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Abstract

Birds play an essential role in the ecosystem they inhabit and can be used as in-
dicator species for assessing the health of an ecosystem. Because of these factors,
bird species monitoring has become a viable strategy for evaluating ecosystem
health. In recent years bird vocalization classification has become a popular
topic within machine learning competitions, where solutions using neural net-
works are the most popular. Training large neural network models to classify
bird vocalizations faces the challenge of most of the available bird recordings be-
ing unlabeled or weakly labeled. In recent years, methods for using unlabeled
datasets for pre-training machine learning models called self-supervised learning,
have shown promise. Since most of the bird vocalization recordings are unla-
beled, self-supervised learning might be a good application for bird vocalization
classification.

This thesis investigates the use of self-supervised learning for the bird vocal-
ization classification task. By using a self-supervised learning implementation,
called SimSiam, the impact of different augmentations used during self-supervised
learning is explored. The self-supervised models, using the best performing aug-
mentations, are also compared to a model pre-trained on the image domain. The
models are linearly fine-tuned and fine-tuned end-to-end, using varying amounts
of training data to assess their performance.

The results from testing different augmentations found that using a combina-
tion of augmentations during self-supervised learning performs better than single
augmentations. The best combination tested in this thesis were cropping and
adding noise. From comparing the self-supervised models with an identical model
pre-trained on images, it was found that the model pre-trained on images outper-
formed the self-supervised models on all tasks. From looking at the embeddings
produced by the self-supervised models, it is clear that the self-supervision was
not able to learn the models’ appropriate feature extractions to create embeddings
useful for the downstream task of bird vocalization classification.
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Sammendrag

(This is a Norwegian translation of the abstract.)

Fugler har en essensiell rolle i økosystemet de tilhører og kan bli brukt som
indikasjonsarter for å vurdere helsen til et økosystem. P̊a grunn av disse fak-
torene, har fugleartmonitorering blitt en mulig strategi for å evaluere økosys-
temers helse. I senere år har fugleklassifikasjon blitt et populært emne blant
maskinlæringskonkurranser, hvor de fleste bruker nevrale nettverk for å løse opp-
gaven. En utfordring med å trene store nevrale nettverk for å klassifisere fu-
glelyder er at mesteparten av de tilgjengelige dataene er ikke annotert eller bare
delvis annotert. I nyere tid har metoder for å bruke ikke-annoterte data for å trene
modeller, kalt selvstyrt læring, vist lovende resultater. Etter som mesteparten
av fuglelydene ikke er annotert, kan selvstyrt læring være en passende metode å
bruke for fuglesangklassifikasjon.

Denne masteroppgaven utforsker bruken av forh̊andstrening via selvstyrt læring
for fugleklassifikasjonsoppgaven. Ved å bruke en implementasjon av selvstyrt
læring, kalt SimSiam, utforskes effekten av ulike augmentasjoner som blir brukt
under den selvstyrte læringen. De selvstyrte modellene som brukte de mest effek-
tive augmentasjonene, sammenlignes ogs̊a med en modell som har blitt forh̊andstrent
p̊a annoterte bilder. Modellene finjusteres med flere ulike mengder av et annotert
fuglesang-datasett, og evalueres basert p̊a deres klassifiseringsevne.

Resultatene fra å teste ulike augmentasjoner viser at det å bruke en kombi-
nasjon av augmentasjoner under den selvstyrte læringen gir bedre resultater
enn det å bruke enkeltst̊aende augmentasjoner. Den beste kombinasjonen av
augmentasjoner som ble testet i denne masteroppgaven var å trimme spektro-
grammet og legge til støy. Ved å sammenligne modellene som brukte selvstyrt
læring med modellen som var forh̊andstrent p̊a bilder, ble det funnet at modellen
forh̊andstrent p̊a bilder gjorde det bedre enn modellene som brukte selvstyrt
læring. Ved å se p̊a representasjonene produsert av de selvstyrte modellene, er
det tydelig at modellene ikke var i stand til å lære viktige egenskaper ved dataen
som kunne vært nyttige for den p̊afølgende klassifiseringsoppgaven.
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Chapter 1

Introduction

Large parts of this chapter were taken from my project report (Norum 2022).
This chapter covers the introduction to this thesis. Section 1.1 introduces the
motivation behind this paper. Section 1.2 states the goal of this research, as
well as the research questions this thesis intends to answer. Under section 1.3,
the methodology for addressing the goals will be disclosed. In section 1.4, the
contribution of the research is stated. Lastly, the structure of the thesis is detailed
in section 1.5.

1.1 Background and Motivation

Birds play an important part in the ecosystem, providing several important ser-
vices. Some of the most widespread and significant services birds provide are pop-
ulation control through predation, pollination through interaction with plants,
and seed dispersion by consumption of fruits (Whelan et al. 2008). Because of
human activity and habitat destruction, the number of bird species has seen a
decline. Currently, the percentage of bird species vulnerable or under threat
of extinction within Europe is about 13% (European Commission. Directorate
General for Environment. et al. 2022). The decline of birds negatively impacts
the ecosystem they inhabit because of the important services they provide, as
mentioned above. Therefore, it is essential to monitor the population of different
bird species to know when measures for species preservation must be taken.

The monitoring of bird species is not only used for inter-species health assessment
but also general environmental health assessment. The monitoring of different
bird species within an ecosystem can be used for assessing the health of the ecosys-
tem (Kahl, Wood, et al. 2021). Birds are found living in a variety of ecological

1



2 CHAPTER 1. INTRODUCTION

habitats across the earth as carnivores, herbivores, and omnivores. Ornithology
is also an extensively studied subject of science, making the knowledge of bird
ecology large compared to many other biological taxa (Koskimies 1989). These
factors make birds a good candidate for being an indicator species for monitoring
ecosystem health.

In recent years there have been multiple competitions for autonomous bird clas-
sification with the use of bird vocalization to try and further the progression
of machine learning within bird vocalization classification and detection. These
competitions have been hosted on websites such as Kaggle and ImageClef for
the public to participate. New advances and architectures within deep learning
have made neural network approaches the leading method for solving these tasks.

Some challenges of using deep learning for bird vocalization classification are
the need for large labeled datasets and the handling of unbalanced datasets. For
certain bird species, there are a vast number of recordings available, some having
multiple hours of recordings, while other bird species only have minimal audio
data. Many competition participants try to overcome these challenges by us-
ing pre-trained models (Kahl, Denton, et al. 2021). The pre-training for these
models is usually done on large image datasets and not bird audio, which begs
the question if pre-training on bird audio would be more beneficial for the models.

Large-scale supervised learning on bird audio is challenging, as most of the data
available is unlabeled or weakly labeled, where one does not know what bird can
be heard in what segment of the audio recording. With the new progress of self-
supervised learning, this hurdle can be overcome as one can pre-train a model on
unlabeled data. This pre-training method has shown promise in computer vision
with implementations such as, SimSam (X. Chen and He 2020) and SimCLR
(T. Chen et al. 2020), performing equally or close to its supervised counterpart.
Self-supervised learning has not been extensively tested on the bird vocalization
classification domain. Therefore, it is interesting to see how well models self-
supervised on bird vocalization compare to models pre-trained on images for the
task of bird vocalization classification.
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1.2 Goals and Research Questions

This section states the goal and research questions that drive this master thesis.

Goal
The thesis goal is to investigate the effectiveness of self-supervised learning
on the bird vocalization classification problem.

To further specify the means to achieve the goal, two research questions to be
explored have been formulated.

Research question 1
What augmentations for the self-supervised model give the best results?

Research question 2
How does the self-supervised model compare against a supervised model pre-
trained on ImageNet, with linear fine-tuning and end-to-end tuning on dif-
ferent amounts of training data?

1.3 Research Method

To explore the two research questions, a self-supervised learning scheme will be
implemented to pre-train a model on an unlabeled dataset of bird vocalizations.
Different combinations of data augmentations during the self-supervised training
will be tested to find what augmentations produce the best performing model.
This model will then be compared to a model pre-trained on the image dataset
ImageNet by linearly fine-tuning and end-to-end tuning each model on a smaller
labeled dataset of bird vocalizations.

To evaluate the self-supervised model, the model will be fine-tuned on a smaller,
manually labeled dataset of bird vocalizations. To evaluate the data augmen-
tations, the fine-tuned model will be run on an unseen dataset where the top-1
accuracy for each model will be calculated. For the comparison with a model
pre-trained on ImageNet, the models will be run on an unseen dataset where the
top-1 accuracy will be calculated, and the models’ ability to cluster embeddings
will be visualized.
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1.4 Contributions

This thesis aims to contribute to the field of bird vocalization classification by
investigating the use of self-supervised learning on unlabeled bird vocalizations
for the downstream task of fine-tuning a bird vocalization classifier. This thesis
will compare different combinations of data augmentations for the self-supervised
learning scheme and test if models using self-supervision on bird vocalization can
produce better results than models using supervised pre-training on images. To
the best of the author’s knowledge, such comparisons have not been made within
the field of bird vocalization classification.

