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ABSTRACT: Physical chemists reconcile the empirical theory of
classical thermodynamics with the quantum nature of matter and
energy when they recover thermodynamics from a statistical
mechanical treatment of the individual particles’ quantized
eigenspectrum. The conclusion is that, when systems are very
large collections of particles, interactions between adjacent systems
are comparatively negligible, resulting in an additive thermody-
namic framework where the energy of a composite system AB may
be expressed as the sum of the individual energies of subsystems A and B. This powerful theory is consistent with quantum theory,
and it accurately describes the macroscopic properties of sufficiently large systems subject to comparatively short-ranged interactions.
Nevertheless, classical thermodynamics has its limitations. Its main drawback is the theory’s failure to accurately describe systems not
sufficiently large for the aforementioned interaction to be neglected. This shortcoming was addressed by the celebrated chemist
Terrell L. Hill in the 1960s when he generalized classical thermodynamics by adding a phenomenological energy term to describe
systems not captured by the additivity ansatz (i.e., AB ≠ A + B) of classical thermodynamics. Despite its elegance and success, Hill’s
generalization mostly remained a specialist tool rather than becoming part of the standard chemical thermodynamics corpus. A
probable reason is that, in contrast to the classical large-system case, Hill’s small-system framework does not reconcile with a
thermostatistical treatment of quantum mechanical eigenenergies. In this work we show that, by introducing a temperature-
dependent perturbation in the particles’ energy spectrum, Hill’s generalized framework is in fact recovered with a simple
thermostatistical analysis accessible to physical chemists.

1. INTRODUCTION
Classical thermodynamics considers very large systems subject
to short-ranged interactions. In this situation, it is safe to neglect
interaction energies between adjacent subsystems and simply
express the energy of a composite system AB as the sum of the
individual energies of subsystems A and B. This additive
thermodynamic framework is a very powerful tool for the
prediction of the collective properties of large collections of
particles.

At the molecular level, we reconcile thermodynamics with the
quantum nature of matter and energy by confirming that the
thermodynamic framework, with collective properties such as
temperature, pressure, and chemical potential, can indeed be
obtained from a statistical mechanical treatment of the
individual particle’s quantum energies (see, e.g., ref 1).

Nevertheless, classical thermodynamics has its limitations. Its
main drawback is the theory’s inability to accurately describe
systems not sufficiently large for their interaction with the
environment to be negligible. This problem is not limited to
quantum systems, for what makes a system small is not so much
its sheer size as how its size compares to the range of the
interactions affecting the system. From this point of view, a solar
system may be thought of as small: two adjacent and identical
solar systems would not have twice the energy as one solar

system.2 Yet a water droplet may well be thought of as large.3

This issue was addressed by the celebrated physical chemist
Terrel L. Hill in the early 1960s, when he generalized classical
thermodynamics to describe small systems.4,5 Hill considered a
homogeneous macroscopic system at equilibrium and abstractly
subdivided it into very small subsystems. Due to the subsystems’
small size, interaction energies between them are comparatively
significant, and the usual energy additivity no longer applies.
This creates the need for an additional phenomenological term,
a subdivision potential that accounts for the interaction between a
small subsystem and its surroundings. Far from being a mere
curiosity, Hill’s small-system method (later termed nano-
thermodynamics6−8) has found applications in different
domains, such as transport in porous media,9 drug delivery,10

and materials science.11
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Yet, when it comes to undergraduate thermodynamics, Hill’s
generalized theory has a distinct disadvantage with respect to
classical extensive thermodynamics. Hill’s framework, with its
additional energy term, does not simply emerge from a
thermostatistical treatment of quantum eigenergies. The usual
statistical bridge between the quantum and the thermodynamic
description appears to be missing. This may be a reason why
Hill’s otherwise intuitive phenomenological theory remained a
specialist tool rather than becoming part of the standard physical
chemistry corpus. In this work, we show that Hill’s framework
may indeed be recovered by introducing a simple thermal
perturbation in the system’s eigenenergies. The derivation is
accessible to all physical chemists familiar with Rayleigh−
Schrödinger perturbation theory12 and elementary statistical
thermodynamics,1 and it may serve to give the wide physical
chemistry community molecular insight into a generalized
thermodynamic theory shown to have a wide range of
applicability.

