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Evaluating clinical diversity 
and plausibility of synthetic capsule 
endoscopic images
Anuja Vats 1*, Marius Pedersen 1, Ahmed Mohammed 1,2 & Øistein Hovde 1,3

Wireless Capsule Endoscopy (WCE) is being increasingly used as an alternative imaging modality for 
complete and non-invasive screening of the gastrointestinal tract. Although this is advantageous 
in reducing unnecessary hospital admissions, it also demands that a WCE diagnostic protocol be in 
place so larger populations can be effectively screened. This calls for training and education protocols 
attuned specifically to this modality. Like training in other modalities such as traditional endoscopy, 
CT, MRI, etc., a WCE training protocol would require an atlas comprising of a large corpora of images 
that show vivid descriptions of pathologies, ideally observed over a period of time. Since such 
comprehensive atlases are presently lacking in WCE, in this work, we propose a deep learning method 
for utilizing already available studies across different institutions for the creation of a realistic WCE 
atlas using StyleGAN. We identify clinically relevant attributes in WCE such that synthetic images 
can be generated with selected attributes on cue. Beyond this, we also simulate several disease 
progression scenarios. The generated images are evaluated for realism and plausibility through three 
subjective online experiments with the participation of eight gastroenterology experts from three 
geographical locations and a variety of years of experience. The results from the experiments indicate 
that the images are highly realistic and the disease scenarios plausible. The images comprising the 
atlas are available publicly for use in training applications as well as supplementing real datasets for 
deep learning.

Wireless Capsule Endoscopy (WCE) has led to major advances in the diagnosis and treatment of small bowel 
diseases. As it is non-invasive and a comparatively more comfortable procedure than colonoscopy, it is also 
preferred by many patients for investigation of the  colon1. The limited capacity for patient examinations during 
the COVID 19  pandemic2 further propelled its use as it is less resource and time consuming. WCE has been 
established as a promising alternative for the diagnosis and monitoring of various diseases, including lesions 
such as polyps,  tumors3,4, Ulcerative Colitis (UC)5, Chron’s  disease6 as well as other markers related to inflam-
matory bowel diseases such as inflammatory grading (occurrence of bleeding, ulcers, erosions), mucosal healing 
(edema, changes in mucosal vascularity), etc.7,8.

Reading through a WCE video is often a tedious and demanding endeavor for clinicians. Videos are not 
only long (between 8 and 11 hours in most cases) but require undivided attention throughout to avoid missing 
smaller pathologies, such as polyps. Additionally, clinicians must reliably identify gastrointestinal landmarks 
for near-accurate positioning of abnormalities for reporting and subsequent monitoring. This expertise requires 
training for traditional endoscopists, even more so considering the diagnostically relevant differences that arise 
from the two modalities. Differences such as the direction of traversal (WCE traversing opposite to colonoscopy), 
organ appearance and colors (due to vast lighting differences) and inability for improving visibility through air-
insufflation and water cleansing (as in endoscopy) tend to affect how diagnoses are carried out. In traditional 
endoscopy, medical trainees typically see thousands of images of different pathologies under progression or 
regression of the disease to identify disease markers. Despite training according to well-established diagnostic 
protocols, current studies indicate possible gaps in gastroenterology  training9, pointing to an even greater inad-
equacy in training for WCE diagnosis. Therefore, a need for additional training for competency in  WCE10,11.

One hindrance to such WCE based training protocol is the lack of a diverse and more complete atlas describ-
ing visual symptoms of diseases as seen in WCE. Many small scale atlases exist, including those from capsule 
manufacturers (e.g, Medtronic™), however they fall exceedingly short in descriptions of diseases often with just 
one or few examples of a certain illness. Remedying this requires larger atlases with diverse medical conditions 
and severity descriptions, which, in turn require diverse patient populations and subsequent data labeling. 
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Furthermore, ideal severity level descriptions require monitoring of patients with a specific disease over possibly 
long follow-up periods. The high diagnostic times per patient of WCE currently make the creation of such an 
atlas very difficult. In this work, we propose a deep learning method for the creation and quality evaluation of 
precisely such an atlas for WCE from previously collected (unlabeled) data for medical training and education.