1.5 Thesis Structure

The master thesis is partitioned into six chapters. Chapter 1 introduces the topic
of bird vocalization classification and lays out the objective of the master thesis.
Chapter 2 presents the background information relevant to the thesis regarding
bird vocalization, convolutional neural networks, self-supervision, and audio rep-
resentation. Chapter 3 gives an overview of earlier papers and contributions to
the field of bird vocalization classification and self-supervision. Chapter 4 goes
through the methodology used in this thesis and describes how experiments will
be conducted and how the results will be produced. Chapter 5 presents the results
from the conducted experiments and discusses these findings in light of previous
work on self-supervision and bird vocalization classification. Lastly, chapter 6
summarizes the work done in this thesis and discusses the key implication of the
results with respect to the general research questions.



Chapter 2

Background Theory

Large parts of this chapter were taken from my project report (Norum 2022).
This chapter covers the background information needed to understand the top-
ics discussed in this thesis. Section 2.1 introduces the function of bird vocaliza-
tion. Section 2.2 covers the general workings of the convolutional neural network.
Section 2.3 introduces the concept of data augmentation when training machine
learning algorithms. In section 2.4, self-supervised learning and contrastive learn-
ing are introduced. Section 2.5 introduces digital audio representations and how
audio inputs to convolutional neural networks are generated. Lastly, an overview
of the performance metrics used in this thesis to evaluate deep learning models
is given in section 2.6.

2.1 Bird Vocalization

When doing machine learning tasks, it is beneficial to have some basic domain
knowledge to base decisions on. Domain knowledge is often useful when exam-
ining the collected data and designing the pre-processing pipeline. While many
species of birds have different vocalizations, this section will introduce general
bird vocalization and its general characteristics.

Birds produce vocalizations through the syrinx. In birds, the syrinx is situated at
the lower end of the trachea, splitting into two bronchi as depicted in figure 2.1.
The vocalizations are generated by air flowing through the syrinx, making the
tympanic membranes on the walls of the bronchus vibrate (Kumar 2003). The
syrinx can vary among bird species, but its general anatomy stays consistent.
Having two channels with tympanic membranes allows birds to produce sounds
individually through each channel, giving increased vocalization complexity.

5
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Figure 2.1: Depiction of the syrinx taken from (Kumar 2003).

Birds can be grouped into two subgroups. Songbirds and non-songbirds. The
songbirds have a more complex syrinx with more muscles compared to the group
of non-songbirds (Kumar 2003). Songbirds are vocal and have complex vocal-
izations. Some non-songbirds are also vocal but often with less complexity in
their vocalizations. Bird species that use vocalization often have more than one
distinct vocalization. These vocalizations vary from species to species, but the
range of bird vocalization across species lies between 250 Hz and 8.3 kHz (Kahl
2020).

Bird vocalization can generally be divided into two groups, songs, and calls.
Songs tend to be more complex than calls and are used to attract potential
mates and agnostic signaling (Okanoya 2008). Bird songs consist of an ordered
sequence of discrete elements called notes. A grouping of notes is called a sylla-
ble, and a group of these syllables is called a phrase.

Calls are shorter than songs and used for signaling. Birds usually have sev-
eral types of calls, which are classified based on the context they are used in,
such as distress, roosting, and begging (ibid.).

As mentioned in section 1.1, monitoring birds is important because of their con-
tribution to their ecosystem and for being an indicator species. The monitoring
of birds in an ecosystem is often done by point count surveys. Point count ob-
servations are limited to the area and time where the observers are and are,
therefore, limited in their observations and costly (Clough 2020). Since birds
are vocal animals, with the syrinx giving most species distinct calls and songs,
recent trends of using autonomous recording units for remote monitoring of birds
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have taken place (Bobay et al. 2018). This eliminates the need for physical point
count surveys but still requires hours of listening to recordings. Because of the
large time consumption of manual bird surveying, an interest within the birding
and artificial intelligence community has risen to try and use machine learning
on bird vocalization for classification and labeling.

2.2 Convolutional Neural Networks

As mentioned in section 1.1, deep learning methods using neural networks are the
approaches showing the most promise in the field of bird vocalization detection
and classification. Of the deep learning architectures, the most commonly used
architecture in competitions is the convolutional neural network. This architec-
ture is often seen used among the top-ranking competitors on both Kaggle and
BirdClef.

The convolutional neural network (CNN) is a subcategory of the artificial neu-
ral network. The general architecture of the convolutional neural network has
taken inspiration from findings in how the primary visual cortex process visual
stimuli (Lindsay 2021). CNNs have shown great results in the task of image clas-
sification and object detection, and are commonly used within computer vision.
There are several different implementations of the CNN, but they all usually uti-
lize three main components, the convolutional layer, the pooling layer, and the
fully connected layer. Figure 2.2 shows a common convolutional neural network
architecture layout starting with a convolutional layer followed by a sequence of
alternating pooling layers and convolutional layers, before ending in a sequence
of fully connected layers.

Figure 2.2: Overview of a general CNN architecture with a combination of con-
volutional layers, pooling layers and fully connected layers (Koushik 2016).



8 CHAPTER 2. BACKGROUND THEORY

2.2.1 Convolutional Layer

The convolutional layer is the foundation of the convolutional neural network
and plays a key part in extracting information and features from the input for
later use in the fully connected layers. As mentioned, a convolutional layer can
extract simple features. By having several convolutional layers downstream, the
network can use previous convolutional layer outputs to build more complex and
semantically meaningful features (Wu 2017).

The way these convolutional layers extract features from their inputs is with
the use of filters called kernels. These kernels can be of any specified shape and
slide over the input to calculate the output as the matrix product between the
kernel and the current section the kernel is over. The movement of the kernel can
be given by the stride, which tells the kernel how many rows and columns to move
before doing a new calculation. Usually, each convolutional layer has several ker-
nels. The kernel values are usually learned by the network. Therefore, there is no
need to explicitly set these weights since the network finds suitable filters during
training. The output shape of these layers is (x, y, number of kernels) where x
and y are dependent on the shape and stride of the kernel. Figure 2.3 shows a
simplified example of how the output of a convolutional layer is calculated.

Figure 2.3: Simplified example of computing output of convolutional layer with
kernel size equal to 3 x 3 and stride equal to 1 x 1.
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2.2.2 Pooling Layer

The convolutional layers are often followed by pooling layers. The objective of
the pooling layer is to reduce the dimensionality of the representation, reducing
the computational complexity of the network (O’Shea and Nash 2015).

Like the convolutional kernel, the pooling layer uses a sliding window with a
size and a stride parameter to calculate output values over its inputs. There are
different methods for pooling, where max pooling and average pooling are the
most common. During max pooling, the highest value within the window is cho-
sen as the output, while all the other values are discarded. In average pooling,
the average of all the input values within the window is computed and used as
the output. Figure 2.4 illustrates how max pooling is done. Because the pooling
method is given by the network architecture there are no trainable features in
the pooling layers.

Figure 2.4: Example of max pooling with kernel size equal to 2 x 2 and stride
equal to 2 x 2.

Since the pooling layer reduces the dimensionality of the input, some of the infor-
mation from the input is lost. Using a large kernel size can lead to poor results
as too much information is lost. Therefore, it is normal to use a small kernel size
during pooling (ibid.). The use of overlapping sliding windows can also be used
during this step.
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2.2.3 Fully Connected Layer

After the convolutional and pooling layers, the output is usually flattened and
sent through the fully connected layers. These fully connected layers are equal
to the standard neural network, where all neurons in a layer are connected to all
other neurons in the previous layer and the next layer. If the CNN is used in
classification, the fully connected layers use the feature representation extracted
from the previous convolutional layers to classify the input, where the size of the
last fully connected layer is equal to the number of classes.

2.3 Data Augmentation

Data augmentation is a technique to increase the size of the training dataset with-
out adding new data or labels to the dataset. This is done by taking instances
from the collected dataset and augmenting some aspects of the data while giving
the new augmented data the same label as the original.

Data augmentation is often used to combat overfitting on smaller datasets. Over-
fitting is when the model learns structures specific to the training dataset that
are not representative of the general data it tries to learn. This leads to the model
performing worse on data that was not in the training dataset. Overfitting can
be observed during training when the loss on the training set decreases while the
loss on the validation set increases.

Using data augmentation while training will make the smaller dataset repre-
sent more data points for what could be encountered later in unseen datasets,
and lowers the possibility of the model learning dataset-specific structures. It
can also be used to decrease the impact of unbalanced datasets by augmenting
instances of classes with fewer instances to achieve a more balanced dataset.

For image recognition with convolutional neural networks data augmentations
is often visual, such as cropping an image and resizing it to the original size,
adding noise to the image, or augmenting the color distribution of the image.
Several augmentations are often done on the same instance.
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2.4 Self-Supervised Learning

Most bird vocalization datasets, such as Xeno-canto (xeno-canto n.d.), are com-
prised of weakly labeled data. Often in these audio datasets, each audio file has
a bird species label, but it is not specified where in the audio file the bird is. This
can make it hard to do supervised learning as one has to manually go through the
audio files to retrieve the bird vocalizations of the labeled bird. These audio files
can often be several minutes long which leads to a time-consuming manual data
preparation step. There is also a big discrepancy in the number of audio samples
in these open bird vocalization datasets, with some bird species having several
hundred samples, while others only have a couple. Therefore, one might not have
enough data on certain species to train a supervised learning model adequately.
In these circumstances, self-supervised learning can be applied.

