗(z1∗ z1∗mu1∗Gamma∗C1+z2∗ z2∗mu2∗Gamma∗C2+z3∗ z3∗mu3∗Gamma∗

C3)
205) ;

11.3.3 Make/files

1

2 saltyFoam .C
3

4 EXE = $ (FOAM USER APPBIN) /saltyFoam

94

11.3.4 Make/options

1

2 EXE INC = \
3 −I$ (LIB SRC) / f in i teVolume / ln Inc lude \
4 −I$ (LIB SRC) /meshTools/ ln Inc lude \
5 −I$ (LIB SRC) / sampling / ln Inc lude
6

7 EXE LIBS = \
8 −l f i n i t eVo lume \
9 −l f vOpt ions \

10 −lmeshTools \
11 −l sampl ing

11.4 Case setup: Permanganate tracer simulation compatible
with the slayFoam solver

This case setup can be used to create all aqueous tracer plume simulations with some adjustments
to the boundary and initial conditions corresponding, as well as constant properties described
in the section Aqueous simulations 6.1.

11.4.1 0 directory

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : 2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 arch ”LSB ; l a b e l =32; s c a l a r=64” ;
13 c l a s s v o l S c a l a rF i e l d ;
14 l o c a t i o n ”0” ;
15 ob j e c t C1 ;
16 }
17 // ∗ //
18

19 dimensions [0 −3 0 0 1 0 0] ;
20

21 i n t e r n a l F i e l d uniform 0 ;
22

23 boundaryField
24 {
25 upperWall
26 {
27 type zeroGradient ;
28 }
29 lowerWall
30 {
31 type zeroGradient ;
32 }
33 i n l e t
34 {

95

35 type zeroGradient ;
36 }
37 ou t l e t
38 {
39 type zeroGradient ;
40 }
41 frontAndBack
42 {
43 type empty ;
44 }
45 }
46

47 // ∗∗∗ //

Listing 11.1: C1 file for the Permanganate tracer simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : 2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 arch ”LSB ; l a b e l =32; s c a l a r=64” ;
13 c l a s s v o l S c a l a rF i e l d ;
14 l o c a t i o n ”0” ;
15 ob j e c t C2 ;
16 }
17 // ∗ //
18

19 dimensions [0 −3 0 0 1 0 0] ;
20

21 i n t e r n a l F i e l d uniform 0 ;
22

23 boundaryField
24 {
25 upperWall
26 {
27 type zeroGradient ;
28 }
29 lowerWall
30 {
31 type zeroGradient ;
32 }
33 i n l e t
34 {
35 type zeroGradient ;
36 }
37 ou t l e t
38 {
39 type zeroGradient ;
40 }
41 frontAndBack
42 {
43 type empty ;
44 }
45 }
46

96

47 // ∗∗∗ //

Listing 11.2: C2 file for the Permanganate tracer simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t Fi ;
14 }
15 // ∗ //
16

17 dimensions [1 2 −3 0 0 −1 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type f ixedValue ;
26 value uniform 0 ;
27 }
28

29 ou t l e t
30 {
31 type f ixedValue ;
32 value uniform 143 . 2 ;
33 }
34

35 upperWall
36 {
37 type zeroGradient ;
38 }
39

40 lowerWall
41 {
42 type zeroGradient ;
43 }
44

45 frontAndBack
46 {
47 type empty ;
48 }
49 }
50

51 // ∗∗∗ //

Listing 11.3: Fi file for the Permanganate tracer simulation.

11.4.2 constant directory

1

2 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\

97

3 | ========= | |
4 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
5 | \\ / O pera t i on | Vers ion : v2212 |
6 | \\ / A nd | Website : www. openfoam . com |
7 | \\/ M an ipu l a t i on | |
8 \∗−−−∗/
9 FoamFile

10 {
11 ve r s i on 2 . 0 ;
12 format a s c i i ;
13 c l a s s d i c t i ona ry ;
14 ob j e c t p r op e r t i e s ;
15 }
16 // ∗ //
17

18 DC1 1 .5 e−09;
19

20 DC2 0 ;
21

22 z1 −1;
23

24 z2 1 ;
25

26 F 96485 ;
27

28 R 8 .31446 ;
29

30 T 295 ;
31

32 mu1 6 .12 e−13;
33

34 mu2 0 ;
35

36 kap 2 .91 e−2;
37

38 Gamma 0.2777777778 ;
39

40 p 0 . 4 ;
41

42 // ∗∗∗ //

Listing 11.4: properties file for the Permanganate tracer simulation.

