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Abstract

This study examines a pipeline for reconstructing compressive sensed images while
simultaneously removing small clouds. The research encompasses various subsys-
tems designed and tested to address the reconstruction, cloud detection, cloud
removal, and missing area reconstruction tasks, with the U-Net as an essential tool.
The primary objective is to investigate potential solutions within the context of
HYPSO-1 images.
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Introduction 1
Helene Markeng
Håkon Jarls gate 2
7030 Trondheim
Norway

1.1 Motivation and Problem Statement

The use of hyperspectral images (HSIs) obtained from satellites is becoming increas-
ingly important in various fields such as agriculture, environmental monitoring, and
remote sensing. However, HSIs are usually data-intensive and high-dimensional,
which makes it challenging to store, process, and transmit the data. To address
these challenges, compressive sensing (CS) has emerged as a promising technique to
obtain sparse measurements of the HSI, which allows for efficient data compression
and transmission. In CS, the reconstruction of the original HSI from the sparse
measurements is a crucial step. Traditional reconstruction methods often use com-
plex algorithms that can be computationally demanding and time-consuming. To
overcome these limitations, deep learning techniques such as U-Net have gained
considerable attention. U-Net is a convolutional neural network that can capture
and make use of the spatial and spectral correlations within HSIs, thereby improving
the speed and quality of HSI reconstruction.

In addition to the challenges posed by data transmission and reconstruction, cloud
cover can significantly impact the usability of hyperspectral images. Clouds can
obscure the underlying features and make the acquired data unreliable for further
analysis. Therefore, an essential task in HSI processing is cloud detection and
removal. Accurate detection and removal of clouds can enhance the quality and reli-
ability of the reconstructed HSIs, allowing more accurate analysis and interpretation
of the data.

This thesis aims to investigate how compressive sensing, U-Net reconstruction, and
cloud removal techniques can be used together to improve the speed, efficiency,
and usability of hyperspectral images taken by satellite platforms. Specifically,

1



the focus is on HSIs captured by the HYPSO-1 satellite, which aims to capture
ocean-color images to support marine research. By using deep learning and cloud
removal algorithms, the goal is to investigate the feasibility of a pipeline that can
effectively detect and remove clouds from compressed measurements, resulting in
faster and more reliable reconstruction of HSIs. To accomplish this, expertise in
multiple technical fields is required. Therefore, the pipeline will be divided into
separate components and studied individually and in combination with other parts
to produce informative results that can pave the way for future advancements and
improvements.

2 Chapter 1 Introduction



1.2 Thesis Structure

Chapter 2 - Concepts

In this chapter, I will give a detailed explanation of the theories and concepts that
form the basis of the research presented in this thesis. Additionally, to avoid any
confusion, I will clarify any abbreviations used throughout the work to ensure a
common understanding.

Chapter 3 - Related work

This thesis builds upon prior research and incorporates numerous techniques. In this
chapter, we examine relevant studies in the field, outlining their main discoveries
and how they relate to our current research.

Chapter 4 - System Description

This chapter provides an overview of the system implementation. It includes the
decisions made during the project, which were guided by the theory and related
research in Chapter 1 and 2. The tools, dataset and code used for the system
implementation are also described, as well as various approaches.

Chapter 5 - Results and discussion

This chapter reviews and analyzes the results achieved through various methods
assessed in the study. Additionally, errors will be investigated to gain a better com-
prehension of the causes of any inconsistencies and pinpoint possible opportunities
for enhancement.

Chapter 6 - Conclusions and future work

In this chapter, the study’s primary discoveries and conclusions are summarized,
emphasizing the significant outcomes. Additionally, potential directions for future
research are examined, taking into account any shortcomings of the present study
and possible areas for additional investigation.

1.2 Thesis Structure 3





Concepts 2
This chapter contains several technical concepts that are crucial for comprehending
the studied system, with the purpose of providing a theoretical basis for the research
presented in the thesis. By explaining these concepts in detail and establishing a
shared vocabulary, the reader will be able to fully understand the system and the
research presented in the thesis. In addition, this chapter will introduce pertinent
research that serves as both a source of inspiration and a basis for decision-making.

2.1 Remote sensing and hyperspectral images.

Remote sensing is a scientific field that revolves around the collection, processing,
and analysis of information concerning the Earth’s surface and atmosphere using
sensors deployed on satellites and aircraft. This technology enables researchers
and scientists to investigate and monitor the Earth from a distance, eliminating
the need for direct ground-based data collection. Remote sensing sensors fall into
two main categories: passive and active sensors. Passive sensors, like cameras and
spectrometers, detect and measure the natural energy emitted or reflected by the
Earth’s surface and atmosphere. On the other hand, active sensors, including radar
and lidar, emit energy and capture the energy reflected back from the Earth’s surface
and atmosphere. Remote sensing data has a wide range of applications, such as
studying land use, vegetation, hydrology, meteorology, and climate. [1].

2.1.1 Hyperspectral imaging

Hyperspectral images (HSI) are a type of image that captures information across
a wide range of the electromagnetic (EM) spectrum. HSIs can be used as remote
sensing data by capturing the reflectance of the Earth’s surface in many narrow,
contiguous wavelength bands, typically between 400-2500 nm [2]. This allows for
identifying and mapping materials and features on the Earth’s surface based on their
unique spectral signatures. One pixel with all its samples across the electromagnetic
spectra is called a spectral vector, a spectral array, or a pixel array. The frequency
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bands are usually the same for all spectral vectors in all images in one data set.
Unlike RGB images, which contain three frequency bands (Red, Green, and Blue),
HSIs can contain hundreds of bands. As illustrated in Fig. 2.1, an HSI has dimensions
x and y in the spatial domain and dimension z in the spectral domain, making it a
three-dimensional cube or tensor.

Fig. 2.1: A simple representation of a HSI cube, with dimensions x, y, and z. A spectral
vector of one pixel is marked in light blue.

An HSI cube can be represented in RGB format by selecting bands corresponding to
red, green, and blue frequencies. Examples of an HSI cube and its corresponding
RGB representation are shown in Fig. 5.20a and 2.3, respectively.

Fig. 2.2: HSI cube containing 120 bands.
Note that the image is rotated
compared to the image above
so that the z-axis is pointing
downwards.

Fig. 2.3: RGB representation of HSI
cube.
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2.1.2 Cloud contamination

Clouds pose a significant challenge when conducting earth observation through
remote sensing using satellite images due to their opaque nature. They can obstruct
the visibility of ground objects and seamlessly blend with the underlying details,
making them a major obstacle to accurate analysis and interpretation. The spectral
signature of clouds can vary depending on factors such as cloud type, thickness, and
altitude. For example, due to their ice crystals, high-altitude clouds tend to have a
strong spectral signature in the mid-infrared wavelengths. In contrast, low-altitude
cumulus clouds tend to have a strong signature in the visible and near-infrared
wavelengths due to their water droplets [3]. Clouds can also affect the spectral
signature of the underlying surface by reflecting or absorbing radiation, which can
complicate the analysis of remote sensing data. A clouded image can be modeled
using a cloud physical model using parameters such as atmospheric light, the
reflectance of the ground object, cloud transmission, and the sunlight’s attenuation
coefficient. Using such models, one can get an expression for cloud-free images,
and researchers can estimate the actual ground reflectance [4]. However, this task
demands considerable expertise and customization specific to the remote sensor and
landscape conditions.

Cloud detection

Cloud detection in remote sensing imagery is vital for applications like weather
forecasting and environmental analysis. Different methods, such as thresholding,
spectral analysis, and machine learning, are used for this purpose. Thresholding sets
a specific value for a parameter, like reflectance, to classify pixels as clouds if their
values exceed the threshold. Spectral analysis uses unique spectral signatures of
clouds, stemming from their scattering and absorption properties. Machine learning,
especially with Convolutional Neural Networks and UNet architectures, has proven
effective due to their ability to learn complex patterns. [5]–[8]

Cloud detection methods can be categorized based on their application:

1. Snow/Cloud Detection: Differentiating between snow-covered areas and
clouds is challenging due to similar spectral signatures.

2. Cloud/No Cloud Detection: This binary classification aims to identify whether
a pixel represents a cloud or not. It serves as a fundamental step in cloud
detection systems.

2.1 Remote sensing and hyperspectral images. 7



3. Thin/Thick Cloud Detection: Differentiating between thin and thick clouds is
essential for assessing cloud properties and their impact on the Earth’s radiation
budget. Thin clouds are less opaque and may require more sophisticated
techniques for accurate detection.

However, creating a universally applicable model is challenging due to sensor
characteristics and varying conditions.

Cloud removal

Removing clouds from HSIs often consists of removing the contamination from the
clouds and recovering areas lost due to the cloud removal. Image stacking and pixel
replacement methods can be used if multiple images of the same place, close in time,
and with similar lightning conditions are available. If no such images are available,
physical model and spectral unmixing approaches can be utilized to recover the true
ground reflectance. In recent years, deep learning techniques have shown promising
results in this field, but it is still an area of active research, with new advancements
and improved methods frequently emerging.

2.2 The HYPSO-1 satellite

The HYPSO-1 satellite is a CubeSat that orbits 500km above the Earth’s surface. It
captures hyperspectral images of 40km x 40km areas and transfers them to nearby
ground stations. The HSIs have a spectral resolution of 5nm with wavelengths going
from 387nm to 801nm and a spatial resolution of 100m per pixel. The satellite’s
mission is to provide high-resolution remote sensing data for analyzing sporadic
ocean color events, particularly algal blooms. If the algal is malignant, it may cause
considerable damage to marine environments, ecosystems, and fish. An algal bloom
has wavelengths from 400nm to 700nm, depending on the type, and therefore, using
HYPSO-1 HSIs might help discover malignant types. [9]

The HYPSO-1 imaging mode produces hyperspectral cubes that are 153 MB in size.
Even with a high data rate S-band downlink of more than 1 Mbps, downloading
a whole cube would take more than 20 minutes [10]. The NTNU ground station
sees the satellite for an average of ten passes daily, with a total theoretical duration
of 100 minutes. If the operation is streamlined and error-free, approximately 60
minutes could be available for downlinking hyperspectral data. This corresponds to
about 450 MB of data daily, equivalent to three uncompressed hyperspectral image
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cubes. In HYPSO-1, lossless CCSDS123 compression is used, which reduces the data
to be downlinked to 55%, depending on the contents of the image cube. However, it
may still require two or three ground station passes to complete the downlink of a
single cube.

2.3 Tensors

Tensors are mathematical objects used in various fields to model complex systems
with multiple degrees of freedom. For example, in machine learning and deep
learning, tensors represent and manipulate large amounts of data like images, audio,
and text. In addition, it is used to represent the weights and biases of neural
networks, as discussed in sections 2.6 and 2.8.

The order of a tensor is determined by the number of vector spaces it is a product of.
A first-order tensor, a, is often referred to as an array or vector, while a second-order
tensor, A, is referred to as a matrix. The dimension describes how many elements
are in a particular axis. A third-order tensor, Aijk, is illustrated in Fig. 2.4, showing
the three ways to slice it into arrays. [11]

Fig. 2.4: A third-order tensor, sliced into columns (left), rows (middle), and tubes (right).

The rank of a tensor is given by the minimum number of rank one tensors needed to
sum up the tensor. A decomposition of a third-order rank-one tensor is illustrated in
Fig. 2.5, while a decomposition of a third-order rank N tensor is illustrated in Fig.
2.6.

Finding the rank of a tensor is an NP-hard problem, which means no known algorithm
can solve it efficiently for all tensors. However, several methods can give an estimate
of the rank, such as tensor decomposition methods like Principal Component Analysis
(PCA).
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Fig. 2.5: A rank-one tensor, X can be represented by the outer product of three first-order
tensors. This is called decomposition.

Fig. 2.6: A rank-N tensor, X, decomposed into a linear combination of N rank-one decom-
position.

2.4 Distance measurements and image reconstruction
quality measurements

A variety of distance functions exist, and they can be used for a broad variety
of purposes, from optimization to classification or as a measure of closeness, for
example, reconstruction quality.

The image reconstruction quality is typically measured using metrics that provide
information about the similarity or distance between an original image and a recon-
structed/predicted image. These metrics can be divided into two main categories:
subjective and objective [12]. Subjective metrics involve human observers who
assess the quality of the reconstructed image, either visually or through the use of
specialized image quality assessment tools. Subjective metrics help evaluate the
perceived quality of the reconstructed image, but they can be time-consuming and
subject to observer variability. On the other hand, objective metrics use mathemati-
cal algorithms to measure the reconstructed image’s quality automatically. These
metrics can include measures of similarity, such as the Peak Signal-to-Noise Ratio
(PSNR) or the Structural Similarity index (SSIM), or measures of error, such as
the mean squared error (MSE) or the mean absolute error (MAE). In addition, the
Spectral Angle Mapper (SAM) and the Spectral Information Divergence (SID) are
commonly used to measure the quality of the spectral domain of the reconstructed
HSIs. Objective metrics provide a standardized way of evaluating the quality of
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reconstructed images, but they may not always accurately reflect the perceived
quality of the image. Therefore, it is essential to use both in combination.

2.4.1 MSE and MAE

The Mean Squared Error of a predicted image compared to an original image is
calculated as

MSE = 1
NM

N−1∑
n=0

M−1∑
m=0

(y[m, n] − ŷ[m, n])2, (2.1)

where ŷ is the predicted image and y is the reference image. [13]

The Mean Absolute Error is calculated by taking the square root of the total absolute
error [14], as given by

MAE = 1
NM

N−1∑
n=0

M−1∑
m=0

|y[m, n] − ŷ[m, n]|. (2.2)

2.4.2 PSNR

Given a reference image and a predicted image of the same size, and with maximum
pixel intensity, MAXI , the PSNR can be calculated as

PSNR = 10 log10(MAX2
I

MSE
).[13] (2.3)

2.4.3 SSIM

SSIM is designed by modeling any image distortion as a combination of three factors
that are loss of correlation, luminance distortion, and contrast distortion, and is
given by

SSIM(f, g) = l(f, g)c(f, g)s(f, g) (2.4)

where

2.4 Distance measurements and image reconstruction quality
measurements
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
l(f, g) = 2µf µg+C1

µ2
f

+µ2
g+C1

is the luminance distortion,

c(f, g) = 2σf σg+C2
σ2

f
+σ2

g+C2
is the contrast distortion,

s(f, g) = σfg+C3
σf σg+C3

is the loss of correlation.