The remainder of this paper is organized as follows. We start
with a short summary of Hill’s generalized thermodynamic
theory. We then propose a perturbation theory and a
thermostatistical treatment that results in Hill’s theory and an
extended second law of thermodynamics. We then consider a
perturbed harmonic oscillator as a simple yet illustrative
example. We close with some concluding remarks.

2. HILL’S THERMODYNAMICS
In the following we provide a brief andmodest summary of Hill’s
generalized thermodynamic theory.5 Hill starts by considering a
homogeneous macroscopic system at equilibrium temperature
T, pressure p, and chemical potential μ. If this system were
thought of as consisting of two macroscopic subsystems, the
energy of interaction between these two subsystems would be
negligible compared to each of the energies. If the two
subsystems were identical, each of them would have exactly
half of the total energy, and the same T, p, and μ as the original
system.

However, if the macroscopic system were divided into many
much smaller subsystems, the internal energy of each subsystem
would become comparable to the interaction energy between
them. In contrast to the macroscopic additive case, the
interaction energy can no longer be neglected, and the
subsystem’s internal energy is given by

= +U0 (1)

The first term in (1) is given by the classical Euler equation

= +U TS pV N0 (2)

where S, V, and N are, respectively, the subsystem’s entropy,
volume, and number of particles. The additional term is
known as the subdivision potential, i.e., the energy contribution
into a subsystem that results from interaction with other
subsystems. It may be thought of as the difference between a
subsystem’s true internal energy and the extensive expression
U0. For very large subsystems (the classical case), the
subdivision potential becomes negligible and the standard
thermodynamic theory is recovered.

However, due to the presence of the subdivision potential in
(1), the internal energy of the small system ceases to be a
linear homogeneous function of S, V, and N. This additional
term is the cornerstone of Hill’s nanothermodynamics. As Hill
wrote, small system thermodynamics departs f rom macroscopic

thermodynamics in that[ ] is not a linear homogeneous function of
[S, V, and N]. Hence an extra term occurs in [(1)]. These last two
sentences epitomize the whole book (ref 5, p 24).
2.1. Environmental Constraints. If we were describing a

small open system with a definite chemical potential and
temperature (imposed by the heat and particle reservoir
surrounding the system), then the additional energy term in
(1) can only stem from alterations in pressure. Interactions with
the environment cause the system’s pressure to depart from p
and become instead an effective p̂. Then, the deviation in the
system’s internal energy is given by (ref 5, pp 10, 24)

= p p V( ) (3)

If the small system of interest were, instead, a closed system
with a definite pressure and temperature, then any additional
energy termmust result from an alteration in chemical potential.
The presence of the environment causes the system’s chemical
potential to deviate from μ and become instead an effective μ̂.
The correction to the system’s internal energy is then given by
(ref 5, pp 16, 24)

= N( ) (4)

If the only environmental constraint were the temperature,
interactions with the environment would cause deviations both
in pressure and chemical potential. As a result, the energy
correction becomes (ref 5, p. 24)

= +p p V N( ) ( ) (5)

In the macroscopic limit, the internal energy of the system
becomes much larger than the energy resulting from its
interactions with the environment. As a result U0
regardless of the system’s environmental constraints. In other
words: ensemble equivalence is recovered in the thermody-
namic limit.

3. THERMALLY INDUCED SPECTRUM
PERTURBATIONS

In the following, we show how Hill’s thermodynamic theory
summarized above results from a standard thermostatistical
treatment of energy levels if these are perturbed by the
temperature of the heat bath.