11.4.3 system directory

1

2 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
3 | ========= | |
4 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
5 | \\ / O pera t i on | Vers ion : v2212 |
6 | \\ / A nd | Website : www. openfoam . com |
7 | \\/ M an ipu l a t i on | |
8 \∗−−−∗/
9 FoamFile

10 {
11 ve r s i on 2 . 0 ;
12 format a s c i i ;
13 c l a s s d i c t i ona ry ;
14 ob j e c t blockMeshDict ;
15 }
16 // ∗ //
17

98

18 s c a l e 0 . 0 1 ;
19

20 v e r t i c e s
21 (
22 (0 0 0)
23 (28 0 0)
24 (28 15 0)
25 (0 15 0)
26 (0 0 0 . 1)
27 (28 0 0 . 1)
28 (28 15 0 . 1)
29 (0 15 0 . 1)
30) ;
31

32 b locks
33 (
34 hex (0 1 2 3 4 5 6 7) (280 150 1) simpleGrading (1 1 1)
35) ;
36

37 edges
38 (
39) ;
40

41 boundary
42 (
43 upperWall
44 {
45 type wal l ;
46 f a c e s
47 (
48 (3 7 6 2)
49) ;
50 }
51 lowerWall
52 {
53 type wal l ;
54 f a c e s
55 (
56 (1 5 4 0)
57) ;
58 }
59 i n l e t
60 {
61 type patch ;
62 f a c e s
63 (
64 (0 4 7 3)
65) ;
66 }
67 ou t l e t
68 {
69 type patch ;
70 f a c e s
71 (
72 (2 6 5 1)
73) ;
74 }
75 frontAndBack
76 {
77 type empty ;
78 f a c e s
79 (
80 (0 3 2 1)

99

81 (4 5 6 7)
82) ;
83 }
84) ;
85

86 // ∗∗∗ //

Listing 11.5: blockMeshDict file for the Permanganate tracer simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t con t r o lD i c t ;
14 }
15 // ∗ //
16

17 app l i c a t i on scalarTransportFoam ;
18

19 startFrom startTime ;
20

21 startTime 0 ;
22

23 stopAt endTime ;
24

25 endTime 7200 ;
26

27 deltaT 10 ;
28

29 wr i teContro l runTime ;
30

31 wr i t e I n t e r v a l 100 ;
32

33 purgeWrite 0 ;
34

35 writeFormat a s c i i ;
36

37 wr i t eP r e c i s i o n 6 ;
38

39 writeCompress ion o f f ;
40

41 timeFormat gene ra l ;
42

43 t imePrec i s i on 6 ;
44

45 runTimeModif iable t rue ;
46

47 // ∗∗∗ //

Listing 11.6: controlDict file for the Permanganate tracer simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |

100

6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t fvSchemes ;
14 }
15 // ∗ //
16

17 ddtSchemes
18 {
19 de f au l t Euler ;
20 }
21

22 gradSchemes
23 {
24 de f au l t Gauss l i n e a r ;
25 }
26

27 divSchemes
28 {
29 de f au l t Gauss vanLeer ;
30 }
31

32 l ap lac ianSchemes
33 {
34 de f au l t Gauss l i n e a r co r r e c t ed ;
35 }
36

37 i n t e rpo la t i onSchemes
38 {
39 de f au l t l i n e a r ;
40 }
41

42 snGradSchemes
43 {
44 de f au l t c o r r e c t ed ;
45 }
46

47 // ∗∗∗ //

Listing 11.7: fvSchemes file for the Permanganate tracer simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t f vSo lu t i on ;
14 }
15 // ∗ //
16

17 s o l v e r s
18 {
19 C1

101

20 {
21 s o l v e r GAMG;
22 smoother DILU ;
23 t o l e r an c e 1e−6;
24 r e lTo l 0 ;
25 }
26

27 C2
28 {
29 s o l v e r GAMG;
30 smoother DILU ;
31 t o l e r an c e 1e−6;
32 r e lTo l 0 ;
33

34 }
35

36 Fi
37 {
38

39 s o l v e r GAMG;
40 smoother GaussSe ide l ;
41 t o l e r an c e 1e−08;
42 r e lTo l 0 ;
43 }
44

45 }
46

47 SIMPLE
48 {
49 nNonOrthogonalCorrectors 0 ;
50 }
51

52 // ∗∗∗ //

Listing 11.8: fvSolution file for the Permanganate tracer simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t s e tExprF i e ld sDic t ;
14 }
15 // ∗ //
16

17 exp r e s s i on s
18 (
19 C1
20 {
21 f i e l d C1 ;
22 dimensions [0 −3 0 0 1 0 0] ;
23

24 cons tant s
25 {
26 cent r e (0 . 043 0 .075 0) ;
27 }
28

102

29 va r i a b l e s
30 (
31 ” rad iu s = 0.0215 ”
32) ;
33

34 cond i t i on
35 #{
36 (mag(pos () − $ [(vec to r) cons tant s . c en t r e]) < rad iu s)
37

38 #};
39

40 exp r e s s i on
41 #{
42 3
43 #};
44

45 }
46

47) ;
48

49 // ∗∗∗ //

Listing 11.9: setExprFieldsDict file for the Permanganate tracer simulation.

11.5 Case setup: FCD100 simulation compatible with the
saltyFoam solver

This case setup can be used to create all fixed current simulations with some adjustments to
the boundary and initial conditions corresponding to the values described in section Boundary
and initial conditions 6.2.3 as well as time controls described in the Darcy-scale molten salt
simulations 6.2 section.