(2.5)

The positive constants C1, C2, and C3 are used to avoid a null denominator, while
µ and σ represent the mean and variance of the luminance of the two images f

and g. The calculated value is in the continuous range of 0 to 1, where a value of 1
indicates that the images are identical, while a value of 0 indicates that the images
are entirely different. [13]

2.4.4 SAM

The Spectral Angle Mapper (SAM) algorithm is a common method for evaluating
the quality of a 3D reconstruction of hyperspectral image (HSI) data. The basic
idea behind SAM is to compute the angle between the spectral vectors of the
corresponding pixels in the reconstructed and the original HSI and then use this
information to measure the reconstruction’s spectral accuracy. This angle measures
the similarity between the spectral information at those points, with smaller angles
indicating higher similarity. The angle, α, between two spectral vectors, X and Y can
be calculated as

α = cos−1 X · Y√
(X · X)(Y · Y)

. (2.6)

The SAM is then calculated as

SAM = cos α = X · Y√
(X · X)(Y · Y)

, (2.7)

and yields a number between 0 and 1, where 1 indicates perfect similarity. Finally,
the overall spectral accuracy of the reconstruction is found by taking the average of
the SAM of all corresponding points. [15]

Some potential limitations of SAM include sensitivity to noise since it is based on
the dot product of spectral vectors. If the spectral vectors are corrupted by noise
or other errors, the calculated angles may not accurately reflect the true similarity
between the reconstructed 3D model and the reference HSI data.
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2.4.5 SID

Spectral Information Divergence (SID) is a metric that originates from information
theory, specifically the concept of divergence. It characterizes the statistical prop-
erties of a spectrum. Unlike SAM, which focuses on extracting geometric features
between two spectra, SID treats each pixel spectrum as a random variable and
quantifies the differences in their probabilistic behaviors. [16]

Given two normalized spectral vectors, x and y, in the range [0, 1], the SID can be
calculated as

SID(x, y) = D(x||y) + D(y||x), (2.8)

where D(x||y) is called the relative entropy of y with respect to x, and is calculated
as D(x||y) =

∑i=N−1
i=0 xi log(xi/yi). The other way around for D(y||x).

2.5 Machine Learning

In the field of data science, machine learning (ML) involves programming a computer
to learn from data. This can be achieved through various methods, such as optimizing
statistical models or using deep neural networks. Regardless of the approach, the
programmer must select a model that is suitable for the task and use data to facilitate
learning. The learning process, referred to as training, requires a significant amount
of data for effective models. The data may be labeled, indicating that the model
is aware of how to organize the information or the goal during the learning phase.
Alternatively, it may be unlabeled or unsupervised, meaning that the model must
extract useful information by identifying patterns within the data without knowing
how to categorize it. The data set is commonly divided into training, validation,
and test sets. The training set is used in the model’s learning process, while the
validation set is utilized during training to monitor and control the learning process,
preventing overfitting. Once the model is trained, the test set assesses its accuracy
and generalization, reflecting its ability to handle new, unseen data. This test data
set maintains the same structure as the training data set, containing only samples
not part of the training process. [17]
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2.5.1 Clustering

Clustering is an unsupervised machine-learning technique and a versatile tool for
discovering structures within data. The primary goal of clustering is to group simi-
lar data points based on specific characteristics, allowing for the identification of
patterns, relationships, and underlying structures that might not be immediately
apparent. The process of clustering involves partitioning a data set into distinct
groups, or clusters, where each cluster is composed of data points that share similar-
ities. The fundamental challenge lies in determining how to measure similarity and
define the boundaries that separate these clusters. Measures of similarity can be, for
example, one of the distance measures defined in section 2.4. [18]

2.6 Artificial neural networks

Artificial neural networks (ANN), or just neural networks (NN), is a machine-learning
approach inspired by how the neurons in the human brain work. NNs have shown
remarkable success in a wide range of areas, such as computer vision, natural
language processing, and bio-informatics [19]. It consists of nodes connected in a
graph structure, with non-linear mapping as vertices of the graph/the connection
between the nodes. One advantage is that, unlike other statistical techniques, the
MLP makes no prior assumptions concerning the data distribution [20]. The most
straightforward NN structure, or architecture, is the multi-layer perceptron (MLP),
which is illustrated in Fig. 2.7.

Fig. 2.7: An example of an MLP with an input, an output layer, and two hidden layers.
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An MLP is composed of nodes that are arranged in layers. The input layer is where
the data enters the network, while the output layer provides the network’s prediction
or output. The hidden layers are situated between the input and output layers. If a
neural network has several hidden layers, it is referred to as a deep neural network
(DNN). Each layer can be represented by a tensor, which is computed by multiplying
the previous layer’s outputs by a weight matrix plus a bias vector. Each element of the
resulting vector is transformed by a non-linear function called an activation function.
This activation function can be a sigmoid, a softplus, a softmax, or a rectified
linear unit (ReLU). Tensors and tensor operations are important components of
deep learning, allowing for the efficient computation of large-scale neural networks.
Popular machine learning and deep learning libraries like PyTorch, TensorFlow,
and Keras utilize tensors in their computation, providing high-level abstractions for
working with them and making it easier to build and train complex neural networks.
Tensors have revolutionized many fields in machine learning and deep learning, such
as computer vision, natural language processing, and speech recognition, enabling
the development of highly accurate and scalable machine-learning models that can
be trained on massive data sets. [19]

2.6.1 Types of layers

ANNs have various architectures that are selected by the programmer. In addition to
different types of activation functions and structures, they are made up of different
layers. These layers are essential components of the network, and the NN is often
named after the main layer type. The following sections describe some important
layer types.

Convolutional layer

Convolutional layers utilize the mathematical operation convolution by combining
two functions, namely the kernel/filter and the input signal, to generate a third
function known as the output signal.

When performing a 1D convolution, a kernel is applied to the input data by sliding
it along the length of the data and computing the dot product at each position. A
1-dimensional (1D) convolution is given as

h[n] = (f ∗ g)[n] =
∞∑

k=−∞
f [k]g[n − k] (2.9)
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where f [n] represents a discrete signal, and g[n] acts as the kernel. The output of
the convolution between f [n] and g[n] is a new signal, h[n] [21].

When processing images in NN, 2D convolutions are commonly utilized. The kernel
is a small, fixed-size matrix that is used to extract features from the input data,
while the input is one or more larger matrices. In a 2D convolution, the kernel is
moved vertically and horizontally over the entire input image, and the dot product
is computed at each position, similar to a 1D convolution. The kernels are usually
spatially-localized patterns that are learned from the training data. They are used
to detect edges, corners, textures, and other visual patterns in the input data. An
example of a 2D convolution using a 3 × 3 kernel is given in Fig. 2.8.
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Fig. 2.8: A 2D convolution between a 3 × 3 kernel and an image.

A 3D convolutional layer in a neural network is similar in structure to a 2D convolu-
tional layer but with a few notable differences. The primary distinction is that the
3D convolutional layer employs 3D kernels with three dimensions (length, width,
and depth) instead of 2D kernels with only two dimensions (length and width). This
enables the 3D convolutional layer to extract features from the third dimension of
the input data, which corresponds to the spectral bands for an HSI or time in a video.
Fig. 2.9 visually demonstrates the dimensional differences between a 2D and a 3D
convolution.

A convolutional layer can have several filters that extract diverse information from
the image. The result of the convolutional layer is a feature map, which is a collection
of filtered versions of the input data that encode the local features detected by the
filters. Besides the convolutional operation, a convolutional layer might introduce
a bias and apply a non-linear transformation, such as the activation functions
mentioned earlier [19].
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Fig. 2.9: A 2D convolution in comparison to a 3D convolution.

Dilated convolutional layers

Dilated Convolutions refer to convolution that involves widening the kernel by
creating gaps between its elements. The degree of expansion is regulated by a
parameter known as the dilation rate (d), which determines the extent of the
widening. Typically, these gaps are achieved by leaving spaces between the kernel
elements, as shown in Fig. 2.10.

Fig. 2.10: A normal convolution with d = 1 and kernel size 3 × 3 to the left, and a dilated
convolution with d = 2 and kernel size 3 × 3 to the right.
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Max-pooling layers

Max-pooling is a method of reducing the size of a set of numbers by selecting only
the highest value from a pool or patch. For instance, if the pool is of size 2 × 2, the
output from the layer will be halved in both height and width. This is illustrated in
Fig. 2.11.
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Fig. 2.11: Max-pooling with a pool size of 2 × 2. The different pools are color-coded, and
the highest value within each pool is marked with a red ring.

Pools can come in varying sizes, and there are also different types of pooling available
such as average, minimum, and median pooling [19].

2.6.2 Convolutional Neural Network

A convolutional neural network (CNN) is a type of DNN that is designed to take
advantage of the spatial structure of data and uses convolutional layers and pooling
layers to extract high-level features from the input. CNNs are widely used for image
and video analysis tasks, such as image classification, object detection, and image
segmentation, and they have achieved state-of-the-art performance. A CNN often
consists of many convolutional layers in combination with pooling layers and fully
or partially connected layers [19]. Fig. 2.12 illustrates an example of a CNN with
two convolutional layers, two max-pooling layers, and two fully connected layers.
The input to the CNN is an RGB photo with spatial dimension 3 × 128 × 128, and
the output is a 1 × 64 array.
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Layer 1
convolution
8x(128x128)

Layer 3
convolution
10x(48x48)

Layer 2
max-pooling
8x(64x64)

Input layer
3x(128x128)

Layer 4
convolution
16x(16x16)

Layer 5 
Fully connected

1x(128)

Layer 6 - output 
Fully connected

1x(64)

Fig. 2.12: A CNN with two convolutional layers and two max-pooling layers, every other,
and with two fully connected layers in the end.

2.6.3 U-net architecture neural network

U-Net is a popular type of CNN utilized for image segmentation tasks, such as medical
imaging, remote sensing, and industrial inspection. Its U-shaped architecture is
a significant feature, comprising of a down-sampling path for encoding the input
image into lower-resolution feature maps, and an up-sampling path for decoding
the feature maps into a high-resolution segmentation map. The skip connections
linking the down-sampling and up-sampling paths enable the network to merge
information from different scales and resolutions, producing more accurate and
detailed segmentation maps. U-Net can be trained end-to-end, thereby allowing it
to learn from numerous examples and improve its performance on the segmentation
task. Besides its U-shaped architecture, U-Net implements other design choices,
such as batch normalization and ReLU activation functions, to enhance network
performance and stability. Additionally, U-Net includes various loss functions to
train the network for different types of segmentation tasks. [22]

2.6.4 Advantages and disadvantages with using NN

The field of machine learning has brought about significant changes by providing
solutions to a wide range of problems. A well-designed model can extract useful
information and make predictions from data, even without prior knowledge of the
topic at hand. This often yields better results and faster computation times than
traditional algorithms. Machine learning can even identify patterns that may not
be discernible to human eyes. However, there are some potential drawbacks to
using neural networks (NNs). For instance, they need a lot of labeled training
data to learn effectively, which can be challenging and costly to obtain in certain
circumstances. NNs can also require significant computational resources to train
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Fig. 2.13: A simple u-net of depth 3, taking a 64 × 64 image as input. The red arrows
symbolize the up-and-down sampling, while the blue ones symbolize the convo-
lutions.

and run, which could limit their application in some areas. Additionally, they can be
prone to overfitting, meaning that the model learns the details of the training data
too well, resulting in poor generalization to new data. NNs can be challenging to
interpret, as their internal workings are often intricate and not easily understandable
by humans. Moreover, NNs are sensitive to the quality and format of input data, and
this may lead to poor results if the data is noisy or has other issues. [17]

2.7 Training of a neural network

When training a neural network, the goal is to optimize its performance for a specific
task. To achieve this, the network is presented with many examples of desired input
and output, and an optimization algorithm is used to adjust its parameters. During
training, a loss function is used to measure the difference between predicted and de-
sired outputs. The algorithm then uses this information to adjust the parameters and
reduce the loss. This process is called back-propagation and is typically done using a
variant of gradient descent [19]. The network’s performance improves as training
continues, and the parameters are adjusted to produce more accurate outputs. The
process stops when the network reaches a satisfactory level of performance or when
the optimization algorithm reaches a predefined stopping point [23].
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2.7.1 Loss functions

In order to learn the parameters of the model, a it is necessary to establish a loss
function that can identify and penalize errors [19]. Different types of loss functions
are utilized depending on the optimization task (e.g. regression, classification,
etc.). If yi ∈ R represents the desired outcome and Xi ∈ Rp signifies the input
for the ith sample, where i belongs to the set of values from 1 to n, the learned
model parameters or weights are represented by β ∈ Rp. This means that the
predicted outcome of the NN is XT

i β. Then, the targeted output can be modeled as
a combination of the predicted outcome and an error ϵi ∼ N(0, σ2), as given by

yi = XT
i β + ϵi. (2.10)

A loss function, denoted as L(yi, Xi, β), is responsible for determining the distance
between the predicted output and the desired output using the parameters outlined
in (2.10). The distance functions described in section 2.4 are applicable as distance
functions, with the MSE as the most common. [19]

2.7.2 Optimization algorithms

To find the best values for a model’s parameters, one must minimize the average loss
using the loss function across all parameters in β. This involves calculating an error
gradient throughout the neural network, which is then used to minimize the total
error [24]. There are various algorithms for optimizing model parameters, some of
which are discussed in the following sections.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm is a simple and popular optimization
technique based on gradient descent. SGD analyzes a single example from the
training data to calculate the gradient of the loss function. It then adjusts the
parameters of the network based on this gradient. While SGD can be effective for
large-scale training, it may also be noisy and slow to converge. [24]
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Mini-batch Gradient Descent

Mini-batch Gradient Descent is a modified version of gradient descent that uses
a small batch of training data examples to calculate the gradient of the loss func-
tion. Compared to SGD, Mini-batch gradient descent is more stable and efficient.
However, it necessitates additional computational resources and may still have slow
convergence. [24]

Momentum-based Gradient Descent

Momentum-based Gradient Descent is a version of gradient descent that utilizes a
momentum term to accelerate the optimization process. This term is derived from
previous updates to the network’s parameters and can prevent the optimization
algorithm from being trapped in local minima or saddle points. [24]

Adaptive Moment Estimation

The Adaptive Moment Estimation (ADAM) algorithm is a frequently used optimiza-
tion algorithm for training neural networks. It is a type of stochastic gradient
descent that employs an adaptive learning rate to enhance the optimization process’s
convergence. ADAM combines mini-batch gradient descent and momentum-based
gradient descent, using a mini-batch of examples from the training data to compute
the loss function’s gradient and a momentum term to speed up the optimization
process. Additionally, ADAM incorporates a regularization term to avoid over-fitting
and improve the trained network’s generalization performance. [24], [25]

2.8 PyTorch

PyTorch is an open-source machine learning library widely used in industry and
academia to develop and train deep neural networks. It was first released in 2016
by Facebook’s AI research group and has since gained popularity due to its user-
friendly interface and flexibility. It is build on the Python programming language
and the Torch library. Its flexible architecture allows users to build and train
machine learning models of varying sizes and complexities while providing a range
of tools and libraries for working with data, training, and evaluating models. One
of PyTorch’s key features is its ability to work with tensors. This allows for efficient
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processing and manipulation of large data sets, enabling complex mathematical
operations even on large data sets. [26]

GPUs (Graphics Processing Units) are specialized hardware components that excel
at performing parallel computations. They are commonly used in tasks that require
high computational power, such as graphics rendering, scientific simulations, and
deep learning. PyTorch provides functionalities for creating and training deep
learning models on GPUs, leveraging the parallel computing capabilities of NVIDIA
GPUs to accelerate computations. CUDA (Compute Unified Device Architecture) is a
parallel computing platform and application programming interface (API) model
created by NVIDIA. It allows developers to utilize the power of GPUs for general-
purpose computing tasks. CUDA provides a programming framework and tools
for GPU-accelerated computing, enabling developers to write code that can run
efficiently on NVIDIA GPUs. [27]

2.8.1 Building a model with PyTorch

Building machine learning models in PyTorch typically involves defining a class
that inherits from the nn.Module class. This class defines the structure of the
model, including its layers, activation functions, and any other operations. The
forward method of the class specifies how the input data is processed through the
layers of the model. During training, the backward method is used to compute
gradients and update the model parameters according to an optimization algorithm.
When building large neural networks with PyTorch, it is common to use a modular
approach and separate the network into smaller building blocks. This approach
provides a better understanding of the network architecture, makes implementation
faster, and reduces the likelihood of errors.

