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Abstract. A common task in oceanography is to model
the vertical movement of particles such as microplastics,
nanoparticles, mineral particles, gas bubbles, oil droplets,
fish eggs, plankton, or algae. In some cases, the distribu-
tion of the vertical rise or settling velocities of the particles
in question can span a wide range, covering several orders
of magnitude, often due to a broad particle size distribution
or differences in density. This requires numerical methods
that are able to adequately resolve a wide and possibly multi-
modal velocity distribution.

Lagrangian particle methods are commonly used for these
applications. A strength of such methods is that each particle
can have its own rise or settling speed, which makes it easy to
achieve a good representation of a continuous distribution of
speeds. An alternative approach is to use Eulerian methods,
where the partial differential equations describing the trans-
port problem are solved directly with numerical methods. In
Eulerian methods, different rise or settling speeds must be
represented as discrete classes, and in practice, only a lim-
ited number of classes can be included.

Here, we consider three different examples of applications
for a water column model: positively buoyant fish eggs, a
mixture of positively and negatively buoyant microplastics,
and positively buoyant oil droplets being entrained by waves.
For each of the three cases, we formulate a model for the
vertical transport based on the advection–diffusion equation
with suitable boundary conditions and, in one case, a reac-
tion term. We give a detailed description of an Eulerian and a
Lagrangian implementation of these models, and we demon-
strate that they give equivalent results for selected example
cases. We also pay special attention to the convergence of

the model results with an increasing number of classes in
the Eulerian scheme and with the number of particles in the
Lagrangian scheme. For the Lagrangian scheme, we see the
1/
√
Np convergence, as expected for a Monte Carlo method,

while for the Eulerian implementation, we see a second-order
(1/N2

k ) convergence with the number of classes.

1 Introduction

Studying the vertical transport of positively, negatively, or
neutrally buoyant particles is a common task in oceanog-
raphy. Examples include both anthropogenic and naturally
occurring particles, such as microplastics, mineral particles,
nanoparticles, aggregates, gas bubbles, oil droplets, fish eggs,
or even particles with active swimming behaviour such as
zooplankton. These particles may show a range of different
behaviours, including rising, sinking, and interacting with the
ocean surface and seafloor in different ways.

Vertical transport modelling may be applied at different
scales. In a simple one-dimensional water column model, the
goal may be to investigate the timescale of settling or surfac-
ing for a specific type of particle. However, accurate mod-
elling of vertical transport is also key to predicting horizon-
tal transport at large scales, due for example to the vertical
variability of horizontal ocean currents (Röhrs et al., 2018;
Wichmann et al., 2019). Hence, a good description of ver-
tical behaviour is an essential part of any three-dimensional
model.

Commonly used transport models may be divided into two
classes: Eulerian and Lagrangian. Eulerian methods consist
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of solving the advection–diffusion–reaction equation directly
with numerical methods for partial differential equations.
Ocean circulation models, such as ROMS (Shchepetkin and
McWilliams, 2005) or NEMO (Madec et al., 2022), are typi-
cal examples of Eulerian models. Related are computational
fluid dynamics (CFD) models, which can be used, for exam-
ple, to model waves and turbulence on smaller scales (Cui
et al., 2020). Eulerian models are also used to compute the
transport of suspended particles in water, for example natural
sediments (Warner et al., 2008), nanoparticles in rivers (Sa-
haria et al., 2019), or microplastics in the oceans (Mountford
and Morales Maqueda, 2019).

A challenge of the Eulerian approach, when it comes to
particles with a distribution of rise or settling speeds, is that
one must use discrete speed classes and solve the advection–
diffusion equation for each class, forming a large system of
equations to solve simultaneously. Hence, it is of interest to
know how many classes are needed to achieve the desired
accuracy.

Lagrangian particle methods are quite a popular choice for
modelling particle transport in the ocean (van Sebille et al.,
2018). In these methods, numerical particles, also called La-
grangian elements, are used to represent physical particles.
The numerical particles will move with the current, may ex-
hibit some form of random displacement to model turbulent
diffusion, and may have a vertical rise or settling speed (or
even active swimming behaviour). Lagrangian particle meth-
ods have been applied to transport modelling of a wide range
of particle types and processes, including plastics (Deland-
meter and Van Sebille, 2019; de La Fuente et al., 2021;
Fischer et al., 2022), the residence time of water masses
(Dugstad et al., 2019), the transport and sedimentation of
mineral particles in the ocean (Dissanayake et al., 2014; Nep-
stad et al., 2020), the surfacing and entrainment of oil (Cui
et al., 2018; Nordam et al., 2019b), the transport of dissolved
gases (Dissanayake et al., 2012; Wimalaratne et al., 2015),
produced water (Nepstad et al., 2022), harmful algae (Rowe
et al., 2016), dinocysts and foraminifera (Van Sebille et al.,
2015; Nooteboom et al., 2019), fish eggs (Sundby, 1983;
Röhrs et al., 2014), and even fish (Scutt Phillips et al., 2018).
Stochastic particle transport methods are also used in many
other fields of science, including the study of cosmic rays and
high-energy particles from the sun (Strauss and Effenberger,
2017), the deposition of inhaled nanoparticles in the airways
(Longest and Xi, 2007), and transport modelling of airborne
virus transmission (Abuhegazy et al., 2020).

One of the advantages of a Lagrangian approach to particle
transport modelling is the ability to represent a wide range of
properties or behaviours. By letting each numerical particle
with its own properties move independently of the others,
one can model physical particle distributions where the sizes,
and hence the terminal velocities, can vary by several orders
of magnitude.

In practice, Eulerian and Lagrangian models may offer
complementary benefits, and they are often used together.

This can be as simple as forcing a Lagrangian model with
pre-calculated fields from an Eulerian model (offline La-
grangian modelling; see e.g. Young et al., 2015), or it can
involve running a Lagrangian model as part of an Eulerian
model (online Lagrangian modelling). In the latter case, it
is also possible for the Lagrangian particles to impact the
Eulerian model. As examples, Marsh et al. (2015) and Mat-
sumura and Ohshima (2015) model, respectively, icebergs
and frazil ice as Lagrangian particles with feedback to the
Eulerian model.

The purpose of this paper is to compare and discuss Eu-
lerian and Lagrangian methods, with a focus on the numeri-
cal implementation of the models including different bound-
ary conditions and a reaction term. We demonstrate that the
two implementations give the same results, and we also ad-
dress questions of efficiency and convergence. The methods
are illustrated using three different one-dimensional cases as
a basis for the discussion: fish eggs, microplastics, and oil
droplets. The cases have been chosen because they represent
simplified (but realistic) cases, and they highlight how parti-
cles can interact with the boundaries in different ways.

We consider the water column without background flow
and investigate the vertical transport of different types of
particles. In Sect. 2, we describe the advection–diffusion
equation, which is a partial differential equation (PDE) that
will form the basis of our transport problems. Additionally,
we present a stochastic differential equation (SDE), which
yields a Lagrangian particle method that is equivalent to the
advection–diffusion equation. In Sect. 3, we briefly outline
how we implement an Eulerian model based on numerically
solving the advection–diffusion equation with PDE meth-
ods, and similarly, we show how we implement a Lagrangian
model based on numerically solving the equivalent SDE for
a large ensemble of particles.

In Sect. 4, we apply our Eulerian and Lagrangian water
column models to three different cases: fish eggs, microplas-
tics, and oil droplets. All three cases are modelled both with
the Eulerian approach and the Lagrangian approach. In each
case, the particles considered have a distribution of rising
and/or sinking speeds. Additionally, the cases serve to high-
light the effects of different boundary conditions and a source
term. In Sect. 5, we discuss and summarise our compari-
son of the Eulerian and Lagrangian approaches. Finally, in
Sect. 6, we present some concluding remarks.

Some additional details are given in the Appendices: Ap-
pendix A contains detailed descriptions of our Eulerian and
Lagrangian model implementations, Appendix B has details
on how we obtained a distribution of terminal velocities for
microplastics, and Appendix C shows additional numerical
convergence results.
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2 Components of the advection–diffusion reaction
model

2.1 The advection–diffusion equation

As our starting point, we assume that the movement of a
collection of particles with different rise or settling veloci-
ties in the water column may be described by the advection–
diffusion equation (see e.g. Hundsdorfer and Verwer, 2003).
If Ck(z, t) is the concentration of particles with (constant)
vertical rise or settling speed wk , then we have

∂Ck

∂t
=
∂

∂z

(
K(z)

∂Ck

∂z

)
−
∂

∂z

(
wkCk

)
, (1)

where K(z) is the diffusivity. To represent a distribution of
particle sizes, densities, and/or shapes and thus a distribu-
tion of rise speeds, one must, in principle, solve a set of
advection–diffusion equations, with one equation for each
particle speed wk .

2.2 Equation of motion of Lagrangian particles

A mathematically equivalent formulation of the advection–
diffusion problem is to consider an ensemble of numerical
particles, whose positions develop in time according to the
stochastic differential equation (SDE):

dz=
(
w+K ′(z)

)
dt +

√
2K(z) dWt . (2)

Here, Wt is a standard Wiener process (Kloeden and Platen,
1992, p. 40); K(z) is again the diffusivity as a function of
depth; K ′(z) is its derivative with respect to z; and w is the
terminal velocity due to buoyancy, which is constant for a
given particle.

The connection between Eqs. (1) and (2) is that the proba-
bility distribution for the position of particles moving accord-
ing to Eq. (2) will develop according to Eq. (1). A solution,
z(t), to Eq. (2) is called an Itô diffusion, and Eq. (1) is the
corresponding Fokker–Planck equation (Kloeden and Platen,
1992, p. 37; see also Appendix A of Nordam et al., 2019b).
Each numerical particle position, determined from the SDE,
represents a sample from the probability distribution of parti-
cle positions, which develops according to the PDE. Solving
Eq. (2) for a sufficient number of particles allows us to ap-
proximate the probability distribution, which is proportional
to the concentration in the Eulerian scheme.

2.3 Velocity distribution

In many practical applications, one will have a size distri-
bution of particles obtained from measurements, a model, or
other estimates. For the model we consider here, however,
the relevant property is not the size itself but the terminal rise
or settling speed of the particle, which is a function of size
(and other particle parameters such as shape and density, as

well as the viscosity of the ambient fluid). Note that we as-
sume here that a particle will immediately attain its termi-
nal velocity and that particle motion can be described as the
combination of a constant terminal velocity and a series of
random displacements. This is a commonly used approxima-
tion, which holds well if the timescale needed to reach termi-
nal velocity is short compared to other relevant timescales.
As an example, consider a particle with some initial speed
v0, moving in water under the influence of Stokes’ drag (see
Appendix B). Then we have that the initial speed will decay
exponentially, as given by

v(t)= v0e
−t/τ , (3)

where τ = m
6πµr , with µ being the dynamic viscosity of wa-

ter, r being the radius of the particle, and m being the mass
of the particle. For typical values for small particles in water,
the timescale τ is less than a second (e.g. µ= 0.0017 Pa s,
r = 1 mm, and m= 4× 10−6 kg give τ = 0.14 s).

In the example cases we consider in Sect. 4, we will as-
sume that we have access to the distribution of terminal ve-
locities, either by directly specifying a functional form of the
velocity distribution or by numerical means through mapping
the particle size distribution and other properties to veloci-
ties.