11.5.1 0 directory

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t C1 ;
14 }
15 // ∗ //
16

17 dimensions [0 −3 0 0 1 0 0] ;
18

19 i n t e r n a l F i e l d uniform 26386 ;
20

21 boundaryField
22 {
23 i n l e t

103

24 {
25 type f ixedGrad i ent ;
26 grad i ent uniform 1.29 e06 ; // i = 1000A/m2
27 }
28

29 ou t l e t
30 {
31 type codedMixed ;
32

33 r e fVa lue uniform 0 . 0 ;
34 r e fGrad i ent uniform 0 . 0 ;
35 va lueFract ion uniform 0 . 0 ;
36

37 name zeroNaFlux ;
38

39 code
40 #{
41 // t ranspor t p r op e r t i e s
42 const s c a l a r Mu1 = 7 .5 e−13;
43 const s c a l a r D1 = 0.00000000482 ;
44

45 // va r i ab l e va lue s at the patch
46 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”Fi ”) ;
47 const s c a l a rF i e l d& C1 = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”C1”) ;
48

49 // va r i ab l e va lue s at the c e l l c en t e r next to boundary patch
50 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
51

52

53 f o rA l l (patch () . Cf () , faceID)
54 {
55 th i s−>r e fVa lue () = 0 . 0 ;
56 th i s−>va lueFract ion () = 0 . 0 ;
57 th i s−>refGrad () = −(C1 [faceID]∗Mu1/D1) ∗(Fi [faceID] − Fi O . r e f () [

faceID]) ∗ th i s−>patch () . d e l t aCoe f f s () ;
58 }
59 #};
60

61 codeInc lude
62 #{
63 #inc lude ”fvCFD .H”
64 #};
65

66 codeOptions
67 #{
68 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
69 −I$ (LIB SRC) /meshTools/ ln Inc lude \
70 #};
71 }
72

73 upperWall
74 {
75 type zeroGradient ;
76 }
77

78 lowerWall
79 {
80 type zeroGradient ;
81 }
82

104

83 frontAndBack
84 {
85 type empty ;
86 }
87 }
88

89 // ∗∗∗ //

Listing 11.10: C1 file for the FCD100 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t C2 ;
14 }
15 // ∗ //
16

17 dimensions [0 −3 0 0 1 0 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type codedMixed ;
26

27 r e fVa lue uniform 0 . 0 ;
28 r e fGrad i ent uniform 0 . 0 ;
29 va lueFract ion uniform 0 . 0 ;
30

31 name zeroZnFlux ;
32

33 code
34 #{
35 // t ranspor t p r op e r t i e s
36 const s c a l a r Mu2 = 3.07 e−13;
37 const s c a l a r D2 = 0.00000000197 ;
38

39 // va r i ab l e va lue s at the patch
40 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”Fi ”) ;
41 const s c a l a rF i e l d& C2 = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”C2”) ;
42

43 // va r i ab l e va lue s at the c e l l c en t e r next to boundary patch
44 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
45

46

47 f o rA l l (patch () . Cf () , faceID)
48 {
49 th i s−>r e fVa lue () = 0 . 0 ;
50 th i s−>va lueFract ion () = 0 . 0 ;

105

51 th i s−>refGrad () = −(C2 [faceID]∗Mu2/D2) ∗(Fi [faceID] − Fi O . r e f () [
faceID]) ∗ th i s−>patch () . d e l t aCoe f f s () ;

52 }
53 #};
54

55 codeInc lude
56 #{
57 #inc lude ”fvCFD .H”
58 #};
59

60 codeOptions
61 #{
62 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
63 −I$ (LIB SRC) /meshTools/ ln Inc lude \
64 #};
65 }
66

67 ou t l e t
68 {
69 type f ixedGrad i ent ;
70 grad i ent uniform −6.96 e05 ; // i = 1000A/m2
71 }
72

73 upperWall
74 {
75 type zeroGradient ;
76 }
77

78 lowerWall
79 {
80 type zeroGradient ;
81 }
82

83 frontAndBack
84 {
85 type empty ;
86 }
87 }
88

89 // ∗∗∗ //

Listing 11.11: C2 file for the FCD100 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t Fi ;
14 }
15 // ∗ //
16

17 dimensions [1 2 −3 0 0 −1 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField

106

22 {
23 i n l e t
24 {
25 type f ixedGrad i ent ;
26 grad i ent uniform −3.226e−04;
27 }
28

29 ou t l e t
30 {
31 type f ixedValue ;
32 value uniform 0 ;
33 }
34

35 upperWall
36 {
37 type zeroGradient ;
38 }
39

40 lowerWall
41 {
42 type zeroGradient ;
43 }
44

45 frontAndBack
46 {
47 type empty ;
48 }
49 }
50

51 // ∗∗∗ //

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t p ;
14 }
15 // ∗ //
16

17 dimensions [0 0 0 0 0 0 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type zeroGradient ;
26 }
27

28 ou t l e t
29 {
30 type zeroGradient ;
31 }
32

33 upperWall

107

34 {
35 type zeroGradient ;
36 }
37

38 lowerWall
39 {
40 type zeroGradient ;
41 }
42

43 frontAndBack
44 {
45 type empty ;
46 }
47 }
48

49 // ∗∗∗ //

Listing 11.12: p file for the FCD100 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t tau ;
14 }
15 // ∗ //
16

17 dimensions [0 0 0 0 0 0 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type zeroGradient ;
26 }
27

28 ou t l e t
29 {
30 type zeroGradient ;
31 }
32

33 upperWall
34 {
35 type zeroGradient ;
36 }
37

38 lowerWall
39 {
40 type zeroGradient ;
41 }
42

43 frontAndBack
44 {
45 type empty ;

108

46 }
47 }
48

49 // ∗∗∗ //

Listing 11.13: tau file for the FCD100 simulation.