The idea behind self-supervised learning is to leverage large amounts of unla-
beled data by making a training scheme that does not require labels, called the
pretext task. The pretext task uses the unlabeled data to train a model to extract
useful features from the data given. After the pretext task is done, the model
can then be trained on a smaller labeled dataset, called the downstream task,
requiring less data and training time.

There are many different methods for constructing a self-supervised pretext task,
but in recent years there have been made several advances in contrastive learn-
ing and non-contrastive learning for computer vision, with frameworks such as
SimCLR and MoCo performing close to their supervised counterparts (T. Chen
et al. 2020) (He, Fan, et al. 2019). Contrastive learning is a specific method
for constructing a self-supervised pretext task where an encoder model is given
pairs of positive and negative samples. The goal of the encoder is to generate
embeddings where the positive samples are close to each other and the negative
samples are far apart (Jaiswal et al. 2020). To measure the distance between
the two embeddings a similarity metric, such as cosine similarity, is used. In
computer vision, the positive pair is often derived from augmenting an image
to produce two different views from the same ground image, while the negative
pairs are derived from two different images from the unlabeled dataset. Figure
2.5 gives an example of a positive and negative pair of images. These positive and
negative pairs are often passed through a siamese network architecture, depicted
in figure 2.6, where each branch is given one image from the pair. In each branch,
the encoder tries to produce embeddings that are far apart or close to each other
depending on the type of image pair. A similarity metric is used to produce a
loss from the embeddings that can then be used to update the weights of the
neural network.
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Non-contrastive learning is almost identical to contrastive learning, only having
three minor differences. The first difference is that non-contrastive learning does
not utilize negative pairs, using only positive pairs during the self-supervised
training. The second difference is that non-contrastive models use an extra pre-
dictor module at the end of one of the branches. The last difference is that the
network only propagates the calculated gradients through the branch with the
predictor module, as depicted in figure 2.7.

When using contrastive learning or non-contrastive learning for pre-training,
there is a possibility for the training scheme to produce a collapsed solution.
A collapsed solution means that the model produces the same output regardless
of the input. When the contrastive learning scheme collapses the encoder is not
able to learn good representations of the input, and the performance of the model
on the downstream task will decrease.

(a) A positive pair of images. (b) A negative pair of images.

Figure 2.5: Example of negative and positive pairs (images taken from the Stand-
ford Dogs dataset (Khosla et al. 2011)).

Figure 2.6: Contrastive learning where xq and xk are a pair of images going
through separate branches of the network. (Jaiswal et al. 2020).
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Figure 2.7: Non-contrastive learning that only uses positive pairs, a predictor,
and a stop-gradient on one of the branches (X. Chen and He 2020).

The augmentations that are done during the pretext task greatly influence the
model’s performance on the downstream task, as the model will learn to ignore
the applied augmentations when learning the underlying structure. Therefore,
it is important to pick augmentations that do not impede the model’s ability to
learn good embeddings. For example, if one is using contrastive learning for the
downstream task of classifying healthy and sick leaves, one should probably not
use grayscale as an augmentation, as the color of the leaf could be an important
feature for classifying a leaf as healthy or sick.

The purpose of self-supervised learning is always to apply the trained model
on a downstream task. One can think of self-supervised training as pre-training
a model using unlabeled data, for then to use the encoder part of the pre-trained
model to further train on a smaller labeled dataset, as depicted in figure 2.8.
By having learned the underlying structures of the unlabeled dataset, learning
on a labeled dataset will be quicker requiring a smaller dataset to get the same
performance as a larger labeled dataset.

A common way of applying a self-supervised model on the downstream task
is either to add a new classification head at the end of the encoder model and
freeze the encoder model weights, training only the last layers on the labeled
dataset, or add the classification head and fine-tuning the whole model on the
labeled dataset.
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Figure 2.8: Pre-trained self-supervised model used on a downstream tasks.
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2.5 Audio Representation

This thesis is concerned with contributing to the ongoing research on bird vo-
calization classification and detection. Seeing that the media used in this field
of research is audio, it is important to discuss and explore what the best repre-
sentations of these vocalizations are, as the performance of a neural network is
highly dependent on the quality of the input and training data.

Sound is constructed by the propagation of pressure differentials through a medium,
such as air. The different frequencies of the pressure differentials and the differ-
ence of the high- and low-pressure zones, determine what we perceive as different
tones, sounds, and loudness. All these features of sound are continuous. Since
computers and neural networks are not able to use continuous values, a discrete
representation for these sounds must be presented as inputs to the neural network.

2.5.1 Digital Audio

Most of the publicly available datasets of bird vocalization are in the format of
digital audio, either as .wav or .mp3 files, where .mp3 is compressed while .wav
is not. The way these files store the information from the original audio is by
sampling the original sound wave at a fixed sampling rate within a given bit
depth. From these files, the audio information can be fetched using tools for
audio extraction. The resulting output is often a one-dimensional array of length
sr · s, where sr is the sampling rate and s is the duration of the audio in seconds.
This array contains a time series representing the amplitude of the waveform of
the different sample instances.

Audio files from bird vocalization datasets can have different durations, all from
a few seconds to several minutes. To make this research simpler it is a good
idea to decide on a fixed duration for the model’s input. Choosing the correct
duration for the audio input is not a simple task, as different birds might have
different durations for their vocalizations. Having the input be too short might
lead to longer bird vocalizations being cut early, losing out on valuable informa-
tion for the classification task. Making the input longer makes the model larger
and can lead to unnecessary noise that does not help with classification or detec-
tion. Many previous papers covering the topic of bird vocalization classification
use audio chunks from 3 seconds to 7 seconds, which suggests using audio of
duration much greater than 7 seconds does not lead to improved results (Kahl
2020) (Y. Zhang et al. 2022) (Yan et al. 2021).
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It is not only the duration of the audio segment that affects the input size.
As mentioned, the sample rate of the audio also affects the length of the array
fetched. Therefore, it is important that all the audio files are re-sampled to the
same sample rate, to give the audio segments of fixed duration the same-sized
array. The decision of the fixed sample rate is also an important one. Because of
the Nyquist-Shannon sampling theorem (Shannon 1949), the choice of sampling
rate will affect the highest frequency captured from the audio. This frequency is
called the Nyquist frequency and is half the sampling rate.

These decisions of audio duration and sampling rate are important decisions
and need to be chosen with care. Using the resulting time series as input is often
not sufficient for getting good results. One issue is the length of the array. One
audio segment at 7 seconds sampled at a low sample rate of 16,000 will produce
a time series array of length 112,000. Therefore, it is usual to take this generated
array and turn it into a different representation of the audio.

2.5.2 Spectrograms

For general audio classification and detection in deep learning, it is normal to
use a spectrogram as input to the model. This is also a popular representation
used in the bird vocalization classification field. The spectrogram changes the
audio representation from a one-dimensional array to a two-dimensional array
and makes it more visually comprehensible, as seen in figure 2.9. This visual
representation also makes it easier to sift through a dataset to get a better un-
derstanding of the general traits of the audio samples.

Figure 2.9: Spectrogram of a 7-second audio clip containing the vocalization of
a Willow Warbler.
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The spectrogram is a time-frequency representation of the audio waveform, where
the x-axis is time, and the y-axis is frequency. The conversion from waveform to
a frequency representation is done with the Fourier transform, shown in equation
2.1 (Oppenheim 1970). This equation transforms the waveform from the time
domain to the frequency domain, where t is time and w is the frequency, and the
output X(w) is a complex number where the real component is the magnitude
of the frequency w, while the complex component is the phase of the frequency.

X(w) =

∫ ∞

−∞
x(t)e−i2πwtdt (2.1)

The Fourier transform in equation 2.1 is for continuous time. As digital audio
uses discrete time, the use of the discrete Fourier transform is used instead,
shown in equation 2.2 (Duraisamy 2001). Here frequencies are not continuous but
separated into bins, where N is the length of the array containing the amplitude
values, xn is the amplitude at position n, and k is the frequency bin for the
computed value. The number of bins is the sampling frequency divided by N .

Xk =

N−1∑
n=0

xne
−i2πkn/N (2.2)

The discrete Fourier transform gives only information about the frequencies of
the waveform. To get information about both time and frequency over discrete
time, as spectrograms do, the discrete short-time Fourier formula is used. The
discrete short-time Fourier transform, shown in equation 2.3, takes the discrete
Fourier transform over separate parts of the sampled waveform. This is done
with a sliding window, and the discrete Fourier transform is calculated within
the window (Mertins 1999). Here N is the frame size of the window, and H
is the hop size deciding how much the window slides per step. w(n) is the
sliding window function which is often a Hann window. The Hann function is a
smoothing function making the signal inside the window periodic. This lowers
spectral leakage as discontinuities in the window results in additional frequencies
(Leakage n.d.). This equation will give us both information of time and frequency
as the position of the sliding window changes.

