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ABSTRACT

Measuring outdoor sound attenuation is essential for var-
ious purposes, including studying outdoor sound propa-
gation, evaluating noise prediction schemes, estimating
attenuation when the simulation is not an option, or as-
sessing the in-situ performance of noise abatement mea-
sures. A very successful technique that has superseded
maximum length sequences (MLS) in room and build-
ing acoustics, sine sweeps have also been used outdoors.
However, the outdoor environment is notoriously time-
varying. There are claims that sine sweeps are less vul-
nerable to time variance, but no evidence for this. The
purpose of this paper is to test these claims. The effect of
time variance was investigated numerically in the theoret-
ical case of a homogeneous flat ground and a time-varying
non-homogeneous atmosphere. The impact of time vari-
ance on excess attenuation spectra is discussed in the cor-
responding time-invariant scenario. The results also in-
dicate that sine sweeps perform better than MLS in the
context of time variance.

Keywords: sweeps, MLS-technique, outdoor sound atten-
uation, time-variance

1. INTRODUCTION

The MLS-technique has been used for several decades
to measure impulse responses and reverberation time
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in room and architectural acoustics [1–7]. The MLS-
technique has also been used outdoors. [8–11]. It was,
however, rapidly discovered that this method is sensitive
to time variance in the system to be characterized [4].

Sine sweeps have become increasingly popular in
recent years [12–14] and have superseded the MLS-
technique in many cases due to their superior performance
when it comes to sensitivity to noise [7, 14] and due to
their ease of customizing to a specific range of frequen-
cies. [13]. Moreover, it has been generally assumed that
sweeps are more robust to time variance [13–15] than
MLS.

For instance, although the ISO 18233 measurement
standard allows for both the MLS-technique and sine
sweeps, this document states that sine sweeps are less
sensitive to time variance while emphasizing the impor-
tance of gaining a deeper understanding of the fundamen-
tal concepts that underlie the new measurement technique
involving sweeps.

Despite the popularity of sine sweeps, their perfor-
mance in linear time-varying outdoor channels has not
been thoroughly studied, and no evidence has been pro-
vided to support the claim about their lower sensitivity to
time variance. Outdoor sound propagation is notoriously
time-varying, with changes in temperature, with wind and
turbulence. It is therefore of the utmost importance to
get better insight into the behaviour of sine sweeps in the
presence of time variance before using this technique out-
doors. This paper proposes a numerical investigation of
the impact of time variance on outdoor sound attenuation,
transfer function and impulse response measurements us-
ing both linear sweeps and MLS.

This paper is organized in the following manner. Sec-
tion 2 introduces the theory of linear sweeps and MLS.
Section 3 outlines the definition of a time-varying test case
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based on empirical data, and the signals considered in our
numerical study. In section 4, results are presented and
discussed.

2. BRIEF THEORY

2.1 MLS Technique

A maximum-length sequence (MLS) is a binary sequence
that can be generated by properly tapped and initialized
shift registers [16]. For use in acoustics, the 0s and 1s are
converted into a bipolar signal with amplitude ±V0 [17].
One key characteristics of a maximum length sequence
is that its circular auto-correlation function is a periodical
series of Kronecker delta functions δ(n), which are shifted
by a DC component as.

R◦
xx[n] =

∞∑
m=−∞

δ[n+mL]− 1

L+ 1
, (1)

the period L = 2N − 1 given by the order N of the se-
quence [18]. Consequently, a circular cross-correlation
between the original sequence x[n] and the sequence y[n]
passed through the system under test results in the impulse
response of the system,

R◦
xy[n] =

∞∑
m=−∞

h[n+mL]− 1

L+ 1

L−1∑
i=0

h[i] (2)

Nowadays, it is relatively easy to implement the circular
correlation even for very long sequences by applying cor-
relation directly in the frequency domain using the Dis-
crete Fourier Transform (DFT) as

R◦
xȳ[n] =

1

L

L−1∑
k=0

X[k]Y ∗[k]eȷ
2πkn

L (3)

where X[k] and Y [k] are the DFTs of x[n] and y[n], and
∗ denotes the complex conjugate.