2.4 Boundary conditions

Depending on the application, different boundary conditions
may be used to control the fluxes across the domain bound-
aries in a water column model. We will deal separately with
the diffusive flux,

jD(z)=−K(z)
∂Ck

∂z

∣∣∣∣
z

, (4)

and the advective flux

jA(z)= wkCk(z). (5)

For the boundary conditions for the diffusive flux, we first
observe that diffusion in our model represents the mixing that
occurs due to the combination of random turbulent fluctua-
tions and molecular diffusion (Thorpe, 2005, p. 20). Being
caused by the motion of the water, the diffusive flux should
not allow suspended particles to leave the water column.
Hence, we wish to enforce zero diffusive flux, jD = 0, across
the boundaries at both the surface and the seafloor. This ap-
plies in all the cases we consider in this paper.

Next, we consider the advective flux. In our model, the
advection velocity wk represents the terminal rising or sink-
ing velocity of a particle due to buoyancy. Depending on the
application, this velocity may or may not allow particles to
leave the water column. As an example, consider positively
buoyant fish eggs. When fish eggs rise to the surface, they can
of course rise no further. However, they remain submerged,
having a hydrophilic surface and a density only slightly less
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than that of the surrounding seawater. Hence, we have cho-
sen to model fish eggs with a zero-flux boundary condition
at the surface. With the surface being at z= 0 (and z being
negative downwards), the total flux jtot(z) at the surface is
then given by

jtot(0)= jA(0)+ jD(0)= 0. (6)

As another example, consider positively buoyant oil
droplets. When oil droplets rise to the surface, they go from
being individual droplets surrounded by water to forming
small patches of floating oil at the surface or possibly to
merging with a larger surface slick. When this happens, the
oil droplets are no longer subject to random motion due to
turbulent diffusion, and the oil will remain at the surface un-
til some high-energy event like a breaking wave causes the
surface slick to break up and form droplets.

To express the mechanism of oil droplets surfacing and
leaving the water column, we have two options: we can use
a loss term, which removes oil droplets close to the surface
at some rate (Tkalich and Chan, 2002), or we can use a par-
tially absorbing boundary condition. Here, we have chosen
to allow the advective flux to carry oil droplets across the
boundary at the air–sea interface while still enforcing zero
diffusive flux across the surface:

jtot(0)= jA(0)+ jD(0)= wkCk(0). (7)

The reasons we describe the surfacing of oil droplets
through the boundary condition instead of a loss term are
that it is straightforward to express the boundary condition in
both the Eulerian and the Lagrangian implementations and
that we do not have to define what it means to be close to
the surface for the loss term. The idea behind allowing an ad-
vective flux while forcing the diffusive flux to be zero is that
buoyancy is the mechanism that leads to surfacing. Addition-
ally, if the diffusive flux out of the system is nonzero, then
increased diffusivity would lead to faster surfacing, which is
contrary to observations. For an additional discussion of this
point, see Nordam et al. (2019a).

We note that similar reasoning to the above also applies
to the boundary at the seafloor. For example, the settling
out of negatively buoyant particles (microplastics, sediments,
etc.) can be modelled as an advective flux leaving the model
domain through the bottom boundary (i.e. settling on the
seafloor or being incorporated into sediments). Note also
that, here, advective flux means the flux due to the rise or
settling speed of the particle and not that due to vertical cur-
rents.

2.5 Reaction terms

An additional reaction term Sk(z,C1,C2, . . .,CNk ) may be
included in Eq. (1), in which case it becomes the advection–
diffusion–reaction equation. It can describe the addition of
mass (a source); the removal of mass (a sink); or the trans-
formation of mass between classes, for example from C1 to

C2, which means that, in general, the reaction term for class
k can depend on the concentration of all classes. In an Eu-
lerian implementation, a reaction term can simply add or re-
move mass in different locations. In a Lagrangian stochastic
particle implementation, Eq. (2) only describes the transport
of numerical particles, and reaction terms have to be imple-
mented as a separate step, with details depending on the na-
ture of the reaction.

In this study, we will only consider reaction terms that add
mass. The reaction term S has units equal to the time deriva-
tive of concentration, and it enters our Eulerian scheme in
a straightforward manner as a rate of change in the average
concentration inside a cell.

For the Lagrangian implementation, adding particles is
done in a stochastic manner, designed to be consistent with
the source term in the Eulerian description. For a source term
that adds mass at some rate, in some region of the domain, we
add a random number of particles at each time step, such that
the expected value of mass added at each time step is equal to
the integrated source term. The position of each added parti-
cle is drawn from a distribution that corresponds to the spatial
distribution of the source term. As this applies to only one of
the three cases considered (entrainment of oil droplets), the
details are given in the description of that case in Sect. 4.3.

2.6 Sampling error in stochastic particle methods

When we solve an advection–diffusion–reaction problem by
means of a stochastic Lagrangian particle model; the position
(and possibly other properties) of each numerical particle
represents a sample from an underlying distribution. When
we draw random samples from a distribution and calculate,
for example, the mean of the samples, there will be a random
error in the sample mean relative to the true (but usually un-
known) mean of the distribution. In particular, if we drawNp
independent samples from a distribution with finite variance
and take the mean of those samples, this is called the sample
meanµNp , which is an approximation of the true meanµ. By
the strong law of large numbers, we have that µNp → µ as
Np→∞, almost surely (Billingsley, 1979, p. 85). Further-
more, according to the Lindeberg–Lévy theorem (Billings-
ley, 1979, p. 308), we have√
Np

σ 2

(
µNp −µ

)
∼N (0,1), (8)

where σ 2 is the (assumed finite) variance of the distribution
from which the samples are drawn, and N (0,1) is a stan-
dard normal distribution with zero mean and unit variance. In
other words, in an ensemble of simulations, the error in the
sample mean

(
µNp −µ

)
will be a Gaussian random number,

with a standard deviation of
√
σ 2/Np.
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3 Implementation

3.1 Eulerian model

There is a wide range of numerical methods for PDEs to
choose from for solving the advection–diffusion–reaction
equation (see for example Hundsdorfer and Verwer, 2003).
Here, we have chosen to use a finite-volume method (FVM)
for discretisation in space and the Crank–Nicolson (implicit
trapezoidal) scheme for discretisation in time. An FVM was
selected due to the ease of applying prescribed-flux bound-
ary conditions and due to the inherent conservation of mass.
Our chosen approach leads to second-order convergence in
both space and time, and the Crank–Nicolson scheme is also
known to be unconditionally stable for the diffusion equation
(Versteeg and Malalasekera, 2007, p. 247).

A detailed description of the discretisation, as well as of
the boundary conditions and the numerical solver, is given in
Appendix A. Below, we focus on the three most relevant im-
plementation details for the later discussion: a brief review
of the boundary conditions, the discretisation of the veloc-
ity distribution into classes, and a measure of the numerical
error.

3.1.1 Boundary conditions

As mentioned in Sect. 2.4, we use two different types of
boundary conditions: zero flux and zero diffusive flux. Using
a finite-volume method, our Eulerian implementation repre-
sents space as a grid of cells, with the changing concentra-
tion in a cell expressed in terms of the sum of the fluxes
across the cell faces. The fluxes are approximated numeri-
cally from the concentrations in the neighbouring cells, as
well as from the diffusivity and the advection velocity for the
diffusive and advective fluxes respectively. Details are given
in Appendix A1.2.

With a finite-volume method, it is trivial to implement
prescribed-flux boundary conditions by simply setting one
or both of the advective and diffusive fluxes across the cell
face at the end of the domain to the prescribed value. In our
case, we implement no-flux boundary conditions by setting
both fluxes to zero across the boundary and no-diffusive-flux
boundary conditions by setting only the diffusive flux to zero,
leaving the advective flux unchanged.

3.1.2 Discrete representation of velocity distribution

In this study, we are interested in the scenario where our par-
ticles have a distribution of rising and/or settling velocities.
To investigate the convergence of our Eulerian method with
an increasing number of velocity classes, we need an auto-
mated way to represent the velocity distribution as a given
number of discrete classes. Depending on the application,
different ways of dividing the velocity distribution into in-
tervals may be preferable.

In our selected approach, we first choose lower and upper
limits: wmin and wmax. We then divide the interval between
the limits into Nk classes, with equal spacing on either a lin-
ear or logarithmic scale, depending on the case. The repre-
sentative velocity for each class is chosen to be the midpoint
of the class on a linear or logarithmic scale. For cases where
the relevant velocities span several orders of magnitude, a
logarithmic spacing may be preferable. Where both negative
(sinking) and positive (rising) velocities are represented, they
are handled separately if a logarithmic spacing is chosen. In
Sect. 4, we will describe in detail how the velocity distribu-
tion is represented for each of the considered cases.

To set up the initial condition, the total mass must be di-
vided among the different velocity classes. The velocity dis-
tribution might be specified directly (see e.g. Sundby, 1983),
or it could be inferred from another distribution, most com-
monly the size distribution combined with particle density
and, in some cases, other particle properties such as shape.

To set up a case with Nk velocity classes and constant
linear spacing, we use a constant class width 1w such that
wk = w1+ (k−1)1w. All particles with velocities in the in-
terval [wk −1w/2,wk +1w/2) belong to class k and are
represented by the velocity wk in the Eulerian implementa-
tion. The fraction of the total mass belonging to this class is
given by

wk+1w/2∫
wk−1w/2

p(w)dw, (9)

where p(w) is the velocity distribution, normalised such that

wmax∫
wmin

p(w)dw = 1. (10)

Note that wmin = w1−1w/2, and wmax = wNk +1w/2.
With equal spacing on a logarithmic scale, the calculation

of mass fractions is similar, but the limits on the integral are
different. For constant logarithmic spacing δw, we have it
that wk+1

wk
= δw for k = 1, . . .,Nk − 1, and the particles be-

longing to class k are those with velocities in the interval[
wk/
√
δw,wk ·

√
δw
)
. For completeness, we note that, in this

case, wmin = w1/
√
δw, and wmax = wNk ·

√
δw; also, here,

δw is a dimensionless scale factor.

3.1.3 Measures of the numerical error

To compare our Eulerian and Lagrangian implementations,
we will present direct comparisons of the predicted concen-
tration, while an investigation of the convergence of our so-
lutions as functions of the different numerical parameters re-
quires a quantitative measure of the error. We have chosen to
use the first moment (i.e. the centre of mass) of the distribu-
tion. The reason for this choice is primarily due to numerical
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methods for SDEs usually having a well-defined weak con-
vergence in terms of the moments of the distribution (Kloe-
den and Platen, 1992, p. 327), making this a natural param-
eter to consider for the Lagrangian method. We chose to use
the same metric for the Eulerian method to facilitate a di-
rect comparison. When used to consider timescales for the
surfacing or settling of particles, one could also argue that
the depth of the centre of mass of a distribution is a relevant
output from a water column model.

The first moment of a distribution p(z) on the interval z ∈
[H,0] (where the depth H is a negative number) is given by

M1 =

0∫
H

zp(z)dz, (11)

where the distribution is normalised such that
∫ 0
H
p(z)dz= 1.

