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Abstract— Obstacle avoidance is a critical part in the control
of autonomous vehicles. This paper proposes an obstacle avoid-
ance algorithm based on the computationally advantageous col-
lision cone concept, for unicycles which may be subject to strict
input constraints and dynamic, non-compliant obstacles which
may even actively pursue a collision. The paper presents both
a theoretical analysis together with experiments demonstrating
the beneficial features of the algorithm. We analytically derive
explicit, and practically intuitive, conditions on the control
parameters, under which safety is guaranteed. Experiments
illustrate the safe, intuitive, and minimally invasive behaviors
generated by the proposed algorithm.

Index Terms— Collision avoidance, nonholonomic systems,
reactive algorithms, mobile robots

I. INTRODUCTION

The realization of autonomous vehicles requires advanced
guidance, navigation, and control (GNC) systems, where
safety is one of the prime concerns. The global path planner
can take into account known obstacles and other constraints
to produce a safe, feasible, and optimal path, while the
reactive controller enables the vehicle to effectively avoid
unknown and dynamic obstacles. The main purpose of the
latter is thus to provide safety, but without altering the
behaviour of the vehicle needlessly. The reactive solution
should also regard vehicle dynamics and other factors that
could otherwise prevent the fulfillment of the prescribed
maneuver.

Methods for reactive collision avoidance include, among
others, artificial potential fields (APFs) [1], vector field guid-
ance [2], control barrier functions (CBFs) [3], and geometric
methods [4], [5], [6]. APFs have been a staple of reactive
collision avoidance for many years, mainly due to its ease of
implementation and low computational burden. However, it
is well known that the method suffers from local minima and
oscillations [7]. CBFs are a more recent development, which
can be used to enforce safety of dynamical systems. The
idea is to modify the nominal control to satisfy some safety
constraints, typically by minimizing the distance between
the actual and nominal input subject to the constraints.
This requires solving a quadratic programming problem. The
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relationship between APFs and CBFs was studied in [8],
where it was shown that an APF can be formulated as a
CBF, and the obtained CBF produced smoother trajectories
than the original APF.

APFs were intended for navigation in static environments.
Later, some ad-hoc extensions have been proposed for
handling dynamic obstacles, but contrary to the traditional
APF, these methods are not straight-forward to implement
and do not guarantee safety. Similar to APFs, navigation
vector fields were proposed for motion planning with static
obstacles. Arguably, CBFs present more potential for han-
dling moving obstacles, as they are frequently utilized in
multi-agent collision avoidance, see for instance [9], [10],
[11], [12]. Safety is concluded based on the assumption
that all vehicles follow the same reasoning. However, if
a vehicle is non-compliant, a collision will likely occur.
Moreover, as indicated in [10], non-hybrid CBFs can in
perfectly symmetrical cases result in deadlock situations.
If the vehicle has limited control authority, it is also not
straight-forward to construct a CBF, as highlighted in [11].
The problem of vanishing control authority is circumvented
by so-called synergistic CBFs in [13], which is applied to
unicycles with constant speeds for avoiding a static obstacle.
[12] proposes a CBF for avoidance of an obstacle moving at
a constant velocity, by treating it as an agent with no control
inputs. Dynamic obstacles were also considered in [14] for
ASVs, but the study similarly assumes that the velocity of
an obstacle is constant during the encounter. Moreover, the
marine vehicle must be fully actuated in order to employ
the proposed CBF scheme and actuator constraints are not
considered.