11.5.2 constant directory

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t p r op e r t i e s ;
14 }
15 // ∗ //
16

17 F 96485 ;
18

19 R 8 .31446 ;
20

21 T 833 ;
22

23 DC1 8.01 e−09;
24

25 DC2 7.45 e−09;
26

27 DC3 6.35 e−09;
28

29 mu1 1 .16 e−12;
30

31 mu2 1 .08 e−12;
32

33 mu3 9 .17 e−13;
34

35 z1 1 ;
36

37 z2 2 ;
38

39 z3 −1;
40

41 // ∗∗∗ //

Listing 11.14: properties file for the FCD100 simulation.

11.5.3 system directory

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |

109

6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t blockMeshDict ;
14 }
15 // ∗ //
16

17 s c a l e 0 . 0 1 ; // i n l e t and ou t l e t should not be wal l s , patches ?
18

19 v e r t i c e s
20 (
21 (0 0 0)
22 (8 0 0)
23 (8 4 0)
24 (0 4 0)
25 (0 0 0 . 1)
26 (8 0 0 . 1)
27 (8 4 0 . 1)
28 (0 4 0 . 1)
29) ;
30

31 b locks
32 (
33 hex (0 1 2 3 4 5 6 7) (400 200 1) simpleGrading (1 1 1)
34) ;
35

36 edges
37 (
38) ;
39

40 boundary
41 (
42 upperWall
43 {
44 type wal l ;
45 f a c e s
46 (
47 (3 7 6 2)
48) ;
49 }
50 lowerWall
51 {
52 type wal l ;
53 f a c e s
54 (
55 (1 5 4 0)
56) ;
57 }
58 i n l e t
59 {
60 type patch ;
61 f a c e s
62 (
63 (0 4 7 3)
64) ;
65 }
66 ou t l e t
67 {
68 type patch ;

110

69 f a c e s
70 (
71 (2 6 5 1)
72) ;
73 }
74 frontAndBack
75 {
76 type empty ;
77 f a c e s
78 (
79 (0 3 2 1)
80 (4 5 6 7)
81) ;
82 }
83) ;
84

85 // ∗∗∗ //

Listing 11.15: blockMeshDict file for the FCD100 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t con t r o lD i c t ;
14 }
15 // ∗ //
16

17 app l i c a t i on s laysaltFoam ;
18

19 startFrom latestTime ;
20

21 startTime 0 ;
22

23 stopAt endTime ;
24

25 endTime 22000;
26

27 deltaT 5 ;
28

29 wr i teContro l runTime ;
30

31 wr i t e I n t e r v a l 500 ;
32

33 purgeWrite 0 ;
34

35 writeFormat a s c i i ;
36

37 wr i t eP r e c i s i o n 6 ;
38

39 writeCompress ion o f f ;
40

41 timeFormat gene ra l ;
42

43 t imePrec i s i on 6 ;
44

111

45 runTimeModif iable t rue ;
46

47

48 // ∗∗∗ //

Listing 11.16: controlDict file for the FCD100 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t fvSchemes ;
14 }
15 // ∗ //
16

17 ddtSchemes
18 {
19 de f au l t Euler ;
20 }
21

22 gradSchemes
23 {
24 de f au l t Gauss l i n e a r ;
25 }
26

27 divSchemes
28 {
29 de f au l t Gauss vanLeer ;
30 }
31

32 l ap lac ianSchemes
33 {
34 de f au l t Gauss l i n e a r co r r e c t ed ;
35 }
36

37 i n t e rpo la t i onSchemes
38 {
39 de f au l t l i n e a r ;
40 }
41

42 snGradSchemes
43 {
44 de f au l t c o r r e c t ed ;
45 }
46

47 // ∗∗∗ //

Listing 11.17: fvSchemes file for the FCD100 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/

112

8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t f vSo lu t i on ;
14 }
15 // ∗ //
16

17 s o l v e r s
18 {
19 C1
20 {
21 s o l v e r GAMG;
22 smoother DILU ;
23 t o l e r an c e 1e−6;
24 r e lTo l 0 ;
25 }
26

27 C2
28 {
29 s o l v e r GAMG;
30 smoother DILU ;
31 t o l e r an c e 1e−6;
32 r e lTo l 0 ;
33

34 }
35

36 Fi
37 {
38

39 s o l v e r GAMG;
40 smoother GaussSe ide l ;
41 t o l e r an c e 1e−08;
42 r e lTo l 0 ;
43 }
44