Further information on generating the MLS and the
underlying theory can be found in [8, 17].

2.2 Linear Sweep

A sweep signal is a sinusoidal signal that exhibits a chang-
ing instantaneous frequency over time. A general mathe-
matical definition of such a signal is

xsweep(t) = A(t)sin[φ(t) + φ0]. (4)

where A(t) with a constant amplitude envelope. The φ0

and φ(t) are the initial and instantaneous phases at a given
time t, and usually, φ0 = 0.

An important characteristics of sweep signals is the
relation between frequency and time. The sweeps signals
are so-called asymptotic signals, whose instantaneous fre-
quency and group delay relation are approximately iden-
tical for the whole range of frequencies of interest [19].
That means we can calculate the instantaneous frequency
from the instantaneous phase as [20].

The change in instantaneous frequency over time can
be defined in various ways, with linear and exponential
variations being the most common. While a linear sweep
has a constant power spectrum density akin to white noise,
the exponential sweep features a higher power spectrum
density at lower frequencies, similar to pink noise [15].
This paper considers linear sweep signals for convenience.
The distribution of power spectrum density does not mat-
ter here because background noise is not considered in our
simulations. A convenient expression for a normalized
linear sweep signal is given below:

xlin(t) = sin

[
2π

(
f1t+

f2 − f1
2T

t2
)]

. (5)

Where f1 is the start frequency at t = 0, and f2 is the
ending frequency at t = T . T is the duration of the linear
sweep.

The Power Spectral Density (PSD) of the linear sweep
is flat. The autocorrelation Rxx of a signal approximates a
Dirac pulse.

3. MATERIALS AND METHODS

In order to test the claim that sweep signals feature a better
immunity than the MLS-technique against time variance
in the context of outdoor measurements, we first need to
discuss linear time-varying systems. Second, we define an
idealised outdoor test case featuring time variance. Third,
we have to collect data about time variance. Fourth, we
need to specify the parameters used to define the MLS
and the sweep that were used in the comparison.

3.1 Linear time-varying systems

A linear system that exhibits variations over time and dif-
ferent characteristics at least at two distinct moments is
generally called a ”linear time-varying system” (LTV). If
the LTV system changes due to some other factor with-
out any direct connection between the system’s input and
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output, it is considered to be linear ”asynchronously”
time-varying (LATV) [21]. Similarly, an outdoor acous-
tic channel varies with temperature and wind velocity
changes, resulting in a linear time-varying acoustic chan-
nel characterized as LTVAC. Under the assumption of lin-
earity, acoustic propagation through an outdoor environ-
ment, the general effects of propagation can be approxi-
mated as a convolution:

y(t) = x(t) ∗ h(t, τ) (6)

where x(t) is the transmitted signal, y(t) is the re-
ceived signal, and h(t) is the impulse response of the
acoustic channel. In the case of multipath acoustic prop-
agation in a non-homogeneous environment, the time-
varying channel impulse response can be written

h(t, τ) =
∑

Aiδ (t− di/ceff(z, t)) (7)

where Ai represents the amplitude attenuation coefficient
for each propagation path, di represents the propagation
distance for each path, and ceff(z, t) represents the effec-
tive time-varying speed of sound, which is a function of
height and time. We simplified the calculation by ne-
glecting the changes in ceff(z, t) with respect to height and
only considered changes with respect to time, denoted as
ceff(t). This simplified calculation is used to determine the
time-varying delay τ = t− di/ceff(t).

In our scenario, time variance was limited to propa-
gation delays. In practice, whatever the test signal used,
a time-varying delay was implemented by computing the
delay for each sample of the test signal. This resulted in
an unevenly sampled signal that was interpolated using
barycentric Lagrange interpolation [22] and re-sampled at
the sampling frequency as the input signal. This was car-
ried out independently for each channel before summing
the re-sampled signals.