For avoidance of dynamic obstacles, geometric methods
present a more straight-forward framework. The concept
of collision cones appeared in [15], which constitutes the
set of velocities of one point object relative to another
point object that will eventually lead to a collision. This
notion enables both identification and evasion of collisions
in a flexible manner. Furthermore, the underlying strategy
is computationally cheap and easily implemented on a wide
range of systems. Built on this concept, the velocity obstacle
(VO) algorithm [4] was presented for real-time navigation in
dynamic environments. The method is based on selecting
avoidance maneuvers in the velocity space under a linear
acceleration constraint, where the vehicle-obstacle pairs are
represented by circular regions. Although the algorithm is
computationally advantageous, it relies on the assumption
that the velocities are piece-wise constant. The nonlinear
velocity obstacle (NLVO) [16] adapts the concept to general



(nonlinear) trajectories, in which the VO is comprised by
the velocities that would result in a collision given that
the current trajectories are maintained. Robot dynamics and
constraints are discussed but not formally considered. In
[17], the VO is generalized to include the dynamics of a
car-like vehicle in a sampling-based algorithm. Here, safety
is concluded only if the obstacles move along their current
paths, and input constraints are not considered. The accel-
eration VO (AVO) [18] reformulates the VO to characterize
the set of velocities that the vehicle can safely reach under
proportional control of the acceleration. Constraints in the
applied acceleration are included, but avoidance can only
be guaranteed if the obstacle velocity is constant over a
chosen time. The related collision cone approach [5] extends
the concept to objects of irregular (non-circular) shapes.
Vehicle constraints and their inherent limitation on collision
avoidance are discussed, however, these are not explicitly
considered. [19], [20] extends the method to collision avoid-
ance between quadric surfaces moving in 3D environments,
and deforming objects are considered in [21]. Although
safety results are presented, they are based on the assumption
that the obstacle velocity is at least piece-wise constant
and vehicle constraints are not considered. The notion of
avoidance maps [22] was proposed for cooperation between
multiple UAVs to avoid collisions while moving at constant
speeds. The method is based on separating the control
effort space into avoiding and colliding regions using the
collision cone principle and choosing the lateral acceleration
inputs accordingly. The concept is also suggested for non-
cooperative collision avoidance, however, without providing
any guarantees for success.

Evidently, the majority of existing approaches based on
collision cones do not take into account input constraints
and/or vehicle dynamics, and obstacles are commonly ap-
proximated to move with piece-wise constant velocities.
Attempting to bridge some of these gaps, we analyzed
the concept when applied to nonholonomic, unicycle-type
vehicles with constant speeds and restricted turning rate
inputs in [23]. Formal guarantees for safety were derived
with respect to these constraints and a circular obstacle with
potentially varying speed and direction, thus incorporating
more general dynamics of moving objects. This analysis was
extended to obstacles of arbitrary shape in [24] and adapted
to underactuated surface vessels in [25].

The main contribution of this paper is the extension to
unicycles which may also have nonzero accelerations, which
was not considered in earlier works, as well as experimental
validation of the proposed algorithm. Since many vehicles
must adhere to strict acceleration constraints, we choose to
not use the acceleration input actively to avoid collision but
consider it a possible disturbance in the collision avoidance
control, which provides a large amount of flexibility in the
speed and acceleration control of the vehicle. Moreover,
the vehicle kinematics and additional input constraints are
considered in an analysis of the algorithm, wherein we derive
explicit requirements for safety. Contrary to most previous
studies, the obstacle is modeled as a kinematic vehicle capa-

ble of changing both its speed and direction at any instant.
The proposed method is validated experimentally on two
mobile robots in the Robotarium [26], which demonstrates
the performance under real conditions.

The remainder of the paper is organized as follows. The
control model and problem are outlined in Section II, and
the heading controller for steering the vehicle in the correct
direction is presented in Section III. The guidance system
is described in the two following parts, where Section IV
states the nominal guidance law applied to make the vehicle
move towards a goal destination and Section V presents the
collision avoidance strategy. In Section VI, we provide a
mathematical analysis of the avoidance problem and pro-
posed solution. The results from the experimental study is
presented in Section VII, before some concluding remarks
are given in Section VIII.