To utilize the torch library, one must use the data structure torch.Tensor. When
working on the GPU, it is necessary to store all variables and models in the GPU
memory. PyTorch provides a simple function to transfer data from a computer’s CPU
to the GPU. By using the function x.to(device="cuda"), one can easily move the
torch.Tensor, here named x, to the GPU. [27]

2.9 Introduction to Compressive sensing

Compressive sensing (CS), also called compressive sampling or compressed sensing,
is an emerging field within signal processing, computer vision, and information
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theory. CS exploits the property that a signal is often sparse in some transformed
domain to recover it from a small number of linear, random measurements. Unlike
conventional sampling methods, which are limited by the Nyquist–Shannon sampling
theorem [28], compressive sensing allows for sub-Nyquist sampling, which reduces
the number of samples needed to reconstruct an image. This, in turn, leads to
significant reductions in memory usage and transmission and imaging time. Robust
signal recovery is possible from a number of measurements proportional to the
signal’s sparsity level. This means that even when a signal is only partially sampled,
it can still be reconstructed accurately using compressive sensing techniques. As
such, compressive sensing has become a valuable tool in many areas, including
remote sensing.

A compressive sensed signal y ∈ RM×1 can be expressed by

y = Ψf (2.11)

where Ψ ∈ RM×N is a sensing matrix and f ∈ RN×1 is the original signal. f can be
represented as

f = Φx (2.12)

where x ∈ RN×1 is sparse vector and Φ ∈ RN×N is a basis. A includes both Φ and
Ψ, for easier notation, and is called a dictionary. The dictionary Combining (2.11)
and (2.12) gives

y = ΨΦx = Ax. (2.13)

It is important to note that the notation may vary slightly in the literature, which
means that the variables used for different purposes may be different.

Certain conditions must be met to effectively reconstruct a signal using fewer
samples than what is traditionally required. The signal must be sparse in some
domain, meaning that it only has a few non-zero elements. If the signal itself is
not sparse, it may still be possible to represent it as sparse in a different domain by
expressing it with a basis. In addition to sparsity, the sampling of the signal must
also meet certain requirements in terms of incoherence and the number of samples.
This will be discussed in the following sections.
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2.9.1 Degree of sparsity and sparsity approximation.

The sparsity level of a signal is determined by the number of non-zero elements in
the sparsest domain, referred to as κ. Meanwhile, the degree of sparsity indicates the
percentage or fraction of data represented by zero values. A high degree of sparsity
implies that most of the data is represented by zero values, while a low degree of
sparsity means that only a small fraction of the data is represented by zero values.
The degree of sparsity impacts the effectiveness of compressive sensing algorithms,
as it affects the amount of data that needs to be captured and reconstructed.

In practical situations, signals may not be completely sparse but rather have many
values that are almost zero. These values can be considered noise and can usually
be disregarded during the signal reconstruction process. This is called sparsity
approximation and allows for a more effective and precise reconstruction by focusing
only on retrieving the non-zero elements of the signal. In other words, sparsity
approximation compresses a signal by keeping only the most significant coefficients
in its sparsest representation.

2.9.2 Representing a signal by using a basis

A signal can be represented by a basis, Φ, such as the Fourier basis to the cosine
transform. A set of atoms {ϕγ}γ∈Γ is basis for a space H if the signals together span
out H, as given by

span{ϕγ}γ∈Γ = H. (2.14)

If the atoms are orthogonal, as defined by

⟨ϕγ , ϕγ′⟩ =

1, if γ = γ′

0, if γ ̸= γ′,
(2.15)

the basis is orthogonal. The basis is orthonormal if the signals also are unit vectors
(the magnitude is equal to one) [29]. If {ϕγ}γ∈Γ is a orthonormal basis for H, any
signal f ∈ H can be written as

f(t) =
∑
γ∈Γ

⟨f(t), ϕγ⟩ϕγ =
∑
γ∈Γ

xγϕγ . (2.16)
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where the signal, f(t), is a linear combination of the atoms ϕγ , and the sparse
coefficients, xγ ∈ x. x is the sparse representation of the signal and can be calculated
by taking the inner product of f(t) and ϕγ . While using non-orthonormal bases
is possible, it can introduce errors such as energy distortion. Orthonormal bases
frequently used in compressive sensing include the Fourier basis, which breaks
down a signal into its frequency components, the discrete cosine transform basis,
which describes the signal using its cosine functions, and the wavelet basis, which is
particularly useful for capturing localized features in a signal. [30]

2.9.3 Incoherent sampling and the sensing matrix

In terms of sensing or sampling, the process is done by applying a sensing matrix, Ψ
to the signal, as denoted in (2.11). To effectively utilize compressive sensing, the
sensing matrix and sparsity basis must be "incoherent," meaning they should be as
uncorrelated as possible. This prevents the measurement process from introducing
significant correlations into the signal, which can degrade the reconstruction [30].

Incoherent sampling can be achieved using a random or pseudo-random sensing ma-
trix or a deterministic approach designed to have low coherence with the sparsifying
basis. The choice of the sensing matrix and the sampling method will depend on the
signal’s characteristics and the application’s requirements. When acquiring data, the
sensing matrix can be applied to an already acquired signal or by taking the selected
samples directly at the sensor level. This approach can be more efficient in certain
cases, such as in a hyperspectral imager on a satellite.

Restricted Isometry Property

The Restricted Isometry Property (RIP) is an essential principle in compressive
sensing that measures a sensing matrix’s ability to accurately represent a signal.
To ensure successful reconstruction, the sampling matrix must satisfy a condition
described by RIP. A dictionary A is said to satisfy RIP of order κ if

(1 − δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22 (2.17)

where δk ∈ (0, 1) is a constant determined by the sparsity level, κ, and the allowed
error. x is a sparse signal. Typically, δk is close to zero [30]. The subscript indicates
the type of norm used, here, the l-2 norm (euclidean norm).
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RIP can be interpreted as the conservation of energy, nearly orthogonal columns in
A, and the uniqueness of transformed vectors. When RIP holds, the dictionary A
preserves the Euclidean distances, or the MSE, between two sparse vectors x and y,
as given in

(1 − δk)||x-y||22 ≤ ||Ax- Ay||22 ≤ (1 + δk)||x-y||22, (2.18)

and the data’s information is nearly preserved. [30]

Compression rate

The compression rate, CR, is the ratio between the size of a compressed signal and
its original, uncompressed version. For instance, if a signal, x ∈ RN×1, is compressed
and results in a smaller signal, y ∈ RM×1, the compression rate can be determined
by

CR = N

M
, (2.19)

where N > M .

Selection of compression rate

The compression rate should be selected accordingly to the allowed error, the
coherence of the matrices, and the sparsity degree. There exist multiple bounds
stated as a function of the sparsity level, and no exact answer can be provided.
However, different limits in which the RIP holds with high probability are given.

Suppose A is obtained by randomly selecting M rows from an N × N orthonormal
matrix, with values drawn independently from the Gaussian probability distribution
with zero mean and variance 1

M . Then RIP theorem holds with overwhelming
probability when

κ ≤ CM

log( N
M )

. (2.20)

where C is a constant [30]. By solving (2.20) for M , the number of samples can
be estimated. Even when not working with dictionaries drawn from a Gaussian
distribution, this gives an approximation of a lower bound.
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2.9.4 Signal reconstruction

There are several approaches to reconstructing a compressive sensed signal. A
traditional approach is to solve an optimization problem that recovers the original
signal from the compressed measurements. This optimization problem typically
involves minimizing the difference between the reconstructed signal and the original
signal or ground truth, subject to certain constraints such as sparsity or rank. Recent
research also explores the use of machine learning techniques for compressive
sensing signal reconstruction. Deep neural networks, in particular, have shown
promising results in this area. The following section will describe these methods
closer.

Traditional reconstruction methods

Given a sparse signal x, a dictionary, A, and a compressive sensed signal y = Ax, the
optimization problem to be solved is

min
x̂∈RN

||x̂||0 subject to Ax̂ = y. (2.21)

The problem of finding the best solution for l-0 recovery is difficult and falls under
the category of NP-hard problems [30]. However, in many cases, solving the l-1
recovery problem can provide a close approximation to the solution. This problem
aims to minimize the l-1 norm of the solution, x̂, while using the same constraint. If
the signal is just approximately sparse, the solution can be obtained by solving the
optimization problem given by

min
x̂∈RN

||x̂||1 subject to ||y − Ax̂||2 ≤ ϵ, (2.22)

which allows some errors to be present in the reconstruction.

There are several algorithms available to solve optimization problems in compressive
sensing. These algorithms use different optimization techniques and can have differ-
ent levels of efficiency and accuracy. The reconstructed signal x̂ is an approximation
of the original signal x. The reconstruction accuracy depends on the CS algorithm’s
performance and the compressed measurements’ quality.
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Deep learning for reconstruction

Deep learning has shown great potential when it comes to the reconstruction of
compressive sensed signals. CNNs, in particular, are able to learn how to approximate
the inverse mapping from compressed measurements to the original signal by
training on a data set of pairs of compressed measurements and their corresponding
original signals. With a well-designed NN architecture, it becomes possible to
identify correlations in specific cases, if they exist. This holds true for the recovery
of compressive sensing data as well. The challenge primarily lies in the NNs design,
as there is no set recipe for creating it.

Once trained, these NNs can accurately and efficiently reconstruct signals from new
compressive measurements. Compared to traditional optimization-based methods,
deep learning reconstruction typically results in faster and higher-quality outcomes,
provided suitable NN architectures and training data are used.

However, there is skepticism among researchers about the reliability and generaliz-
ability of these NNs due to their black-box nature i.e., the difficulty in understanding
how they arrive at their decisions, as discussed in section 2.6.4.
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Related Work 3
This section presents research that is relevant to the thesis. The work has been
divided into the following sections: compressive sensing and reconstruction, cloud
detection and segmentation, and cloud removal and recovery of missing areas. These
sources provide insight into the topics, serve as inspiration, provide a foundation for
decision-making, and are used as a baseline for evaluating the performance of the
work done in this thesis.

3.1 Compressive sensing methods for HSIs and
reconstruction methods

This section presents some of the research done in the field of compressive sensing
and reconstruction, with a focus on hyperspectral images and using deep learning
for reconstruction.

3.1.1 Compressive sampling of hyperspectral images

Various approaches have been developed for compressive sampling in hyperspectral
images, involving compression in the spectral domain, spatial domain, or a hybrid
combination. For example, in [31], H. Xiao et al. employed random sampling
matrices to compress HSIs in the spatial domain during image acquisition. Another
technique presented by Golbabaee et al. in [32] performs compressive sensing on
the entire hyperspectral image cube, encompassing both the spectral and spatial
domains. However, their method utilizes a least-squares approach on the mobile
system to reduce spectral bands and requires a comprehensive library of spectral
signatures.
In the domain of hyperspectral imaging systems, Y. Oiknine et al. introduced the
Miniature compressive Ultra-Spectral Imaging system (MUSI) in [33], which employs
a liquid crystal (LC) phase retarder to compress the spectral domain. By modulating
the refractive index of the LC cell through applied voltage, the sensing matrix, Ψ, is
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constructed by selecting rows from the spectral response map.
Compressive sensing is also used for dimensionality reduction in settings other than
acquisition, such as image classification as in [34].

3.1.2 Classical reconstruction methods for compressive sensing

There are various algorithms available for addressing the optimization problem
described in 2.22. One such algorithm is the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA), an iterative and convex algorithm combining a soft-thresholding
operator with the gradient method [35]. It is commonly used in compressive sensing
and is known for its rapid convergence. Another algorithm is the convex Alter-
nating Direction Method of Multipliers (ADMM), which breaks down the original
optimization problem into smaller sub-problems and then solves them separately
[36]. This approach can make it more efficient than other methods and is also useful
for handling constraints in the optimization problem. There are also several greedy
algorithms, such as the Generalized Orthogonal Matching Pursuit (gOMP) [37],
the Backtracking Iterative Hard Thresholding (BIHT) that uses hard thresholding
to obtain a sparse solution [38], and the Compressive Sampling Matching Pursuit
(CoSaMP) algorithm, which is a variant of the Matching Pursuit algorithm that
leverages a sparse projection operator to enforce sparsity during the optimization
process. CoSaMP is particularly effective at handling noise in the measurements
[39].

Justo and colleagues conducted a study comparing the accuracy and speed of various
algorithms for reconstructing hyperspectral images, as described in their article [40].
The greedy gOMP algorithm was found to be the most effective, with a max PSNR
of over 50dB and a reconstruction time of 0.5 to 10 minutes. The other algorithms
had an average PSNR of about 45 dB, and their reconstruction times ranged from
a few minutes to over 24 hours. It’s worth noting that the study tested different
compression ratios, and the standard deviation in the results achieved by gOMP was
10.76 dB.

3.1.3 Deep learning-based reconstruction

ADMM-CSNet from [41] is a fast and accurate deep-learning approach using com-
pressive sensing and data-driven techniques to produce images from sparse measure-
ments. It has been successfully applied to complex-valued MR imaging and natural
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image reconstruction, achieving superior performance while remaining computa-
tionally efficient. The key contribution is the introduction of ADMM-CSNets that
enable optimal image recovery for various tasks and image types. measurements
and faster computational speed.