Numerically, we approximate the first moment for the Eu-
lerian results by calculating the integral in Eq. (11) with the
standard midpoint Riemann sum quadrature method (Wen-
droff, 1969, p. 23) and by taking the sum over all velocity
classes:

M1(Nk)=

∑Nk
k=1

(
1z
∑Nz
j=1znCk,j

)
∑Nk
k=1

(
1z
∑Nz
j=1Ck,j

) , (12)

where 1z is the cell size in the spatial discretisation, Ck,j is
the concentration of particles with velocity wk in cell j , and
zj is the midpoint of cell j (see Sect. A1.1 in the Appendix
for a description of the spatial discretisation).

As we do not have analytical solutions for the case studies
we consider in Sect. 4, the convergence analysis is conducted
purely with numerical results. To consider the convergence
with the number of classes Nk for the Eulerian implementa-
tion, we approximate the error in the numerically calculated
first moment M1(Nk) as follows:

E(Nk)=M1(Nk)−M1 ≈M1(Nk)−M1(N
ref
k ), (13)

where M1 is the true (but unknown) first moment of the
distribution, and M1(N

ref
k ) is a reference solution calculated

with a large number of classes. The other numerical param-
eters (time step and spatial discretisation) are kept constant,
while Nk is varied. As long as Nk �N ref

k , we assume that
the approximation in Eq. (13) is a good one. See also Ap-
pendix C for additional details on this point, including con-
vergence tests used to select suitable values of the time step
and spatial discretisation.

3.2 Lagrangian model

The starting point for our Lagrangian implementation for
solving the advection–diffusion equation is the SDE given
by Eq. (2). We solve this equation a large number of times,
where each solution describes the trajectory of a numerical

particle, and the concentration can be found from the distri-
bution of the numerical particles.

For the numerical solution, we use the Euler–Maruyama
method (Kloeden and Platen, 1992, p. 305), which gives

zi+1 = zi +
(
w+K ′(zi)

)
1t +

√
2K(zi) 1Wi . (14)

Here,1Wi refers to independent Gaussian distributed ran-
dom numbers with zero mean, 〈1Wi〉 = 0, and variance
〈1W 2

i 〉 =1t . The Euler–Maruyama method has an order of
convergence of 1 in the weak sense, which means that, for
sufficiently small 1t , we have that

|〈f (zn)〉− 〈f (z(tn))〉| ≤ γ1t, (15)

where z(tn) is the true (but usually unknown) solution at time
tn; zn is the numerical solution at time tn; 〈 〉 means the en-
semble average (expectation value); f (z) is a 4-times differ-
entiable function of, at most, polynomial growth; and γ is
some constant (Kloeden and Platen, 1992, p. 327).

If a method convergences in the weak sense, this implies
that the moments of the modelled distribution converge to the
moments of the true distribution as1t→ 0. Hence, a weakly
convergent method means that the distribution of numerical
solutions will converge to the true distribution, which means
that we can use the method to predict concentrations. There
exist methods which have higher orders of weak conver-
gence, but we have chosen to consider the Euler–Maruyama
method as it is commonly seen in the literature. See e.g.
Gräwe (2011) and Gräwe et al. (2012) for reviews of higher-
order methods in the context of water column models.

3.2.1 Boundary conditions

As described in Sect. 2.4, different boundary conditions are
relevant for different applications. Here, we wish to em-
ploy zero-flux boundary conditions and zero-diffusive-flux
boundary conditions. We also need to implement the same
boundary conditions in both the Eulerian and the Lagrangian
schemes. While the implementation of boundary conditions
in numerical PDE methods is well known, the issue of bound-
ary conditions in Lagrangian models is less well established
and not as well described in the literature, except in simpler
cases such as those with no advection and constant diffusivity
(see e.g. Gillespie and Seitaridou, 2012). Hence, we describe
our approach in some detail.

We split our numerical scheme (Eq. 14) into two parts and
treat the advection and diffusion separately. To implement
no-flux boundary conditions at the sea surface (z= 0) for
positively buoyant particles, we use the following sequence
of steps in the particle model:

– random displacement (z→ z+K ′(z)1t+
√

2K(z)1W )

– reflection at the surface (z→−|z|)

– rise due to buoyancy (z→ z+w1t)
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– stop particles at the surface (z→max(z,0)).

For no-flux boundary conditions at the seafloor for neg-
atively buoyant particles, the steps are analogous but with
reflection and stopping at the bottom boundary instead.

To implement a no-diffusive-flux boundary condition
while allowing an advective flux across the boundary at
z= 0, as discussed in Sect. 2.4, we instead use the follow-
ing sequence of steps in the particle model:

– random displacement (z→ z+K ′(z)1t+
√

2K(z)1W )

– reflection at the surface (z→−|z|)

– rise due to buoyancy (z→ z+w1t)

– remove particles above the surface (z→ Surfaced).

When particles are set to surfaced in the last step, they are
removed from the simulation. To get the same boundary con-
ditions for e.g. sinking plastics or mineral particles that settle
on the seafloor, we again have to reflect at the seafloor in the
second step and remove those particles that settle out when
they cross the seafloor boundary due to sinking in the last
step shown above. In Nordam et al. (2019a), this approach to
implementing boundary conditions in a Lagrangian imple-
mentation was found to give identical results to an Eulerian
implementation using prescribed fluxes in an FVM.

Depending on the application, particles that have been re-
moved from the simulation may be re-introduced with some
probability to represent, for example, breaking waves en-
training material from the water surface or strong currents
resuspending material from the seafloor.

3.2.2 Velocity distribution

In a Lagrangian model, a distribution of terminal rising or
sinking velocities can be represented very naturally simply
by allowing each particle to have its own vertical velocity
drawn from the desired distribution. Hence, any distribu-
tion can be represented, and the quality of the representa-
tion will depend on the number of particles. The requirement
for assigning a random velocity to each numerical particle
is that we can draw samples from the velocity probability
distribution. Depending on the available information, differ-
ent approaches might be suitable (see e.g. Press et al., 2007,
Chap. 7). For the three case studies considered in Sect. 4, we
use three different approaches. A justification for the selec-
tion and details are given in the description for each case.

3.2.3 Obtaining a concentration profile from a
distribution of particles

Mathematically, the link between the Lagrangian and the Eu-
lerian methods is that each solution of the SDE in the La-
grangian method represents a sample from the distribution
that evolves under the advection–diffusion equation in the
Eulerian method. However, in practical applications, we are

often interested in the distribution itself and not just samples.
Numerous methods exist for reconstructing the distribution
from samples as this is a common problem not just in applied
geoscience but in statistics in general. For a review of a few
different approaches in the context of applied oceanography,
see e.g. Lynch et al. (2014, Chap. 8).

Here, we have chosen to use the simple approach of con-
structing a histogram of particle positions. This works well
when the number of particles is large relative to the number
of cells, as is the case for our one-dimensional examples be-
low. An additional benefit is that the only free parameter is
the bin size of the histogram, and a very direct comparison
between Lagrangian and Eulerian results is obtained by set-
ting the bin size to be equal to the cell size of the Eulerian
approach.

3.2.4 Measures of the numerical error

As described in Sect. 3.1.3, we will use a direct comparison
of particle concentration, as well as of the first moment of
the concentration profile, to assess our results. Calculating
the first moment (centre of mass) of the spatial distribution
of particles is trivial as this is simply the average position
over all particles:

M1(Np)=
1
Np

Np∑
j=1

zj , (16)

where Np is the number of particles, and zj is the position of
particle j . Here we have assumed that all particles represent
an equal mass, but if this is not the case, the average is simply
weighted by the mass mj of each particle.

For the Lagrangian implementation, convergence with the
number of particles Np is of a stochastic rather than a de-
terministic nature. Running a simulation once will give an
approximate result for e.g. the first moment but with some
random error. Running the simulation again will give another
result. To investigate the convergence with the number of par-
ticles, we ran 100 repeated simulations for each value of Np.
For each of those 100 simulations, we calculate the first mo-
ment M1(Np). As described in Sect. 2.6, M1(Np) will be a
Gaussian random variable whose mean is the true (but un-
known) mean of the distribution M1, with a standard devi-
ation of σ(Np)∼ 1/

√
Np. Hence, we consider σ(Np) as a

measure of the error when considering convergence with the
number of particles in the Lagrangian implementation.

4 Case studies

We present three different cases and simulate all three with
both an Eulerian and a Lagrangian implementation of our
model. Then, we compare the results and discuss conver-
gence in terms of numerical parameters for both implemen-
tations. The cases are described below, and an overview of
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some aspects of the cases is presented in Table 1. Table 2
lists the numerical parameters we have used to investigate
convergence.

For case 1, we consider positively buoyant fish eggs with a
distribution of rise speeds. Fish eggs will float to the surface
but do not leave the water column; hence, we model these
with a no-flux boundary condition at the surface (i.e. the par-
ticles cannot leave the water column).

For case 2, we consider microplastic particles with a ve-
locity distribution that includes both rising and sinking par-
ticles, representing the diversity of densities associated with
different polymer types. In this case, we again use a no-flux
boundary at the surface, while the boundary at the seabed is
zero flux in diffusion, though an advective flux is allowed
to leave the domain. This represents negatively buoyant mi-
croplastic particles that are removed from the water column
by settling onto the seabed.

For case 3, we consider oil which is entrained as droplets
when a surface slick is broken up by waves. The droplets are
all positively buoyant with the same density but have a size
distribution which varies in time and which leads to a distri-
bution of rising speeds. In this case, the boundary condition
at the surface is zero diffusive flux, though an advective flux
that represents droplets that merge with the surface slick is
allowed. Additionally, we include the effect of entrainment
of oil from the surface slick by breaking waves in our model.

A spatially variable diffusivity profile is used in all three
cases. To calculate eddy diffusivity as a function of depth, we
have used the GOTM turbulence model (Umlauf et al., 2005).
The model was forced with a surface stress corresponding
to a wind speed of 9 m s−1 (Gill, 1982, p. 29), and it was
run with a k-ω turbulence closure with a flux condition for
turbulent kinetic energy (TKE) at the surface. The TKE flux
at the surface accounts for wave breaking (Craig and Banner,
1994).

To support re-gridding and differentiation, an analytical
expression has been fitted to the discrete diffusivity output
from GOTM. In Fig. 1, the fitted analytical profile is shown
together with the output from GOTM. The analytical expres-
sion is given by

K(z)= β (z0− z) · e
−(γ (z0−z))

δ

, (17)

where β = 0.00636 m s−1, γ = 0.088 m−1, δ = 1.54, z0 =

1.3 m, and z is negative downwards. The choice of using an
analytical profile was mainly pragmatic: for the Lagrangian
model, the diffusivity and its derivative must be evaluated at
arbitrary positions; hence, some form of interpolation with
continuous derivatives is needed in any case. Additionally,
we made the profile non-zero at the surface, which seems
physically reasonable for conditions with some wave break-
ing. Also, if the diffusivity is zero at the surface, positively
buoyant particles would eventually get stuck at the surface,
and this is not observed in surveys of e.g. fish eggs (Sundby,
1983).

Figure 1. Eddy diffusivity output from a GOTM simulation, shown
with the fitted analytical diffusivity profile used for the case studies.