The prediction of the prognosis of the disease and subsequent treatment is critically dependent on identifying 
the peculiarities associated with different severities. In lieu of real images, synthetic images could be used to simu-
late these peculiarities for various disease conditions. Naturally, considering the critical nature of this application, 
it is impending that (a) synthetic images be consistent in visual symptoms in addition to being realistic, meaning 
disease markers can be learned independently from location, illuminations, intestinal fluid, etc., and (b) images 
can be generated with desired pathology and severity on cue. To this end, we use existing available studies stored 
with two medical institutions for the creation of new and diverse WCE images/scenarios on cue. Furthermore, 
we take advantage of the diversity in pathologies between patients to learn progressive/regressive disease patterns 
and use them to simulate new and realistic disease scenarios for clinical training and education purposes, as well 
as means to compensate for real datasets. We use the style-based generative adverserial network  StyleGAN212 
to create synthetic images completely unsupervised and subsequently mine clinically relevant attributes for the 
creation of an atlas. We evaluate the plausibility and usability of our synthetic data through a series of subjective 
online experiments (“Methodology”) performed by eight gastrointestinal experts (seven gastroenterologists and 
one gastrosurgeon) from three different geographical locations and with experience ranging from 3 to 36 years. 
To the best of our knowledge, this is the first study to realistically simulate and evaluate realism in WCE images 
and disease progression scenarios. The main contributions of this work are as follows:

• Creation of a realistic WCE atlas/dataset with diverse clinical scenarios (with and without pathologies).
• Evaluation of clinical-realism of synthetically generated high-resolution WCE images through subjective 

experiments.
• Realistic simulation of clinically consistent disease progressions (without access to real progressions) and its 

plausibility evaluation.

Related work
Deep learning-based solutions for computer-aided diagnosis and detection of diseases have inevitably led to 
the need for high-quality medical data sets in different  modalities13 in addition to real data. The primary pur-
pose of augmentation with synthetic data has been to train deeper and more data-hungry models for better 
 performance14–18. In WCE, in addition to video  enhancement19, supervised and semi-supervised abnormality 
 classification20,21 and  detection22, synthetic data generation has become increasingly of  interest16,17. This is due 
to a pervasive data adversity compounded with the need for computer intervention to help experts in WCE. 
Traditional methods of synthetic image creation depend heavily on priors such as anatomy, colors, etc.16, and 
do not scale easily when diverse pathological descriptions are taken into account. Recent deep learning-based 
generation methods in WCE although reasonably  realistic17,23, have little or no control over the clinical attributes 
comprising each generated image (hereby referred to as generates). Methods that enable the control of meaningful 
clinical markers of disease so that realistic images with desirable attributes can be simulated on cue is a fairly new 
research  direction24–27 that this work delves into. Moreover, the evaluation of synthetic datasets using pretrained 
object detectors as  in23 while useful in assessing realness to some extent, does not reliably measure the diversity 
within the dataset. We believe, medical experts play an irreplaceable role in the evaluation of synthetic medical 
data through closely scrutinizing all aspects of generated images.

Generative Adverserial Networks (GANs)28 have single handedly transformed image synthesis in a variety of 
 fields29–31. GANs typically learn the data distributions by constantly generating and differentiating increasingly 
complex generates from reals. Consequently, completely new samples can be generated from the learned distribu-
tion after training. The introduction of a style-based  architecture12,24 significantly improved image synthesis, by 
allowing a higher degree of control over the generation process. In WCE, this translates to identifying clinically 
relevant attributes/biomarkers in the latent space of the  model26,27 and using them as inputs for data generation. 
Such controlled generation has been explored in modalities like retinal, CT, X-ray, etc.24,25,32. However, the afore-
mentioned medical domains are simpler than WCE. Medical domains such as retinal and X-ray imaging exhibit 
familiar components, that are repetitive. Furthermore, most studies focus on one of the few particular pathology 
types against this familiar background during synthetic generation. We propose to expand these boundaries and 
test synthetic data generation on gastrointestinal images with varied pathological (polyps, ulcer, inflammation, 
vascular pattern , edema, fibrin, etc.), anatomical (ascending, descending, transverse, small bowel), orientation 
(rotation within lumen, muscosal facing, lumen facing), gastroninetstinal content (debris, bubbles), and capsule 
modality (pillcam vs. other) variations. In addition to examining the latent space for realistic generation of indi-
vidual data points, such as images, we also focus on identifying clinical biomarkers that are reliable indicators 
of disease and use those to generate realistic disease progressions. Additionally, we perform a critical evaluation 
of the generated data beyond the commonly employed Turing  tests24,25,32 to concretely measure the plausibility 
and efficacy of synthetic data in WCE.