Xu et al. propose in [42] have developed a technique for rebuilding hyperspectral
imaging (HSI) from compressive measurements while identifying anomalies in the
data. Their approach uses tensor-based processing with tensor robust principal
component analysis (TRPCA) and a Mahalanobis distance-regularized term. The
method performs better than state-of-the-art techniques for both reconstruction
quality and anomaly detection accuracy.

The study, given in [43], conducted by the University of Negev, explores using
u-nets to reconstruct hyperspectral images. The researchers developed a CNN
called DeepCubeNet that employs a U-net with 3D-convolutional layers and a 1D-
convolutional layer to up-sample compressive sensed data, perform max pooling,
and down- and up-sample data. The ADAM optimizer and MSE loss function are
utilized. The images used for training and testing were captured using the CS-MUSI
method. The study demonstrates that DeepCubeNet produces high PSNR results and
significantly reduces reconstruction time compared to traditional methods. Average
reconstruction time for a 64×64×391 HS patch from a 64×64×32 compressed
patch captured with CS-MUSI is 0.25 seconds on a GPU and 6 seconds on a CPU.
Overall, the study highlights the potential of deep learning-based methods for
reconstructing spectrally compressed HSI and emphasizes the advantages of the
proposed DeepCubeNet architecture.

The unpublished paper [44] is based on the DeepCubeNet. It looked at how u-
net with 3D convolutions can be used to reconstruct HSIs from the HYPSO-1 and
the ICVL data sets. The basic neural network architecture is the same as in the
DeepCubeNet, except for the compression of the spectral bands, which is suited
to fit the spectral dimensions of the ICVL and HYSPO-1 data. The thesis explores
how different preprocessing techniques affect the reconstruction quality for the ICVL
images and looks at potential generalization across preprocessing schemes. When
reconstructing HYSPO images, the model reaches PSNRs up to 50.84 dB, with a
mean of 45.46 dB. The reconstructions have, however, errors in the reconstructions
for some of the sampled points, which should always be correct. In addition, some
predictions reach values higher than one, even though the input pixel values are
normalized in the range [0, 1].

In [45] compares deep learning-based image reconstruction with traditional methods
in compressive sensing. The findings show deep learning approaches perform better

3.1 Compressive sensing methods for HSIs and reconstruction
methods

33



without compromising robustness. However, the study also reveals susceptibility to
noise and perturbations.

3.2 Cloud detection and segmentation

Cloud detection in HSI is an active research area, and new techniques are contin-
uously emerging. It is challenging due to the data’s high spectral resolution and
complex nature. State-of-the-art cloud detection involves combining traditional
computer vision techniques and machine learning algorithms.

In [7] Papin et al. (2018) use infrared images from METEOSAT to detect clouds.
They extract features, such as motion-based measurements, intensity images, and
thermal parameters, from sequences of images.A statistical labeling process catego-
rizes pixels as "low clouds" or "clear sky" using a Bayesian estimation framework
with Markov random field (MRF) models. The approach minimizes a global energy
function consisting of data-driven terms (thermal and motion-based) and a regu-
larization term representing prior knowledge on the label field. The authors use
a progressive minimization procedure that starts with reliable labels and involves
local computation to minimize a global energy function consisting of thermal and
motion-based terms and a regularization term representing prior knowledge on the
label field.

Gomez-Chova et al. present a four-step cloud detection algorithm in [6]. The
first step is feature extraction, where they extract physical features to increase the
separability between clouds and surface covers. They consider cloud brightness and
atmospheric absorptions to estimate the optical path. The next step is finding the
region of interest, where a nonrestrictive threshold and a region-growing algorithm
identify cloud-like pixels. The third step is image clustering and labeling, where they
use the Expectation-Maximization algorithm to cluster the pixels within the region
of interest and label them based on their geophysical classes. They compute a cloud
probability index by summing the posteriors of the cloud clusters. The final step is
in the spectral domain, applying a spectral unmixing algorithm to obtain a cloud
abundance map for each pixel. The researchers combine the cloud abundance map
and the cloud probability using pixel-by-pixel multiplication to improve the accuracy
of cloud detection. The algorithm performs well in detecting thin cirrus clouds and
clouds over ice/snow and accurately identifies cloud borders.

B. Grabowski et al. describe in [5] a way of detecting clouds in remote sensing
images using a CNN based on the U-Net architecture. The U-Net was trained on a
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dataset containing images with and without clouds, taken at different time instances
but close in time. The images have four spectral bands, hence not HSIs. The results
show that the U-Net, in general, can detect clouds but that the segmentation quality
depends on the training data and that including challenging scenes like snow helps
improve the generalization abilities of the NN.

3.3 Cloud removal and recovery of missing areas

Cloud removal methods can typically be classified into three groups: single-image,
multi-spectral-image, and multi-temporal-image.

Zheng et al. describe in [46] a way of removing clouds from single images using
a combination of two different NNs. The first one is a U-Net which removes thin
clouds. The second one is a Generative Artificial Network (GAN) which reconstructs
the missing parts due to thick clouds. It consists of three neural networks: a U-Net, a
generator (G), and a discriminator (D). They have the same general encoder-decoder
network structure, with 11 layers in total. The first five layers form a contracting
path, and the sixth to the tenth layers create an expanding path. In the contracting
path, convolution blocks perform multichannel 2D convolutions with a step size of 1
or 2. The expanding path has a symmetric structure with transposed convolution
blocks for G and D, while the U-Net has a doubled number of channels in each layer
due to copy and concatenation operations

The authors of [47] propose a multi-spectral method that utilizes the concept of
the dark channel prior method to estimate the appearance of clouds. The method
avoids altering the original spectral information by subtracting solely in the intensity
channel. The intensity is then enhanced using gamma correction to recover some
information unintentionally lost during the previous step and restore obscure details
distorted by clouds. Additionally, considering that clouds affect both the intensity
and saturation channels, the authors address the reduction in saturation caused by
clouds by applying a logarithmic image transformation. This transformation helps
to increase the saturation and compensate for the saturation loss resulting from the
presence of clouds.

In [48], the authors propose a comprehensive approach to reconstructing missing
data. They implement a neural network (NN) that incorporates spatial-temporal-
spectral (STS) data to retrieve lost information caused by various factors such as
deadlines and thick clouds. The framework requires input information that is spatial,
temporal, and spectral in nature. The NN is comprised of two parts - the first part
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uses regular convolutions while the second part employs dilated convolutions, and
both parts have a set of skip-connections. The resultant trained model is capable of
recovering all types of missing data based on the STS data.missing data based on
the STS data.
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System 4
This thesis’s primary objective is to assess the feasibility of creating a pipeline that
encompasses the reconstruction of compressive sensed images while simultaneously
removing small clouds. While the ultimate aim is to create a user-friendly system
that seamlessly integrates all components automatically, as illustrated in Fig. 4.1, it
should be noted that this aspect falls beyond the scope of this thesis.

Compressive
sensed HSIs with

small clouds
present

Reconstructed HSI
with removed

clouds

Deep neural
network based

pipeline

Fig. 4.1: By integrating cloud removal techniques and reconstructing compressive sensed
images, a user can benefit from a seamless and user-friendly experience with a
black box approach.

As outlined in the research section, there are various solutions available for each
component of the pipeline. However, there is a lack of comprehensive solutions that
take into account all aspects. Additionally, there is a shortage of solutions that can
recover areas affected by clouds without requiring both cloudy and cloudless images
of the same scene. This thesis aims to explore methods that address this gap. A
significant portion of the work has been devoted to exploratory research, leading
to the design and testing of various subsystems. The pipeline has been primarily
focused on three key areas: reconstructing compressive sensed images, detecting
and removing clouds, and the task of reconstructing missing areas. The objective is
to explore potential solutions within the context of HYPSO-1 images. The different
subsystems are noted in Fig. 4.2.

Compressive sensing Cloud detection Recover missing area Reconstruct spectral
domain Cloud removal

Fig. 4.2: Overview of all the sub-parts explored in this thesis and how they connect together.
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In the following sections, all aspects of the explored systems will be described in
detail. The first section introduces the data set and preprocessing, while the next
one discusses basic building blocks for the system, such as hardware, algorithms for
training, predicting, loading data, and evaluation. These sections are general and
are used for all models designed and trained throughout the thesis. The following
three sections describe the parts of the final pipeline, including some additional
exploration. This includes the reconstruction of HSI compressive sensed in the
spectral domain, cloud detection and removal with focus on the HYPSO-1 images,
and how areas lost due to cloud contamination can be recovered.

4.1 The HYPSO-1 data set

All images used are captured by the HYPSO-1 satellite. The HYPSO-1 HSI data
set currently contains about 1500 images of the earth’s surface from across the
globe captured in the period 4Th March 2022 up to date. Images are collected at
956x684 spatial resolution and a spectral resolution of 120 [9]. The data is stored
in binary files which contain the image data, and header files which contain the
metadata about the images needed to read the binary files. Due to memory and time
restrictions, only 57 images from the HYPSO-1 data set are used in this thesis. Fig.
4.3 shows four HYPSO-1 images captured at different locations.

Fig. 4.3: Four selected HYPSO-1 images showcasing their diverse nature.

Working with HYPSO-1 images introduces certain limitations compared to other
existing solutions. Although there are certain overlaps in some images, no images of
the exact same location are captured close in time. Hence, labeled data containing
images with and without clouds is unavailable to train a neural network. Conse-
quently, solutions like the one presented in [5] are excluded from consideration.
Additionally, cloud masks are not available for HYPSO-1 images at this moment.
Hence their generation is necessary, with visual inspection being the primary mea-
sure of quality. Although data sets with cloud masks do exist, time constraints
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prevent their incorporation within the scope of this thesis. Another limitation arises
from the diverse nature of HYPSO-1 images, making it challenging to identify effec-
tive general approaches. However, this diversity may contribute to improved model
generalization.

4.2 Image preprocessing

Some preprocessing is necessary to deal with the images in a machine-learning sense.
The preprocessing includes compressive sensing and test/train data split. Fig. 4.4
shows a flowchart of the steps of the prepossessing for the HYPSO-1 data set.

HYPSO
dataset

CS

CS

Dividing into 64x64

cubes

Extract

data

Save in test folder

Save in train folder

Test data

Train data

Ground truth

Compressive sensed

Test/train splitNormalize

Fig. 4.4: Flowchart illustrating the different parts of the preprocessing stage. Note that the
figure depicts only one compressive sensing/ground truth cube for the training
branch, but multiple cubes are used.

The following steps are executed in the preprocessing:

1. Read information from the header file and extract data from the binary file
using the header information.

2. Normalize image. (max-normalization)

3. Train/test split.

4. Compressive sensing of the images, with a description of the sensing matrix
and compression ratio.

5. Divide the training set into smaller cubes.

6. Saving the pre-processed in dedicated folders.

In the following subsections, all the preprocessing steps are described in detail.
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Data extraction

The header files provide details about the height, width, number of bands, data
type, and other information for all images. As images from the same set may have
some differences, it is essential to read this information for each image individually.
To achieve this, the Python package spectral is utilized to read the binary files and
extract data as per the format specified in the header file.

Normalizing the images

To ensure accurate reconstruction, the images undergo max-normalization. This
process involves determining the maximum pixel value in each complete image and
dividing the entire image by this value. As a result, the normalization produces
images with values between zero and one while preserving their relative spatial
information.

Compressive sensing of the images

To successfully compress a signal using compressive sensing, it’s important that the
signal is sparse or compressible in some domain. Even when using neural networks
for reconstruction instead of traditional mathematical optimization algorithms, it’s
necessary to consider the sparsity level when choosing the compression rate to make
meaningful comparisons of the results.

For hyperspectral images, the spectral domain isn’t typically sparse. However, by
applying the DCT, it’s possible to obtain an approximately sparse representation of
the signal. The DCT transform of the spectral vector shown in Fig. 4.9 is presented
in Fig. 4.5. It’s evident that using the DCT transform, a significant number of the
coefficients are close to or equal to zero. However, determining an exact sparsity
level, κ, is challenging.

Based on the lower bound presented in chapter 2.9.3 with regards to M , it is possible
to determine an estimate of the number of samples that should be selected for use
in compressive sensing. By solving the equation given in (2.20), a lower bound
for the number of samples needed for RIP to hold with a high probability can be
calculated. Fig. 4.6 shows a lower bound for N = 120, e.g. the number of spectral
bands for the HYPSO-1 images. To guarantee to take enough samples, while still
having good compression, the compression rate is set to 5, meaning that 80% of
the data is discarded. This means that the number of samples, M , for the HYPSO-1
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Fig. 4.5: The discrete cosine transform of a spectral array of a HYPSO-1 image.

images, is 24. This is still a high compression rate compared to classical compression
methods for HSI, which is often around 2 [10].

Sensing Matrix

The sensing matrix is a simplification of the CS-MUSI. Instead of using a set of linear
combinations of the spectral bands, M bands are selected and the rest is discarded.
To ensure incoherent sampling, the sensing matrix, Ψ, is made by randomly choosing
which bands to keep. The compressive sensing process is then done by applying the
sensing matrix to the spectral domain of each pixel in the HSI. It is important that
the same sensing matrix is used on all the images for one model, in order to train
the neural network in a consistent and effective manner.

Fig. 4.7 shows the sensing matrix that is used in this project. The matrix is plotted
as an image, where yellow pixels symbolize 1 and purple pixels symbolize 0. This
sensing matrix was selected randomly, and stored in a text file for later use.

The sensing matrix is applied to the spectral vector of all the pixels in the HSI, as
previously mentioned. This is presented in Fig. 4.8. Fig. 4.9 shows an instance of the
spectral domain of one pixel with its CS version. The initial spectral domain is drawn
using a blue line, while the compressed representation achieved using the sensing
matrix is displayed using yellow ×’s. The compressed representation only has 24
bands, compared to the original 120 bands, which significantly reduces the data size.
This demonstrates how CS can efficiently compress the spectral information of an
HSI.
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Fig. 4.6: This graph shows the minimum number of samples needed for RIP to have a high
probability of holding. The y-axis represents the compressive samples, M , while
the x-axis shows the signal’s sparsity level, κ. The equation given in (2.20) is
used to calculate the function by solving it for M , with N = 120. The green area
indicates values above the lower bound, while the gray area indicates values below.
The graph is created using Desmos.

Fig. 4.7: The sensing matrix, denoted by Ψ, is a matrix with dimensions of M × N and it
comprises ones and zeros. Each row has only one singular one. In the image, the
yellow pixels represent 1 while the purple ones represent 0. Compressive sensing
involves multiplying this matrix with all the spectral vectors in an HSI cube.