45 }
46

47 SIMPLE
48 {
49 nNonOrthogonalCorrectors 0 ;
50 }
51

52 // ∗∗∗ //

Listing 11.18: fvSolution file for the FCD100 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t s e tF i e l d sD i c t ;
14 }
15 // ∗ //
16

113

17 de f au l tF i e l dVa lue s
18 (
19 vo lSca l a rF i e ldVa lue p 1
20 vo lSca l a rF i e ldVa lue tau 1
21 vo lSca l a rF i e ldVa lue C1 26386
22 vo lSca l a rF i e ldVa lue C2 0
23) ;
24

25 r e g i on s
26 (
27 boxToCell
28 {
29 box (0 . 035 0 0) (0 . 045 0 .04 0 . 001) ;
30 f i e l dVa l u e s
31 (
32 vo lSca l a rF i e ldVa lue p 0 .85
33 vo lSca l a rF i e ldVa lue tau 1 .12
34) ;
35 }
36

37 boxToCell
38 {
39 box (0 . 035 0 0) (0 . 08 0 .04 0 . 001) ;
40 f i e l dVa l u e s
41 (
42 vo lSca l a rF i e ldVa lue C1 17111.6
43 vo lSca l a rF i e ldVa lue C2 9766.2
44) ;
45 }
46) ;
47

48 // ∗∗∗ //

Listing 11.19: setFieldsDict file for the FCD100 simulation.

11.6 Case setup: FPD0.018 simulation compatible with the
saltyFoam solver

This case setup can be used to recreate all fixed electric potential difference simulations with
some adjustments to the boundary and initial conditions corresponding to the values described
in section Boundary and initial conditions 6.2.3 as well as time controls described in the Darcy-
scale molten salt simulations 6.2 section.

11.6.1 0 directory

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;

114

13 ob j e c t C1 ;
14 }
15 // ∗ //
16

17 dimensions [0 −3 0 0 1 0 0] ;
18

19 i n t e r n a l F i e l d uniform 26386 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type codedMixed ;
26

27 r e fVa lue uniform 0 . 0 ;
28 r e fGrad i ent uniform 0 . 0 ;
29 va lueFract ion uniform 0 . 0 ;
30

31 name NaFlux ;
32

33 code
34 #{
35 // t ranspor t p r op e r t i e s
36 const s c a l a r z = 1 ;
37 const s c a l a r D1 = 8.01 e−09;
38 const s c a l a r F = 96485;
39

40 // va r i ab l e va lue s at the patch
41 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”Fi ”) ;
42

43 // va r i ab l e va lue s at the c e l l c en t e r next to boundary patch
44 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
45 const tmp<s c a l a rF i e l d>& kappa O = patch () . lookupPatchField<

vo lS ca l a rF i e l d , s ca l a r >(”kappa”) . pa t ch In t e rna lF i e l d () ;
46

47

48 f o rA l l (patch () . Cf () , faceID)
49 {
50 th i s−>r e fVa lue () = 0 . 0 ;
51 th i s−>va lueFract ion () = 0 . 0 ;
52 th i s−>refGrad () = −(kappa O . r e f () [faceID] ∗ (Fi O . r e f () [faceID] − Fi

[faceID]) ∗ th i s−>patch () . d e l t aCoe f f s ()) /(z∗F∗D1) ;
53 }
54 #};
55

56 codeInc lude
57 #{
58 #inc lude ”fvCFD .H”
59 #};
60

61 codeOptions
62 #{
63 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
64 −I$ (LIB SRC) /meshTools/ ln Inc lude \
65 #};
66 }
67

68 ou t l e t
69 {
70 type codedMixed ;
71

115

72 r e fVa lue uniform 0 . 0 ;
73 r e fGrad i ent uniform 0 . 0 ;
74 va lueFract ion uniform 0 . 0 ;
75

76 name zeroNaFlux ;
77

78 code
79 #{
80 // t ranspor t p r op e r t i e s
81 const s c a l a r Mu1 = 1.16 e−12;
82 const s c a l a r D1 = 8.01 e−09;
83

84 // v a r i b l e va lue s at the patch
85 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”Fi ”) ;
86 const s c a l a rF i e l d& C1 = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”C1”) ;
87

88 // v a r i b l e va lue s at the c e l l c en t e r next to boundary patch
89 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
90

91

92 f o rA l l (patch () . Cf () , faceID)
93 {
94 th i s−>r e fVa lue () = 0 . 0 ;
95 th i s−>va lueFract ion () = 0 . 0 ;
96 th i s−>refGrad () = −(C1 [faceID]∗Mu1/D1) ∗(Fi [faceID] − Fi O . r e f () [

faceID]) ∗ th i s−>patch () . d e l t aCoe f f s () ;
97 }
98 #};
99

100 codeInc lude
101 #{
102 #inc lude ”fvCFD .H”
103 #};
104

105 codeOptions
106 #{
107 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
108 −I$ (LIB SRC) /meshTools/ ln Inc lude \
109 #};
110 }
111

112 upperWall
113 {
114 type zeroGradient ;
115 }
116

117 lowerWall
118 {
119 type zeroGradient ;
120 }
121

122 frontAndBack
123 {
124 type empty ;
125 }
126 }
127

128 // ∗∗∗ //

Listing 11.20: C1 file for the FPD0.018 simulation.