Note that both implementations make use of the analytical
diffusivity profile: in the Eulerian implementation, the dif-
fusivity is given by the value of Eq. (17) evaluated at the
cell boundaries, while for the Lagrangian implementation,
Eq. (17) is evaluated at the position of each particle at each
time step, and the derivative is evaluated by second-order
central finite difference.

For each of the three cases, our initial condition will be a
submerged particle distribution. The spatial distribution will
be a Gaussian distribution centred at −20 m depth, with a
standard deviation of 4 m. The distribution of rise and settling
speeds will be different for each case and will be explained
in the description of each case below.

In all cases, we will present a direct comparison of the pre-
dicted total water column concentrations at different times
from the Eulerian and the Lagrangian implementations. To-
tal concentration in this case means that it is integrated over
the velocity distribution, showing the total suspended con-
centration regardless of rising or settling velocity. Addition-
ally, we show a numerical convergence analysis separately
for the two schemes. For the Eulerian implementation, we
consider the error to be a function of the number of velocity
classes. For the Lagrangian implementation, we present the
error as a function of the number of particles. As a measure
of the error, we consider the first moment (the centre of mass)
of the spatial concentration distribution (see Sect. 3.1.3 and
3.2.4). Additional numerical convergence tests are also pre-
sented in Appendix C.
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Table 1. A brief summary of the boundary conditions (BCs) and reaction terms used in the three different cases.

Case System BC surface BC seafloor Reaction terms

1 Fish eggs No flux No flux No
2 Microplastics No flux No diffusive flux No
3 Oil droplets No diffusive flux No flux Droplet entrainment

Table 2. Numerical parameters used for convergence analysis. The same parameters are used in all three cases.

Scheme Time steps 1t [s] Spatial cells Nz Velocity classes Nk Particles Np Runs

Eulerian 5, 10, 20, 60, 100, 150,
300, 600, 1800

500, 750, 1000, 1500,
2000, 3000, 4000,
6000, 8000, 12 000,
16 000

4, 8, 12, 16, 24, 32, 36,
48, 64, 72, 96, 128, 256

– 1

Lagrangian 2, 10, 20, 60, 100, 150,
300, 600, 1800

– – 100, 300, 1000,
3000, 10 000, 30 000,
100 000, 300 000,
1 000 000, 3 000 000

100

4.1 Case 1: pelagic fish eggs

In case 1, we consider pelagic fish eggs with a distribution
of rise velocities. These positively buoyant particles will rise
towards the surface but do not form a surface slick. Rather,
they rise to the surface in stagnant water but stay submerged
and can be mixed back down by the eddy diffusivity (Sundby,
1983; Röhrs et al., 2014; Sundby and Kristiansen, 2015).

Taking an example from Sundby (1983, Table 3), we con-
sider the eggs of the Arcto-Norwegian cod (Gadhus morhua
L.), which is typically found to have a Gaussian distribution
of terminal rise velocities with average w̄ = 0.96 mm s−1 and
a standard deviation of σ = 0.38 mm s−1. We furthermore as-
sume that the distribution is truncated symmetrically about
the mean such that w ∈ [w̄± 2σ ]. To divide this distribution
into Nk velocity classes for use in the Eulerian implemen-
tation, we divide the interval [w̄± 2σ ] into Nk sub-intervals
with equal spacing 1w on a linear scale, and we calculate
the mass fraction in each class, as described in Sect. 3.1.2.
For the Lagrangian implementation, we sample the particle
velocities at random from the truncated Gaussian distribu-
tion. Hence, a numerical particle may have any rise speed
w ∈ [w̄± 2σ ].

The results of our simulations for fish eggs are shown
in Fig. 2. In panel (a), concentration profiles are shown for
four different times (including t = 0), with the Lagrangian
results shown as continuous lines and the Eulerian results
for the same times shown as dashed black lines. The con-
centration profiles from the Eulerian implementation were
produced with time step 1tE = 10 s, Nk = 128 classes, and
Nz = 8000 spatial cells, while the Lagrangian results used
time step1tL = 10 s andNp = 3×106 particles converted to
a concentration by bin count for 8000 bins. We observe that

the two implementations produce essentially identical pre-
dicted concentrations.

In panel (b) of Fig. 2, we show the convergence of the
Eulerian results with the number of velocity classes, with
the other numerical parameters kept constant at time step
1tE = 10 s and Nz = 8000 spatial grid cells. The plot shows
the error in the first moment, where the error is calculated rel-
ative to a reference solution from a simulation withNk = 256
classes. We observe that the convergence with the number of
classes appears to be of order 2, with the error going down as
1/N2

k .
Finally, in panel (c), we show the convergence of the La-

grangian results as a function of the number of particles Np,
keeping a fixed time step of1tL = 10 s. The figure shows the
standard deviation of the modelled first moment, calculated
over an ensemble of 100 simulations for each value of Np.
As noted above, the first moment is just the average parti-
cle position, and as expected from the Lindeberg–Lévy theo-
rem, the standard deviation of the first moment goes down as
1/
√
Np (see Sect. 2.6).

4.2 Case 2: microplastics

In this case, we consider a distribution of microplastic par-
ticles. As the only parameter describing the numerical parti-
cles in our model is the terminal rise and settling velocities,
we have obtained a velocity distribution based on published
descriptions of microplastics.

As our starting point, we consider particles with a distribu-
tion of densities from 0.8 to 1.5 kg L−1, a distribution of sizes
from 20 µm to 5 mm, and a distribution of shapes described
by the Corey shape factor. We assume the density of sea-
water to be 1.025 kg L−1. The distributions of density, size,
and shape are taken from Kooi and Koelmans (2019). The
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Figure 2. Results for case 1: fish eggs. Panel (a) shows concentration profiles at different times, with Lagrangian results shown as continuous
lines and Eulerian results for the same times shown as dashed black lines. (b) Convergence of the error in the first moment for the Eulerian
results as a function of the number of velocity classes. (c) Convergence of the standard deviation of the first moment for the Lagrangian
results as a function of the number of particles.

terminal rise and settling velocities of these particles are cal-
culated from empirical relations obtained by Waldschläger
and Schüttrumpf (2019), which give terminal velocities as a
function of density, size, and shape. To obtain a distribution
of velocities, we used a Monte Carlo method that consists of
generating a large number of random combinations of den-
sity, size, and shape, drawn from the distributions given in
Kooi and Koelmans (2019), and mapping those to velocities
via the relationships given by Waldschläger and Schüttrumpf
(2019).

For the Eulerian simulations, discretisations of the veloc-
ity distribution into different numbers of classes were ob-
tained as histograms with different numbers of bins of 109

randomly generated terminal velocities. For the Lagrangian
simulations, the terminal velocities of the particles were ob-
tained by directly generating random velocities as described
above. A detailed description of the steps involved in obtain-
ing the terminal velocities for microplastics is given in Ap-
pendix B. See also Isachenko (2020) for another example of
a similar approach.

In this case, particles are allowed to leave the water col-
umn via the seafloor at 50 m depth, where we enforce zero
diffusive flux while allowing the advective flux to carry par-
ticles across the boundary. This represents particles that leave
the water column (and thus the simulation) by settling onto
the seafloor, where they are no longer able to be resuspended
by the eddy diffusivity. Different resuspension mechanisms
can of course be included in the model, but we have chosen
to ignore that here.

The results of our simulations for microplastics are shown
in Fig. 3. In panel (a), concentration profiles are shown for
four different times, with the Lagrangian results shown as
continuous lines and the Eulerian results for the same times
shown as dashed black lines. As in case 1, the concentration
profiles from the Eulerian implementation were produced
with time step1tE = 10 s, Nk = 128 classes, and Nz = 8000
spatial cells, while the Lagrangian results used time step

1tL = 10 s and Np = 3× 106 particles converted to concen-
tration by bin count for 8000 bins. Again, we observe that
the two implementations give very similar predictions as the
curves are visually indistinguishable.

In panel (b), we show the convergence of the first moment
in the Eulerian results as a function of the number of classes.
The 1/N2

k trend is less clear than in case 1, and the size of
the error appears to be somewhat sensitive to the number of
classes – for example, 32 classes give a smaller error than 36
classes for two of the times considered.

In panel (c), we show the convergence with the number
of particles of the standard deviation of the first moment for
the Lagrangian implementation. Again, as expected from the
discussion in Sect. 2.6, this follows a 1/

√
Np trend.

In contrast to case 1, here we have particles with both pos-
itive and negative terminal velocities. As the particles are al-
lowed to leave the water column, the total mass in suspension
(i.e. the integral of the concentration profile) decreases with
time. Hence, we also present the remaining suspended mass
as a function of time. Panel (a) of Fig. 4 shows the remaining
mass fraction suspended in the water column for both im-
plementations, while panel (b) shows the difference between
the two implementations for 10 different Lagrangian runs.
The oscillatory nature of the difference is due to the random-
ness of the stochastic Lagrangian particle model. The results
were produced with the same numerical parameters as stated
in the previous paragraph.

4.3 Case 3: oil droplets with breaking-wave
entrainment

In this case, we consider a simplified one-dimensional oil
spill model, which includes entrainment of surface oil by
breaking waves; rising of oil droplets due to buoyancy; tur-
bulent diffusive mixing; and oil droplets rising to the surface,
creating a surface slick. As the entrainment mechanism is
unique to this case, it is described in some detail below.
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Figure 3. Results for case 2: microplastics. Panel (a) shows concentration profiles at different times, with Lagrangian results shown as
continuous lines and Eulerian results for the same times shown as dashed black lines. (b) Convergence of the error in the first moment for
the Eulerian results as a function of the number of velocity classes. (c) Convergence of the standard deviation of the error in the first moment
for the Lagrangian results as a function of the number of particles.

Figure 4. (a) Remaining suspended mass as a function of time for
the microplastic case for both the Eulerian and the Lagrangian im-
plementation. (b) The difference between the suspended mass frac-
tions of the two models for 10 different runs of the Lagrangian im-
plementation.

To model the entrainment of surface oil by breaking
waves, we need the entrainment rate, the entrainment depth,
and the size distribution of the entrained droplets. We model
entrainment as a first-order decay process (Johansen et al.,
2015):

dQs

dt
=−αQs, (18)

where Qs is the amount of oil at the surface, and α is the en-
trainment rate coefficient. The coefficient α is calculated ac-
cording to Li et al. (2017). For the entrainment depth, we use
the classic result by Delvigne and Sweeney (1988), where
the entrained oil is evenly distributed across the interval

1.15Hs < z < 1.85Hs. (19)

Hs is the significant wave height, here assumed to be 1.74 m.
The size distribution of the entrained droplets is also taken

from Johansen et al. (2015) using modified Weber number
scaling. The size distribution is log-normal, with a fixed-
width parameter and a median size d50, which depends on
the wave height and the properties of the oil. For a detailed
description of this scheme, as well as of the values of the
relevant oil properties used here, see Nordam et al. (2019b).