Splitting the images into train and test data-sets

The train/test split is set to 0.7/0.3, meaning 70% of the images are used for training
and 30% for testing. Since there are 57 HYPSO-1 images downloaded and used, 40
are used for training and 17 for testing.
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Fig. 4.8: This figure shows how the sensing matrix, Ψ, is used to compress the spectral
domain of each pixel in the original image, which is referred to as GT in the figure.
The resulting compressed image is named CS. It’s important to note that the
spectral domain, represented by z, is shorter in the compressed image compared
to the ground truth.

Dividing training data into smaller cubes

Hyperspectral images are partitioned into smaller cubes to allow for efficient pro-
cessing by the NN without exceeding GPU memory constraints. This approach also
reduces the size of the neural network, resulting in faster computation and less risk
of over-fitting. For training the data set, the images are divided into 64 × 64 × 24
cubes for compressive sensed images and 64 × 64 × 120 for ground truth images.
When training the NN, these cubes act as input (cs) and label (ground truth). Each
new cube is generated by shifting a 64 × 64 block by 32 pixels, resulting in the
number of cubes given by

Ncubes = floor((2xi − 64)
64 ) · floor((2yi − 64)

64 ). (4.1)
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Fig. 4.9: This is an example of compressive sensing applied to the spectral domain of a
single pixel. The original spectral domain is represented by the blue line, while the
orange dots indicate the specific points used in the compressive sensing process.
It’s worth noting that only 20% of the original data points were utilized.

The variables xi and yi represent the number of pixels in the x- and y-direction. Fig.
4.10 illustrates a cube divided into smaller cubes. For the HYSPO-1 images this
results in 560 cubes per HSI.

x

y

Fig. 4.10: In this illustration, an HSI cube is shown divided into smaller cubes with over-
lapping sections. The cubes highlighted in blue and yellow alternate every other
one. It is important to note that only the spatial domain is being divided, while
the spectral domain (which is pointing inward in the image) remains whole.

There are two benefits to using this method. First, it allows for more training data
to be used, which in turn enhances the neural network’s ability to learn. Second, it
enables the network to learn from the borders of one block that are located in the
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middle of another block, improving its ability to make generalizations across various
parts of the images.

Saving the pre-processed in dedicated folders

The training cubes, as seen in Fig. 4.11, are saved in the train folders as img-files
accompanied by their corresponding hdr-files. The test images are chosen based on
their names from the "fullimages”folder, andthentheyundergocompressivesensinginthepredictionalgorithm, whichisexplainedinsection4.3.4.

HYPSO train

Img_1_cube_1_cs.hdr
Img_1_cube_1_cs.img
Img_1_cube_1_gt.hdr
Img_1_cube_1_gt.img
Img_1_cube_2_cs.hdr

Img_N_cube_M_gt.img

full_images

Img_1.hdr
Img_1.img
Img_2.hdr

Img_N.img

no_clouds_train

Img_1_cube_1_cs.hdr
Img_1_cube_1_cs.img
Img_1_cube_1_gt.hdr
Img_1_cube_1_gt.img
Img_1_cube_2_cs.hdr

Img_N_cube_M_gt.img

Fig. 4.11: The folder structure for the pre-processed images.

4.3 Neural network implementation with PyTorch

The Python package PyTorch is used for implementing all training and predicting
functions, which is further elaborated in section 2.8. While PyTorch has many tools
for training and prediction, it requires customization to fit the specific task. To
enhance computational efficiency, an NVIDIA GeForce RTX 3080 GPU is utilized
as it offers faster processing speeds than standard CPUs. The thesis uses various
NN architectures, which are generally large and share similar building blocks. The
following subsections explain the fundamental building blocks and functions for
data loading, model training, and prediction using trained models.
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4.3.1 The building blocks

The building blocks consist of smaller groups of functional components that can
be found in the torch.nn library or other libraries compatible with PyTorch and
tensors. This method simplifies the process of designing and arranging intricate
neural networks with a diverse array of architectures and functions.

Upscale-Block

The “UpScaleBlock”, illustrated in Fig. 4.12, is a key component of the proposed sys-
tem that is responsible for upscaling a compressed HSI to its original, uncompressed
dimension. To accomplish this, the block utilizes the upsample class provided by
the torch.nn module, which performs bilinear interpolation to scale up the tensor
to the desired size based on the compression rate. As described in section 4.2, a
compression rate of 5 is used. Following the upsampling operation, a 3D convolution
with a kernel size of (1, 1, 1) is performed to enhance the quality of the upscaled
data. The resulting tensor is then passed to the next block in the network for further
processing.

Fig. 4.12: The “Upscale-block” with all the operations done. The image is created using
torch.onnx and Neutron.

Fig. 4.12 shows all the operations performed in the upscale. This method of plotting
is however not convenient for larger models, hence a simplification, shown in figure
4.13 will be used in the larger models.

UpscaleBlock
Input: 1x(64x64x24)

Output: 1x(64x64x120)

Fig. 4.13: A simple model of the “Upscale-block”.

Down Block

The “DownBlock” is depicted in Fig. 4.14. The figure shows that the input is passed
twice through 3D convolutional blocks with kernel size (3, 3, 3), with a ReLU block
after each convolutional block. Following this, max-pooling with a pool size of (1, 1,
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2) is applied to the image, which results in reducing the third axis of the tensor, or
the spectral dimension, to half its original size.

Fig. 4.14: The “DownBlock” with all its operations. The image is created using torch.onnx
and Neutron.

To be able to perform the convolutions and pooling operations, PyTorch resizes and
squeezes the data based on needs. Fig. 4.14 shows all the resizing and squeezing
done by PyTorch. When using this block in bigger models, the block is abstracted, as
illustrated in Fig. 4.15, to make the schematics easier to understand.

Downblock

Convolution, ReLU

Max-pool (2x2)

DownBlock
Input: N x (input shape)

Output: M x (output shape)

Fig. 4.15: A simplified model of the “DownBlock”. The middle part of the figure is from the
u-net in Fig. 2.13, and is also correct for this case. The input is marked with the
red arrow, and the output is illustrated with the rightmost block.

Up Block

The "UpBlock" is another important building block of the proposed system, which is
responsible for up-sampling the HSI data on the up-sampling path of the U-net. The
block first applies two 3D convolution operations with kernel size (3, 3, 3), followed
by an up-sampling operation using the "Upsample" class provided by the torch.nn
module. The resulting tensor is then concatenated with the corresponding tensor
from the down-sampling path of the U-net, and a final 3D convolution operation,
merging the concatenated data into the right shape, is performed to produce the
output.

Fig. 4.16: The “UpBlock” with all its operations. The image is created using torch.onnx and
Neutron.
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Fig. 4.14 depicts the resizing and squeezing carried out by PyTorch for the operations.
To ease understanding in larger models, the figures are denoted in a simplified
manner, as illustrated in Fig. 4.17.

Upblock

Convolution, ReLU

Copy, concatinate

Upsample,
convplution

UpBlock
Input 1: N x (input shape)

Input 2: M x (output shape) 
Output: M x (output shape)

Fig. 4.17: A simplified model of the “UpBlock”. Input 1 is marked by the green arrow, while
input 2 is marked by the gray arrow. The output is illustrated by the rightmost
block.

Reset values block

The reset values block uses the input data and the sensing matrix, Ψ, to reset the
inputted values to the correct positions. Since this is done on the Cuda device, the
function torch.put needs to be used.

To use this function, the positions and values must be inputted in a specific way. The
indices need to be organized in a second-order tensor with the first axis representing
the tensor order and indicating the exact positions for the values. The values them-
selves should be flattened into a first-order tensor with the correct values in order. If
formatted correctly, the line of code, x.index_put(tuple(self.A_indices), torch.flatten(f)),
will insert the values f into x at the positions indicated by A_indices. Please note that
this can only be done in parts of the neural network where the spectral dimension of
the HSI is not compressed, as the sampling indices are only valid in these areas.

Reset values:
Input:

8x(64x64x120)
Output:

8x(64x64x120)

Fig. 4.18: The simplified model notation of the reset values block.

Convolution

This block represents a single convolution and is commonly utilized as an output
layer in many neural networks. However, it can also be implemented in other
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sections of the network. Please refer to Fig. 4.19 for the notation of a singular
convolution.

Convolution
Input: 8x(64x64x120)

Output: 1x(64x64x120)

Fig. 4.19: The simplified notation for a singular convolution.

4.3.2 Loading data

Loading data with PyTorch requires tailored versions of the class “torch.utils.data.Dataset”,
suited for the data to be loaded. Since the training and testing data have different
sizes, as described in section 4.2, different sub-classes have to be made for each. In
addition to loading the data, it must have the right data structure and type. After
prepossessing, the HSIs are stored as image files, later reloaded as binary files, and
transformed to torch.Tensors.

4.3.3 Training the neural networks

The optimizer ADAM is used due to its superior convergence and results. Different
learning rates are tested, but experiments show that a learning rate of 0.0005 or
lower yields similar results with varying convergence speeds. However, using a
higher learning rate than this tends to converge to a local minimum, resulting in
poorer outcomes. The batch size is set to one, and the data is shuffled for each
epoch. To load the data, all 16 CPUs of the computer are utilized for maximum
efficiency.

The mean squared error between the ground truth and the output is used as the
loss function. In addition, a small weight decay of 10−8, is added to the optimizer
function to avoid that a few of the weights play a too big part. Once all the relevant
variables and functions are defined, the training data is iterated through, and the
NN’s weights are updated.

The packages tqdm and TensorBoard are used to monitor the training process in
real-time. Tqdm provides progress updates, displaying the number of completed
epochs, remaining epochs, progress within the current epoch (in percentage, number
of images, and time), and the average loss of the last 100 batches. TensorBoard
plots the loss as a function of the number of training cubes iterated through.

4.3 Neural network implementation with PyTorch 49



4.3.4 Predicting

The size of the input data used to train the model is 64 × 64 × 24, while the HYPSO-
1 images are compressed and sized at 956 × 684 × 24. When reconstructing the
images, they are divided into smaller blocks of 64 × 64 × 24, which are individually
reconstructed using the trained model and then patched together. Due to the spatial
dimensions of the HSIs not being evenly divisible by 64, some portions of the image
are left out during the reconstruction process. To make predictions, the model is
put into evaluation mode, and the compressive sensed data is used as input to the
model.

4.3.5 Evaluation functions

The quality of the reconstructions is evaluated using five different functions: PSNR,
SSIM, SAM, SID, and MSE. These functions are described in section 2.4. To calculate
SSIM, the Python package skimage.metrics is utilized, which requires two images
and a data range as input. PSNR, SID, SAM, and MSE are calculated as described
in sections 2.4.2, 2.4.5, 2.4.4, and 2.4.1, respectively. These evaluation functions
are applied to both the reconstructed image and the ground truth. To simplify the
evaluation process, a function is created to iterate through all the reconstructed
images and calculate the average SSIM, SAM, PSNR, SID, and MSE for each image.

4.4 Reconstructing the spectral domain of compressive
sensed HSIs using u-nets

Different u-net architectures for reconstructing compressive sensed HSI data are
evaluated in this thesis. They are all based on the NNs presented in [43], [44],
which are implemented using TensorFlow. The models in this project are however
implemented using PyTorch, so some variation due to the library might occur.

4.4.1 The master model

This first model is the PyTorch implementation of the DeepCubeNet, tailored to fit
the HYPSO-1 images same was as in [44], and is given the name master model.
The aim is to achieve similar results as the TensorFlow implementation on the
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HYPSO-1 images. The first up-sampling layer in this implementation is designed to
be trainable, unlike the one in the DCN, where the layer parameters are set to be
untrainable. However, the desired functionality was not successfully achieved due to
challenges encountered during implementation. Apart from this particular difference,
there are no other known discrepancies between the two implementations.

The architecture of this network, using the blocks described above, is presented
in Fig. 4.20. As the DCN, the master model has a depth of three and utilizes 3D
convolutions.

DownBlock
Input: 8x(64x64x120)

Output: 16x(64x64x60)

DownBlock
Input: 16x(64x64x60)

Output: 32x(64x64x30)

DownBlock
Input: 32x(64x64x30)

Output: 128x(64x64x15)

SideBlock
Input: 1x(64x64x120)

Output: 8x(64x64x120)

UpBlock
Input 1: 128x(64x64x15)
Input 2: 32x(64x64x30) 
Output: 32x(64x64x30)

UpBlock
Input 1: 16x(64x64x60)
Input 2: 8x(64x64x120) 
Output: 8x(64x64x120)

UpBlock
Input 1: 32x(64x64x30)
Input 2: 16x(64x64x60) 
Output: 16x(64x64x60)

Convolution
Input: 8x(64x64x120)

Output: 1x(64x64x120)

UpscaleBlock
Input: 1x(64x64x24)

Output: 1x(64x64x120)

Fig. 4.20: The master model. It has the same architecture as the DeepCubeNet but is
implemented using PyTorch and tailored to be usable with the HYPSO-1 images.

4.4.2 The simple model

When designing a neural network, it’s important to aim for simplicity while main-
taining high performance levels. To this end, it’s worth investigating if similar results
can be obtained through a simpler U-Net architecture. A simplified version of this
architecture, named "simple model," is shown in Figure 4.21. This model is a 3D
convolutional U-Net with a depth of two.

4.4.3 The backfire model

As noted in prior studies, there may be inaccuracies in the reconstructed data, even if
the input values were correct. This neural network addresses this issue by resetting

4.4 Reconstructing the spectral domain of compressive sensed HSIs
using u-nets
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DownBlock
Input: 8x(64x64x120)

Output: 16x(64x64x40)

DownBlock
Input: 16x(64x64x40)

Output: 32x(64x64x10)

SideBlock
Input: 1x(64x64x120)

Output: 8x(64x64x120)

UpBlock
Input 1: 16x(64x64x40)
Input 2: 8x(64x64x120) 
Output: 8x(64x64x120)

UpBlock
Input 1: 32x(64x64x10)
Input 2: 16x(64x64x40) 
Output: 16x(64x64x40)

Convolution
Input: 8x(64x64x120)

Output: 1x(64x64x120)

UpscaleBlock
Input: 1x(64x64x24)

Output: 1x(64x64x120)

Fig. 4.21: A u-net with depth 2. This is a simplification of the DeepCubeNet

the erroneous values to their proper positions within the network. This is achieved
by utilizing a reset-values block prior to the final convolution, as illustrated in figure
4.22. The overall architecture remains identical to the original model.