We consider a simple system embedded in a heat bath. The
total Hamiltonian Htot for the system-bath complex is given by

= + +H s b H s H b s b( , ) ( ) ( ) ( , )B
tot

(0)
(6)

where H s( )
(0)

is the Hamiltonian of the bare system in state s,
H b( )

B
is theHamiltonian of the bath in state b, and s b( , ) is the

interaction between the system and the heat bath.
In recent years, a statistical mechanics and thermodynamics at

strong coupling has been developed on the basis of a Hamiltonian

of mean force.13−16 Averaging H(0)
and over the environment

H B
results in a temperature-dependent Hamiltonian of mean

force Ĥ for the system given by13
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where kB is Boltzmann’s constant and T is the heat bath’s
tempeature. If the interactions with the environment are
negligible compared to the bare system’s Hamiltonian, the
Hamiltonian of mean force Ĥ reduces to the bare (and

temperature-independent) H(0)
.

In other words, the coupling between the system and the
environment perturbs the system’s energy landscape. If the
coupling is weak, then the change in the original eigenenergies is
negligible. On the other hand, when the coupling is strong
compared to the system’s own energy, the spectrum of mean
force changes significantly. In general, the spectrum is modified
by the energy exchange, which is regulated by the heat bath’s
temperature T. As a result, the Hamiltonian of mean force Ĥ
becomes dependent on the external temperature and may be
written as as a power series in T

= + +H H TH T H( ) ...
(0) (1) 2 (2)

(8)

where α is a positive parameter modeling the strength of the
coupling between the particular system and the specific heat
bath. Likewise, the eigenstates may be written as

= + + +T T( ) ...n n n n
(0) (1) 2 (2)

(9)

as can the corresponding eigenenergies

= + + +E E TE T E( ) ...n n n n
(0) (1) 2 (2) (10)

where the ψn
(0) and En

(0) are, respectively, the eigenfunctions and
eigenvalues of the unperturbed purely mechanical Hamiltonian

H(0)
.

If the perturbed state is sufficiently similar to the unperturbed
state (wave function), we may safely neglect higher-order
perturbations and apply standard first-order Rayleigh−Schrö-
dinger perturbation theory (see, e.g., ref 12). We then obtain a
corrected energy given by

| + | = +E H TH E TEn n n n n
(0) (0) (1) (0) (0) (1)

(11)

In the absence of thermal perturbations, the temperature-
dependent energies reduce to the usual temperature-independ-
ent, purely mechanical energies. In general, however, temper-
ature dependence does emerge into effective energy levels.17

Indeed, temperature-dependent perturbations of energy levels
have long been observed, for example, in semiconductors,18 and
they play an important role in the properties of modern
nanoscaled materials (see, e.g., ref 19).
3.1. Generalized Thermostatistics. We consider now an

ensemble of systems and write the partition function with
the�now temperature-dependent�perturbed energies (11) in
the Boltzmann factor.

= e
n

E k T/n B

(12)

Applying the standard machinery of statistical thermody-
namics,1 we may obtain the energy of the system from the
partition function as k T ln

TB
2 d

d
, resulting in

=k T
T

E TE
d

d
ln n nB

2 (1)
(13)

where the overbar denotes the average over all available
microstates n. This generalized expression departs from the
usual expression by the presence of the last term, which results
from the temperature-dependent perturbation in the system’s

Hamiltonian. From (13) and (11) we may conclude that the
averaged zeroth-order energy is given by the usual expression

=E k T
T
d

d
lnn

(0)
B

2
(14)

With a modest amount of foresight, we may now look at (1)
and identify the system’s perturbed energy En as , the zeroth-

order energy En
(0) as U0, and the perturbation TEn

(1) as the
excess energy resulting from the strong interactions with the
environment. When the thermal perturbation is absent (isolated
system) or negligible (large system), expressions (8)−(13) all
simplify to their familiar form.