II. PROBLEM STATEMENT

The vehicle and the obstacle are modeled as nonholonomic
unicycles with bounded inputs:

ẋ = u cos(ψ), (1a)
ẏ = u sin(ψ), (1b)

ψ̇ = r, r ∈ [−rmax, rmax] , (1c)
u̇ = a, a ∈ [−amax, amax] , (1d)

where x, y are the Cartesian coordinates, ψ and r are the
heading angle and heading rate, respectively, and u and a
are the forward speed and acceleration. Moreover, rmax and
amax are constant, non-negative parameters. The state of the
system is collected as x ≜ [x, y, ψ, u]

T , and we use the
notation p ≜ [x, y]

T and v ≜ ṗ. The subscript o is employed
to separate the obstacle system from the vehicle to this end.

To account for the physical areas, we define that a colli-
sion occurs when the distance between the vehicle and the
obstacle, d ≜ ∥p− po∥, is reduced to less than a minimum
distance, dmin > 0, rather than when they attain the same
position. To stay safe, the vehicle should thus remain in the
safe set

Csafe ≜ {x : ∥p− po∥ ≥ dmin }. (2)

In addition to collision avoidance, we require that the vehicle
comes within an acceptable distance, dacc > 0, of a target
position pt. Hence, the vehicle should reach the goal set

Cgoal ≜ {x : ∥p− pt∥ ≤ dacc }. (3)

The control problem can thus be summarized as the achieve-
ment of the following objectives:

x(t) ∈ Csafe(t),∀t ≥ t0 (4) lim
t→∞

x(t) ∈ Cgoal(t). (5)

III. SPEED AND HEADING CONTROL

In Sections IV-V we will present the guidance system
that generates the heading direction, ψd, the vehicle should
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Fig. 1: Collision cone.

follow to achieve the aforementioned objectives. To make the
vehicle keep the desired heading, we apply the controller

r =


rmax if ψ̃ > 0,

0 if ψ̃ = 0,

−rmax if ψ̃ < 0,

(6)

where the angular difference ψ̃ ≜ −(ψ−ψd) is mapped to the
interval ψ̃ ∈ (−π, π] to ensure that the vehicle always takes
the shortest turn. This will make the vehicle exert maximum
control power to reach the commanded heading.

Assumption 1. The forward speed of the vehicle satisfies

u ∈
[
umin, umax

]
, (7)

where umax, umin > 0 are constant parameters,

Remark 1. Although the speed of the vehicle can be
controlled through the acceleration input, the proposed avoid-
ance strategy does not require the vehicle to accelerate. Since
the vehicle looses controllability when u = 0, Assumption 1
is a required but mild assumption. The algorithm can thus
be combined with most onboard speed control schemes.
An additional requirement on the speed will be stated in
Section V.

IV. TARGET REACHING

To steer the vehicle towards the target destination pt, we
will use a pure pursuit guidance law [27] to compute the
desired velocity of the vehicle. For static targets such as the
one we are considering, this method will make the vehicle
take the shortest path to the target. The guidance law is based
on aligning the vehicle velocity with the line-of-sight vector
from the vehicle to the target. For vehicles modeled on the
form (1), the guidance strategy requires the vehicle to keep
a heading direction given by

ψpp ≜ atan2(yt − y, xt − x). (8)

Hence, to make the vehicle move to the target position, we set
the desired heading equal to ψd = ψpp. In the next section,
we present the theory and resulting logic that determines
when the vehicle must deviate from (8) in order to stay in
the safe set.

V. COLLISION AVOIDANCE

While moving towards the target, the vehicle may need to
adjust its heading to avoid the obstacle. A collision cone is
therefore employed to identify potential collisions and make
the necessary adjustments to the trajectory. As discussed in
the Introduction, we do not utilize the acceleration input in
the collision avoidance control, as the evasive maneuvers are
based purely on a change of direction. However, acceleration
effects are considered in the analysis given in Section VI.
Hence, the algorithm can safely be applied to vehicles with
limited acceleration capabilities, but also to vehicles that
accelerate more actively. We demonstrate this flexibility in
the experimental study presented in Section VII.