Methodology
In this work, we utilize the generative power of  StyleGAN212,30 for unsupervised image generation at high reso-
lution (512 × 512). A random variable z ∈ Z is input to a dense mapping network f that transforms the incom-
ing latent variables into d-dimensional vectors w lying in the intermediate latent space W . The learned affine 
transformations A ∈ R

mxd transform a latent code w into a style vector y as shown in Eq. (1), where b ∈ R
m is 

the bias. The generator g uses a constant value vector k as an initial point for image generation that is affected 
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by the style vector y (via Adaptive Instance Normalization (AdaIN)) and stochastic noise injection at each layer. 
Learning through f in this way allows the intermediate space W to exhibit a degree of disentanglement such that 
the attributes underlying the data lie along mutually orthogonal directions. Generating along these attributes 
results in conditional manipulation of generated  images26,33.

Attribute discovery in W : The latent space W of a trained model can be interpreted as a high dimensional space 
consisting of factors that underlie the dataset. For WCE these factors are mainly related to anatomical, pathologi-
cal, illumination, capsule modality, and gastrointestinal content (refer to Fig. 1). The first step into controlled 
image generation is to identify significant factors/attributes and consequently label them. In the natural image 
domain, this is achieved through pre-trained attribute detectors which are largely unavailable in medical domains. 
We perform closed-form SEmantic FActorization  (SeFA34) on the affine transformation matrix A in Eq. (1) such 
that the first j eigen vectors of ATA correspond to the largest variations in the data (seen in Fig. 1). To label the 
variations, we performed t-distributed Stochastic Neighbor Embedding (t-SNE)35 clustering in image space (since 
all variations are orthogonal in latent space and measures of similarity do not apply) by seeding the space with 
disease-prototype images. These prototypical images are generated images selected by a gastrointestinal expert 
as being both realistic and prototypical to abnormalities (such as ulcer, inflammation, polyp, etc.). All attributes 
along which one or more images lie in the neighborhood of prototypical images are selected as pathology relevant, 
while others contain largely non-pathological variations (such as debris, modality, etc.).

Image generation along attribute a: To create n images {i1, i2, . . . in} along a ∈ R
512 , we first create n latent codes 

along a in W given by {w1,w2, . . .wn} such that wi = wn − αj ∗ a and αj varies linearly in interval [A, B]. A and 
B are chosen for each attribute such that largest variations can be simulated between them. Intervals between 0 
and 50 were observed to be sufficient for most attributes. The parameter α also plays a key role, as a smaller step 
size results in images with very minute differences (as seen in Fig. 1) whereas a larger α can result in missing out 
of images with subtle abnormalities. Although α is a hyperparameter and depends largely on the modality, for 
this work α = 2 was found to be suitable for most variations.

The styleGAN2 model was trained on approximately 200k images (dataset detail in “Results and analysis”) 
without progressive growing on a Twin-Titan RTX for 30 days. An 8-layer fully connected mapping network 
with w ∈ R

512 , initial learning rate 0.01, and activation fused leaky Rectified Linear Unit (ReLU) is used. The 
generator f takes constant input b ∈ R

4x4x64 , both the generator and discriminator networks use Adam opti-
mizer ( β1 = 0,β2 = 0.99) and initial learning rate 0.002. The batch size was fixed to 8 for the entire training. 
Pre-processing includes image cropping to eliminate metadata from image boundaries. Similar  to12 we use 
logistic loss with R1 regularizer and path length regularizer. All other hyperparameter settings were as  in12. The 
best checkpoint was selected based on the Fréchet Inception Distance (FID)36 between distributions of 200 real 
and generated images with the truncation set to 1. The initial and final scores are 185.62 and 18.99 respectively, 
refer to Fig. 2.