The perturbed system’s pressure p̂ is given by =p V/
and it deviates from the pressure p = −∂U0/∂V the system would
have in the absence of interactions. The pressure difference due
to the perturbation is easily shown to be given by

=p p
V (15)

Likewise, the perturbed system’s chemical potential μ̂ is given by
= N/ and it differs from the chemical potential μ = ∂U0/

∂N of the bare system by

=
N (16)

From (15) and (16), we conclude that the environmental
perturbations change the internal energy of the system by an
amount given by expressions (3)−(5), which were originally
introduced using purely thermodynamic arguments. In support
of Hill’s purely thermodynamic approach, the subdivision
potential has a thermostatistical basis in terms of a thermally
perturbed effective Hamiltonian (8).

The idea of a statistical mechanics allowing for temperature-
dependent energy levels is far from new. It was first proposed by
Rushbrooke20 and later refined by Elcock and Landsberg in the
late 1950s.17 More recently, this idea has resurfaced in a
framework known as statistical mechanics at strong coupling.13,21

Incidentlly, the framework of temperature-dependent energy
levels is acknowledged in Pathria’s landmark tektbook in
statistical mechanics (see ref 22, chapter 3, footnote 1).
3.2. Extended Second Law. The temperature T of the

system-bath complex is given by the usual equilibrium
expression

i
k
jjj y

{
zzz=T

S
kT

T
d

d
d

d
ln2

(17)

which, using (13) and (11) becomes

= =T S E TE E T E Td d( ) d( d /d )n n n n
(1) (18)

or

=T S E E T Td d d /d dn n (19)

Like (13), this expression departs from the usual equilibrium
expression by an additional term that accounts for the possible
temperature dependence of the energy levels. The process
described by (19) is the following: When a system comes into
thermal contact with a heat bath, it absorbs an amount of heat
dEn . This heat excites the system up its energy/entropy
landscape, increasing its temperature by dT. The system then
cools back down toward the heat bath temperature by doing
work dE dTdT/n on the environment. This work is performed in
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an an isentropic process where the system widens its potential
energy surface, changing the energy levels without changing the
populations. Then, the eigenstates’ contribution to the system’s
energy changes from the original En to the corrected

·E T dE dT/n n , and the effective heat received by the system
is thereby reduced from dEn to a smaller E E T Td d /d dn n .23

Indeed, it has been shown that two distinct types of temperature
dependence emerge from the strong coupling between the
system and the heat bath: While the En appearing in the
Boltzmann factor in (12) determine the probability that a state is
occupied, the (En − TdEn/dT) in (18) determines the
contribution made to the total energy by that state when it is
occupied.24,25

Expression (19) is an extended second law of thermody-
namics, originally proposed by Shental and Kanter in the context
of information theory.26 This extended law has been successfully
invoked to describe irreversible processes in themoelectrical
devices,27,28 model optomechanical oscillators,29,30 and to
provide a simple thermostatistical description of the somewhat
mystifying thermophilic motion exhibited by some macro-
molecules such as proteins.25 The usual second law is recovered
in the limit where the thermal perturbation of the spectrum is
absent (or negligible) and the last term in (19) vanishes.

4. EXAMPLE: HARMONIC OSCILLATOR
A heat bath may be modeled as a large collection of oscillators
(see, e.g., refs 31 & 32). For illustrative simplicity, we shall focus
on just one of these oscillators and model it as a harmonic
oscillator embedded in a heat bath made up of all the other
oscillators. The unperturbed potential and energy spectrum of
the system of interest are, respectively, given by

=H x
1
2

(0) 2
0
2

(20)

= +E n( 1/2)n
(0)

0 (21)

where x̂ is the position operator, ℏ is the reduced Planck
constant, μ is the oscillator’s reduced mass, ω0 its fundamental
frequency, and n can be any non-negative integer. For
convenience, we have omitted the kinetic term in the
Hamiltonian.