A. Conflict Detection

If the vehicle and the obstacle move indefinitely in their
current directions, they must end up in a collision if the
relative velocity, v − vo, is directed towards the circular
region in Figure 1. The collision cone corresponds to the
orange area in Figure 1, characterizing the set of velocities
leading to a future collision. The orientation of the right and
left cone vertex can be found respectively as

α± β, (9)

where α ≜ atan2(yo − y, xo − x) represents the orientation
of the line-segment going from p to po and

β ≜

{
sin−1

(
dmin

d

)
if d ≥ dmin,

π − sin−1
(

d
dmin

)
otherwise,

(10)

represents the half-width angle of the cone. Notice that this
definition also includes the case in which the vehicle is not
in the safe set. Although such a situation should be avoided
entirely according to the objective (4), the second part of (10)
is included for the purpose of the first lemma which provides
sufficient conditions for convergence to the safe set as well
as forward invariance of this set.

Lemma 1. Consider an obstacle moving with the time-
varying velocity vo, and let the vehicle maintain a time-
varying velocity v satisfying

|χ(t)− α(t)| = β(t), ∀ t ≥ t1, (11)

where χ ≜ atan2(ẏ − ẏo, ẋ − ẋo) is the relative direction
of the vehicle with respect to the obstacle, for some time
t1 ≥ t0. Then, the vehicle will converge to the boundary of
the safe set (2), that is

lim
t→∞

x(t) = ∂Csafe(t). (12)

Furthermore, if x(t1) ∈ Csafe(t1) and the vehicle maintains
a velocity satisfying

|χ(t)− α(t)| ≥ β(t), ∀ t ≥ t1, (13)

then the vehicle will remain in the safe set, that is

x(t) ∈ Csafe(t), ∀ t ≥ t1. (14)



Proof: The time-derivative of the distance d can be
found geometrically as

ḋ = −∥v − vo∥ cos(χ− α). (15)

With (11), the time-derivative of the distance is given by

ḋ =


−∥v − vo∥

√
1−

(
dmin

d

)2

if d ≥ dmin,

∥v − vo∥
√
1−

(
d

dmin

)2
otherwise,

(16)

where we see that if d < dmin, then ḋ > 0, and if d > dmin,
then ḋ < 0. Finally, if d = dmin, ḋ = 0. Hence, the vehicle
converges to the boundary of the safe set, where d = dmin.
If (13) holds, the time-derivative of d satisfies

ḋ ≥ −∥v − vo∥

√
1−

(
dmin

d

)2

, ∀ d ≥ dmin. (17)

Since ḋ ≥ 0 on the boundary of Csafe, the set is positively
invariant. Hence, any trajectory starting in it cannot leave,
which concludes the proof.
A situation where the vehicle does not satisfy the condi-
tion (13) will be called a conflict. If the obstacle comes
too close to the vehicle during a conflict, then the vehicle
should take action to avoid a collision. This strategy will be
formalized in the next section.

B. Conflict Prevention and Resolution

In order to construct an evading maneuver, it is convenient
to express the collision cone in terms of the absolute vehicle
heading. This is done by first translating the collision cone
by the obstacle velocity, vo, as illustrated in Figure 2. The
shifted cone, given in yellow, characterizes the set of absolute
velocities that will result in a collision with the obstacle,
corresponding to the velocity obstacle of [4]. The angles at
which the velocity of the vehicle is directed inside of this set
is then given by the intersections between the circle of radius
equal to the magnitude of the vehicle velocity, v, and this
cone, represented by the dashed lines in Figure 2. Analytical
expressions for these angles can be found as

ψ±
cc ≜ α± β + γ±, (18)

where the angle γ is derived geometrically as

γ± ≜ sin−1
(uo
u

sin
(
λ±

))
, (19)

and we define λ± ≜ π − ψo + α± β for conciseness.
It can be noticed that the angles γ± are not always

defined. In such cases, an avoidance maneuver may not exist.
Although it is possible to deal with this by an appropriate
choice of the input acceleration, we consider the more
general case where the maximum acceleration may be zero.
Another way to handle this is by requiring that the following
assumption holds:

Assumption 2. The speed of the obstacle is bounded by

uo ∈ [0, umax
o ] , (20)
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Fig. 2: Geometric representation of the angles ψ−
cc and γ−.

where 0 ≤ umax
o < umin is a constant parameter.