From Eq. (18), we see that the entrainment rate depends on
the amount of oil at the surface. Since all the oil in this model
is either submerged or at the surface, the amount of oil in the
surface slick at time t , Qs(t), can be found as follows:

Qs(t)=Qtot−

H∫
0

C(z, t) dz, (20)

where Qtot is the total amount of oil present.
Using uniform entrainment throughout the interval z ∈
[1.15Hs,1.85Hs] (Delvigne and Sweeney, 1988), we find
the source term in the Eulerian advection–diffusion–reaction
equation from the entrainment rate and the length of the en-
trainment interval:

S(z,C(z, tn))={
α
Qs(tn)
0.7Hs

if 1.15Hs < z < 1.85Hs,

0 otherwise.
(21)

In the Lagrangian implementation, we use the approxima-
tion that the analytical solution of Eq. (18) for constant α is
an exponential decay with lifetime τ = 1/α. This means we
submerge a fraction of the surface slick at every time step,
with that fraction being given by

p = 1− e−1t/τ . (22)

Thus, entrainment is implemented as a stochastic process
where particles that have surfaced are re-entrained with prob-
ability p at every time step. If entrained, a particle is assigned
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a depth drawn from a uniform random distribution at the in-
terval z ∈ [1.15Hs,1.85Hs] and a random size drawn from
the log-normal size distribution described above.

Surfacing of oil droplets is described as a boundary con-
dition where an advective flux is allowed to pass through the
boundary at the surface while enforcing zero diffusive flux,
as described in Sect. 2.4. For additional details on the imple-
mentation of surfacing and entrainment of oil in a Lagrangian
model, see also Nordam et al. (2019a, b).

The results of our simulations for oil droplets are shown
in Fig. 5. In panel (a), concentration profiles are shown for
four different times, with the Lagrangian results shown as
continuous lines and the Eulerian results for the same times
shown as dashed black lines. As in cases 1 and 2, the con-
centration profiles from the Eulerian implementation were
produced with time step 1tE = 10 s, Nk = 128 classes, and
Nz = 8000 spatial cells, while the Lagrangian results used
time step 1tL = 2 s and Np = 3× 106 particles converted to
concentration by bin count for 8000 bins.

In panel (b), we show the convergence of the Eulerian re-
sults as a function of the number of classes. As in case 1, the
error scales with 1/N2

k , though here, the absolute value of the
error is about 2 orders of magnitude larger. Panel (c) shows
the convergence of the Lagrangian results with the number of
particles, which, as before, follows the 1/

√
Np trend closely.

The total amount of submerged oil changes in time as oil
droplets surface and are re-entrained. Over time, the sub-
merged size distribution shifts towards smaller droplets as
these take longer to reach the surface, causing the centre
of mass to shift downwards over time. As before, the two
schemes give very similar results. As for case 2, we also
present here the remaining suspended mass as a function of
time. Panel (a) of Fig. 6 shows the remaining mass fraction
suspended in the water column for both implementations,
while panel (b) shows the difference between the implemen-
tations for 10 different runs of the Lagrangian implementa-
tion. The oscillatory nature of the difference is due to the
randomness of the stochastic Lagrangian particle model. The
results were produced with the same numerical parameters
as stated in the previous paragraph.

5 Discussion

In this paper, we have conducted a comparison of an Eu-
lerian and a Lagrangian implementation of a water column
model for particles with different distributions of rising and
sinking speeds. To highlight different choices of boundary
conditions and a reaction term, we have chosen to use fish
eggs, microplastics, and oil droplets as our example cases.
The model can also easily be applied to other cases, such as
mineral particles, nanoparticles, algae, and chemicals. More
complex reaction terms, such as agglomeration, can also be
added to the same modelling framework.

5.1 Boundary conditions

Boundary conditions are always an essential part of the prob-
lem for any model based on PDEs, and indeed, the boundary
conditions must be specified before the problem can be said
to be well posed (Gustafsson, 2008, Chap. 2). The imple-
mentation of different boundary conditions in Eulerian mod-
els is amply addressed in the applied numerical literature (see
e.g. Hundsdorfer and Verwer, 2003; Versteeg and Malalasek-
era, 2007). Hence, any Eulerian models for environmental
transport problems may draw on a wide body of standard
reference works describing the implementation of different
boundary conditions.

Transport modelling with stochastic particle methods, on
the other hand, is perhaps more of a niche endeavour, and
there exists less general applied literature on the topic of nu-
merical methods for SDEs compared to PDEs. The standard
reference on numerical solution of SDEs, Kloeden and Platen
(1992)1, does not directly address the question of boundary
conditions but mentions a few references in the section on
bibliographical notes (Kloeden and Platen, 1992, pp. 593–
594). These are all of a rather technical nature.

In the mathematical literature, an Itô diffusion (of which
Eq. 2 is an example) on a domain with a reflecting bound-
ary is known as a Skorokhod problem, after the Ukrainian
mathematician Anatoliy V. Skorokhod, who wrote two early
papers on the topic (Skorokhod, 1961, 1962). In particular,
Skorokhod (1961) describes how an SDE with a reflecting
boundary can be formally described by adding a term which
is zero everywhere except on the boundary and which causes
any trajectory that touches the boundary to be immediately
reflected. However, the focus of that paper was on proving
the existence and uniqueness of solutions to this modified
system and not on numerical solutions.

In the applied literature on atmospheric transport mod-
elling with random flight models, the issue of boundary con-
ditions has received some attention (see e.g. Wilson and
Flesch, 1993, and Rodean, 1996, Chap. 11). Less has been
written about boundary conditions in the applied literature
on random walk models, which are more commonly used in
applied oceanography. For reflecting boundary conditions, a
pragmatic and common choice is to simply take any parti-
cles that have been randomly displaced to a point outside the
boundary and to reflect them to an equal distance inside the
boundary (see e.g. Israelsson et al., 2006). This approach has
also been shown to be exact in the special case of no advec-
tion and constant diffusivity (Gillespie and Seitaridou, 2012,
pp. 58–60 and 75–76). In the more general case of variable
diffusivity, some details are discussed in Ross and Sharples
(2004), including a numerical artifact that appears when the
diffusivity has a non-zero derivative at the boundary. Nordam
et al. (2019a) discuss the separate treatment of boundary con-

1More than 11 000 citations according to Google Scholar (as of
June 2023).
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Figure 5. Results for case 3: oil droplets with entrainment. Panel (a) shows concentration profiles at different times, with Lagrangian results
shown as continuous lines and Eulerian results for the same times shown as dashed black lines. (b) Convergence of the error in the first
moment for the Eulerian results as a function of the number of velocity classes. (c) Convergence of the standard deviation of the first moment
for the Lagrangian results as a function of the number of particles.

Figure 6. (a) Remaining suspended mass as a function of time for
the oil case for both the Eulerian and the Lagrangian implementa-
tion. (b) The difference between the suspended mass fractions of
the two models.

ditions for advection and diffusion and conduct a numerical
comparison with Neumann and Robin boundary conditions
in an Eulerian scheme. In this paper, we have used the same
approach as in Nordam et al. (2019a).

We have provided a detailed description of our implemen-
tation of two different types of boundary conditions in the
Lagrangian scheme. While our implementation may not have
a rigorous foundation in the theory of SDEs, we do present
a comparison between our Lagrangian and Eulerian imple-
mentations, where the Eulerian method uses a standard ap-
proach for FVMs. In cases 2 and 3 (microplastics and oil
droplets), we show that the two implementations give very
similar predictions of the amount of mass which remains sus-
pended in the water column as a function of time, which of
course indicates that the net effect of the boundary conditions
is the same in the two implementations. For an additional dis-
cussion of this topic, see also Nordam et al. (2019a).

5.2 Convergence of numerical results

We have paid special attention to the representation of parti-
cles with a distribution of terminal rising and settling veloci-
ties. In a Lagrangian particle model, a distribution of terminal
velocities may be straightforwardly represented since each
numerical particle can have its own velocity. In an Eulerian
model, we have to introduce discrete classes with different
velocities to represent the true distribution. We have investi-
gated how the error is reduced with an increasing number of
particles and classes respectively.

As a measure of the error in the Lagrangian implemen-
tation, we have used the standard deviation of the first mo-
ment of the position distribution,M1 (i.e. the centre of mass).
As is usual for a Monte Carlo method, the standard devia-
tion of M1(Np) goes down proportionally to 1/

√
Np, where

Np is the number of particles. If the particles can be con-
sidered as independent samples, this behaviour follows from
the Lindeberg–Lévy theorem, as discussed in Sect. 2.6. We
note, however, that the usual 1/

√
Np scaling also seems to

be followed very closely in case 3, where the particles can-
not strictly be said to represent independent samples due to
the inclusion of a distribution-dependent reaction term.

For the Eulerian implementation, we have considered the
error in the modelled first moment M1(Nk) as a function of
the number of classes Nk used to discretise the velocity dis-
tribution representing the particles. We found that the error
scales as 1/N2

k , where the velocity of each class is repre-
sented by the midpoint of the interval spanned by the class.
To the best of our knowledge, this result has not previously
been published in this context. Models where a distribution
of velocities (e.g. due to a distribution of sizes) is represented
by a finite number of discrete classes are often used in both
marine and atmospheric transport modelling (see e.g. Tegen
and Lacis, 1996; Zender et al., 2003; Wichmann et al., 2019;
Cui et al., 2020). Hence, additional understanding of how the
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number of velocity classes affects the accuracy of predictions
should be of some interest within these fields.

We note, however, that the result showing 1/N2
k scaling of

the error is perhaps not so surprising. Consider as an example
the mean of a velocity distribution p(v), which is given by

v̄ =

∞∫
−∞

vp(v)dv. (23)

If the integral is evaluated numerically, there will be a nu-
merical error, which will depend on the chosen approach.
Our approach has been to divide the underlying velocity dis-
tribution into equal-sized bins and to let each bin be repre-
sented by its midpoint (on either linear or logarithmic scales,
depending on the case). This is equivalent to the midpoint
quadrature method, which is known to have an error propor-
tional to 1x2, where 1x is the bin size (Wendroff, 1969,
p. 23). This, in turn, is of course proportional to 1/N2

k , where
Nk is the number of bins.

5.3 Relative merits of Eulerian and Lagrangian
methods

Numerous studies have discussed different aspects and appli-
cations of Lagrangian and Eulerian methods and have com-
pared the two approaches (see e.g. Fay et al., 1995; Benson
et al., 2017; Nordam et al., 2019a; Nepstad et al., 2022).
Here, we consider the question of which implementation
should be preferred when modelling particles with a distri-
bution of rising or settling speeds.

First we consider case 1, in which we modelled positively
buoyant fish eggs with a Gaussian distribution of terminal
rise velocities. For the Eulerian implementation, the numer-
ical error in the first moment due to a finite number of ve-
locity bins starts out between 0.01 and 0.001 m for Nk = 4
size classes and reduces very consistently as 1/N2

k from there
(see Fig. 2). A numerical error of less than 0.01 m in the posi-
tion of the centre of mass is clearly far smaller than the error
due to other uncertainties and model approximations. Hence,
with such a well-behaved velocity distribution in this partic-
ular case, an Eulerian model with a small number of velocity
classes will give more than adequate numerical accuracy.

For the Lagrangian implementation, on the other hand, we
need to use 106 particles to reach an error of about 0.01 m, a
result of the slower 1/

√
Np convergence. For modelling fish

eggs in a water column model, an Eulerian approach seems
to be the most efficient choice in terms of the balance be-
tween error and computational effort. This is not necessarily
the case in a full three-dimensional model due to the com-
putational effort involved in tracking the concentration fields
for the individual velocity classes across the entire computa-
tional domain.