X(m, k) =

N−1∑
n=0

x(n+mH)w(n)e−i2πkn/N (2.3)

When computing the discrete short-time Fourier transform over the different time
steps the resulting output is a two-dimensional matrix of complex values, where
frequency bins are on the y-axis and time, or time steps, are on the x-axis. To



18 CHAPTER 2. BACKGROUND THEORY

get the real-valued magnitude of the different frequency bins, the absolute value
is computed on the values in the matrix |X(m, k)|. If these values are squared
the resulting matrix can then be displayed as a power spectrogram. This power
spectrogram has large distances between the high values and low values of the
matrix and is not representative of how we hear different noise levels (Foley and
Matlin 2015). To make the spectrogram more representative of human hearing
it is normal to apply a logarithmic function to the matrix values, seen in figure
2.10.

(a) Before applying logarithmic function. (b) After applying logarithmic function.

Figure 2.10: Applying a logarithmic function to the spectrogram.

When using the discrete short-time Fourier transform there is a trade-off between
frequency resolution and time resolution that must be taken into consideration.
The number of frequency bins for the spectrogram is given by the frame size,
as seen in equation 2.4. While the number of frames (or time steps) is given by
equation 2.5. The larger the frame size is the larger the number of frequency
bins get, but the smaller the number of frames will be. It is possible to adjust for
this by decreasing the hop size, but then the spectrogram will have more overlap
of the previous time steps. Figure 2.11 shows different configurations of frame
length and hop size.

number of bins =

⌊
frame size

2

⌋
+ 1 (2.4)

number of frames =

⌊
samples− frame size

hop size

⌋
+ 1 (2.5)

The spectrograms this paper is most interested in will be generated from the
vocalizations of birds. Most birds can hear frequencies spanning from 500 to
6000 Hz, where hearing outside of this range decreases rapidly (Okanoya 2008).
Birds also have a high sensitivity to frequency changes, with studies showing
some birds are capable of discriminating a change of 1% in frequency (Kahl
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2020). This ability in birds to discern frequencies, points towards that having
a high-frequency resolution in spectrograms can be beneficial for classification.
Bird songs are usually made up of a sequence of discrete vocalizations called notes
(Okanoya 2008). These pauses between notes tend to be small. To be able to get
a good representation of the different notes in a spectrogram, the time resolution
on the spectrogram should be high. This leads to a difficult decision where a
compromise between the frequency resolution and time resolution must be made.

(a) Frame size 512 and hop size 256. (b) Frame size 512 hop size 100.

(c) Fame size 1024 hop size 512. (d) Frame size 1024 hop size 100.

Figure 2.11: Spectrograms of the same audio recording with different frame sizes
and hop sizes.

In addition to the spectrogram, the mel-spectrogram is a popular choice for audio
representation. The spectrogram depicts frequencies on a linear scale. Humans
do not perceive changes in frequencies as linear, having more of a logarithmic
perception for higher frequencies (Kahl 2020). To reflect the human perception
of frequencies the mel scale is used. The mel scale transforms the frequency scale
to a logarithmic scale using equation 2.6. When applied to a spectrogram one
gets the mel-spectrogram, shown in figure 2.12, which can also be used in audio
classification tasks.

mel = 2595 · log10(1 +
frequency

700
) (2.6)
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(a) Spectrogram. (b) Mel-spectrogram.

Figure 2.12: Comparison of spectrogram and mel-spectrogram.

2.6 Performance Metrics

In order to compare and evaluate different deep learning models, it is impor-
tant to have good performance metrics. Given that this paper is concerned with
the performance of self-supervised models trying to identify different bird species
based on their vocalizations, metrics for classification will be used.

When doing classification, there are four outcomes a classification can be grouped
into, which is depicted in table 2.1. The table depicts a binary classification task.
If the predicted class is true and the ground truth was true, the model produced
a true positive (TP). If the model predicted true and the ground truth was false,
the model produced a false positive (FP). If the model predicted false and the
ground truth was false, the model produced a true negative (TN). Lastly, if the
model predicted false, but the ground truth was true, the model produced a false
negative (FN). For a multi-class classification task, one only looks at one class
at a time in order to count the size of each group with the help of a confusion
matrix.

Table 2.1: Possible outcomes of binary classifications.

Ground truth
True False

Predicted
True TP FP
False FN TN
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2.6.1 Accuracy

Accuracy is a metric calculated over all classes and looks at the overall classifica-
tion accuracy of the model. This is done by creating a confusion matrix, summing
the diagonal, and dividing by all cases. When calculating accuracy, it is usual
to calculate top-1 accuracy, where in order to be counted as a true positive the
correct class must be the top suggestion of the model. This is in contrast to top-5
accuracy where a true positive is counted if the correct class is among the top 5
suggestions of the model.

2.6.2 Linear Evaluation

When testing the performance of a self-supervised model, it is normal to use a
linear evaluation on the pre-trained model. During the linear evaluation, the
model weights are frozen and linearly fine-tuned by appending a linear layer to
the head of the model and training it on a downstream dataset. After the linear
fine-tuning is done, the encoder model with the linear layer appended to it is
tested on an unseen validation set, and the accuracy of the model is calculated.

2.7 Summary

This chapter introduced the basics of bird vocalizations, describing how bird
vocalizations can be classified into songs and calls, and the tendency for vocal-
izations to lie between 250 Hz and 8.3 kHz. This chapter has also given an intro-
duction to convolutional neural networks and audio representations, describing
how audio can be represented as two-dimensional spectrograms with the Fourier
transform, making it possible to use convolutional neural networks for classifica-
tion tasks on audio recordings. Self-supervised learning has also been presented,
describing how contrastive and non-contrastive learning can be used to pre-train
a neural network model with the use of large unlabeled datasets, for then to
be fine-tuned on a smaller dataset with labels. Lastly, a method of evaluating
classification models has been presented.
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Chapter 3

Related Work

Large parts of this chapter were taken from my project report (Norum 2022).
Bird vocalization classification is a popular machine learning topic, having been
the focus of many public competitions over the last few years. As a consequence
of its popularity, several papers have been written, contributing to the domain.
This chapter will describe how the research on bird vocalization classification and
self-supervision was conducted. It will introduce and compare different papers
related to this research to give the reader a better view of the current landscape
of bird vocalization classification and self-supervision. It is important to note
that one can not directly compare the performance of architectures against each
other, as different datasets were used. In section 3.1, a description of the re-
search conducted to gain domain knowledge is described. Section 3.2 gives an
overview of the current state-of-the-art within bird vocalization classification. In
Section 3.3, previous solutions from bird vocalization classification competitions
are presented. Section 3.4 gives examples of different self-supervised learning ap-
plications related to this research. Lastly, section 3.5 describes the use of transfer
learning on bird vocalization classification in other related papers.

3.1 Structured Literature Review

When researching and reading about new topics, it is important to be structured.
Structuring and planning the research makes it easier to find relevant papers, as
well as to avoid wasting time sifting through non-relevant topics.

23
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3.1.1 Search Process

To get an introduction to the topic of bird vocalization classification, the de-
scription of the Kaggle competition introducing this master’s was read (Cornell
Birdcall Identification n.d.). The Kaggle description gave insight into the motiva-
tion for the task of bird vocalization classification, and how the raw data of bird
audio were handled. The Kaggle site contained links and acknowledgments to
datasets and other similar competitions, such as the BirdClef competition (Bird-
Clef competition 2021 n.d.).

After reading the Kaggle competition an extensive literature search was per-
formed. The literature search started first with one query, “bird song classifica-
tion”, to serve as test search terms to get a couple of relevant articles regarding
the research topic. These search terms were used on the Google Scholar and
Google search engines. The papers discovered through this search gave the au-
thor a deeper insight into the research topic through citations to other papers
and a broader vocabulary that was then used to construct several search queries.
These search queries were,“bird song detection”, “audio classification”, “bird
acoustics”, “bird vocalization classification”, “bird sound classification”, “avian
acoustics classification”, and “avian audio classification”.

Other bird vocalization classification competitions were also researched to get
a better understanding of the current deep learning methods used. The BirdClef
competition was shown to have been held several times in previous years, where
for each competition the organizers released a report on the outcome of the con-
test and cited papers of the top solutions. These reports from the competitions
were read and the papers with the most relevant solutions were also read.

With the information gained from the first period of literature research, the au-
thor was able to find new possible research topics within bird vocalization classifi-
cation that could be of interest. After exploring different possibilities, the author
landed on the topic of self-supervised learning for bird vocalization classification.
After deciding on the topic, another round of literature search was done, focus-
ing on the intersection between audio classification and self-supervised learning.
To start with, the author read papers about self-supervised learning previously
handed out in another course, before searching for new papers. The search queries
used to find relevant papers during this second period of literature research were,
“self-supervised learning”, “self-supervised audio classification”, “self-supervised
bird song classification”, “self-supervised bird vocalization classification”, “pre-
training bird song classification” and “unsupervised audio classification”. These
search terms were used on the Google Scholar and Google search engines.
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After the last round of literature research was performed, enough domain knowl-
edge was gained to formulate a research goal and research questions that could
be seen as a contribution to the topic of bird vocalization classification.

3.1.2 Selection Criteria

During the literature search, only articles with known authors were taken into
account. The papers had to be published with credible results, and a good de-
scription of the methods used in the papers.