DownBlock
Input: 8x(64x64x120)

Output: 16x(64x64x60)

DownBlock
Input: 16x(64x64x60)

Output: 32x(64x64x30)

DownBlock
Input: 32x(64x64x30)

Output: 128x(64x64x15)

SideBlock
Input: 1x(64x64x120)

Output: 8x(64x64x120)

UpBlock
Input 1: 128x(64x64x15)
Input 2: 32x(64x64x30) 
Output: 32x(64x64x30)

UpBlock
Input 1: 16x(64x64x60)
Input 2: 8x(64x64x120) 
Output: 8x(64x64x120)

UpBlock
Input 1: 32x(64x64x30)
Input 2: 16x(64x64x60) 
Output: 16x(64x64x60)

Convolution
Input: 8x(64x64x120)

Output: 1x(64x64x120)

UpscaleBlock
Input: 1x(64x64x24)

Output: 1x(64x64x120)

Reset values:
Input:

8x(64x64x120)
Output:

8x(64x64x120)

Fig. 4.22: The backfire model, which resets the know values to their correct values before
the final convolution.

4.5 Cloud detection and segmentation

As described in section 2.1.2, the spectral signature of clouds is diverse. What a
hyperspectral camera will measure is also dependent on the ground beneath the
cloud, and the camera settings; hence the clouds are not easily separable from the
background. Nonetheless, there exist several methods to detect them, as described
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in section 3.2. However, the functionality cannot easily be transferred to use for
the HYSPO images. This is because some of them require an existing cloud mask,
some require images taken at the same spot close in time, and other models are
dependent on a specific range of frequencies in the bands. For the HYPSO-1 images,
none of these are available. Therefore specific cloud detection algorithms have to be
created.

Fig. 4.23 shows a plot of all the spectral arrays of an HYPSO-1 image that has
both land, ocean, and sea. One can see that there is a continuous range of spectral
signatures and that only using a threshold might not be a good approach.

Fig. 4.23: A plot of all the spectral arrays in the image to the right.

4.5.1 Using clustering to make cloud masks

The k-means function delivered by Spectral Python (SPy) is used to divide the
spectral vectors of an image into a given number of clusters based on a distance
function. The different distance functions used are:

1. MAE

2. MSE

3. SAM

4. SID

The SPy function only has the option to use MAE and MSE. Thus, the SAM and
SID are implemented by editing the installed package code. The goal is to separate
clouds from the rest. For many images, the content is quite complex; thus, two
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clusters might not be the optimal number of clusters. Therefore, various numbers of
clusters are explored.

Threshold and correlation-based cloud detection

Fig. 4.24 shows three examples of cloud-contaminated spectral arrays from three
different HYPSO-1 images. The pixels are selected manually to be in the center of
thick clouds. It is clear that the spectral signature is different from the three pixels,
but they all have maximum values that are equal to 1. Even though the spectral
signatures differ from the different clouds, pixels within the same clouds often have
similar ones. These observations are utilized to make a function that combines
thresholding and spectral comparison to detect and generate cloud masks.

Fig. 4.24: Example of spectral arrays of cloud contaminated pixels from the HYPSO-1 data-
set.

The function, named spreading_cloud_detection_queue, performs threshold-based
cloud detection on an inputted HSI followed by an expansion process. In ad-
dition to the HSI to be analyzed, named pred_img, the function takes in the
following variables and their default values; queue_threshold=0, check_range=2,
neighbor_threshold=None, threshold=None, and plotting=False. The function re-
turns a cloud mask with zeros and ones, where a one indicates cloud and a zero
indicates no cloud. The first thresholding is done to capture the central thick cloud
pixels, like the ones in Fig. 4.24. The expansion should add the surrounding cloud
pixels that might not be saturated, hence not captured by the threshold. The thresh-
old, threshold, is either set manually or calculated using the mean and standard
deviation of the image. This threshold is applied pixel-wise by taking the mean of

54 Chapter 4 System



the 10 highest values in the spectral array, making a second-order representation
of the HSI cube with ones and zeros. This is the cloud mask. An empty mask is
returned if the number of cloud pixels identified through this thresholding is zero. If
the number of detected cloud pixels is greater than 90% of the total number of pixels
in the image, the function assumes that the image is heavily covered by clouds and
returns the mask as it is, as the mask would have no meaningful value. If the num-
ber of cloudy pixels found is between these two thresholds, the function proceeds
to identify neighboring pixels that have similar spectral signatures. All the cloud
pixels identified through the first thresholding are additionally added to a queue
structure with a first-in-first-out (FIFO) priority. In addition to this first threshold,
two other thresholds are used; the neighbor_threshold, which is the threshold for
adding a neighboring pixel to the cloud mask, and the queue_threshold, which is
the threshold for adding a neighboring pixel to the FIFO-queue. The code listing
below shows how the queue is iterated through and how the value, val, used for the
neighbor_threshold and queue_threshold is calculated.

1 while len(queue) > 0:

2 node = queue.pop(0)

3 i, j = node[0], node[1]

4 main_pixel = pred_img[node]

5 for k in range(−check_range , check_range+1):
6 for l in range(−check_range , check_range+1):
7 #Checking i f the p ixe l i s within the image borders
8 if not (i+k>=0 and i+k< max_img.shape[0] and j+l>=0

9 and j+l < max_img.shape[1]):

10 continue

11 #Checking i f the p ixe l i s already in the cloud mask
12 if (not max_img[i+k, j+l]):

13 main_pixel = main_pixel−torch.mean(main_pixel)
14 check_pixel = pred_img[i+k, j+l, :] −
15 torch.mean(pred_img[i+k, j+l, :])

16 main_dot = torch.dot(main_pixel , main_pixel)

17 val = torch.dot(main_pixel , check_pixel)/main_dot

The main_pixel is the detected cloud pixel, and the check_pixel is a neighboring
pixel. The parameter check_range determines how many surrounding pixels will be
compared to each detected pixel. Since one iterates in both negative and positive
directions, for both x and y axis in the image, the number of compared pixels is
calculated as Ncompare_pixels = (2 · check_range)2 − 1. Once a pixel is added to the
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cloud mask, it will not be compared to other cloud pixels again to avoid going into
loops. The function also allows generating a GIF animation of the expasion process
by setting the plotting parameter to True.

4.6 Removing clouds

The clouds are removed by setting all the values that are within detected cloud pixel
arrays to zero. This is implemented through a function that takes in a hyperspectral
image and an associated cloud mask and sets the values in the HSI corresponding
to the cloud mask to zero. All operations are performed on the GPU for optimal
workflow and efficiency.

4.7 Recovering missing areas

This part of the system aims to recover missing data in the HSIs due to cloud removal.
A U-net similar to those used for CS reconstruction is used to do this. In addition to
the building block blocks described in section 4.3.1, blocks using 3D convolution
with dilations, hereby called dilation blocks or dilated convolutional blocks, are
utilized. Two different architectures are trained and tested. The models use several
dilation blocks with different purposes, to fill in the missing areas with non-zero
values, and to extract different frequency information about changes within the
image to generate accurate reconstructions. Bigger kernels and larger dilations
capture slower changes, while smaller kernels and dilations capture rapid and local
changes. One of the models resets the known pixels to their correct values at the
end of the model. The spectral dimension of the data in the models can have all
sizes, given that it is big enough to be down-sampled in the down-sampling path of
the UNet. However, the models are trained on compressive sensed HSIs from the
HYSPO data set, with a size of 24 samples in the spectral domain.

4.7.1 Recovery Model 1

The architecture of this model, shown in Fig. 4.25, is based on an UNet structure
with a depth of 2, but some of the normal convolutional blocks have been replaced
with dilated convolutional blocks. The dilation blocks are placed in both the down-
sampling and the up-sampling path.
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DownBlock
Input:

16x(64x64x24)
Output:

32x(64x64x12)

DownBlock
Input:

16x(64x64x12)
Output:

32x(64x64x6)

UpBlock
Input 1: 16x(64x64x12)
Input 2: 8x(64x64x24) 
Output: 8x(64x64x24)

UpBlock
Input 1: 32x(64x64x6)

Input 2: 16x(64x64x12) 
Output: 16x(64x64x12)

Convolution
Input:

8x(64x64x24)
Output:

1x(64x64x24)

Dil_block_1
Input:

1x(64x64x24)
Output:

16x(64x64x24)

Dil_block_2
Input:

32x(64x64x12)
Output:

32x(64x64x12)

Dil_block_3
Input:

1x(64x64x6)
Output:

8x(64x64x6)

Dil_block_4
Input:

1x(64x64x12)
Output:

8x(64x64x12)

Fig. 4.25: The architecture of the Recovery Model 1, with each building block’s input and
output dimensions.

Table 4.1 describes the four dilation blocks used in this model. Each block is designed
with a specific objective, and their collective cooperation aims to extract sufficient
information for an accurate reconstruction.

4.7.2 Recovery Model 2

In this model, depicted in Fig. 4.26, dilated convolutional blocks are only used in
the down-sampling path of the UNet, with a depth of three. Since the UNet has
crossover connections from the down-sampling path to the up-sampling path, one
can assume that dilation blocks exclusively on the down-sampling path are adequate.
Moreover, the known pixel values are reset to their original values twice within the
network, following a similar approach to the backfire model discussed in Section
4.4.3. Detailed descriptions of the different dilation blocks can be found in Table
4.2.

Resetting the values for an image lacking an unknown number of pixels requires
additional processing compared to the previously described resetting block to avoid
resetting the zero values within a cloud mask. Since each input has different and
unknown missing parts, specific indices for resetting need to be determined for each
input. A method defined within the model class deals with this by identifying the
non-zero pixel indices and formatting the indices appropriately. This function is
called once for every new input and is a time-consuming process. Another method
that correctly applies the resetting on the input is performed twice within the neural
network. First, after the first dilation block to recover information lost due to the
size of the kernels and dilations, and the second right before the final convolution,
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Tab. 4.1: The dilated convolutional blocks used in Recovery Model 1, with a small descrip-
tion of the purpose of each block. Full architecture can be seen in image 4.25.

Block name Parameters Purpose
Dil_block_1 Dilation = 3,

Kernel size = 7
The block aims to fill in
the missing values by us-
ing a large kernel and di-
lation, then a smaller.

Dilation = 1,
Kernel size = 3

Dil_block_2 Dilation = 3,
Kernel size = 5

This block uses large ker-
nels to fill in missing val-
ues. Three different di-
lations are used to ex-
tract frequency informa-
tion within the image.

Dilation = 1,
Kernel size = 5
Dilation = 2,
Kernel size = 3

Dil_block_3 Dilation = 3,
Kernel size = 3

This block aims to fill in
finer details in the recon-
struction, based on sur-
rounding pixels.

Dilation = 1,
Kernel size = 3

Dil_block_4 Dilation = 2,
Kernel size = 3

This block aims to do a fi-
nal touch, optimizing the
reconstruction quality.Dilation = 1,

Kernel size = 1

DownBlock
Input:

16x(64x64x24)
Output:

32x(64x64x12)

DownBlock
Input:

16x(64x64x12)
Output:

32x(64x64x6)

UpBlock
Input 1: 16x(64x64x12)
Input 2: 8x(64x64x24) 
Output: 8x(64x64x24)

UpBlock
Input 1: 32x(64x64x6)

Input 2: 16x(64x64x12) 
Output: 16x(64x64x12)

Convolution
Input:

8x(64x64x24)
Output:

1x(64x64x24)

Dil_block_1
Input:

1x(64x64x24)
Output:

16x(64x64x24)

Dil_block_2
Input:

32x(64x64x12)
Output:

32x(64x64x12)

Dil_block_3
Input:

1x(64x64x6)
Output:

8x(64x64x6)

Reset values:
Input:

8x(64x64x24)
Output:

8x(64x64x24)

DownBlock
Input:

16x(64x64x6)
Output:

32x(64x64x3)

UpBlock
Input 1: 32x(64x64x3)
Input 2: 16x(64x64x6) 
Output: 16x(64x64x6)

Reset values:
Input:

8x(64x64x24)
Output:

8x(64x64x24)

Fig. 4.26: The architecture of the recovery model 2, with each building block’s input and
output dimensions.

to recover information lost in the rest of the network. The resetting ensures no loss
of known information in the recovery process, but at the cost of speed.
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Tab. 4.2: The dilated convolutional blocks used in Recovery Model 2, with a short descrip-
tion of the purpose of each block. Full architecture in Fig. 4.26.

Block name Convolution parame-
ters

Description

Dil_block_1 Dilation = 3,
Kernel size = 7

This block uses a large
area of surrounding pix-
els to fill in values for the
missing pixels, capturing
slow changes in the im-
age.

Dilation = 2,
Kernel size = 5
Dilation = 1,
Kernel size = 5

Dil_block_2 Dilation = 3,
Kernel size = 5

This block first analyzes
moderate changes, then
examines finer details
with a smaller kernel.

Dilation = 1,
Kernel size = 3

Dil_block_3 Dilation = 2,
Kernel size = 3

This block first analyzes
moderate changes, then
examines finer details
with a smaller kernel.

Dilation = 1,
Kernel size = 3

4.7.3 Training and predicting with the recovery models

Compressive sensed HYPSO-1 images are used to train the NN. Both images with
missing data and ground truth are needed in the training. For the HYPSO-1 images,
there are no images that have the exact same spot and lighting with and without
clouds, hence using actual cloud masks to train the network is not a possible
method. In addition, for good generalization, lots of data are needed. A function
for generating fake cloud mask, described below, are used instead of real cloud
masks, and only images without clouds are used. To generate loads of training data
and avoid overfitting, new random cloud masks are generated for each training
cube in each iteration. This ensures the NN actually learns to reconstruct from the
surrounding pixels rather than memorizing some particular cases.

Function for simulating cloud masks

The function “generate_fake_clouds” generates cloud masks for given input images.
It optionally takes in two additional parameters, the probability for a new pixel
being added to the mask, prob_of_clouds, and the maximum number of pixels
allowed in the mask given as a fraction of the total number of pixels in the image,
maximum_size. The default values for these two parameters are 0.249 and 0.25,
respectively. The function starts by creating a binary mask of the same size as
the input, with all elements initially set to 0. A few seed pixels within the image

4.7 Recovering missing areas 59



are selected at random locations, and the corresponding locations in the binary
mask is set to 1. The number of seed pixels is selected within the range of 2
and log(Total number of pixels in the image) + 2.5. The function then iteratively
expands the mask by adding the neighboring pixels. The probability for adding a
neighboring pixel is given by the parameter prob_of_clouds. The expansion process
uses a Last-In-First-Out (LIFO) queue, meaning that the last neighboring pixel added
to the queue is the next one to explore. This is done to avoid generating circular
clouds centered around the seed pixels, which will happen if a First-in-First-Out
(FIFO) queue is used. The algorithm stops when the maximum number of pixels
allowed in the cloud mask is reached or the queue is empty. The function returns
the final cloud mask as a binary matrix with the same shape in the x and y direction
as the input image.