In case 2 with the microplastics, we have a more compli-
cated velocity distribution. The positive and negative parts of
the distribution are shown separately on log scales in Fig. B1,

where we see that the positively buoyant part of the distri-
bution is bimodal. Due to the very wide range of velocities
present, we chose to use log-spaced velocity bins (separate
for positive and negative velocities) in the Eulerian imple-
mentation. Nevertheless, we see from Fig. 3 that the error in
the first moment shows some oscillation with the changing
number of classes. We also note that the absolute value of
the error is far higher than in case 1, and we need around
64 velocity classes to reach an error of 0.01 m in the mod-
elled first moment M1(Nk). Compare this to case 1, where
the same accuracy was achieved with only four classes.

For the Lagrangian implementation, the results of case 2
look far more similar to those of case 1, and we find that 106

to 3× 106 particles will yield a sampling error of 0.01 m.
In the one-dimensional case, the Eulerian implementation
is still more efficient than the Lagrangian implementation,
but in three dimensions, this is probably no longer the case.
The results will, of course, depend on parameters such as
time step, grid resolution, and the choice of numerical solver.
However, it is clear that the computational effort of solving
the advection–diffusion equation for 64 individual velocity
classes is considerable.

In case 3 with the oil droplets, we consider a simpli-
fied one-dimensional oil spill model. Lagrangian approaches
have a long history in oil spill modelling, both for horizontal
transport (Tayfun and Wang, 1973) and vertical transport (El-
liott et al., 1986). A critical issue in oil spill modelling is that
the droplet size distribution is both broad and changing over
time. This is easily modelled with a Lagrangian approach,
while an Eulerian approach might require either some form
of dynamic size class scheme or a very large number of size
classes. From panel (b) of Fig. 5, we see that the error in the
first moment starts at a little above 1 m forNk = 4 classes and
goes down fairly consistently as 1/N2

k . As such, the scaling
is very similar to case 1, while the prefactor is again 2–3 or-
ders of magnitude larger, and an error of 0.01 m is achieved
withNk = 32 classes. The Lagrangian approach, on the other
hand, behaves quite similarly to cases 1 and 2 and reaches an
error of 0.01 m with 106 particles.

It is important to point out that the errors discussed above
are of different natures for the Eulerian and the Lagrangian
implementations. In the Eulerian approach, solving with a fi-
nite number of speed classes, Nk , leads to a systematic error
that goes to zero as Nk→∞. In contrast, a finite number of
particles, Np, leads to a stochastic sampling error in the La-
grangian approach. If the particles are independent, the sam-
pling error is not systematic, and when Np→∞, the stan-
dard deviation of the sample error goes to zero as 1/

√
Np.

See also a further discussion on this point in Sect. 2.6 and
Appendix C.
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6 Conclusions

In this paper, we have implemented and compared two dif-
ferent versions of a water column model for particles that
undergo diffusion and that rise or sink with different distri-
butions of terminal velocities. Our Eulerian implementation
used discrete velocity classes to represent the velocity distri-
bution, while the Lagrangian implementation allowed each
particle to have its own velocity.

We have studied the rate of convergence of the two differ-
ent implementations considering the centre of mass (i.e. the
first moment of the concentration profile) as a measure of the
error. Our main interest has been to show that we can imple-
ment different boundary conditions in an equivalent manner
in the two schemes and to demonstrate how the numerical er-
ror is reduced with an increasing number of velocity classes
and particles for the Eulerian and Lagrangian implementa-
tions respectively. Convergence results for varying time steps
and (in the Eulerian case) spatial resolutions are also shown
in Appendix C.

Three different example cases were considered: positively
buoyant fish eggs with a Gaussian velocity distribution, mi-
croplastics with a distribution of positive and negative ve-
locities obtained by means of a Monte Carlo approach (see
Appendix B), and positively buoyant oil droplets with a
time-varying velocity distribution. In all three cases, we find
that the stochastic sampling error in the Lagrangian method
scales as 1/

√
Np (where Np is the number of particles) with

about the same prefactor for all cases. Interestingly, this also
appears to hold in the case of oil droplets, where the particles
cannot strictly be said to be independent samples.

For the Eulerian implementation, we find that the error ap-
pears to scale as 1/N2

k (where Nk is the number of veloc-
ity classes), though the prefactor varies by several orders of
magnitude between the cases. We also see that, in the case
of microplastics, the exact choice of the velocity classes has
a significant impact on the error, possibly due to the multi-
modal nature of the velocity distribution.

Owing to current shear and density gradients, vertical be-
haviour is very important for correctly modelling horizon-
tal transport in the ocean. While it might be hard to draw
strict conclusions about three-dimensional simulations from
one-dimensional examples, we would still argue that a one-
dimensional model captures a large part of the complexity
of modelling particle distributions: horizontal advection and
diffusion affect all particles equally, and the differences in
vertical behaviour are well represented in a water column
model. Hence, it is clear from our results that the number
of classes needed to get accurate results in an Eulerian simu-
lation will depend strongly on the velocity distribution of the
relevant particles. We observed that far fewer classes were
needed for the fish egg case with a Gaussian velocity dis-
tribution than for the microplastic case, which used a wider,
multi-modal distribution. Similarly, the time-dependent size
distribution (and thus velocity distribution) seen in the oil

case needed more classes to give accurate results than the fish
egg case. Hence, our results would suggest that Lagrangian
particle models have a particular advantage when wider, less
normal velocity distributions are considered or when the size
distribution changes with time.

Appendix A: Additional implementation details

A1 Eulerian implementation

A1.1 Discretisation

The advection–diffusion–reaction (ADR) equation describes
how the concentration Ck of a substance affected by diffu-
sive, advective, and reactive processes develops in time. In
this study, we consider the one-dimensional version of the
ADR equation and consider vertical motion only. The dif-
fusivity is assumed to be a function of position. Similarly,
the advection velocity, which here represents particles rising
or sinking due to buoyancy, may also be spatially dependent
such that particles stop at the surface and/or bottom bound-
aries. Finally, the reaction term is assumed to depend on both
concentration and position. Consequently, Eq. (1) with all de-
pendencies explicitly shown becomes

∂Ck(z, t)

∂t
=
∂

∂z

(
K(z)

∂Ck(z, t)

∂z

)
−
∂

∂z

(
wk(z)Ck(z, t)

)
+ S

(
z,C1(z, t), . . .,CNk (z, t)

)
, (A1)

where Ck(z, t) is the concentration of the material of class
k, K(z) is the spatially dependent diffusivity, wk(z) is
the spatially dependent velocity of the material in class k,
S
(
z,C1(z, t), . . .,CNk (z, t)

)
is the source term (which may

depend on the concentration of all classes), and Nk is the
number of classes.

In finite-volume methods (FVMs), the PDE is converted
to an integral form by integration over control volumes or
cells. As illustrated in Fig. A1, cell centres are given integer
indices, and cell faces are given half-integer indices such that
cell j extends from zj−1/2 to zj+1/2, with the cell width be-
ing equal to 1zj . Considering a spatially discretised version
of Eq. (A1), we use the divergence theorem to write the vol-
ume integrals of the terms on the right-hand side as surface
integrals over the cell faces. By applying the Leibniz inte-
gral rule to change the order of the spatial integral and the
differentiation with respect to time on the left-hand side, the
average concentration of class k in cell j , Ck,j , may be de-
fined. Similarly the average reaction term for class k in cell
j , Sk,j , is found by integration.
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Figure A1. Illustration of the discretisation of the z axis in the Eu-
lerian implementation. Concentrations are calculated at cell cen-
tres (marked with round dots) with integer indices, while fluxes are
calculated through cell faces (marked with vertical ticks) at half-
integer indices.

The integral form of Eq. (A1) for the average concentra-
tion of the material of class k in cell j thus reads as

1zj
dCk,j

dt
=

(
K
∂Ck

∂z

)
j+ 1

2

−

(
K
∂Ck

∂z

)
j− 1

2

−
(
wkCk

)
j+ 1

2
+
(
wkCk

)
j− 1

2
+1zjSk,j , (A2)

where the subscripts on the brackets indicate where
the variables are evaluated, e.g. (wkCk)j+1/2 =

wk(zj+1/2)Ck(zj+1/2). This is noted to be an exact equation
for the rate of change of the cell-averaged concentrations,
C̄k,j , given in terms of the advective and diffusive fluxes
through the cell faces, and of the cell-average source term.
The fact that the concentration within a cell is explicitly
expressed as the sum of the fluxes into and out of the cell
gives the FVM its mass-conserving properties (in the case
when S = 0).

Next, we make an approximation by assuming the con-
centration to be constant within each control volume such
that the cell averages Ck,j and Sk,j may be approximated by
the values located at the cell centres. The concentration and
source term at zj are denoted by Ck,j and Sk,j respectively.
Choosing a constant grid spacing1z, the z axis is discretised
into Nz =H/1z equally sized cells, where H is the length
of the domain. For another example of a similar derivation,
see Versteeg and Malalasekera (2007, pp. 243–246).

A1.2 Numerical approximation of fluxes

In Eq. (A2), the first two terms on the right represent the dif-
fusive fluxes through the faces of cell j , and the next two
terms represent the advective fluxes. The diffusive fluxes at
the cell faces are approximated by a second-order central
difference of the two adjacent cells (see e.g. Versteeg and
Malalasekera, 2007, p. 117) – that is, in the form(
K
∂Ck

∂z

)
j+ 1

2

≈K
j+ 1

2

Ck,j+1−Ck,j

zj+1− zj

=K
j+ 1

2

Ck,j+1−Ck,j

1z
, (A3)

where the diffusivity K
j+ 1

2
is determined on the cell faces

either explicitly by an analytic expression, if available, or by
interpolation in the case of a discrete diffusivity.

For the advective fluxes, however, linear numerical
schemes of second-order accuracy and higher are known to

yield numerical oscillations for advection-dominated prob-
lems (i.e. Pe = |v|1z

K
� 1) for non-smooth solutions (Hunds-

dorfer and Verwer, 2003, pp. 66–67, 118–119). To be able to
handle advection-dominated cases, we implemented a more
flexible second-order numerical scheme for advection. A flux
limiter approach was used, where we approximate the ad-
vective fluxes with the first-order upwind scheme with a
second-order correction that depends on a limiter function
(Hundsdorfer and Verwer, 2003, pp. 216–217; Versteeg and
Malalasekera, 2007, pp. 165–171). The advective fluxes are
thus approximated as

(wkCk)j+ 1
2
≈ w+

k,j+ 1
2

(
Ck,j +

1
2
ψ(ρ+

j+ 1
2
)(Ck,j+1−Ck,j )

)
+w−

k,j+ 1
2

(
Ck,j+1−

1
2
ψ(ρ−

j+ 1
2
)(Ck,j+1−Ck,j )

)
. (A4)

Here, positive and negative velocities are handled
separately by letting w+k,j+1/2 =max(0,wk(zj+1/2)) and
w−k,j+1/2 =min(0,wk(zj+1/2)). The limiter function ψ(ρ±)
determines the correction, with ρ+ and ρ− given by

ρ+
j+ 1

2
=
Ck,j −Ck,j−1

Ck,j+1−Ck,j
, (A5a)

ρ−
j+ 1

2
=
Ck,j+2−Ck,j+1

Ck,j+1−Ck,j
. (A5b)

The flux limiting was done with the UMIST limiter func-
tion (Lien and Leschziner, 1994; Versteeg and Malalasekera,
2007, pp. 170–178), given by

ψ(ρ)=max
[

0,min
(

2ρ,
1+ 3ρ

4
,

3+ ρ
4

,2
)]
. (A6)

We see that ρ±j+1/2 is the ratio between the concentration
gradients at the upstream or downstream sides and the gra-
dient across the cell face at zj+1/2 (Versteeg and Malalasek-
era, 2007, pp. 167, 171–172; Hundsdorfer and Verwer, 2003,
p. 216). If ρ is close to 1, which will be the case for reason-
ably smooth concentration profiles, thenψ(ρ) is also close to
1, in which case Eq. (A4) is approximately equal to a regular
second-order central finite difference. On the other hand, if
there are large differences in concentration gradients between
neighbouring pairs of cells, then ψ(ρ) will be close to either
0 or 2, in which case Eq. (A4) will be approximately equal to
a first-order upwind or downwind scheme to avoid numerical
oscillations. It is also reduced to upwind near the boundaries.
This approach was found to result in second-order accuracy
in space for the cases considered here (see Appendix C for
examples of grid refinement tests).