Task 1: Visual Turing test. A total of eight experts from Norway, India, and England in the field of gastro-
enterology performed the Visual Turing test (Fig. 3a), whereby they were asked to look at an image and indicate 
whether the image was real or generated in their opinion. With each image, they were also asked to rate the level 
of difficulty associated with making this choice. For this task, a five-point Likert scale as shown in Fig. 3a with 
levels between “1: very difficult” and “5: very easy” was used. The users were given a choice in the number of 
images they wish to evaluate with each user evaluating at least 50 images. Two users (experience 36 and 28 years 
respectively) rated 262 images, one user rated 150 images (12 years experience), four users rated 100 images 
(between 3 and 22 years experience) and one rated 50 images (15 years experience).

Task 2: Ranking realism. Unlike the previous task in which a user rates if a given image is real or gener-
ated in isolation, in this task users are shown a set of four images (37 such sets in total) and asked to rank them 
in order of decreasing realness, the first preference being the most realistic. The users are not told how many in 
each set are reals or generates, however, each set comprises of two real and two generated images arranged in a 
random order. Such ranking allows measuring if the generates are plausible enough to be picked over a real one. 
Six users performed this task.

Task 3: Synthetic disease progression. Gathering ground truth for disease progression entails monitor-
ing and collecting data from patients undergoing treatments over a period of over five to ten years, for the case 
of UC. Due to this complexity, there are few medical domains where such progression ground truth datasets is 
available. Neither colonoscopy nor WCE have comprehensive progression scenario databases yet. Irrespective, 
the information contained in such progression datasets and its usefulness for diagnosis and understanding dis-
ease. Since ground truth isn’t available, our evaluation is based on leveraging the expertise of 6 gastroeneterolo-
gists, with extensive knowledge of the disease (Ulcerative colitis) as well as experience with long term patients for 
the same. In this task, users see a sequence of images that simulate a progression (increase in severity in one way 
or another) of some disease/abnormality. The task is to assign a severity score to each generate in the sequence as 
they would in a normal clinical scenario. Figure 3c shows this task. Users can assign the same score to more than 
one image in a sequence. The levels on the scale “normal”, “mild”, “moderate” and “severe” are general enough to 
translate to degrees of severity for different pathologies. The users rate each progression in its realism quality on 
a five-point Likert scale that goes from “very unlikely” to “very likely”. Users see 22 such progressions. Six users 
performed this task.

(1)y = Aw + b
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Figure 1.  Figure illustrates synthetic images from the atlas with the following variations—(a) Vascular: 
Variations in the vascular pattern underneath the mucosa, used as an indicator of tissue health (b) Abnormal: 
variations that are pathological in nature such as development of inflammation, ulcer, edema etc. (c) Debris: 
variations that simulate various levels and types of occlusions expected in WCE images (d) View and Rotation: 
Variations simulating different view points as well as free capsule rotation as it traverses (e) Anatomical : 
variations relating to peristalsis as well as those arising from different parts of the tract (f) WCE modality: 
variations that reflect changes from one capsule modality to another (such as change in organ colors, 
illumination etc.).
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Results and analysis
Experimental setup. The Graphical User Interface (GUI) for each experiment was designed using the 
Psychopy experiment builder and made online via the Pavlovia website. A post-experiment survey was attached 
to the experiment to collect additional data such as years of experience, familiarity with WCE as well as com-
ments on different aspects of the experiment. The GUIs were created similar to the viewing conditions of the 
Rapid Reader software, which is a commercial software to perform WCE diagnosis. Additionally, the interface 
and other aspects of the experiment were verified before launch by a gastroenterologist to ensure that the setup 
was easy to navigate and conduct diagnoses on by doctors. The users had complete control over the time dura-
tion for which each image/sequence was looked at, across all experiments. The experiments were designed to be 

Figure 2.  FID scores during training.