116

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t C2 ;
14 }
15 // ∗ //
16

17 dimensions [0 −3 0 0 1 0 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type codedMixed ;
26

27 r e fVa lue uniform 0 . 0 ;
28 r e fGrad i ent uniform 0 . 0 ;
29 va lueFract ion uniform 0 . 0 ;
30

31 name zeroZnFlux ;
32

33 code
34 #{
35 // t ranspor t p r op e r t i e s
36 const s c a l a r Mu2 = 1.08 e−12;
37 const s c a l a r D2 = 7.45 e−09;
38

39 // v a r i b l e va lue s at the patch
40 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”Fi ”) ;
41 const s c a l a rF i e l d& C2 = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”C2”) ;
42

43 // v a r i b l e va lue s at the c e l l c en t e r next to boundary patch
44 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
45

46

47 f o rA l l (patch () . Cf () , faceID)
48 {
49 th i s−>r e fVa lue () = 0 . 0 ;
50 th i s−>va lueFract ion () = 0 . 0 ;
51 th i s−>refGrad () = −(C2 [faceID]∗Mu2/D2) ∗(Fi [faceID] − Fi O . r e f () [

faceID]) ∗ th i s−>patch () . d e l t aCoe f f s () ;
52 }
53 #};
54

55 codeInc lude
56 #{
57 #inc lude ”fvCFD .H”
58 #};
59

117

60 codeOptions
61 #{
62 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
63 −I$ (LIB SRC) /meshTools/ ln Inc lude \
64 #};
65 }
66

67 ou t l e t
68 {
69 type codedMixed ;
70

71 r e fVa lue uniform 0 . 0 ;
72 r e fGrad i ent uniform 0 . 0 ;
73 va lueFract ion uniform 0 . 0 ;
74

75 name ZnFlux ;
76

77 code
78 #{
79 // t ranspor t p r op e r t i e s
80 const s c a l a r D2 = 7.45 e−09;
81 const s c a l a r z = 2 ;
82 const s c a l a r F = 96485;
83

84 // v a r i b l e va lue s at the patch
85 const s c a l a rF i e l d& Fi = patch () . lookupPatchField<vo lS ca l a rF i e l d ,

s c a l a r >(”Fi ”) ;
86

87 // v a r i b l e va lue s at the c e l l c en t e r next to boundary patch
88 const tmp<s c a l a rF i e l d>& Fi O = patch () . lookupPatchField<vo lS ca l a rF i e l d

, s ca l a r >(”Fi ”) . pa t ch In t e rna lF i e l d () ;
89 const tmp<s c a l a rF i e l d>& kappa O = patch () . lookupPatchField<

vo lS ca l a rF i e l d , s ca l a r >(”kappa”) . pa t ch In t e rna lF i e l d () ;
90

91

92 f o rA l l (patch () . Cf () , faceID)
93 {
94 th i s−>r e fVa lue () = 0 . 0 ;
95 th i s−>va lueFract ion () = 0 . 0 ;
96 th i s−>refGrad () = (kappa O . r e f () [faceID] ∗ (Fi [faceID] − Fi O . r e f () [

faceID]) ∗ th i s−>patch () . d e l t aCoe f f s ()) /(z∗F∗D2) ;
97 }
98 #};
99

100 codeInc lude
101 #{
102 #inc lude ”fvCFD .H”
103 #};
104

105 codeOptions
106 #{
107 −I$ (LIB SRC) / f i n i t eVo l ime / ln Inc lude \
108 −I$ (LIB SRC) /meshTools/ ln Inc lude \
109 #};
110 }
111

112 upperWall
113 {
114 type zeroGradient ;
115 }
116

117 lowerWall
118 {

118

119 type zeroGradient ;
120 }
121

122 frontAndBack
123 {
124 type empty ;
125 }
126 }
127

128 // ∗∗∗ //

Listing 11.21: C2 file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t Fi ;
14 }
15 // ∗ //
16

17 dimensions [1 2 −3 0 0 −1 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type f ixedValue ;
26 value uniform 0 . 0 1 8 ;
27 }
28

29 ou t l e t
30 {
31 type f ixedValue ;
32 value uniform 0 ;
33 }
34

35 upperWall
36 {
37 type zeroGradient ;
38 }
39

40 lowerWall
41 {
42 type zeroGradient ;
43 }
44

45 frontAndBack
46 {
47 type empty ;
48 }
49 }
50

119

51 // ∗∗∗ //

Listing 11.22: Fi file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t p ;
14 }
15 // ∗ //
16

17 dimensions [0 0 0 0 0 0 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type zeroGradient ;
26 }
27