3.2 Test case

Our study considered a non-homogeneous atmosphere
and a hard flat ground. The geometry of the test case
is depicted in Figure 1 and modelled by Atmospheric-
Bellhop [23]. The atmosphere is supposed to be subject to
temperature changes, thereby causing the speed of sound
to vary while the vertical sound speed gradient remains
constant. Atmospheric attenuation is ignored. A source
and a receiver are placed at a horizontal distance of 160 m
from each other. The source and receiver are both at 4 m

height above the ground. In that geometrical configura-
tion, the path length difference between the direct and re-
flected path is 0.9198 m.

Figure 1. Geometry of the test case.

This test case can also be described as a time-varying
comb filter.

3.3 Time-varying sound speed

In order to simulate time-variance in our test case, we used
measurements carried out on October 17th, 2019, in a
crop field situated at Dragvoll (Figure 2), Trondheim, Nor-
way. The speed of sound was calculated by the data that
was collected with a 3D ultrasonic anemometer (Young
type 81000) at 2 m height and 30 Hz sampling rate. The
time series of ceff that was recorded is presented in Figure
3.

Linear trends of the speed of sound over the duration
of the test signal used in the simulations were extracted
from this time series at different time intervals. This led
to the linearly increasing sound speed and the linearly de-
creasing sound speed scenarios discussed in the results.
A second group of scenarios considered added stochastic
variations to the above-mentioned trends.

3.4 Signals and signal processing

The initial step involves generating two different input
signals: 1) a linear sweep and 2) an MLS. The range of
frequencies of interest goes from the lower transition fre-
quency of the 63 Hz octave to the upper transition fre-
quency of the 8 KHz octave band. The signals were sam-
pled at fs = 44.1kHz. The duration T of both the sweep
and the MLS was set to that of the shortest MLS that is
longer than the expected impulse response of the system.
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Ultrasonic Anemometer.

Figure 2. Aerial view of the location with the po-
sition of the ultrasonic anemometer on October 17th

2019.

The aim was to ensure that the two signals would experi-
ence the same amount of time variance in the system.

From the simulated responses to the test signals, we
then calculated the frequency response of the LTVAC.
This was followed by using the inverse Fourier transform
to obtain the corresponding impulse response. Literature
suggests [13–15] two distinct deconvolution methods that
leverage the fundamental properties of the corresponding
excitation signals. The time-reversed filter technique is
particularly effective for sweep signals, while the circular
cross-correlation technique is more appropriate for MLS
signals (see 2.1).

Most deconvolution techniques described in the rele-
vant literature for sweep signals require using a version
of the excitation signal that has been reversed in time.
Following the recommendation given in Müller and Mas-
sarani [13], for linear sweeps, we used a time-reversed
excitation signal for deconvolution of linear sweeps,

h(t) = y(t) ∗ IFT
{

X(−f)

|X(−f)|2

}
︸ ︷︷ ︸

ftr(t)

= y(t) ∗ ftr(t), (8)

where ftr(t) is the time-reversed filter that can retrieve the
impulse response of the system independently whether the
excitation signal has a perfectly at spectrum or not.

Figure 3. Time series of ceff delivered by the ultra-
sonic anemometer at the selected location .

4. RESULTS

The results of the study include the frequency responses
(FRs), impulse responses (IRs), and the impact of time
variance on excess attenuation (EA) spectra, which are
presented in detail in this section.

Figure 4 illustrates the frequency responses (FRs) of
both LTVAC and LTIC. Both exhibit the expected comb
filter pattern that corresponds to interferences caused by
the path length difference between the direct and the re-
flected component. When ceff is a linear function of time,
the FRs remain qualitatively identical to that of the LTIC
for linear sweeps across the full range of frequencies of in-
terest (see Fig. 4 (a) and (b)), although errors are observed
in the frequencies of the dips. The effect of that kind
of time variance is much more apparent with the MLS-
technique (see Fig. 4 (c) and (d)), especially at higher
frequencies where a large number of spurious peaks oc-
cur whose amplitude increases with frequency. These
peaks blur the interference pattern. Furthermore, the lin-
ear sweep technique leads to much smoother curves than
the MLS-technique when stochastic variations are added
to the variation of sound speed (see Fig. 4 (e) - (h)).