Figure 3.  The figure illustrates the setup used for subjective online evaluation. (a) Screen as observed during 
the visual Turing test for each image. (b) Screen as observed in the ranking realism task. (c) Screen as seen in 
synthetic disease progression task. Please zoom in for clarity, best viewed in color. This figure is created using 
Inkscape scalable vector graphics editor (version:1.0.2, url:https:// inksc ape. org/).

https://inkscape.org/
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compatible for any screen resolution, however, experts were advised to view it on the largest screen available to 
them (laptops or other desktop devices) for optimum viewing conditions.

Dataset details. The training dataset comprises of approximately 200k unlabeled images from different 
capsule modalities. Most of these images (80k) are from the PS-DeVCEM  dataset37,38 taken with the PillCam 
Colon 2 Capsule while the other 3478 images taken with the capsule modality Olympus EC-S10 are selected 
from the abnormal categories (all classes except normal classes such as Ampulla of vater, Foreign bodies (cap-
sules), Ileocecal valve, Normal Mucosa and Pylorus, these classes are normal variations typical to small intes-
tine only and were therefore eliminated) in the OSF-Kvasir-Capsule  dataset39. The other remaining classes are 
informative of the pathological changes and are included. The rest of the dataset comprises of images from WCE 
examinations of 10 patients with varying UC activity as well as other pathologies also with the PillCam Colon 
2 Capsule, that were conducted at the Gjøvik hospital in Norway in 2021. The images exhibit varying degree of 
bowel cleanliness. The input images are at two different resolutions, 512 × 512 (PS-DeVCEM and Gjøvik Hos-
pital) and 336 × 336 (OSF-KvasirCapsule). The images with resolution 336 are resampled to 512 using Lanczos 
resampling before inputting into the network. All output images are at the resolution of 512 × 512.

Task 1: Visual Turing test. We compared the probability of detecting generates against the probability of 
random guessing (50%) for each user and collectively using a two-tailed One-Proportion Z-Test at significance 
level α = 0.05 . The assumption being tested is that if the generates are as good as real, then doctors can guess 
correctly only 50% of the time. As shown in Table 1 for seven out of eight users, the probability of detection is 
not significantly different from random guessing (p> 0.05 ), the overall probability for all users being 52.78% 
(95% confidence interval 0.496 to 0.558, p > 0.05 ), which suggests random guessing. However, for UserID 2 who 
observed 262 images, the detection probability of 58.2% with p < 0.05 (95% confidence interval 0.52 to 0.64) 
indicates a probability of identifying generates beyond that by chance. The exact p-values are shown in Table 1.

Beyond this, we calculated the agreement scores using the Krippendorff ’s coefficients αk between different 
users (refer Fig. 4). These agreement scores are calculated over 50 images that are common between all users. 
The overall agreement between eight users is 0.173. Individual agreement scores vary between αk = −0.098 to 
αk = 0.83 whereby the scores for most users are below 0.4, indicating the absence of strong agreement on which 
images are real or generated among users. The agreement αk = 0.83 occurs between users 6 and 7 both of whom 
are from the same medical institution. Although these users randomly guess (see Table 1), we assume that there 
are similarities in the way images are judged and diagnosed, leading to high agreement. The full αk-matrix of 
the coefficients is shown in Fig. 4.

In Fig. 5 we compare the difficulty score ratings of UserID 2 (not guessing randomly) with another user 
(UserID 6 who guesses randomly). UserID 2 considers the Turing test to be “easy” on average when identifying 
images and is correct 58% of the times, on the other hand UserID 6 who is correct 57% of the times considers 
the choice of identifying a generate more difficult. The distribution of difficulty scores as rated by all users dur-
ing the test is shown in Fig. 5.