Remark 2. Assumption 2 requires that the speed of the
obstacle is bounded, which is easily justified. However, it
also implies that the vehicle keeps a higher speed than the
obstacle. We note that the last part only has to be satisfied in
a close vicinity of the obstacle. This will enable a swift and
secure evasion, even if the obstacle should actively pursue a
collision.

To ensure that the avoidance control is strictly necessary,
the distance to the obstacle should be reduced to a critical
distance, dcrit > 0, before an avoiding maneuver is per-
formed. Therefore, only if the nominal heading (8) places
the vehicle and the obstacle in conflict by the condition

|χ− α| < β, (21)

and the distance satisfies d ≤ dcrit, then the control system
will initiate a conflict resolving maneuver by assigning the
heading ψd = ψj

ca, with

ψ±
ca ≜ ψ±

cc ± ϵ, (22)

where ϵ > 0 is a constant parameter that can be considered
as an adjustable safety margin. Moreover, the direction of the
heading change is expressed by j. This parameter determines
which side of the obstacle the vehicle attempts to pass on.
A safe option is to choose

j = argmax
j∈{±}


∣∣∣ψo − ψj

cc

∣∣∣ if d = dcrit

−
∣∣∣ψ − ψj

cc

∣∣∣ otherwise,
(23)

where we assume that the angular difference is mapped to
the interval (−π, π]. Note that in the first case of (23), both
directions will guarantee evasion provided that the critical
distance is set accordingly. The second case of (23) ensures
that the vehicle is always turning away from a conflict that
has not yet occurred.

Once the nominal velocity does not lead to a conflict
according to (21), we reassign the desired heading to

ψd = ψpp. (24)



VI. ANALYSIS

Lemma 1 showed geometrically that the vehicle and the
obstacle cannot collide unless they are currently in a conflict.
Define as in [28] the angular distances to a conflict:

δ± ≜ ±ψ ∓ ψ±
cc , (25)

corresponding to a clockwise and counterclockwise turn,
respectively. If the linear distance to the obstacle is less
than the critical distance, dcrit, the algorithm is designed to
prevent a potential conflict by making the vehicle adjust its
orientation according to the collision cone of the obstacle.
However, since the vehicle is subject to turning constraints,
we need an additional condition in order to guarantee that
the required maneuver is fulfilled, derived in the next lemma.

Lemma 2. Consider an obstacle and a vehicle modeled
by (1). Let Assumptions 1-2 hold. Suppose that the vehicle
and the obstacle at some time t1 ≥ t0 are not in a conflict,
i.e.

|χ(t1)− α(t1)| ≥ β(t1), (26)

and x(t1) ∈ Csafe(t1). Then, a control input r satisfying

δ+ = 0 ⇒ r = rmax,

δ− = 0 ⇒ r = −rmax,
(27)

where

rmax ≥ rmax
o

umax
o

umin
+
amax
o umin + amaxumax

o

umin

√
umin2 − umax

o
2

, (28)

will keep the vehicle out of conflict with the obstacle for all
future time, that is

|χ(t)− α(t)| ≥ β(t), ∀ t ≥ t1, (29)

Proof: The angular distances (25) are defined such that
they are non-negative, δ± ≥ 0, when the vehicle is not in
conflict with the obstacle. Define the set Cδ = {x : δ± ≥
0}. The set is positively invariant if δ̇± ≥ 0, ∀x ∈ ∂Cδ ,
where ∂Cδ = {x : δ± = 0} denotes the boundary of the
set. On ∂Cδ , the time-derivative of (25) is computed as