Since the field of bird vocalization in deep learning is in constant evolution, more
recent papers were preferred, whereas all papers before 2015 would not be consid-
ered. For self-supervision, this cut-off was even stricter, as there is only in recent
years that self-supervised models have shown results close to their supervised
counterparts. Therefore, all papers published before 2018 were not considered.

Because of the large number of contributions to the field of bird vocalization clas-
sification, only the most relevant papers were taken into consideration. Therefore,
papers regarding convolutional neural networks on bird vocalization classification
were prioritized. The same holds for papers regarding self-supervision, where pa-
pers of self-supervision on the audio domain were prioritized.

3.2 State of the Art Bird Vocalization Classifica-
tion

One of the largest contributions to the field of bird vocalization classification
using deep learning is written by one of the organizers of the BirdClef competi-
tions. Stefan Kahl developed a research platform named BirdNet, using expert
domain knowledge. Kahl trained on a dataset containing 987 different classes and
80,000 distinct vocalizations, which is described in the paper Identifying Birds by
Sound: Large-scale Acoustic Event Recognition for Avian Activity Monitoring
(Kahl 2020).

To create a dataset of bird vocalizations, Kahl acquired data from the publicly
available datasets Xeno-canto, eBird, and Macaualay Library (ibid.). To decide
what species would be featured in the dataset he curated a list of the 595 bird
species in America considered to be vocal and likely to be observed during mon-
itoring. A list of common European bird species was also curated through data
from the eBird project. Due to large differences in incidences per class in the
Xeno-canto dataset, the max number of cases per species downloaded was set to
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250 and a lower threshold of 10 species per class was also implemented to avoid
data bias in the model. Non-bird vocalizations were also added to the dataset,
with audio from the Google AudioSet and FreeField, containing audio such as
humans, locomotion, and insects, being added to the dataset.

As mentioned in section 2.5.2, spectrograms are a widely used representation in
audio classification. Since there are many hyperparameters when creating spec-
trograms, such as audio duration and frame size, Kahl used domain knowledge to
explore different parameters. Kahl tested three different audio durations, 2.0 sec-
onds, 2.5 seconds, and 3.0 seconds. From these tests, he found that the 3-second
spectrograms significantly improved the classification of single spectrogram pre-
diction, while shorter durations led to better mono-species prediction in sound-
scapes recordings. Kahl also tested the trade-off between frequency and temporal
resolution of spectrograms, discussed in section 2.5.2. Through empirical testing,
the result showed that higher temporal resolution had some performance benefits
and that these benefits were most noticeable in noisy environments. Kahl also
concluded that temporal resolution is more important than frequency resolution
(Kahl 2020). It is important to note that Kahl did not use standard spectro-
grams but a mel-like spectrogram with a self-defined mel frequency scale given
by equation 3.1 with a cut-off at 150Hz and 15kHz and binning them into 64
mel bins. After empirical testing, Kahl ended up using 3 seconds of audio and a
frame size of 512, resulting in a spectrogram shape of (64, 384).

fscaled = 4581 · log10(1 +
f

1750
) (3.1)

For the architecture, Kahl uses a self-defined convolutional neural network based
on the ResNet architecture. During testing, he concluded that deeper topologies
perform better than shallow ones, but require more computing power. Therefore,
two models were built. One shallow model for deployment on a raspberry pi, and
one deeper and wider not intended for mobile use. While training the network,
data augmentations such as frequency masking, time masking, adding noise, and
distortion, were applied to the spectrograms. These data augmentations were
used to train the model on more diversified data to make the model generalize
better. When training the models, the training set contained a total of 1,727,234
spectrograms with a maximum of 3000 cases per class.

After training, the two resulting models were evaluated on a balanced test set
with a total of 2,868 spectrograms where each class had a maximum of 3 cases.
For mono-species classification, the larger model and the smaller model achieved
a top-1 accuracy of 0.777 and 0.699 respectively, as seen in figure 3.1.
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Figure 3.1: Evaluation of the two BirdNet models on the test set (Kahl 2020).

3.3 Bird Vocalization Competition

As mentioned in the introduction to this chapter there have been numerous open
competitions on bird vocalization classification, and many of the competitors
with the highest scores have published their methods and results through open
publisher sites such as Ceur (CEUR-WS n.d.).

From the BirdClef competition of 2021, the first-place participants published
their methods (Kahl, Denton, et al. 2021). BirdClef 2021 had the challenge of
identifying all bird calls in soundscape recordings, where each recording was di-
vided into 5-second audio clips (ibid.). The winners of the competition were
Murakami et al. Their solution to the task was to use a CNN for bird audio pre-
diction combined with a decision tree for the associated metadata of the audio
to give a more powerful prediction (Murakami et al. 2021). In addition to the
dataset provided by BirdClef, they used audio from freefield1010 to use as no-call
training samples. The audio clips were converted to mel-spectrograms with 128
bins, using a frame size of 3200 samples and a hop size of 800 samples. The train-
ing of the classification system was separated into three parts. In the first part,
a no-call detector was trained using the ResNeXt50 architecture. This model
was then used in the second part to train a multi-label classifier. For training the
multi-label classification model, ResNeSt50 was used. Here the labels were multi-
plied with the output of the no-call detector, as the audio recordings were weakly
labeled and did not have any timestamp for the vocalization. For the third part,
a decision tree was constructed, using the top 5 most likely bird species, given
by the multi-label model, and audio clip metadata as input to classify the birds
present. This combination of multiple deep learning models and a decision tree
gave an F1 score of 0.6932 on the hidden dataset and first place in the competition.

In an earlier BirdClef competition from 2018, there were two tasks, mono-species
prediction and soundscape multi-species prediction (Goëau et al. 2018). The
dataset used in this competition was based on Xeno-canto and contained 1500
different bird species. The participant taking first place in both mono- and multi-
species prediction tasks was Lasseck. Lasseck used ensemble CNNs where the
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networks were pre-trained on the ImageNet dataset. What stood out about
Lasseck’s submissions was the number of augmentations done during training.
Lasseck used a combination of 15 different augmentations on the dataset (Lasseck
2018). Some of the augmentations were, adding background noise to the audio,
stretching time and frequency intervals, dropping chunks of samples from the
bird audio, and lowering audio quality. To assess the effects of different augmen-
tations on performance, Lasseck compared a model using all augmentations with
models where one augmentation was absent, seen in figure 3.2. From these tests,
it was shown that almost all augmentations, except for lowering audio quality,
had a positive effect on prediction accuracy. According to Lasseck, the data
augmentations were found to combat overfitting and increase model accuracy.

Figure 3.2: Evaluation of different data augmentations (Lasseck 2018).
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3.4 Self-Supervised Learning

One of the more recent works within self-supervised learning is the paper by Deep-
Mind called Bootstrap Your Own Latent: A New Approach to Self-Supervised
Learning (Grill et al. 2020). In this paper, the researchers introduce a new
self-supervised learning approach they call BYOL, which is used for image rep-
resentation.

The researchers claim that BYOL surpasses its predecessors, like SimCLR and
MoCo, while also avoiding using negative image pairs. When using self-supervised
methods, it is essential to avoid a collapsed solution where all outputs of the model
become equal regardless of the input. The way SimCLR and MoCo avoid this is
by using contrastive learning with negative image pairs, as mentioned in section
2.4. BYOL does not use negative pairs of images and still avoids a collapsed
solution (ibid.).

The researchers developing BYOL took inspiration from SimCLR and MoCo,
and still use a siamese neural network architecture. BYOL uses an online net-
work and a target network as shown in figure 3.3. The researchers built the target
network up of three modules. The encoder module is a ResNet50 without the
last classification layer. The projector module is a multi-layer perceptron with
two layers of size 4092 and then 256. The predictor module is also a multi-layer
perceptron, with the same architecture as the projector. The target network has
the same architecture as the online network but does not implement the predic-
tor module. To update the networks the researchers of the paper chose to use
backpropagation for the online network, and momentum update for the target
network. The equation for the momentum update can be seen in equation 3.2,
where θ is the online network weights, ξ is the target network weights and τ is
the momentum decay rate. The evaluation of the online network is done with
a similarity loss function seen in equation 3.3. The authors describe that the
purpose of this architecture is for the encoder to learn a good representation, yθ
seen in figure 3.3, that can later be used on a downstream task.

ξ = ξτ + θ(1− τ) (3.2)

Lθ,ξ = 2− 2 ·

〈
qθ(zθ), z′ξ

〉
∥qθ(zθ)∥2 · ∥z′ξ∥2

(3.3)
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Figure 3.3: BYOL setup with encoder (fθ), projector (gθ), predictor (qθ) (Grill
et al. 2020).

Even though BYOL does not use negative image pairs, it still avoids a collapsed
solution. The authors of the papers hypothesize that the reason for no collapsed
solution is that there is no loss Lθ,ξ that is jointly minimized over both the online
network and the target network.

Through ablation studies of the BYOL architecture, the researchers found valu-
able information about the batch size, target network decay rate τ , and the
impact of different augmentations. The researchers found that the batch size of
BYOL had an impact on the performance, where higher batch size led to higher
accuracy, but that the accuracy did not drastically decrease before a batch size
of 256, as shown in figure 3.4. The researchers also found that BYOL is much
less affected when removing image augmentations, than previous architectures as
seen in figure 3.4.