In Fig. 6 we show interesting images from the Turing test where experts agree on an incorrect response in 
overwhelming majority. In other words, these are the cases where a generated image is identified as real by a 
majority of the experts and vice versa.

Furthermore, we assign all generated images to one of four general categories given by “vascular”, “ana-
tomical”, “debris”, “abnormal”. These categories are based on the visual changes that occur along the attributes 
a = [a1, a2, . . . an] from which an image comes. Vascular refers to changes in vascular patterns within images 
(clear as opposed to blurry, refer to images (b) and (e) in Fig. 6), which are subtle but strong indications of 
degrading health. Anatomical refers to the category by which images undergo anatomical transformation. These 
include changes in mucosa (mucosa of different section of intestines is markedly different and can be identified 
by the muscosal surface), capsule orientations (facing lumen view, facing mucosa view, or changing from one 
view to another along the attribute) as well as any other anatomical changes largely of normal nature. The debris 
category is assigned to those images that simulate gastrointestinal content/debris in images (refer to images (a) 
and (c) in Fig. 6). Lastly, category abnormal is reserved for images that simulate different abnormal/pathological 
conditions. In Fig. 7, we analyze if categories affect the difficulty rating while performing the Turing test, in other 

Table 1.  Table shows probabilities of identifying generates along with 95% confidence intervals and p-values 
for eight users.

UserID Images Probability 95% CI p-value

1 262 0.51 0.45−0.57 0.66

2 262 0.58 0.52−0.64 0.009

3 100 0.43 0.33−0.53 0.19

4 100 0.49 0.39−0.59 0.92

5 100 0.54 0.44−0.64 0.48

6 100 0.57 0.46−0.67 0.19

7 150 0.55 0.47−0.63 0.22

8 50 0.42 0.28−0.56 0.32

Average 1024 0.52 0.49−0.55 0.07
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words, are generates from some categories more difficult to classify? From the histogram in Fig. 7, perceived dif-
ficulty is seen to be relatively independent of the category, with the overall perceived difficulty varying similarly 
for all categories. Individual difficulty ratings indicate the presence of outliers (red circles in Fig. 7). We show 
some of these in Fig. 8 where at least one of the experts rates “Very Difficult”.
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Figure 4.  Krippendorff agreement coefficients among eight users for visual Turing test. Only the upper 
triangular portion of this symmetric matrix is presented for clarity.
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Figure 5.  Figure shows the distribution of difficulty/easiness of the Turing test as rated by users. Although 
individual opinions on the difficulty level of images vary between users (example UserID 2 and 6), the overall 
distribution of the score averages out with a slightly longer tail towards easy than difficult.

Figure 6.  Figure illustrates images that were labeled wrongly by the experts with overwhelming majority. 
All experts labeled image (a) as real and 7/8 experts labeled images (b) and (c) as real while they are actually 
generated. Similarly, all experts labeled image (d) to be a generate and 7/8 experts labeled images (e) and (f) to 
be generates while they are actually real. This figure is created using Inkscape scalable vector graphics editor 
(version:1.0.2, url:https:// inksc ape. org/).

https://inkscape.org/
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Task 2: Ranking realism. As indicated above, the aim of this task is to quantitatively measure if the gener-
ates can be perceived to be visually better (more realistic) than real images, when looked at simultaneously. The 
reals and generates that comprise the quadruplets are chosen randomly from the real and generated databases. 
Table 2 shows the percentage by which the generates were ranked higher than real WCE images on realness. On 
average, users perceive a generate to be the most realistic (given first preference, even over reals) 63.5% of the 
time, while both generates are ranked higher than reals 10.8% of the time.
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Figure 7.  The figure shows the overall (left histogram) and individual (right boxplots) difficulty ratings across 
four generate categories. The red circles indicate selected outliers rated ’Very difficult’ and are analyzed in Fig. 8.
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Figure 8.  The figure shows some outlier generates that one or more experts perceive very difficult to classify. 
The rating in red text signify when user is wrong whereas green signifies when a user identified the generate 
correctly. It is interesting to see that (a) all users thought image 1 was real when it was generated and (b) users 
who perceived image 3 (abnormal) to be easy were incorrect. This figure is created using Inkscape scalable 
vector graphics editor (version:1.0.2, url:https:// inksc ape. org/).