δ̇± = ±r ∓ α̇− β̇ ∓ γ̇±. (30)

The time-derivative of γ± is

γ̇± = (−ro + α̇± β̇) uo cos(λ±)√
u2−u2

o sin2(λ±)

+ao
sin(λ±)√

u2−u2
o sin2(λ±)

− a uo sin(λ±)

u
√

u2−u2
o sin2(λ±)

.
(31)

Furthermore, α̇ is found geometrically as

α̇ = −∥v − vo∥
d

sin(χ− α), (32)

and the time-derivative of β is computed from (10) as

β̇ =
∥v − vo∥

d
cos(χ− α) tan(β). (33)
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Fig. 3: Results from the first experiment.

Hence, β̇ ± α̇ = 0 when δ± = 0 (since then χ = α ± β),
and

δ̇± = ±r ± ro
uo cos(λ±)√

u2−u2
o sin2(λ±)

∓ao sin(λ±)√
u2−u2

o sin2(λ±)
± a uo sin(λ±)

u
√

u2−u2
o sin2(λ±)

.
(34)

Under the model (1) and Assumptions 1-2, (34) is bounded:

δ̇± ≥ ±r − rmax
o

umax
o

umin
− amax

o umin + amaxumax
o

umin

√
umin2 − umax

o
2

. (35)

It follows that δ̇± ≥ 0, ∀x ∈ ∂Cδ when the control
input satisfies (27) and the maximum rate is lower bounded
by (28). Since Cδ is positively invariant, any trajectory
starting in the set cannot leave it. Hence, (29) holds.

Remark 3. The relation (34) shows that the acceleration
can be used to prevent a conflict rather than cause one, by
treating a as an input instead of an arbitrary disturbance as
we do here. This would require a more advanced control
logic, which is left for future work.

We will conclude this section by stating the main theorem,
which presents the complete set of conditions ensuring
achievement of the control objectives (4)-(5). The last as-
sumption implies that the obstacle cannot block the target:

Assumption 3. The obstacle keeps at least a distance dcrit

to the target position pt, that is

∥po(t)− pt∥ ≥ dcrit, ∀ t ≥ t0. (36)

Remark 4. Assumption 3 is a formality and does not have
to hold for all time, but rather after a certain point. This is to
allow the vehicle to move towards the target without being
at constant risk of collision, as this could make the vehicle
stuck.
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Fig. 4: Results from the second experiment.

Theorem 1. Consider an obstacle and a vehicle modeled by
(1). Let Assumptions 1-3 hold and the initial distance satisfy
d(t0) ≥ dcrit. Furthermore, let the critical distance satisfy

dcrit ≥ 2umax + πumax
o

rmax
+ dmin, (37)

the acceptance distance satisfy

dacc ≥ umax

rmax
, (38)

and the maximum heading rate satisfy condition (28) of
Lemma 2. Then, the vehicle with the heading controller (6),
the pure pursuit guidance law (8), and the collision avoid-
ance algorithm (21) - (24), will reach within the acceptable
distance of the target position pt without collision.

Proof: The proof follows the same line of arguments
as the proof of [23, Theorem 2]: If there is a conflict as
the distance is reduced to the critical distance, the lower
bound (37) ensures that the vehicle has time to resolve it
before the obstacle can make the vehicle leave the safe set.
By Lemma 2, the vehicle will prevent a conflict by keeping
the avoidance heading (22) with the heading controller (6) if
the nominal direction is conflicting while d < dcrit. Hence,
the vehicle stays in the safe set by Lemma 1. Since the ve-
hicle maintains a speed satisfying Assumption 2, the vehicle
will eventually escape the obstacle. The lower bound (38)
ensures that the vehicle reaches the goal set (3) under the
guidance law (8) and the constraints of the model (1) [29].