To evaluate the performance of BYOL the authors used linear evaluation and fine-
tuning of the whole model on ImageNet. For the linear evaluation, the researchers
added a prediction head on top of the encoder, froze the encoder weights, and
trained only the prediction head. For fine-tuning the whole model, the authors
added a prediction head to the encoder and fine-tuned the whole model on the
training set. The models’ performance was measured on top-1 and top-5 accu-
racy, seen in figure 3.5. BYOL achieved a top-1 accuracy of 74.3% on ResNet50,
with larger backbones scoring higher.
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Figure 3.4: BYOL ablation study of batch size and image augmentation (Grill
et al. 2020).

Figure 3.5: Top-1 and top-5 accuracy for BYOL (Grill et al. 2020).
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The paper Exploring Simple Siamese Representation Learning from Facebook AI
Research (FAIR) presents a simple siamese network for self-supervised learning.
According to the researchers, this architecture learns meaningful representations
without relying on negative sample pairs, large batch sizes, or a momentum en-
coder (X. Chen and He 2020). The proposed architecture, named Simple Siamese
(SimSiam), is built up of two identical encoders (f) and one predictor (h) ap-
pended to one of the encoders. Negative cosine similarity is used to compute
embedding similarity and a stop-gradient is applied on the branch without the
predictor. A depiction of the SimSiam architecture can be seen in figure 3.6.
The researchers note that the SimSiam architecture is similar to BYOL, with the
authors thinking of SimSiam as “BYOL without the momentum encoder” (ibid.).

Figure 3.6: Depiction of the Simple Siamese architecture (X. Chen and He 2020).

In the paper the encoders f are built up of a backbone network followed by
a multi-layer preceptor, while the predictor is also a multi-layer perceptron. For
the empirical study of SimSiam the researchers used a ResNet50 as the backbone,
three fully connected linear layers of size 2048 as the multi-layer perceptron in f ,
and two fully connected linear layers of size 512 and 2048 for the predictor h.

During the empirical study, the researchers tested SimSiam with a variety of
different batch sizes. The results showed SimSiam to perform reasonably well
over a wide range of batch sizes, with a drop of 2.0% for a batch of size 64
compared to a batch size of 256, as seen in figure 3.7.
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Figure 3.7: SimSiam performance across different batch sizes (X. Chen and He
2020).

To test for collapsed solutions during training the researchers computed the chan-
nel average standard deviation of the l2-normalized output of the encoder over
each epoch. According to the researchers the expected value for a non-collapsed
solution is 1√

d
, where d is the output dimension of the encoder. When the stop-

gradient was used during training the researchers did not observe any collapse,
but without the stop-gradient SimSiam produced a collapsed solution. A run of
SimSiam with and without the stop-gradient can be seen in figure 3.8.

Figure 3.8: SimSiam testing for collapsed solutions with and without stop-
gradient (X. Chen and He 2020).

The researchers compared SimSiam to other self-supervision methods on Ima-
geNet with linear evaluation. The researchers found that SimSiam can perform
on par with previous contrastive learning methods, while using smaller batch
sizes, with it performing the best on 100 epochs, but performing comparatively
worse as the epochs increase, as shown in figure 3.9.
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Figure 3.9: Comparison of SimSiam to other self-supervision methods (X. Chen
and He 2020).

While the authors of BYOL used images for self-supervised learning, the authors
of BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Rep-
resentation, BYOL-A for short, researched the BYOL architecture for the audio
domain (Niizumi et al. 2021). The researchers of BYOL-A wanted to study if
BYOL could be used for learning foreground audio representations without the
use of negative samples.

As BYOL uses images as its input, the researchers of BYOL-A had to make
some minor changes to the architecture as seen in figure 3.10. To make BYOL
applicable to the audio domain the researchers produced mel-spectrograms from
audio segments to use as inputs. The backbone used in BYOL-A was also changed
from the ResNet50, used in BYOL, to a smaller CNN model previously used in
the DCASE 2020 challenge (ibid.).

Figure 3.10: Comparison of BYOL and BYOL-A (Niizumi et al. 2021).

The researchers wanted to see if BYOL-A could be used to learn foreground
representations regardless of background noise, as to make downstream tasks
easier to learn regardless of the background audio. To do self-supervised learning
on audio, the researchers of BYOL-A changed the augmentations used to pro-
duce the different views for the inputs. For the first step of the augmentation
chain, pre-normalization was used on the mel-spectrogram. The spectrograms
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were normalized based on the mean and standard deviation of the training set of
spectrograms. After normalization, random background noise was added to the
spectrogram by taking a weighted average of the audio sample and a background
noise sample (mixup). These noise samples were kept in a memory bank with a
size of 2048. After adding the background noise, cropping and resizing using bicu-
bic interpolation (RRC) were done to approximate frequency and time shifting.
At the end of the augmentation chain, the spectrogram was again normalized to
keep the values bounded.

To test the effectiveness of BYOL-A the researchers evaluated the self-supervised
model on six different downstream tasks by doing a linear evaluation. The self-
supervised learning was done with the AudioSet dataset with no labels, which
had a total number of 1,963,807 audio samples. For pre-training, a target de-
cay rate of τ = 0.99, a batch size of 256, and 100 epochs were used. For the six
downstream tasks, the datasets NSynth (NS), UrbanSound8k (US8k), VoxCeleb1
(VC1), VoxForge (VF), Speech Commands V2 (SPCV2), and Speech Commands
V2 with 12 classes (SCV2/12) were tested. To assess the performance of the
model, BYOL-A was compared against other self-supervised audio architectures.
On average over all downstream tasks, BYOL-A performed the best with an ac-
curacy of 77.8%.

To test the impact of the different combinations of augmentations an ablation
study was done, using 10% of the AudioSet dataset for pre-training. In addition
to RRC and mixup, Gaussian noise was also used, as shown in figure 3.11. The
combination of mixup and RRC gave the best accuracy on average, while the top
augmentations for each downstream task varied.

Figure 3.11: Ablation study of BYOL-A augmentations (Niizumi et al. 2021).

Another paper using self-supervision on the audio domain is the paper by Yakura
et al. (Yakura et al. 2022). In the paper, the researchers propose a new self-
supervised learning approach for classifying singing voices. The researchers used
an augmented version of MoCo for the downstream task of classifying singers
based on 5-second audio segments. The researchers used different segments from
the same audio clip as positive pairs, while negative pairs were constructed by
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generating two augmented views of the same audio segment. The data trans-
formations done during the self-supervised training were pitch shifting and time
stretching. The idea behind the change in MoCo’s architecture was that the new
augmentations applied to the audio segments were key features in telling singing
voices apart.

To test the self-supervised model, the researchers compared their model against
another self-supervision approach for music information retrieval called CLMR.
The pre-trained weights of the models were frozen and a classification head of two
fully connected linear layers was added. The models were fine-tuned on a dataset
of singing voices with 500 classes and 20 audio clips per song. The models’ top-1
accuracy can be seen in figure 3.12.

Figure 3.12: Accuracy of augmented MoCo and CLMR (Yakura et al. 2022).

There have also been attempts at using self-supervised transfer learning on the
audio domain. The paper by Shin et al. explores self-supervised learning on the
image domain, for transfer learning on the audio domain (Shin et al. 2021). The
authors of the paper used SimCLR for their self-supervision framework, training
a ResNet50 on unlabeled images from ImageNet, for then to fine-tune the model
on audio datasets.

To evaluate the self-supervised model, the authors compared their model with
a supervised pre-trained ResNet50, trained on ImageNet, and a ResNet50 that
had not been pre-trained. All models were fine-tuned on several audio datasets,
with k-fold cross-validation, using the validation folds for benchmarking. From
the evaluation the authors found that the self-supervised pre-trained model per-
formed better than the untrained model, and on par with the supervised pre-
trained model on all audio datasets. On average over all datasets the self-
supervised pre-training got 87.98%, the supervised pre-training got 88.13%, and
the untrained model got 80.29%.
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3.5 Transfer Learning from Image to Audio

There have not been many papers using self-supervised pre-training for the bird
vocalization classification task, but transfer learning from labeled images to the
audio domain has been attempted. Usually, these papers use well-known network
architectures, such as ResNet, and DenseNet (He, X. Zhang, et al. 2015) (Huang
et al. 2016), which have been previously trained on some other large labeled
dataset of images.

One of the papers using transfer learning from another domain to bird vocal-
ization classification is the paper by Incze et al. The authors of this paper
present a CNN for bird sound recognition and analyze its performance based
on different configurations of image color scales and numbers of classes (Incze
et al. 2018). The researchers used a known convolutional neural network called
MobileNet, which is a smaller CNN designed for mobile computer vision applica-
tions (Howard et al. 2017). The instance of MobileNet used in the paper was pre-
trained on the ImageNet Large Scale Visual Recognition Challenge 2012 dataset
(ILSVRC-2012-CLS), consisting of 1,2 million images with 1000 classes (Ima-
geNet (ILSVRC2012) n.d.). This model was then trained on a custom dataset
compiled from Xeno-canto. To make the dataset compatible with the pre-trained
MobileNet the audio clips were transformed into spectrograms and stored as png
files.