28 ou t l e t
29 {
30 type zeroGradient ;
31 }
32

33 upperWall
34 {
35 type zeroGradient ;
36 }
37

38 lowerWall
39 {
40 type zeroGradient ;
41 }
42

43 frontAndBack
44 {
45 type empty ;
46 }
47 }
48

49 // ∗∗∗ //

Listing 11.23: p file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile

120

9 {
10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s v o l S c a l a rF i e l d ;
13 ob j e c t tau ;
14 }
15 // ∗ //
16

17 dimensions [0 0 0 0 0 0 0] ;
18

19 i n t e r n a l F i e l d uniform 0 ;
20

21 boundaryField
22 {
23 i n l e t
24 {
25 type zeroGradient ;
26 }
27

28 ou t l e t
29 {
30 type zeroGradient ;
31 }
32

33 upperWall
34 {
35 type zeroGradient ;
36 }
37

38 lowerWall
39 {
40 type zeroGradient ;
41 }
42

43 frontAndBack
44 {
45 type empty ;
46 }
47 }
48

49 // ∗∗∗ //

Listing 11.24: tau file for the FPD0.018 simulation.

11.6.2 constant directory

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t p r op e r t i e s ;
14 }
15 // ∗ //
16

121

17 F 96485 ;
18

19 R 8 .31446 ;
20

21 T 833 ;
22

23 DC1 8.01 e−09;
24

25 DC2 7.45 e−09;
26

27 DC3 6.35 e−09;
28

29 mu1 1 .16 e−12;
30

31 mu2 1 .08 e−12;
32

33 mu3 9 .17 e−13;
34

35 z1 1 ;
36

37 z2 2 ;
38

39 z3 −1;
40

41 // ∗∗∗ //

Listing 11.25: properties file for the FPD0.018 simulation.

11.6.3 system directory

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t blockMeshDict ;
14 }
15 // ∗ //
16

17 s c a l e 0 . 0 1 ; // i n l e t and ou t l e t should not be wal l s , patches ?
18

19 v e r t i c e s
20 (
21 (0 0 0)
22 (8 0 0)
23 (8 4 0)
24 (0 4 0)
25 (0 0 0 . 1)
26 (8 0 0 . 1)
27 (8 4 0 . 1)
28 (0 4 0 . 1)
29) ;
30

31 b locks
32 (

122

33 hex (0 1 2 3 4 5 6 7) (400 200 1) simpleGrading (1 1 1)
34) ;
35

36 edges
37 (
38) ;
39

40 boundary
41 (
42 upperWall
43 {
44 type wal l ;
45 f a c e s
46 (
47 (3 7 6 2)
48) ;
49 }
50 lowerWall
51 {
52 type wal l ;
53 f a c e s
54 (
55 (1 5 4 0)
56) ;
57 }
58 i n l e t
59 {
60 type patch ;
61 f a c e s
62 (
63 (0 4 7 3)
64) ;
65 }
66 ou t l e t
67 {
68 type patch ;
69 f a c e s
70 (
71 (2 6 5 1)
72) ;
73 }
74 frontAndBack
75 {
76 type empty ;
77 f a c e s
78 (
79 (0 3 2 1)
80 (4 5 6 7)
81) ;
82 }
83) ;
84

85 // ∗∗∗ //

Listing 11.26: blockMeshDict file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile

123

9 {
10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t con t r o lD i c t ;
14 }
15 // ∗ //
16

17 app l i c a t i on s laysaltFoam ;
18

19 startFrom latestTime ;
20

21 startTime 0 ;
22

23 stopAt endTime ;
24

25 endTime 46000;
26

27 deltaT 10 ;
28

29 wr i teContro l runTime ;
30

31 wr i t e I n t e r v a l 500 ;
32

33 purgeWrite 0 ;
34

35 writeFormat a s c i i ;
36

37 wr i t eP r e c i s i o n 6 ;
38

39 writeCompress ion o f f ;
40

41 timeFormat gene ra l ;
42

43 t imePrec i s i on 6 ;
44

45 runTimeModif iable t rue ;
46

47 // ∗∗∗ //

Listing 11.27: controlDict file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t fvSchemes ;
14 }
15 // ∗ //
16

17 ddtSchemes
18 {
19 de f au l t Euler ;
20 }
21

22 gradSchemes

124

23 {
24 de f au l t Gauss l i n e a r ;
25 }
26

27 divSchemes
28 {
29 de f au l t Gauss vanLeer ;
30 }
31

32 l ap lac ianSchemes
33 {
34 de f au l t Gauss l i n e a r co r r e c t ed ;
35 }
36

37 i n t e rpo la t i onSchemes
38 {
39 de f au l t l i n e a r ;
40 }
41

42 snGradSchemes
43 {
44 de f au l t c o r r e c t ed ;
45 }
46

47 // ∗∗∗ //

Listing 11.28: fvSchemes file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t f vSo lu t i on ;
14 }
15 // ∗ //
16

17 s o l v e r s
18 {
19 C1
20 {
21 s o l v e r GAMG;
22 smoother DILU ;
23 t o l e r an c e 1e−6;
24 r e lTo l 0 ;
25 }
26