Figure 5 allows us to compare the impulse responses
(IRs) obtained using the linear sweep and MLS techniques
for LTVAC. IRs are successfully retrieved when ceff is a
linear function of time in the cases where a linear sweep is
used as the excitation signal. Two distinct arrivals are de-
tected. They are separated by a delay that matches the path
length difference (see Fig. 5 (a) and (b)). On the contrary,
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Figure 4. Frequency Response comparison between the linear time-varying acoustic channel (red) and the
linear time-invariant acoustic channel (blue). The effect of linearly varying ceff on FRs, (a)-(b) for linear sweep
(c)-(d) for MLS. (a) and (c) correspond to decreasing, (b) and (d) to increasing ceff. The effect of stochastically
varying ceff on FRs is presented in (e)-(f) for the linear sweep and (g)-(h) for MLS (e) and (g) correspond to
decreasing, and (f) and (h) to increasing ceff.

on the IRs obtained using the MLS-technique, no clear ar-
rival can be distinguished. When a stochastic component
is added, the linear sweeps still give distinct arrivals, al-
though their interpretation is not straightforward (see Fig.
5 (e) and (f)). In the case of the MLS-technique, the di-
lution of the impulse response worsens compared to the
purely deterministic case (see Fig. 5 (g) and (h)).

We also assessed the impact of time variance on ex-
cess attenuation by computing attenuation in 1/3rd octave
bands, and the results are depicted in Figure 6. When ceff

is a linear function of time, higher frequencies display less
deviation from the LTIC (see Fig. 6 (a) and (b)). At lower
frequencies, the number of interference dips within a one-
third octave band is low so that a mispositioned dip leads
to more visible effects on the 1/3rd octave band level.

With the MLS-technique, the discrepancies with re-
spect to the LTIC are larger than with the sweep. But like
for the sweep, deviations from the LTIC a more visible
for frequency bands where there are interference dips, but
their density is low. When stochastic variations of ceff are

added, deviations from the LTIC are no longer limited to
the lower frequencies.

5. CONCLUSION

This paper considered the claim that sine sweeps are less
vulnerable to time variance than the MLS-technique. The
effect of time variance was investigated numerically for
one source-receiver configuration above a hard flat ground
in the case of an idealized atmosphere subject to tempera-
ture variations.

The effect of time variance was illustrated on the fre-
quency response, on the impulse response, and on the ex-
cess attenuation in 1/3rd octave bands. First, the linear
sweep performed much better than the MLS technique and
exhibited stronger immunity against time variance in this
simulated outdoor measurement test case. Second, the ef-
fect of time variance was most visible in the impulse re-
sponse. With the linear sweep, the direct and the reflected
pulses remained clearly visible, at least when the speed
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Figure 5. Impulse Response: The effect of linearly varying ceff on IRs, (a)-(b) for linear sweep (c)-(d) for MLS,
from decreasing to increasing ceff. The effect stochastically varying ceff on IRs, (e)-(f) for the linear sweep and
(g)-(h) for MLS, from decreasing to increasing ceff.

of sound was a linear function of time. This was not the
case with the MLS-technique. The paper provides mate-
rial supporting the claim that linear sweeps are a better
option for characterizing linear systems that are subject
to time variance. To the authors’ knowledge, this is the
first published investigation of the comparative robustness
of linear sweeps and of the MLS technique against time
variance in outdoor environments.

However, the test case considered in this numerical
study includes a number of simplifications. Additional re-
search is required to examine the impact of time-variance
in more realistic situations.
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