The authors of the paper found the network to perform better when saving the
png files with the jet color scale compared to greyscale, with an average of 7,4%
higher accuracy for jet-scaled png files. The authors hypothesize that the per-
formance difference was due to the MobileNet being pre-trained on color images
(Incze et al. 2018). When classifying between 2 classes the models managed to
score an accuracy above 80%. When increasing the number of classes the mod-
els performed worse and the difference between using jet-scaled and grey-scaled
images increased, as seen in figure 3.13.

Another paper that also used pre-training from the image domain was the paper
by Disabato et al. This paper explores the use of transfer learning to train a
model for birdsong detection on edge devices (Disabato et al. 2021). The paper
presents ToucaNet, a convolutional neural network based on ResNet18, which
is designed for birdsong detection with the constraint of IoT devices in mind.
ToucaNet uses ResNet18 pre-trained on the ImageNet classification task as its
CNN base. The authors argue that using weights from pre-training decreases
the duration of the training phase (ibid.). To generate the spectrograms used as
inputs to the model, the authors sampled 10 seconds of audio at 22050 Hz with
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Figure 3.13: Accuracy of jet scaled and grey scaled png files over variable amounts
of classes (Incze et al. 2018).

a frame size of 512 and a hop size of 512, producing spectrograms with a shape
of (257, 431). According to the authors, this is still too demanding for IoT de-
vices. Because of this, an approximation of ToucaNet was made called BarbNet.
BarbNet is a smaller model where some of the convolutional layers of ToucaNet
are removed dependent on the hardware specifics of the IoT unit. BarbNet also
lowers the input dimensionality by setting the sampling rate to 2205, frame size
to 64, and hop size to 64.

These models were tested on three datasets, Warblbr, Free-field, and BirdVox-
DCASE-20k. According to the authors, ToucaNet is able to perform at the
state-of-the-art level with an accuracy of 92,25% for birdsong detection, while
using 80% of the computational demand of its peers. BarbNet is able to achieve
77,8% accuracy while consuming even fewer resources.

The paper by Zhou et al. investigates the use of pre-training on images to use
for acoustic scene classification (Zhou et al. 2018). The authors note that a prob-
lem for most acoustic scene classification tasks is the lack of training data. As a
solution to this problem, the authors explored different convolutional networks,
pre-trained on ImageNet, and compared their performance against the same net-
works without pre-training. Alexnet, VGGNet-16, and ResNet50 were tested on
the TUT Urban Acoustic Scenes 2018 dataset, containing 10 classes. The record-
ings from the dataset were processed into mel-spectrograms and used as input to
the different models. By comparing the accuracy of the pre-trained models with
models randomly initialized Zhou et al. found that models pre-trained on images
performed better on all model instances, as seen in figure 3.14. With further data
augmentation and changes to the last multi-layer perceptron, the authors were
able to achieve an accuracy of 77.8% with a pre-trained VGGNet-16.
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Figure 3.14: Accuracy of models pre-trained on ImageNet compared to random
initialization of the models (Zhou et al. 2018).

3.6 Summary

This chapter has given an overview of previous work related to the topic of
bird vocalization classification and self-supervised learning. State-of-the-art bird
vocalization classification systems have been presented, such as BirdNet, and
descriptions of key components such as spectrogram generation and neural net-
work architecture have been given. Submissions to bird vocalization classifica-
tion competitions have also been discussed, presenting classification systems that
performed well in open competitions. This chapter has also presented recent
works on self-supervised learning, such as BYOL and SimSiam, and shown how
these architectures can be used to pre-train on unlabeled audio, such as the case
with BYOL-A. Lastly, examples of how transfer learning from the image domain
have been used on bird classification tasks have been displayed, showing different
works using neural networks pre-trained on image datasets for bird vocalization
classification.
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Chapter 4

Methodology

This chapter covers in detail the methodology used in this thesis. Section 4.1 cov-
ers the method used to acquire the unlabeled and labeled datasets and describes
their contents. Section 4.2 describes the process of preparing the datasets for
self-supervised pre-training and fine-tuning. In section 4.3, the different augmen-
tations to be tested for the self-supervised learning scheme are presented. Sec-
tion 4.4 describes in detail the architecture of the chosen self-supervised learning
scheme. In section 4.5, the different experiments to be conducted are described
in detail.

4.1 Data Collection

As mentioned in section 2.4, self-supervised learning requires large amounts of
data. To be able to explore the use case of self-supervision on bird vocalization
classification, a large amount of unlabeled data must be acquired. The web page
xeno-canto.org contains a vast amount of weakly labeled audio of bird vocaliza-
tions, containing more than 750,000 recordings of varying lengths. To build the
large unlabeled dataset for self-supervision, recordings from Xeno-canto will be
used.

Recordings on Xeno-canto contain metadata describing audio quality ranging
from A to F, recording origin, and recording duration. Since the downloaded
recordings will need to be cut into smaller equally sized clips, there is a possibil-
ity of generating audio segments with no birds present. To lower the amount of
empty audio clips, only recordings between 3 and 60 seconds will be downloaded
from Xeno-canto, with the hypothesis that shorter recordings have a higher ratio
of bird vocalization to non-bird vocalization.

41
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The recordings on Xeno-canto are sourced from volunteers sending in their per-
sonal recordings. This means that the quality of the audio recordings can vary.
To avoid low-quality recordings in the unlabeled dataset, only recordings with
a quality rating of C or higher will be downloaded. To restrict the number of
recordings downloaded from Xeno-canto, only recordings from Europe and the
United States of America will be used.

To evaluate the performance during self-supervised learning, a manually labeled
bird vocalization dataset will be constructed. This dataset will contain 10 differ-
ent classes of birds, with approximately 250 instances for each class. To generate
the dataset, vocalizations of the 10 birds with the largest amount of recordings
in the United Kingdom will be downloaded from Xeno-Canto. These files will be
converted to spectrograms and split into durations of 2.6 seconds, and manually
labeled. To ensure that the spectrograms are labeled correctly each spectrogram
under consideration will be compared to samples of spectrograms corresponding
to the bird species available on Xeno-canto. This manually labeled dataset will
be split into a training dataset for fine-tuning and a validation dataset to mea-
sure model performance. 80% of the labeled data will be used to construct the
training data, while the remaining 20% will be used to construct the validation
dataset. A more detailed description of the supervised dataset can be seen in the
appendix A.1.

The bird species in the labeled dataset will be, Common blackbird, Common
chaffinch, Common chiffchaff, Common whitethroat, Corn bunting, Eurasian blue
tit, Eurasian tree sparrow, Great tit, Willow warbler, and Yellowhammer.

4.2 Pre-Processing

Before the acquired audio data can be used to explore self-supervised learning
on bird vocalization, it has to be standardized and converted to a format that
is suitable for self-supervision. From section 3, the papers by Kahl, Lasseck,
and Disabato et al. show that converting audio recordings to spectrograms is a
good representation for the use case of bird vocalization classification (Kahl 2020)
(Disabato et al. 2021) (Lasseck 2018). A spectrogram also bears resemblance to
a grayscale image, with it being a two-dimensional representation, which is ben-
eficial as the self-supervised methods mentioned in chapter 3 such as BYOL and
SimSiam were designed for self-supervision on images (Grill et al. 2020) (X. Chen
and He 2020). This makes it possible to use an already existing self-supervision
framework without extensive changes, as BYOL-A presented in section 3 is an
example of.
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Before the audio recordings can be converted to spectrograms, all the recordings
have to be at the same sample rate, as the sample rate of a recording influences
the final spectrogram. According to Stephan Kahl, having a high temporal res-
olution is important when classifying bird vocalizations (Kahl 2020). Therefore,
all audio recordings will be re-sampled to a high sample rate of 44100 Hz before
being converted to spectrograms.

As mentioned in section 2.5, there is a trade-off between frequency and time
resolution. To avoid having to test different hyperparameter values, such as
window size, hop length, and scaling, when creating the spectrograms, the spec-
trograms in this thesis will be constructed according to the description in BirdNet
by Stefan Kahl. Each audio recording will be constructed with a frame size of
512, a hop length of 256, and converted to a mel-spectrogram with 64 mel-bands
between 150 Hz and 15000 Hz. After the mel-spectrogram is produced, it will be
scaled according to the non-linear scaling given in the paper by Kahl, Identify-
ing Birds by Sound: Large-scale Acoustic Event Recognition for Avian Activity
Monitoring (ibid.). The scaling formula is shown in equation 4.2. For this thesis,
the hyperparameter a will be equal to 1.2.

σ(a) =
1

1 + exp(−a)
(4.1)

y = xσ(a) (4.2)

As mentioned in section 4.1, the downloaded bird vocalizations are between 3 and
60 seconds. Therefore, after converting the audio recordings to mel-spectrograms,
each spectrogram will be cut into segments of 2.6 seconds. The resulting repre-
sentation for one sample will be a mel-spectrogram of shape (64, 448). When
cutting the mel-spectrograms, the last spectrogram from one recording might
be shorter than 2.6 seconds. If the last recording is longer than 2.08 seconds,
the spectrogram will be padded with zeros at the end to reach a length of 2.6
seconds. If the mel-spectrogram is shorter than 2.08 seconds, it will be discarded.