27 C2
28 {
29 s o l v e r GAMG;
30 smoother DILU ;
31 t o l e r an c e 1e−6;
32 r e lTo l 0 ;
33

34 }
35

36 Fi

125

37 {
38

39 s o l v e r GAMG;
40 smoother GaussSe ide l ;
41 t o l e r an c e 1e−08;
42 r e lTo l 0 ;
43 }
44

45 }
46

47 SIMPLE
48 {
49 nNonOrthogonalCorrectors 0 ;
50 }
51

52 // ∗∗∗ //

Listing 11.29: fvSolution file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t s e tExprF i e ld sDic t ;
14 }
15 // ∗ //
16

17 exp r e s s i on s
18 (
19 Fi
20 {
21 f i e l d Fi ;
22 dimensions [1 2 −3 0 0 −1 0] ;
23

24 cons tant s
25 {
26 s i d e (0 . 08 0 .04 0 . 001) ;
27 }
28

29 va r i a b l e s
30 (
31

32) ;
33

34 cond i t i on
35 #{
36 (mag(pos () − $ [(vec to r) cons tant s . s i d e]) > 0)
37

38 #};
39

40 exp r e s s i on
41 #{
42 0 .018 − 0 .225∗ pos () . x ()
43 #};
44

45 }

126

46

47) ;
48

49 // ∗∗∗ //

Listing 11.30: setExprFieldsDict file for the FPD0.018 simulation.

1 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗− C++ −∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Vers ion : v2212 |
5 | \\ / A nd | Website : www. openfoam . com |
6 | \\/ M an ipu l a t i on | |
7 \∗−−−∗/
8 FoamFile
9 {

10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i ona ry ;
13 ob j e c t s e tF i e l d sD i c t ;
14 }
15 // ∗ //
16

17 de f au l tF i e l dVa lue s
18 (
19 vo lSca l a rF i e ldVa lue p 1
20 vo lSca l a rF i e ldVa lue tau 1
21 vo lSca l a rF i e ldVa lue C1 26386
22 vo lSca l a rF i e ldVa lue C2 0
23) ;
24

25 r e g i on s
26 (
27 boxToCell
28 {
29 box (0 . 035 0 0) (0 . 045 0 .04 0 . 001) ;
30 f i e l dVa l u e s
31 (
32 vo lSca l a rF i e ldVa lue p 0 .85
33 vo lSca l a rF i e ldVa lue tau 1 .12
34) ;
35 }
36

37 boxToCell
38 {
39 box (0 . 035 0 0) (0 . 08 0 .04 0 . 001) ;
40 f i e l dVa l u e s
41 (
42 vo lSca l a rF i e ldVa lue C1 17111.6
43 vo lSca l a rF i e ldVa lue C2 9766.2
44) ;
45 }
46) ;
47

48 // ∗∗∗ //

Listing 11.31: setFieldsDict file for the FPD0.018 simulation.

127

	Preface
	Abstract
	Sammendrag
	Figure list
	Introduction
	Background and motivation
	Na-Zn Liquid Metal Battery
	Aim and scope of the present work

	Literature review and state of the art
	Liquid Metal Batteries
	Modelling of electrokinetic transport

	Theory
	Dissolved species transport
	Summary

	Numerical approach
	Finite volume method
	Time advancements
	Forward Euler Scheme
	Backward Euler Scheme

	Meshing
	Convergence
	Error and uncertainty
	Summary

	Implementation of the models in OpenFOAM
	OpenFOAM environment
	Meshing in OpenFOAM

	ScalarTransportFoam - the basis for the developed solvers
	SlayFoam solver for implementation testing
	SaltyFoam for electrokinetic transport in molten salt
	Implementation of concentration boundary conditions in OpenFOAM

	Case setups
	Aqueous simulations
	Mesh
	Physical properties
	Boundary and initial conditions
	Solution and time controls

	Darcy-scale molten salt simulations
	Mesh
	Physical properties
	Boundary and initial conditions
	Solution and time controls

	Results
	Verification of the results
	Molten salt electrolyte simulation results
	Convergence testing
	Fixed current simulations
	Fixed potential difference simulations
	Diaphragms' parameter study

	Discussion
	Aqueous model and simulations
	Errors and uncertainties

	Molten salt simulations
	Errors and uncertainties

	Concluding remarks
	Future work
	Bibliography
	Appendix
	Code: unedited scalarTransportFoam solver
	scalarTransportFoam.C
	createFields.H
	Make/files
	Make/options

	Code: slayFoam solver
	slayFoam.C
	createFields.H
	Make/files
	Make/options

	Code: saltyFoam solver
	saltyFoam.C
	createFields.H
	Make/files
	Make/options

	Case setup: Permanganate tracer simulation compatible with the slayFoam solver
	0 directory
	constant directory
	system directory

	Case setup: FCD100 simulation compatible with the saltyFoam solver
	0 directory
	constant directory
	system directory

	Case setup: FPD0.018 simulation compatible with the saltyFoam solver
	0 directory
	constant directory
	system directory