If the system is implicitly solvated in a heat bath, its
Hamiltonian is changed due to coupling, and it may be modeled
as an effective Hamiltonian of mean force (see Section 3). As the
equilibrium temperature increases, we expect the system to
become softer and the force constant (the square of the
frequency) smaller. In the high-temperature limit, the force
constant vanishes. This physical behavior may be modeled by a
temperature-dependent frequency ω(T) = ω0e−αT (with a
positive constant α modeling the strength of the coupling
between the specific system and the particular bath).25 This
results in a perturbed potential given by

=H x T
1
2

( )2 2
(22)

If the perturbed (nonisolated) system resembles the
unperturbed (isolated) system, then the coupling constant α is
small, and we may invoke first-order perturbation theory. This
approximation is, of course, hardly necessary in this analytically
tractable example, but it will serve its illustrative purpose.

The potential (22) has a zeroth-order contribution given by
(20) and a first-order perturbation given by

i
k
jjj y

{
zzz

= =

=

=

TH T
dH
dT

Tx

T x

(0) (0)

2
1
2

T

(1)

0

2

2
0
2

(23)

The perturbed energy is given by (11), with En
(0) given by (21)

and En
(1) by

= + =E n E2( 1/2) 2n n
(1)

0
(0) (24)

This results in
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U E

E e

e

k T
T1

2
coth

2
(1 2 )

n
n n

E TE k T

n
E TE k T0

(0) 0
(0) ( )/

( )/

0
0

B

n n

n n

(0) (1)
B

(0) (1)
B

(25)

= =TE TU2n
(1)

0 (26)

= + =E U T U(1 2 )n 0 0 (27)

For comparison, if the full Hamiltonian (22) were used, we
would obtain = U e T

0 and = e U( 1)T
0.

This approximation is valid for sufficiently small values of the
coupling constant α, which is the scenario where the system is
well-described as a departure from a known isolated system, i.e.,
Hill’s fundamental approach in eqs 1 and (2).

When the system is very large (or fully isolated), then its
eigenmodes are not perturbed by the thermal environment, and

the coupling constant α → 0. In this scenario, E 0n
(1) , and the

thermodynamic energy En reduces to the familiar result for the
decoupled quantum harmonic oscillator (see, e.g., p 214 in ref
33). However, in general, Hill’s interaction potential =

TE 0n
(1) and the energy = En =E Un

(0)
0. This will

generally result in departures in pressure (15) and chemical
potential (16) as described byHill’s nanothermodynamic theory
in expressions (3)−(5). These differences in pressure and
chemical potential predicted by Hill result from strong
interactions, and they have been shown to be the basis of
thermodynamic laws valid at the nanoscale.3 Moreover, the
temperature-dependent Hamiltonian of mean force (22) easily
captures the somewhat surprising thermpophilic motion
exhibited by some systems in solution.25

5. CONCLUDING REMARKS
Equilibrium statistical mechanics gives us a bridge between
quantum mechanics and the continuous axioms of classical
thermodynamics. One of these axioms is the additivity of
extensive quantities. However, this property does not apply to
small systems5 or generally to systems with sufficiently long-
range interactions.2 Physical scientists usually accept that such
systems are outside the scope of thermodynamic theory and
simply move on.

This did not satisfy the prolific physical chemist Terrell L. Hill,
who generalized standard Gibbsian thermodynamics to propose
a purely thermodynamic framework for nonadditive systems.4,5

The general idea in Hill’s extended thermodynamic framework
is fairly intuitive, and it facilitates the use of thermodynamics’
powerful tools in environments otherwise not accessible to
classical thermodynamics (see e.g. refs 9−11, 34, and 35 and refs
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therein). However, Hill’s powerful framework does not
reconcile with the standard thermostatistical treatment based
on purely mechanical energy levels.

It is shown above that Hill’s theorymay in fact be recovered by
performing a standard thermostatistical treatment of energy
levels if these are allowed to be effectively temperature-
dependent (insofar as the Hamiltonian they result from may
be perturbed by the heat bath). The presence of this
perturbation allows us to invoke a temperature-dependent
version of Rayleigh−Schrödinger perturbation theory and
obtain a modified thermostatistical framework that produces
Hill’s extension of classical thermodynamics, which in turn
allows for a thermodynamic description of small nonadditive
systems.
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