A1.3 Boundary conditions

As described in Sect. 2.4, we consider two different types of
boundary conditions, namely zero flux (Eq. 6) and zero dif-
fusive flux (Eq. 7). In our Eulerian implementation, which
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uses a finite-volume discretisation scheme, it is straightfor-
ward to use different boundary conditions by simply setting
the required fluxes to zero.

First, we consider the cell adjacent to the surface boundary.
Note that the uppermost cell is indexed j = 0 and that the
cell centre is at z0 =1z/2, while the surface boundary is
found at z−1/2 = 0 (see also Fig. A1). The insertion of the
zero-diffusive-flux surface boundary condition of Eq. (7) into
Eq. (A2) yields

1z
dCk,0

dt
=

(
K
∂Ck

∂z

)
1
2

−
(
wkCk

)
1
2

+
(
wkCk

)
−

1
2
+1zSk,0. (A7)

We note that setting
(
K
∂Ck
∂z

)
−

1
2

= 0 implicitly means that

we are assuming zero concentration gradient across the sur-
face since K(z) > 0 everywhere.

To implement a zero-flux boundary condition, we force
both the diffusive and advective fluxes to be zero. This we
can do by setting the diffusive flux to zero as above and ad-
ditionally setting wk(z−1/2)= 0. We note that, in our model,
the advection velocity represents the rise or settling velocity
of the suspended matter; hence, this is equivalent to intro-
ducing a spatially variable velocity, saying that a positively
buoyant particle has a rise velocity of zero if it is at the sur-
face:

wk(z)=

{
0 if z= 0,
wk otherwise. (A8)

The same reasoning applies to the boundary conditions at
the seafloor.

A1.4 Numerically solving the discretised equation

The scheme was discretised in time with a fixed time step,
such that

ti = t0+ i1t, (A9)

and it was integrated by the Crank–Nicolson method
(Gustafsson, 2008, p. 39), given by

Ci+1
k,j −C

i
k,j

1t
=

1
2
F ik,j +

1
2
F i+1
k,j , (A10)

where Cik,j is the concentration of class k in cell j at time ti ,
and F ik,j is the right-hand side of Eq. (A2) evaluated at time
ti . The Crank–Nicolson scheme was chosen for its second-
order accuracy in time and its favourable stability (Versteeg
and Malalasekera, 2007, pp. 247–248).

With the chosen discretisation schemes in space and time,
our numerical solver can be rewritten into a matrix equation
in the form

LCi+1
= RCi

+
Si +Si+1

2
, (A11)

where L and R are matrices to be described below. The vec-
tors Ci and Si contain, respectively, the concentration in each
cell for each class and the source term for each cell and each
class at time ti (see schematic illustration in Fig. A2).

The matrices L and R can each be written as sums of two
terms:

L= LAD+LFL, R= RAD+RFL. (A12)

Here, LAD and RAD contain the coefficients that im-
plement the finite-difference approximations of the spatial
derivatives of the concentration, specifically the central finite
difference for diffusion and the upwind for advection. LFL
and RFL contain the coefficients for the flux limiter correc-
tion to the advection scheme.

In all the cases we consider below, the matrices describing
the advection and diffusion terms remain constant in time.
The flux limiter correction and the reaction terms, on the
other hand, are themselves functions of the concentration C.
Since this leads to a non-linear system of equations, the equa-
tion system given by Eq. (A11) cannot be solved directly,
as in the linear case, and thus we have adopted an iterative
scheme.

Writing out Eq. (A11) with the dependence on concentra-
tion shown explicitly, we get(

LAD+LFL(C
i+1)

)
Ci+1

=

(
RAD+RFL(C

i)
)

Ci
+

S(Ci)+S(Ci+1)

2
. (A13)

This equation must be solved at every time step to find the
concentration Ci+1 at time ti+1 from the current concentra-
tion Ci at time ti , taking the reaction terms Si and Si+1 into
account. Since Ci+1 is of course not yet known at time ti ,
we start by using the current concentration as an initial guess
at the next concentration, C̃i+1

= Ci , and then we solve the
following system:(

LAD+LFL(C̃
i+1)

)
˜̃
Ci+1

=

(
RAD+RFL(C

i)
)
Ci

+
S(Ci)+S(C̃i+1)

2
. (A14)

We then refine our guess by letting C̃i+1
→
˜̃
Ci+1, we

solve again, and then we repeat. At each iteration, we cal-
culate a measure of the error,

err= max
k∈[1,Nk]

∥∥∥C̃i+1
k −

˜̃
Ci+1
k

∥∥∥
2
, (A15)

and we terminate the iterative procedure when err< η · err0,
where err0 is the error calculated from the first guess, for
some tolerance η.

For the cases we consider, L and R are tri-diagonal ma-
trices, which means that Eq. (A14) can be solved efficiently
using the tri-diagonal matrix algorithm (TDMA; see, for ex-
ample, Press et al., 2007, pp. 56–57).
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Figure A2. Schematic illustration of Eq. (A11) for a case with Nz = 6 spatial cells and Nk = 3 classes. The matrices L and R have a block-
diagonal structure, where each block is itself tridiagonal. The vectors Ci and Ci+1 are split up into sub-vectors C1, . . .,CNk , where the
elements of Ck are the concentrations of class k in the different spatial cells. Similarly, the reaction term vectors Si and S̃i+1 are split into
sub-vectors in the same way.

A1.5 Solving for multiple classes

Equation (A1) describes the advection and diffusion of a
concentration field Ck(z, t), where the advection velocity wk
represents the rising or settling speed of particles of class k.
In this paper, we wish to consider a distribution of particles
with different rising or settling speeds, represented by dis-
crete classes.

If there are no reaction terms, there is no interaction be-
tween the different classes of particles; hence, the advection–
diffusion equation can be solved independently for each
class, as described in the previous section. Nevertheless, for
reasons of flexibility, it may be convenient to implement an
approach where the advection–diffusion equation is solved
simultaneously for all classes since this allows interacting re-
action terms to be added.

When there are reaction terms that allow the classes to in-
teract, i.e. if the reaction term Sk of class k depends on the
concentration of any other class, then we have to solve the
advection–diffusion–reaction equation simultaneously for all
classes.

Our chosen approach is first to set up the equation sys-
tem for each individual class. The concentration of class k
in the different spatial cells is then represented by a vec-
tor Ck , and the matrices in Eq. (A11) for class k we call
Lk and Rk . We then create the full matrices L and R as
block-diagonal matrices, with the blocks being made up of
the matrices L1, . . .,LNk and R1, . . .,RNk . We next combine
the concentrations for all the classes into an overall vector
C = [C1, . . .,CNk ], where Nk is the total number of classes.
This leads to a linear system of equations, schematically il-
lustrated in Fig. A2, which can be solved to find the concen-
trations in all cells for all classes.

As a practical matter, we note that since the matrices L and
R are tridiagonal, using a sparse array class in the implemen-
tation means that the full matrices do not require any addi-
tional memory compared to storing the matrices L1, . . .,LNk
and R1, . . .,RNk separately.

Appendix B: Distribution of terminal velocities for
microplastics

To obtain a distribution of rising and settling velocities
for microplastic particles, we combine the distributions for
density, size, and shape presented by Kooi and Koelmans
(2019) with the empirical relations for terminal velocity ob-
tained by Waldschläger and Schüttrumpf (2019). In the fol-
lowing, we describe the steps leading to a full distribution
of rising and settling velocities. The Python code used to
obtain the distribution is available on GitHub, both as a
script and as a Jupyter Notebook (https://github.com/nordam/
Eulerian-and-Lagrangian-methods, last access: 11 Septem-
ber 2023).

We employ a Monte Carlo approach to obtain a velocity
distribution, where we draw a sample from each of the dis-
tributions describing density, size, and shape, which we can
then map to a terminal velocity via the relations of Wald-
schläger and Schüttrumpf (2019). By repeating this process
a large number of times, we obtain a distribution of samples
of rising and settling speeds which are consistent with the
underlying distributions of density, size, and shape. In the
Lagrangian implementation, we can use the sampled veloci-
ties directly, while in the Eulerian implementation, we draw a
very large number (109) of samples and map them to discrete
classes by creating a histogram with the required number of
bins.

B1 Density distribution

Kooi and Koelmans (2019) found density to be accu-
rately described by a normal inverse Gaussian distribu-
tion, with the parameters µ= 0.84, δ = 0.097, α = 75.1,
and β = 71.3. Generating random samples from this dis-
tribution is straightforward using, for example, the class
scipy.stats.norminvgauss from the SciPy library.
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B2 Size distribution

The size distribution found by Kooi and Koelmans (2019) is a
truncated power-law distribution for the number of particles,
where the probability number density for particle size s in
micrometres is

pN (s)= P0s
−α, (B1)

with α = 1.6, where s is the size in micrometres and where
the range of the distribution is from 20 µm to 5 mm. P0 is a
normalisation factor given by

P0 =

 5 mm∫
20 µm

s−1.6 ds


−1

≈ 3.7573144455. (B2)

To draw random samples from the distribution with the
probability density function (PDF) given by Eq. (B1), we use
the inversion method (see e.g. Devroye, 1986, pp. 27–28).
We let

F(s)=

s∫
20 µm

pN (s
′)ds′ (B3)

be the cumulative distribution function (CDF) of the size dis-
tribution. Then, random samples from this distribution can be
generated by evaluating F−1(U), where F−1 is the inverse
of F(s) (which can be found analytically in this case), and
U ∈ [0,1] is a uniformly distributed random number.

B3 Shape distribution

Kooi and Koelmans (2019) provide a shape distribution for
microplastics in terms of the Corey shape factor (CSF),
which is defined as

CSF=
H
√
LW

, (B4)

where L, W , and H are respectively the length, width, and
height of a particle. We assume that L≥W ≥H and that the
values are scaled by L such that L= 1 and W,H ∈ [0,1].
While Kooi and Koelmans (2019) obtain a single distribu-
tion for the CSF in the end, the underlying data are pre-
sented as distributions for the width and height for different
shape categories, with different relative abundances: fibres
(48.5 %), fragments (31 %), beads (6.5 %), films (5.5 %), and
foam (3.5 %). Note that these relative abundances only add
up to 95 %; hence, we have normalised them by dividing each
one by 0.95, and we thus achieve the probabilities listed in
Table B1.