Table 2.  The first column shows the % of times a generate was ranked first (most realistic) among four 
choices, two of which were real. The second column shows as percentage, the number of times both the 
generates were chosen to be more realistic than reals out of 37 trials.

UserID % 1st preference generate % Both preferences generates

1 56.75% 18.91%

2 29.72% 5.41%

4 81.08% 21.62%

5 81.08% 5.41%

6 67.56% 10.81%

7 64.86% 2.70%

https://inkscape.org/
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Task 3: Synthetic disease progression. In this task, we measure the quality of disease progressions 
generated by interpolation along clinically relevant attributes, in the latent space of StyleGAN. Not only are the 
progressions required to be realistic enough, but also monotonic in nature such that an increase in severity of 
pathological signs and symptoms can be clearly perceived. We test this by allowing users to rate the severity of 
each image in a synthetic progression and then test for monotonicity. If the progressions are satisfactory in the 
aspects mentioned above, the perceived severity by experts would increase monotonically along the direction of 
progression (from normal to mild to moderate and then severe). We show five images to users that are rated on 
the four-point severity scale. Monotonicity is measured by calculating the average slope along the line that is best 
fit for severity scores. Due to a 4-point scale on five images, it is expected that two images along the way will be 
rated the same ( slope = 0 between two points), however, the higher the slope the higher the monotonicity, and 
vice versa. Along with severity, each user rates the quality of the progression. This is done by indicating a score to 
the questions “Could this progression scenario be realistic?”, that is, how likely are they to encounter such a pro-
gression in their clinical practice. We use these scores to rate the quality of each progression. Figure 9 shows pro-
gressions from task 3. The accompanying progression ratings, slopes along each best-fit line as well as plausibility 
distribution of each progression on a 5-point scale from very unlikely (1) to very likely (5) is shown in Fig. 10. 
The average plausibility score for 22 progression scenarios as rated by six experts was 3.68 (between Neutral and 
Likely) (refer Table 3). Two users (experience 36 and 22 years) rated all 22 scenarios likely or above. It should be 
noted that none of the participants found any of the progressions to be “Very Unlikely”, while the progressions 
were rated “Very Likely” 14 times by different experts. Three out of six users never rated a progression below 

Image 2Image 1 Image 3 Image 4 Image 5

1
ecneuqeS

2
ecneuqeS

3
ecneuqeS

4
ecneuqeS

5
ecneuqeS

Figure 9.  The figure shows five disease progressions shown to the experts as part of task 3. The severity increase 
from left (image 1) to right (image 5). The severity ratings and plausibility histogram corresponding to each 
sequence is shown in Fig.10 below.
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Neutral (rating 3). From our post-experiment survey it was found that inflammation, erythema, ulceration, and 
mucosal patterns in generated images were found to be particularly realistic by experts (as seen in endoscopy).

Furthermore, progressions provide a tool to measure the subjectivity in how different doctors assess the sever-
ity of the same condition on a medical scale. The same image can be perceived as mild inflammation (score 2, no 
intervention required) by one doctor, while another perceives it as a moderate case (severity 3, which requires 
treatment and medication). We observed similar subjectivity between the ratings of different doctors in task 3. 
Figure 11 shows the rolling means for severity ratings by different users corresponding to each image in progres-
sion sequences. Plot 1 shows the ratings for “image-1” of 22 sequences by six users, while plot 5 shows the ratings 
for the last image. As expected, the plots exhibit an upward trend (lower to higher rating ) from image 1 to image 
5. Moreover, the curves clearly expose subjectivity related to the use of the clinical scale among different experts. 