Recovering missing areas with the models

When trained, a model is applied normally, as described in section 4.3.4, on the
desired images to recover the missing areas. As described above, the input shape
is not defined, hence all image shapes and dimensions can be used. However, the
image must be recovered in pieces due to local memory restrictions on the GPU.
Since the models use surrounding pixels to recover the missing ones, it is natural
that the performance is worse on the edges with fewer surrounding pixels. This is
dealt with by utilizing stride, or overlap when dividing into smaller cubes and using
the output of the previous predictions as input to the next one.
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Results and Discussion 5
The results are divided into parts, covering the reconstruction of compressive sensed
images, cloud detection, and the recovery of missing areas. The process has been very
exploratory, hence many methods have been tested without further development.

5.1 Reconstructing the spectral dimension of the
compressive sensed HSIs

5.1.1 The training process

Fig. 5.1 shows how the master model improves with more training. The training loss
and the validation loss are both improving, indicating the neural network’s ability to
generalize and predict unseen data. The loss decreases quickly in the beginning and
slower after more epochs. Considering that the MSE is used as a loss function and
all values are between 0 and 1, the squared error will quickly become very small.

Fig. 5.1 has been created using TensorBoard, a real-time tool that displays the loss
per epoch. This tool is utilized during the training of all models to track performance
and prevent overfitting.

All the models trained for the reconstruction of compressive sensed data are trained
on the same train data set and with approximately 35 epochs. Smaller models
converge faster and require less training compared to larger models, as they have
fewer parameters to tune.

5.1.2 Evaluation of reconstruction quality

Table 5.1 presents the results given by the evaluation functions for the various
models, together with the TensorFlow implementation presenter in [44]. The
evaluation scores are calculated using the same test images for all the models. Visual
investigation of the results is conducted in the subsequent subsections.
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Fig. 5.1: MSE loss of the training and validation data given by the number of training cubes
iterated through. This run consists of 19 epochs with a 90%/10% training/valida-
tion split. The light orange line gives the plot of the average of every 200 training
cubes, while the darker orange line is a smoothed version. Note that the y-axis is
logarithmic.

Preprocessing Mean PSNR Mean SSIM Mean SAM SID
TensorFlow
model [44]

45.46 dB 0.9928 0.9997 N/A

Master model 48.19 dB 0.9946 0.9999 3.02·10−4

Simple model 43.22 dB 0.9858 0.9996 6.84·10−4

Backfire
model

49.02 dB 0.9944 0.9999 1.61·10−4

Tab. 5.1: HYPSO-1 image reconstruction quality, using different evaluation methods.

Master model

As seen in table 5.1, the reconstructions with this model have achieved higher
average scores compared to the TensorFlow model. With an average PSNR score of
48.19 dB and a minimum of 40.40 dB, it seems that the NN has found a correlation
between input and output that is general for all the HSIs in the data set.

Fig. 5.2 show the RGB representations of ground truth and the reconstruction of a
test image. The image contains both ocean, land, and sky. It is impossible to see the
difference between the ground truth and the reconstruction just by comparing the
two.

Fig. 5.3 showcases two ground truth spectral arrays, their respective reconstructions,
and the sampling points for compressive sensing, from the images in Fig. 5.2.
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(a) Ground truth. (b) Reconstruction.

Fig. 5.2: Ground truth and reconstruction for a test image. The reconstruction has a PSNR
of 49.40 dB, SSIM of 0.9971, SAM of 0.9999, and a SID of 2.26·10−4.

The reconstruction demonstrates the model’s ability to capture spectral variations
within an array. The pink ground truth 1 plot is hardly visible beneath the green
reconstruction plot. Furthermore, even in the regions of the spectral array where
there are no sampling points, the reconstruction successfully captures the spectral
signature. However, it is worth noting that the reconstruction of ground truth 2
between 600 to 750 nm exhibits inaccuracies, failing to match the provided sampling
points. This observation is intriguing, given the expectation that the model would
learn, during the training process, that these provided points are always correct.

To further inspect the reconstruction quality, the pixel-wise error is used. Fig. 5.4
shows pixel-wise error given different distance functions. Each distance function of-
fers unique insights into specific aspects of the error, allowing us to comprehensively
understand the reconstruction quality. Higher MSE and SID indicate a greater level
of error in the reconstruction, whereas a higher value of SAM indicates a higher
degree of similarity between the reconstructed and original spectra. Analysis of the
errors using the MSE and SAM reveals that the largest reconstruction errors occur at
sharp transitions, which predominantly correspond to land and cloud regions. These
areas, being outliers compared to the majority of the ocean scene, present greater
challenges for accurate reconstruction. The SID highlights the edges, especially
the corners of the patched cubes, indicating lower reconstruction quality in these

5.1 Reconstructing the spectral dimension of the compressive
sensed HSIs
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Fig. 5.3: Spectral arrays of the ground truth and the reconstruction of the image represented
in Fig. 5.2. The pink (Ground truth 1) and green (Prediction 1) lines show the
ground truth and the reconstruction for an ocean pixel, and the blue (Ground
truth 2) and orange (Prediction 2) for a land pixel.

regions. This observation aligns with the fact that edges have fewer neighboring
pixels available for analysis in the reconstruction process.

(a) MSE. (b) SAM. (c) SID.

Fig. 5.4: Pixel vise errors for the ground truth and reconstruction, using the master model,
for the image shown in Fig. 5.2.

Simplification of the NN

By employing a smaller neural network, both the training and prediction phases
are accelerated. The training process was terminated after 30 epochs due to the
absence of any noticeable improvements in the loss over numerous iterations. The
training duration was 239 minutes and 40.8 seconds. Using the simple model on the
same image as in Fig. 5.2, it gets a PSNR of 45.37 dB, an SSIM of 0.9914, a SAM
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of 0.9997, and a SID of 6.73·10−4. This is worse than the master model, but still in
line with state-of-the-art methods for reconstruction.

Fig. 5.5: Spectral arrays of the image represented in Fig. 5.2. The pink and green lines
show the ground truth and the reconstruction for an ocean pixel, and the blue and
orange for a land pixel.

Fig. 5.5 shows spectral arrays of the same pixels as in 5.3, including both ground
truth and reconstruction. It is apparent that this model deviates more from the
ground truth compared to the master model. The predictions tend to take shortcuts
instead of accurately following the variations present in the ground truth, resulting
in a smoothed version of the ground truth or a regression-like prediction.

The different distance functions used in Fig. 5.6 capture different aspects of the
error. It is clear that the error, in general, has increased compared to the error given
by the master model. Especially in the corners of the re-stitched cubes, the SID has
increased. This suggests that the SID is sensitive to the reconstruction quality at the
corners, indicating that the reconstruction performance may be relatively weaker in
those areas. Also, the SID is high in the center of some of the clouds.

Backfire model

The training process of this mo was stopped after 32 epochs, and each epoch took
approximately 28.5 minutes. As noted in table 5.1, the objective reconstruction
quality measurements using this model are very similar to those of the master model.
The PSNR and the SID have slightly improved, while the SSIM has slightly decreased.
Using the same image as in Fig. 5.2, this model yields a PSNR of 50.85 dB, an SSIM
of 0.9976, a SAM of 0.9999, a SID of 1.36 · 10−4.

5.1 Reconstructing the spectral dimension of the compressive
sensed HSIs
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(a) MSE. (b) SAM. (c) SID.

Fig. 5.6: Pixel vise errors for the ground truth and reconstruction using the simple model.

Fig. 5.7: Spectral domain for ground truth and predictions of the image represented in Fig.
5.2, using the backfire model. The pink and green lines show the ground truth and
the reconstruction for an ocean pixel, and the blue and orange for a land pixel.

As observed in Fig. 5.7, the backfire model consistently predicts the correct values
for the compressive sampling points, unlike the master model. However, there are
still errors present between the sampling points. At approximately 660nm for both
the ground truth and prediction 1, the trajectory of the reconstruction through the
sampling point exhibits a slightly forced and unnatural behavior. Fig. 5.8 displays
two additional spectral arrays from other test images, which demonstrate the same
errors and unnatural behavior in their respective reconstructions.

Fig. 5.9 investigate further the spatial structure of the errors by presenting pixel-wise
errors using different distance measures. Once again, it is when the image content
has rapid changes, like the transition from ocean to land, or the thick small clouds,
that the error is the biggest. However, it is worth noting that the errors in the
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Fig. 5.8: Two spectral arrays together with the sampling points and the reconstructions.

backfire model are visibly smaller compared to the simple model, and the borders
resulting from the concatenation of smaller cubes are barely noticeable.

(a) MSE. (b) SAM. (c) SID.

Fig. 5.9: Pixel vise errors for the ground truth and reconstruction using the backfire model.

Despite these imperfections, the backfire model performs well on unseen data. This
is evidenced by the lowest reconstruction PSNR on the test data, which is 40.80 dB,
indicating its adaptability to unfamiliar settings. The fact that the predictions are

5.1.3 Discussion of the spectral reconstruction results

As presented in table 5.1, the PyTorch implementations generally outperform the
TensorFlow-based implementation in [43], [44]. The reason for this improvement
is unclear, especially for the master model, considering that the implementations
should be replicas. One notable difference is the Upscale block, which has non-
trainable parameters in the TensorFlow implementation. This alone may account for
the 3 dB increase in PSNR. However, other factors, such as the random initialization
of neural network parameters, gradient calculation, and hardware-specific imple-
mentation, may also contribute. Despite the expected variability in results due to

5.1 Reconstructing the spectral dimension of the compressive
sensed HSIs
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different parameter starting values, the PyTorch implementation consistently demon-
strates better performance throughout the project compared to the TensorFlow-based
implementation.

Machine learning has the potential to capture correlations when the architecture
and size are appropriately chosen. However, in the case of the master model, it is
observed that the prediction does not always match the input. This discrepancy
cannot be solely attributed to the model’s size. Larger models were trained and tested
during the project, but their performance did not improve significantly. Moreover,
training such large models is time-consuming as they converge slowly and require a
greater number of epochs, each taking longer to complete. For instance, even after
40 epochs, the larger models were far from converging and performed worse than
the master model.

Out of the three presented models, the backfire model that resets the values is,
arguably, the best-performing one. This model will therefore be used in the final
pipeline, and the method for re-setting values will be adapted to other methods.

5.2 Part 2: Cloud detection and segmentation

Evaluating the performance of cloud detection algorithms is done by visually inspect-
ing the generated cloud masks in relation to the original images. It is important to
detect entire clouds, including their thinner borders where the clouds are fading,
as the presence of cloud borders can introduce unwanted distortions in the recon-
structions. Therefore, the cloud mask should accurately identify and capture the
complete cloud coverage, enabling reliable analysis and further processing.

5.2.1 Clustering

The cloud masks shown in Fig. 5.10 are generated using K-means clustering with
2 clusters, using different distance functions. The figure shows that the different
distance functions have variable sensitivity when it comes to the border of the clouds.
The MAE and the MSE are the least sensitive, only capturing the pixels with the
thickest clouds present. Using SID gives the highest number of pixels in the cloud
mask, with a total of more than 13% of the pixels in the mask, followed by SAM
with 10.06%.

68 Chapter 5 Results and Discussion



(a) Ground truth. (b) MAE. (c) MSE

(d) SAM. (e) SID. (f) Removed clouds using SID .

Fig. 5.10: Cloud masks generated using k-means clustering, with two clusters, using differ-
ent distance functions. The original ground truth and ground truth with removed
clouds using the cloud mask given SID are also compared.

Fig. 5.10f show how the cloud mask, generated using SID, overlaps with the ground
truth. It is clear that the clustering is able to distinguish the clouds from the ocean.
However, this is not a very challenging task when there are only oceans and clouds.
Fig. 5.11 use clustering when, in addition to clouds and ocean, land is present. Both
two and three clusters are tested.

It is clear from Fig. 5.11 that the clustering algorithm is not able to correctly separate
the land from the clouds in all cases. Hence this approach might not be the most
reliable when it comes to cloud segmentation. In addition, using this approach has
no way of knowing which of the clusters represents clouds and whether clouds are
present. It just sorts the pixel arrays into the given number of clusters based on
similarity.
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(a) Ground truth. (b) Two clusters. (c) Three clusters.

Fig. 5.11: Cloud masks generated using k-means with SAM as distance function, and using
two and three clusters.

5.2.2 Threshold and correlation-based algorithm

The algorithm explained in section 4.5.1 yields, in general, more reliable cloud
masks than the clustering. Fig. 5.12 shows the algorithm’s performance on the same
image used for clustering in Fig. 5.11. The threshold and the queue_threshold are
set to 0.95, and the neighbour_threshold is set to 0.7. From the figure, it is clear
that this algorithm does not mix up land and cloud pixels in this image, in contrast
to the clustering. However, not all thin clouds are detected. Additionally, in Fig.
5.12c, it can be observed that the borders surrounding the eliminated clouds appear
white, indicating the presence of residual thin clouds in those areas.

Fig. 5.13 shows three other images and the corresponding detected cloud masks.

The algorithm misses some of the cloud-contaminated pixels in all the images in
Fig. 5.13. Image a is the same image used with clustering in Fig. 5.10. In this case,
only 7.0% of the pixels are added to the cloud mask, in contrast to the 13.0% using
clustering with the SID as the distance function. However, the number of detected
cloud pixels is dependent on the given function parameters. Fig. 5.14 shows how
changing the parameter queue_threshold influences the detected cloud mask.

When the threshold is set to 0.94, marginally more pixels are added to the mask
compared to when the threshold is 0.95. At the same time, the run time increased
from 6m and 48.5s to 141m and 16.9s. When the threshold is set to 0.93, suddenly
all pixels are added to the mask. Since the function adds pixels to the mask based
on the correlation between the pixel arrays already in the mask, it is understandable
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(a) Ground truth. (b) The detected cloud mask. (c) Removed clouds.

Fig. 5.12: Ground truth, cloud mask, and ground truth with removed clouds using the
proposed cloud detection algorithm.

that once a non-cloud pixel is added it will continue adding non-cloud pixels. Hence,
this parameter has to be tuned to fit a specific image, and the algorithm is not suited
for unsupervised detection and segmentation of clouds.

5.2.3 Discussion of the cloud detection and segmentation methods

As discussed in section 5.2.1, clustering is not a suitable approach for unsupervised
cloud detection/segmentation, especially in images with diverse content. Neverthe-
less, employing various distance functions with clustering provides valuable insights
into how these distance functions function with the spectral arrays. This knowledge
can be applied in other applications beyond cloud detection and segmentation.