For each of the shape categories, the distributions for width
and height are assumed to be symmetric, triangular distri-
butions, as described in Kooi and Koelmans (2019), and

Table B1. Probability for a microplastic particle to belong to dif-
ferent shape categories, as well as the parameters of the symmetric,
triangular distributions for the width and height for each shape cat-
egory (Kooi and Koelmans, 2019).

Shape Fibre Fragment Bead Film Foam

Probability 0.51 0.33 0.068 0.056 0.036
Width, low 0.001 0.1 0.6 0.1 0.1
Width, high 0.5 1.0 1.0 1.0 1.0
Height, low 0.001 0.01 0.36 0.001 0.01
Height, high 0.5 1.0 1.0 0.1 1.0

the distribution parameters for each shape are given in Ta-
ble S2 of the supplementary materials of Kooi and Koel-
mans (2019). We also list the distribution parameters in Ta-
ble B1 for completeness. Generating random samples from
a triangular distribution is straightforward with, for example,
scipy.stats.triang from the SciPy library.

Based on the above, our algorithm for the generation of a
random CSF for a microplastic particle is as follows:

1. Select a shape category, with the probabilities from Ta-
ble B1.

2. Generate a random width W and height H by drawing
from the triangular distributions for that shape category.

3. Calculate the CSF from Eq. (B4) using the randomly
selected W and H , with L= 1 by definition.

B4 Terminal velocities

Waldschläger and Schüttrumpf (2019) provide relations for
the rising and settling speeds of microplastic particles in
terms of their density, size, and shape. Specifically, they give
the terminal velocity as

v =

√
4
3
deq

CD

∣∣∣∣ρs − ρρ
∣∣∣∣g, (B5)

where deq is the equivalent diameter (i.e. the diameter of a
sphere with the same volume as the particle), ρs and ρ are re-
spectively the densities of the particle and the ambient water,
g is the acceleration of gravity, andCD is the drag coefficient.

Four different expressions are given for the drag coef-
ficient, distinguishing between particles that are lighter or
denser than water, as well as distinguishing fibres from other
shapes (pellets and fragments). For sinking non-fibre parti-
cles, the expression is

CD =
3

CSF× 3√
Re
. (B6)

For rising non-fibre particles, the expression is

CD =

(
20
Re
+

10
√
Re
+
√

1.195−CSF
)
×

6
P

1−CSF
. (B7)
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Figure B1. Number distribution of terminal particle velocity, found by mapping 109 velocities onto 128 log-spaced negative bins and 128
log-spaced positive bins, as described in the text.

Table B2. Particle properties used to calculate settling speed. All parameters are generated randomly, except equivalent diameter and shape
factors, which are calculated from the random parameters as described. Note that the ranges of width and height depend on length since we
assume L≥W ≥H .

Parameter Notes

Shape category Fibre or Non-fibre (fragment, bead, film, foam)
Density ρ Between 800 and 1800 kg m−3 for 99 % of particles
Length L Between 20 µm and 5 mm
Width W Between 0.001L and L
Height H Between 0.001L and W
Powers roundness P Between 0.5 and 6, uniform random distribution
Equivalent diameter d Between L and H , calculated from d =

3√LWH
Shape factor (CSF) Between 0 and 1, calculated from CSF=H/

√
LW

For sinking fibres, the expression is

CD =
4.7
√
Re
+
√

CSF. (B8)

For rising fibres, the expression is

CD =
10
√
Re
+
√

CSF. (B9)

The drag coefficients are given in terms of the CSF, the
Reynolds number, and in one case, the Powers’ roundness,
with the Reynolds number given by

Re =
vdeq

ν
, (B10)

where ν is the kinematic viscosity of the ambient fluid. Given
that the drag coefficients depend on the Reynolds number,
which in turn depends on the velocity, Eq. (B5) was solved
numerically by means of an iterative approach to find the ve-
locity.

The Powers’ roundness P is a set of six classes from 1
(very angular) to 6 (well rounded), where particles are as-
signed a class by comparison with a published photograph of

reference particles (Powers, 1953). Powers’ roundness is not
addressed by Kooi and Koelmans (2019), but Waldschläger
and Schüttrumpf (2019, Fig. S6, Supplement) show a his-
togram of the Powers’ roundness distribution. Based on this,
we have chosen to use a uniformly distributed random inte-
ger between 1 and 6 to represent Powers’ roundness. Note
that the Powers’ roundness only appears in the expression
for the drag coefficient for rising pellets and fragments and
is thus not used for fibres.

Even though Waldschläger and Schüttrumpf (2019) pro-
vide separate drag coefficients for rising and sinking parti-
cles, we have chosen to use the same coefficients in both
cases. Our reasoning is two-fold: first, from a physical point
of view, it is expected that two particles with density ±1ρ
relative to water should have terminal velocities with op-
posite directions but equal magnitude (certainly as long as
|1ρ| � ρ). Second, the drag coefficient of sinking non-fibre
particles (pellets and fragments) provided by Waldschläger
and Schüttrumpf (2019) scales as Re−1/3, while Stokes’ law
is

CD =
24
Re
. (B11)
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For small particles, in the lower part of the microplastic
size range2, the sinking velocities predicted with Eq. (B6)
can be 1–2 orders of magnitude higher than those predicted
by Stokes’ law (even with CSF= 1, as would be the case for
spherical particles). The drag coefficient provided for rising
non-fibre particles, on the other hand, has the same scaling
as Stokes’ law for small Reynolds numbers. Hence, we have
chosen to use this drag coefficient for both rising and sink-
ing particles. In the case of fibres, Eqs. (B9) and (B8) give
very similar velocities, but for reasons of symmetry, we have
chosen to use Eq. (B9) for both rising and sinking fibres.

B5 Terminal velocity distribution

Based on the description above, we generate random real-
isations of particle properties, where each particle has the
properties shown in Table B2. From these properties, we can
calculate terminal velocities using the expressions found by
Waldschläger and Schüttrumpf (2019), as described above.

For the Lagrangian implementation,Np random velocities
were generated at the start of each simulation. For the Eule-
rian implementation, 109 random velocities were generated
and mapped to Nk different classes. Given the wide range of
velocities, we chose to use equally spaced velocity bins on a
log-scale, with positive and negative velocities treated sepa-
rately. For positive (rising) velocities, we used bins ranging
from 10−8 to 0.1 m s−1, and for the negative velocities, we
used bins ranging from −0.3 to −10−8 m s−1. We used the
same number of classes to represent the positive and the neg-
ative velocities. By always choosing a total number of classes
Nk , which is divisible by 2, we get a consistent and auto-
mated way to divide the velocity distribution into discrete
classes. Note that the approach described here was chosen
for simplicity and consistency as our goal is to investigate
the numerical convergence with the number of classes.

To get the discrete velocity classes, we generated 109 ran-
dom velocities and mapped them onto the bins described be-
low, with the velocity of each bin being represented by its
midpoint on the logarithmic scale, as described in Sect. 3.1.2.
None of the randomly generated velocities were smaller
than −0.3 m s−1 or greater than 0.1 m s−1. Approximately
0.02 % of the generated velocities fell between −10−8 and
10−8 m s−1. These were ignored. The bin counts were then
converted to normalised mass fractions, such that the total
mass sums to 1. Generating 109 random terminal velocities
in this manner took approximately 15 min on a fairly stan-
dard PC.

An example histogram showing the distribution of 109 ter-
minal velocities is shown in Fig. B1 using the same 256 bins
that were used for the most accurate Eulerian velocity dis-

2Note that the expressions given by Waldschläger and Schüt-
trumpf (2019) were found by fitting to experimentally measured
terminal velocities, but as the smallest sinking non-fibre particle in
their experiments was 1 mm, the expression is not necessarily valid
for much smaller particles.

cretisation. Note that this is a number distribution, giving the
number of particles with a particular speed. In many cases,
a volume (or mass) distribution may be more useful as this
would give the volume of microplastics present as particles
with a particular speed. However, obtaining a joint volume
probability distribution for size and shape from the number
distributions presented by Kooi and Koelmans (2019) is out-
side the scope of this study.

Appendix C: Additional convergence results

Here, we present the convergence of the first moment of the
distribution with respect to the time step for the Lagrangian
implementation and with respect to the time step and grid cell
size for the Eulerian implementation. These results were used
to choose suitable numerical parameters for the investigation
of convergence with the number of classes and number of
particles. They also serve as a sanity check to demonstrate
that the numerical schemes behave as expected.

The results are shown in Fig. C1 (case 1), Fig. C2 (case
2), and Fig. C3 (case 3). In each figure, panel (a) shows the
convergence of the first moment with the time step in the
Lagrangian implementation. For each time step, the first mo-
ment was calculated for each value of the time step 1t as
the average particle position over 100 simulations, each with
3× 106 particles. The error was then found by using the av-
erage particle position across 100 simulations with 3× 106

particles using a shorter time step of 1t = 2 s. The conver-
gence appears to be of the first order, which is as expected
for the Euler–Maruyama method as this method has an order
of convergence of 1 in the weak sense.

We also note that the error in the first moment of the
particle distribution for a Lagrangian stochastic method has
two terms: a discretisation term due to the time step and a
stochastic term due to the finite number of samples (Pavliotis,
2014, p. 151). The expected magnitude of the stochastic er-
ror term can be estimated from the Lindeberg–Lévy theorem,
as described in Sect. 2.6. In panel (a) of Figs. C1, C2, and
C3, the magnitude of the stochastic sample error is shown
as coloured dashed lines, where we have used Np = 3× 108

samples, and where the variance of the particle positions for
each of the times considered have been assumed to be a good
approximation for the (unknown) true variance.

For the Eulerian implementation, the convergence with
time step is shown in panel (b) of Figs. C1, C2, and C3,
where the number of classes and cells have been kept fixed at
Nk = 128 andNz = 8000. Finally, the convergence with spa-
tial discretisation for the Eulerian method is shown in panel
(c) of Figs. C1, C2, and C3. Here, the time step and number
of classes have been kept fixed at 1t = 10 s and Nk = 128.
We observe that convergence is of the second order in both
space and time, as expected.
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Figure C1. Convergence of the first moment of the distribution in case 1 as a function of the time step for the Lagrangian implementation
(a) and as a function of the time step (b) and cell size (c) for the Eulerian implementation. The dashed lines in panel (a) show the level where
the sampling error is expected to dominate.

Figure C2. Convergence of the first moment of the distribution in case 2 as a function of the time step for the Lagrangian implementation
(a) and as a function of the time step (b) and cell size (c) for the Eulerian implementation. The dashed lines in panel (a) show the level where
the sampling error is expected to dominate.

Figure C3. Convergence of the first moment of the distribution in case 3 as a function of the time step for the Lagrangian implementation (a)
and as a function of the time step (b) and cell size (c) for the Eulerian implementation. The dashed lines in panel (a) show the level where
the sampling error is expected to dominate.
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