Figure 10.  The figure shows progression ratings and plausibility histograms for progression sequences 
illustrated in Fig. 9. The progression rating graphs (top row) indicate the severity ratings (y-axis) corresponding 
to each image (x-axis). The y-axis labels are normal, mild, moderate and severe (enlarged in the first plot and are 
same for all plots). The slope of each line is indicated in the legend (please zoom in for clarity. The plausibility 
curves (bottom row) show a histogram of plausibility rating of each progression by all experts. The x-axis ratings 
are: Very Unlikely, Unlikely, Neutral, Likely, Very Likely.

Table 3.  The table shows the average slope and plausibility scores per user averaged over 22 progression 
sequences where the scores are as follows- 1:very unlikely, 2: unlikely, 3:neutral, 4:likely, 5:very likely. It is 
notable that most expert users (experience 12–36) found the progressions to be on average likely and their 
ratings concur with the assumed monotonicity in severity.

UserID Average slope Plausibility score Years of experience WCE expertise

1 36.36 3.18/5 28 Expert

2 46.36 4.13/5 36 Very familiar

4 25.91 3.77/5 5 Somewhat familiar

5 43.63 3.77/5 4 Somewhat familiar

6 32.27 4.00/5 22 Expert

7 40.90 3.22/5 12 Expert

Average 37.57 3.68/5 – –

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Normal

Mild

Moderate

Severe

user 1
user 2
user 4
user 5
user 6
user 7

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

user 1
user 2
user 4
user 5
user 6
user 7

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

user 1
user 2
user 4
user 5
user 6
user 7

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

user 1
user 2
user 4
user 5
user 6
user 7

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

user 1
user 2
user 4
user 5
user 6
user 7

Ratings for Image 1 Ratings for Image 2 Ratings for Image 3 Ratings for Image 4 Ratings for Image 5 

Figure 11.  The plots show rating patterns of all users corresponding to images with different severities in the 
progression sequences. Plot 1 shows how each user rated the first image, while plot 5 shows how users rated the 
final image (most severe) across 22 sequences. The plots indicate the rolling mean values with window size 5.
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UserID 1 (experience 28 years) rates higher than other experts on the same image, while userID 4 (experience 
5 years) on an average rates lower than other experts.

Discussion
This work is multidisciplinary and therefore finds application in more than one area. In this section we would 
like to outline potential uses of this work. Firstly, the dataset of synthetic high-quality WCE images can be 
utilized directly for a number of supervised and unsupervised deep learning algorithms such as abnormality 
detection and classification, pathology segmentation, organ classification, domain adaptation from one capsule 
modality to another, etc. Since synthetic data does not have the same privacy and security constraints as the 
original medical data, its use and distribution is easier. Secondly, this work allows the creation of a high quality 
synthetic atlas (first to the best of our knowledge) for WCE. The atlas comprises not only of diverse abnormal-
ity scenarios but also realistic disease progressions from uncorrelated patients. This is helpful for the training 
younger gastroenterologists in WCE. Lastly, synthetic progressions as created in this work can prove to be a very 
useful tool for percolating knowledge from the medical field such as how medical experts rate. A deeper analyses 
of such inter-rater subjectivity can be carried out to understand the reason behind and find ways to reduce such 
subjectivity. Conversely, understanding how experts rate generates knowledge that can be leveraged back into 
deep learning algorithms for, say, severity detection.

Conclusion
We applied StyleGAN2 for the synthetic generation of high-quality and high-resolution WCE images with all 
the commonly observed variations. These images are available publicly for use both in data augmentation of 
deep learning models and for training in WCE diagnoses (https:// www. ntnu. edu/ web/ colou rlab/ softw are). The 
quality and usability evaluation of generated images through three subjective experiments performed by a total 
of eight experts shows that real and generated images are very hard to be distinguished beyond random guessing. 
Experts found the progressions to be useful and some of them very likely. Furthermore, this research shows how 
existing studies from uncorrelated patients, medical conditions, and institutions can be used to learn coherent 
disease patterns. Such disease patterns have ample uses in a number of computer-aided diagnostic and medical 
education areas.

Data availability
The dataset OSF Kvasir are publicly available (https:// osf. io/ dv2ag/)39, information about dataset Ps-DeVCEM37 
is available upon request by Anuja Vats (or authors  in37).
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