VII. EXPERIMENTAL RESULTS

In this section, we validate the algorithm using two mobile
robots in the Robotarium [26], where one of the robots, re-
ferred to as the main or vehicle robot, follows the avoidance
algorithm towards a goal position, while the second robot
acts as a dynamic obstacle and thus moves around freely.
The robots have a radius of 11 cm and the test bed has an
area of 3.2×2 m2. The linear maximum speed of the robots
is 20 cm/s and the maximum rotation speed is 3.6 rad/s.
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Fig. 5: Results from the third experiment.

The motors of the robots are restricted to only rotate at a
maximum speed of 12.5 rad/s, which limits the simultaneous
linear and rotational speed of the robots accordingly. In all
tests, the robots were first commanded to an initial pose, from
where the actual experiment was conducted. The maximum
speed of the obstacle robot was set to umax

o = 4.8 cm/s,
and the maximum angular velocity and forward acceleration
were set to rmax

o = 0.5 rad/s and amax
o = 0.2 cm/s2,

respectively. The minimum vehicle speed was set according
to Assumption 2 as umin = 4.9 cm/s, and the maximum
speed was chosen as umax = 6 cm/s. The maximum angular
velocity was selected as rmax = 0.9 rad/s and the maximum
linear acceleration as amax = 0.2 cm/s2, such that the
condition (28) holds. The minimum required distance was
chosen to be dmin = 50 cm in order to leave some extra
space around the robots, and the critical distance was set
to dcrit = 1 m in accordance with the lower bound (37).
The acceptance distance was chosen to comply with (38) as
dacc = 10 cm, and we chose ϵ = 5 degrees.

In the first test, the vehicle is commanded to the target
position pt = [−0.9, −1.4]⊤ m at the maximum forward
speed. The results are plotted in Figure 3. The obstacle
robot can be seen to cross in front of the vehicle robot,
causing it to take a right turn in accordance with (23). The
forward speed of the main robot is simultaneously reduced
to the minimum. The main robot passes behind the obstacle
robot and continues to the goal destination, during which the
distance is kept above the minimum distance at all times, as
verified by Figure 3b.

In the second experiment, shown in Figure 4, the vehicle
is commanded to the same position as in the previous test at
the minimum forward speed. The obstacle robot passes on
the left side of the vehicle robot but subsequently changes
direction. The main robot is then forced to move to the side in
order to avoid the other robot. During this situation, the speed
of the vehicle robot is increased to the maximum as shown
in Figure 4b. The robot avoids the collision by following the
avoidance strategy and then converges to the target position.

In the third experiment, we demonstrate the algorithm in



a more threatening scenario, where the obstacle robot is to
pursue a collision by tracking the main vehicle. The robots
were initialized on opposite sides, from where the main robot
was to reach a goal point close to the starting point of the
obstacle robot. The commanded forward speed was in this
case constant and given by 5 cm/s. As shown in Figure 5a,
the obstacle robot creates a potential collision, and the main
robot takes a turn to avoid it. The vehicle keeps turning as
required until it escapes the pursuing robot and proceeds to
the target. From Figure 5b, it can be verified that the required
distance between the robots is kept under the full encounter.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the analysis and exper-
imental validation of a reactive obstacle avoidance method
which is suitable for vehicles with unicycle kinematics that
may be subject to strict acceleration constraints and may
have limited turning rates. The algorithm utilizes the compu-
tationally advantageous collision cone notion to effectively
determine when a collision is impending and produce an
immediate evasion, without the need for controlling the
forward acceleration of the vehicle. Explicit conditions on the
speed and turning rate of the vehicle were derived through a
mathematical analysis of the closed-loop system, guarantee-
ing safety in any encounter with a dynamic, non-compliant
obstacle. Minimum requirements on the parameters of the
algorithm were presented for the achievement of a nominal
goal. The approach was verified experimentally on mobile
robots in the Robotarium, demonstrating the resulting vehicle
behaviour in different encounters with a moving obstacle.

Future work involves exploiting the acceleration input of
the vehicle for collision avoidance. It also concerns exploring
other models of the dynamic environment and consider
factors such as measurement uncertainties.
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