The proposed algorithm also has some disadvantages that should be considered. Its
execution speed is relatively slow, and the more clouds present, the slower execution.
The three cloud masks detected in Fig. 5.13 took 106 min, 86 min, and 102 min,
respectively. As seen in Fig. 5.14, some of the algorithm’s parameters may require
adjustments to achieve optimal results for each individual image. To prevent the
loop for adding cloud pixels from becoming infinite, a pixel is excluded from further
checks once it has been added to the cloud mask. However, due to the difference
in threshold values for adding pixels to the cloud mask and to the queue, certain
clear cloud pixels that should have been added to the queue may be overlooked.
This situation can occur if they are initially compared to a cloud pixel that is not
sufficiently similar, leading to their addition to the cloud mask without being added
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(a) Ground truth, Image a. (b) Ground truth, Image b. (c) Ground truth, Image c.

(d) Cloud mask, image a. (e) Cloud mask, image b. (f) Cloud mask, image c.

(g) Removed cloud, image a.
7.0% of the pixels removed.

(h) Removed cloud, image b.
6.1% of the pixels removed.

(i) Removed cloud, image c.
27.7% of the pixels removed.

Fig. 5.13: Cloud masks generated using the proposed algorithm on three different images.

to the queue. Once a pixel is added to the cloud mask, it will not be compared to
other cloud pixels again, which helps improve the runtime. However, by not adding
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(a) queue_threshold = 0.95. (b) queue_threshold = 0.94. (c) queue_threshold = 0.93.

Fig. 5.14: The detected cloud mask when queue_threshold is set to 0.95, 0.94, and 0.93 re-
spectively. The three figures illustrate how the parameter influences the detected
number of pixels added to the cloud mask.

these pixels to the queue, both isolated elements and significant portions can be
missed, particularly as the mask expands spatially. If the algorithm mistakenly adds
a non-cloud pixel to the queue, it will continue to add similar pixels, magnifying the
error and leading to inaccurate results.

To summarize, none of the cloud detection methods presented rival the state-of-
the-art algorithms, as they can be considered relatively simplistic. However, the
methods given the right circumstances and parameter tuning can create cloud masks
that include most of the cloud pixels. The methods were primarily developed to
have something functional for the HYSPO-1 images to be utilized in the other parts.
The algorithm does serve this purpose, with the given cloud masks. Due to time
constraints, only a limited amount of time was assigned to this particular part,
allowing numerous potential future improvements and refinements.

5.3 Recovery of missing areas

The results presented below look at the models’ performances on randomly generated
cloud masks using the algorithm described in section 4.7.3, and on detected cloud
masks using the algorithm described in section 4.5.1. The detected cloud masks
are tested on other images where no clouds are present in addition to the images
they belong to. The spectral domain is also recovered using the backfire model
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to generate RGB representations of the images for further visual evaluation of the
results.

5.3.1 The simulated clouds

The algorithm described in section 4.7.3, is used to simulate clouds. The parameter
prob_of_clouds impact the structure of the simulated clouds. Fig. 5.15 show two
simulated cloud masks are presented - one with the default parameter value of 0.249
and the other with an adjusted value of 0.3. The contrast between the two masks is
apparent in terms of cloud structure, shape, and density. It is observed that a higher
probability of clouds results in more compact clouds.

(a) prob_of_clouds = 0.249. (b) prob_of_clouds = 0.3.

Fig. 5.15: Two simulated cloud masks using different values for the parameter
prob_of_clouds.

In Fig. 5.15b, the cloud mask is concentrated at the bottom of the image. The
algorithm uses a LIFO queue and adds seed pixels to the queue from the top to
the bottom. Higher probabilities of adding a new pixel, e.g., higher value for
prob_of_clouds, cause the algorithm to get stuck at the last added seed and expand
the mask from there. As seen in 5.15a, lower probabilities result in more spread-out
clouds. Both cloud masks have some “holes” or areas within the cloud masks that
are not a part of the masks. The cloud mask generated using a lower probability of
adding new pixels has more holes.
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This characteristic differs from the detected cloud masks in section 5.2.2. In addition,
the simulated clouds have a distinct shape compared to real clouds which are more
dense. Consequently, training models with these simulated cloud masks may limit
their ability to generalize to real-world scenarios. However, despite these limitations,
this is the available data to work with.

5.3.2 Utilizing stride in the missing area recovery

As mentioned in section 4.7.3, using stride for image recovery can effectively address
data loss along the edges of a cube. Figure 5.16 illustrates the outcome of recovery
without using stride. As expected, the model struggles to recover missing parts at
the edges of the patches.

(a) Removed cloud. (b) Ground truth. (c) Recovered image.

Fig. 5.16: Recovered image, using recovery model 1. The input of the network is the image
with the removed cloud.

To address the problem, reconstruction with stride can be utilized while incorporating
previous predictions as input, as explained in section 4.7.3. Figure 5.17 showcases
the contrast with model 1 using this reconstruction method, which is applied for all
subsequent reconstructions.

5.3.3 Result on simulated clouds

When it comes to recovering missing areas given simulated cloud masks, the ground
truth is available, so the evaluation functions are used as normal. SAM is excluded
due to bizarre errors given division with zero. Table 5.2 shows the performance of
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(a) Recovered image, no stride. (b) Recovered image, with stride.

Fig. 5.17: Recovered image by utilizing both no stride and stride with previous predictions
as inputs in the reconstruction. The same image input and Model 1 are used.

the two models. The same set of images, all without clouds, and the same simulated
clouds are used on each model. As a baseline for comparison, the scores have been
calculated on the images with removed clouds without using any recovery models.

Tab. 5.2: Performance of the recovery models of simulated cloud masks, and the evaluation
scores using no recovery model. The scores are calculated by taking the average
of seven different images and cloud masks. The cloud masks are generated using
prob_of_clouds in the range [0.249, 0.3].

Preprocessing Mean PSNR Mean SSIM SID Mean recov-
ery time

No recovery 17.3 dB 0.7101 0.0 0.0s
Recovery
Model 1

28.57dB 0.9535 0.000425 9.5s

Recovery
Model 2

29.71 dB 0.9656 0.000209 12m 2s

As seen in the table, both models exhibit remarkably similar performance, with
model 2 demonstrating slight improvements across all aspects except recovery time.
The reconstructed images generally exhibit some loss of information during the
reconstruction process, resulting in scores inferior to those achieved in section 5.1.
However, this outcome was anticipated, as the task of recovering missing areas is
more complex considering that the areas missing are different in each case. Despite
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this, both models demonstrate a significant increase in recovery scores compared to
no recovery.

To conduct visual inspections, RGB representations of images are created by re-
constructing the spectral domain through the backfire model. In Figure 5.18, the
reconstructions made by model 1 and model 2 are compared using the same image
and cloud mask. Although the evaluation scores are similar, it can be seen that
model 1 has black marks in image 5.18c, indicating some content is missing. Model
2 has fewer of these areas, but there are some barely visible lines and impurities
present. Both models, however, are able to recover most of the missing areas. Notice
the thin cloud by the bay, where many pixels are lost in the randomly generated
cloud mask. Despite this, both reconstructions preserve the cloud shape, with Model
2 doing so to a higher degree than Model 1.

Fig. 5.18 also shows reconstructions made with Model 1 and Model 2, using the
same image and cloud mask for both, this time with a higher prob_of_clouds. The
evaluation scores are similar also this time. It is clear that the denser cloud mask is
making the recovery lack more data and more blurry. Given the marginally better
performance of Recovery Model 2, this will be used in further testing. However,
both model recovery manages to capture the shape of the coastal line. A part of the
image is lost in the reconstruction, as described in section 4.7.3.

To closer investigate the details in the recoveries, smaller image cubes are investi-
gated individually. Fig. 5.20 and 5.21 show the recovery of two random 64 × 64
cubes, with randomly generated cloud masks. The cloud masks are generated for
the cubes, hence not using more than 25% of the cube pixels.

5.3.4 Results using real clouds

Fig. 5.22 displays the recovery of a cloud contaminated image, together with the
original image and the removed cloud mask image. There are no without clouds to
compare with, so only a visual inspection is possible.

From the figure, it is clear that this approach does not work. The cloud mask does
not cover appropriately all cloud contaminated pixels, hence the surrounding pixels
of the removed cloud mask still is contaminated. This leads to the recovery of thin
clouds, instead of the intended recovery of the ground underneath.

In Fig. 5.23, the cloud mask from Fig. 5.22 is used on another image, without any
clouds. In this case, the evaluation scores are available due to the access of the gt.
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(a) Removed cloud mask. (b) Ground truth.

(c) Model 1, with a PSNR of 38.43dB and an
SSIM of 0.9952.

(d) Model 2, with a PSNR of 39.31dB and an
SSIM of 0.9971.

Fig. 5.18: Recovered images using Model 1 and Model 2, together with the cloud mask and
the ground truth.

The recovery has high evaluation scores, but less data is removed compared to
the simulated clouds. The recovery is missing some parts parts centered in the
biggest removed bulks of the cloud mask. The recovery process has also added some
distortions around some of the pixels in the removed cloud mask, looking like small,
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(a) Removed cloud mask. (b) Ground truth.

(c) Model 1, with a PSNR of 22.95dB and an
SSIM 0.9259.

(d) Model 2, with a PSNR 22.92dB and an
SSIM of 0.9237.

Fig. 5.19: Another recovered image using Model 1 and Model 2, together with the cloud
mask and the ground truth.

thin clouds. However, otherwise the reconstruction appears to recover most of the
missing parts.
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(a) Removed cloud mask. (b) Ground truth. (c) Recovered image.

Fig. 5.20: The recovery of a 64×64 cube, using Recovery Model 2.

(a) Removed cloud mask. (b) Ground truth. (c) Recovered image.

Fig. 5.21: The recovery of another 64×64 cube, using Recovery Model 2.

5.3.5 Discussion of the results

The neural network is able to recover the missing areas with high accuracy when
working with the simulated cloud masks. However, when working with real cloud
masks, it is clear that it is not working as well. The generated clouds masks and the
detected clouds masks have however quite different spatial structures. Whereas the
real cloud masks have very compact blobs, where all the pixels within a mask are
removed, the generated cloud masks have some pixels present within the clouds,
and a more random outline of the masks. One can therefore argue that the simulated
cloud masks do not comprehensively cover the structure and behavior of real clouds.
Considering that the NN is trained on the generated cloud masks, it is understandable
that the reconstruction on the real cloud masks is worse.

It is clear that both the recovery models are able to recover some missing data based
on surrounding pixels. Both models perform best when using randomly simulated
clouds with the same premises as the model is trained on. Changing the premises
means a decrease in the models’ performance. Using real cloud masks seems to
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be harder for the model to recover. The real cloud masks are denser, unlike the
simulated ones that have some non-cloud pixels within the cloud masks. The bigger
areas missing, the worse the reconstructions.

When comparing model 1 and model 2, certain differences become apparent. Model
1 exhibits a higher level of blurriness, resulting in the loss of finer details in the
image, even in regions where no data is missing. On the other hand, model 2
presents a sort of edge in the distinct edge at the boundaries where the missing and
known areas intersect. This edge creates a somewhat unnatural appearance in the
image, clearly indicating the presence of missing data.

An important point to note is that the model was trained using only images without
any clouds. This makes it difficult to determine if the reconstructions are simply
based on memory or if the models are actually capable of filling in missing areas
using the surrounding pixel arrays. It is also worth noting that the recoveries
presented in this thesis were only made from compressed to compressed domain.
This is because the model was specifically trained for this purpose. When tested in
other situations, such as from uncompressed to uncompressed domain, the models
yielded meaningless recoveries.

5.4 Discussion of pipeline parts

The previous sections present and discuss the results individually, given different
pipeline parts. It has been proven that using a U-Net to reconstruct the spectral
domain of compressive sensed HSI yields state-of-the-art results given an adequate
model and training. This result follows the conclusions of the newest research on
this topic. A U-Net has also been used to recover missing areas in the HSI based on
surrounding pixels. In addition, two methods for detecting and segmenting clouds
have been tested and evaluated. Now, the collaboration between the different parts
and the feasibility of a pipeline will be discussed.

The culmination of the individual components into a pipeline for cloud detection
and recovery presents both challenges and opportunities. The successful application
of the U-Net architecture for both spectral domain reconstruction and cloud-free
area recovery is promising. This demonstrates the adaptability of this architecture
across different tasks within the same pipeline. However, integrating cloud detection
methods with the recovery process is crucial. The choice of cloud detection approach
significantly impacts the quality of the input data for the recovery model. A more
accurate cloud detection process directly translates to better results in the subsequent
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recovery phase. Conversely, an erroneous cloud detection can propagate errors
through the pipeline, leading to inaccurate or incomplete reconstruction. Likewise,
refining the recovery model using more refined cloud detection and segmentation
can improve the quality of the reconstructed image. It has been demonstrated in [5]
that U-Nets can be utilized for cloud detection. Therefore, it is reasonable to assume
that a well-designed U-Net may be capable of handling all three aspects of the
pipeline at once. During the exploration, a UNet was attempted to combine recovery
of missing areas and reconstruction of a compressive sensed domain. However, it was
noted that the GPU couldn’t handle the amount of storage required during training.
So one consideration is whether this pipeline can be realistically implemented. The
computational demands of deep learning models like U-Nets need to be thoughtfully
evaluated to ensure they can be applied in real scenarios without overwhelming
computational resources.
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(a) Removed cloud mask. (b) Ground truth.

(c) Recovery using model 2.

Fig. 5.22: Recovery of an image with real clouds removed. The cloud mask is detected
using the new detection algorithm.
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(a) Removed cloud mask. (b) Ground truth.

(c) The Recovery using Model 2, with a PSNR of 42.53dB and an SSIM
of 0.9978.

Fig. 5.23: Recovery when detected cloud mask from Fig. 5.22 is used with a HSI without
any clouds.
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Conclusions and future work 6
This study has presented and discussed the different components in a pipeline
including cloud detection and removal, recovery of missing areas and reconstruction
of a compressive sensed spectral domain of HSIs from the HYSPO-1 satellite. It has
been demonstrated that employing a UNet for reconstructing the spectral domain of
compressive sensed HSI yields state-of-the-art results with the appropriate model
and training. Similarly, using a UNet to recover missing areas in the HSI based on
surrounding pixels has also shown promising outcomes. Regarding cloud detection
and segmentation, the methods used have significant limitations making them
unsuitable for an unsupervised setting, such as the one in the suggested pipeline.
Nonetheless, they have served their purpose in testing the recovery models on real
clouds.

In regards to future work, it has been noted that the reconstruction of compressive
sensed HSIs and the recovery of missing areas rely on U-Nets. Additionally, research
suggests that U-Nets have potential for cloud detection. As a result, it may be
worthwhile to investigate the combination of all three aspects into one model.
This initiative would require high-quality data and powerful GPUs, but with the
appropriate model, the results in this thesis indicate that it can be a feasible task.
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