After the mel-spectrograms have been split, they will be normalized in the range
of 0 to 1. An overview of the pre-processing pipeline can be seen in table 4.1,
with an example of a resulting mel-spectrogram seen in figure 4.1.
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Table 4.1: Overview of the pre-processing pipeline for constructing the unlabeled
dataset.

• Resample audio to 44100 Hz

• Compute mel-spectrogram with window size 512, hop length
256, and 64 mel-bands between 150 and 15000 Hz

• Scale mel-spectrogram

• Split mel-spectrogram into a shape of (64, 448)

• Normalize mel-spectrogram in the range between 0 and 1

Figure 4.1: Mel-spectrogram after pre-processing pipeline.

4.3 Spectrogram Augmentations

Augmentation is an important step during self-supervised learning and can im-
pact the backbone’s ability to learn adequate embeddings. The paper by Chen
et al. explores how the composition of different types of image augmentations
can impact the top-1 accuracy for downstream linear evaluation, as displayed in
figure A.3 in the appendix (T. Chen et al. 2020). The paper shows that choos-
ing the type of augmentation and combination of augmentations is an important
decision in the construction of a self-supervision training scheme. The authors
of BYOL note in their conclusion that to generalize BYOL for other domains,
such as audio and text, it is necessary to find suitable augmentations for each
domain (Grill et al. 2020). Therefore, using existing image augmentations from
the image domain might not be suitable for self-supervision on bird vocalizations.

To explore the topic of self-supervised learning on bird vocalization classifica-
tion, this thesis will not use the augmentations used in SimCLR, SimSiam, or
BYOL. Instead, this thesis will test augmentations used within the audio domain.
These augmentations will be cropping, adding background audio, adding noise,
frequency masking, and time masking.
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4.3.1 Cropping

The cropping used in this thesis is different from the standard random crop used
in the image domain. The crop augmentation is taken from BYOL-A, where a
random crop is done on the spectrogram, but the crop boundary extends outside
both sides of the spectrogram by 25% (Niizumi et al. 2021). If parts of the crop
are outside of the spectrogram, that area will be filled with zeros. The crop
boundary does not extend outside the frequency range, as depicted in figure 4.2.
After a crop is taken, it is resized to the same shape as the original spectrogram.
The crop height and width are chosen by uniformly choosing a height and width
multiplier between 0.6 and 1.5 and multiplying the values with the spectrogram’s
original width and height. The value for the crop height is clipped to the original
spectrogram height so as to not go outside the crop boundary.

Figure 4.2: Cropping and resizing within the crop boundary.

According to the authors of BYOL-A the crop augmentation approximates pitch
shifting and time stretching on the mel-spectrogram, expecting details spread over
the spectrogram to be learned regardless of the distortion of time and pitch (ibid.).
During an ablation study, the authors of BYOL-A found cropping to perform well
across different audio datasets. An example of the crop augmentation on the self-
supervised dataset can be seen in figure 4.3.
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(a) Spectrogram before augmentation.

(b) Spectrogram after crop augmentation.

Figure 4.3: Example of applying crop to a mel-spectrogram.

4.3.2 Background Audio

Adding background audio to the spectrogram is also an augmentation done in
BYOL-A and will also be tested in this thesis. A separate smaller dataset of
bird vocalizations will be constructed and used to add background audio to the
spectrograms. This will be done by converting the mel-spectrograms back to a
linear scale, for then to take a weighted average of the foreground spectrogram
and the background spectrogram, shown in equation 4.3. In the equation, the
value a is sampled uniformly between 0 and 0.4. After the background audio is
added to the spectrogram, the same non-linear scaling as described in section 4.2
is re-applied, resulting in spectrograms similar to the one in figure 4.4.

spectrogram = (1− a) · spectrogram+ a · background (4.3)

This augmentation creates views of a spectrogram with the same foreground
sound but different background audio. The idea is that this augmentation en-
courages learning of foreground representation invariant of the background audio.
During the ablation study of BYOL-A, the background augmentation performed
well on its own, scoring an average of 63.9% on linear evaluation over differ-
ent datasets, and when combined with cropping achieving the highest average
accuracy of 72.3% (Niizumi et al. 2021).
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(a) Spectrogram before augmentation.

(b) Spectrogram of background audio.

(c) Spectrogram after background audio augmentation.

Figure 4.4: Example of applying background audio to a mel-spectrogram.



48 CHAPTER 4. METHODOLOGY

4.3.3 Random Noise

When training a classification model, the addition of noise to the input features
can be beneficial. The use of random noise often helps the model reduce overfit-
ting by introducing small random variances in similar images. According to Kahl,
the addition of noise when training has been shown to increase overall detection
performance (Kahl, Wood, et al. 2021). Lasseck also found that the addition of
noise while training increased the performance of the model (Lasseck 2018).

The addition of noise has previously been tested for self-supervision in the image
domain. The authors of SimCLR tested adding Gaussian noise as an augmenta-
tion in their ablation study. They found Gaussian noise to perform not as well
alone, achieving only 9.8% accuracy on the linear evaluation on ImageNet, but
when noise was combined with cropping, the accuracy increased from 33.1% to
39.9% on the linear evaluation (T. Chen et al. 2020).

BYOL-A used noise augmentation to compare against adding background audio
(Niizumi et al. 2021). The authors found that combining the noise augmentation
with cropping improved accuracy on the linear evaluation by 0.9%, while using
background audio instead improved accuracy by 3.9%.

The implementation of random noise in this thesis is similar to Gaussian noise.
A matrix of shape (64, 448) is first constructed, containing values sampled from
a Gaussian distribution with a mean of 0 and a standard deviation of 0.13. A
bitmask with the same shape is also constructed, with values sample from a bi-
nomial distribution with p equal to 0.7. The noise matrix is then multiplied
with the bitmask before being added to the spectrogram. In the end, all values
in the spectrogram will be clipped between 0 and 1. An example of the noise
augmentation can be seen in figure 4.5.

4.3.4 Frequency Masking and Time Masking

Frequency masking and time masking are two widely used augmentation meth-
ods within deep learning in the audio domain. Frequency and time masking are
used on spectrograms, where frequency masking masks a number of consecutive
frequency bands, and time masking masks a number of consecutive time frames.

In the paper by Park et al. time masking, frequency masking, and time warping
are used for speech recognition (Park et al. 2019). During the training of a Listen,
Attend, and Spell (LAS) network, time masking, frequency masking, and time
warping were applied to mel-spectrograms containing human speech. By using
these augmentations, the researchers were able to achieve state-of-the-art per-



4.3. SPECTROGRAM AUGMENTATIONS 49

(a) Spectrogram before augmentation.

(b) Spectrogram after noise augmentation.

Figure 4.5: Example of applying noise to a mel-spectrogram.

formance on the LibriSpeech 960h and Switchboard 300h tasks, outperforming
prior results. In their discussion, the authors point out that time warping is not
a major factor in improving performance, leaving time masking and frequency
masking as the largest contributors. The authors note that adding these aug-
mentations converts an overfitting problem to an underfitting problem, making
it possible to train longer and use larger networks.

Kahl discusses time and frequency masking in the context of bird vocalization.
According to Kahl, not every utterance holds the same importance when trying
to classify speech, and this is also applicable to bird vocalizations (Kahl 2020).
Kahl notes that bird trills repeatedly encode the same signals, and by masking
entire frequency bands or time frames, the neural network is forced to focus on
semantically significant features that are invariant of the information lost.

The implementation of frequency masking in this thesis is similar to that of
the paper by Park et al. First, a random height of the frequency mask, h, is
chosen from the uniform distribution [0, 20], making the largest possible mask
approximately 31% of the total number of frequency bands. After the height of
the frequency mask has been chosen, the starting point h0 is drawn from the
uniform distribution [0, 64-h], making sure the mask stays within the bounds of
the spectrogram. After the size and indices of the frequency mask are chosen,
the corresponding area on the spectrogram is filled with zeros. An example spec-
trogram with frequency masking is shown in figure 4.6.
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(a) Spectrogram before augmentation.

(b) Spectrogram after frequency masking augmentation.

Figure 4.6: Example of applying frequency masking to a mel-spectrogram.

The implementation of time masking in this thesis is also based on the paper
by Park et al. First, a random width of the time mask, w, is chosen from a
uniform distribution in the range [0, 40], making the largest single time mask
possible approximately 9% of the total number of time frames in the spectro-
gram. After the width of the time mask has been chosen, the starting point of
the mask w0 is drawn from a uniform distribution in the range [0, 448-w], making
sure the mask stays within the spectrogram. After the indices of the time mask
are chosen, the values within the bounds of the mask are set to zero. Because the
time dimension is larger than the frequency dimension in the mel-spectrogram,
frequency masking is applied twice to have a bigger impact. The second ap-
plication of frequency masking does not take into account the first application.
Therefore, the second time mask can be placed on top of the first. An example
spectrogram with time masking applied is shown in figure 4.7.
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(a) Spectrogram before augmentation.

(b) Spectrogram after time masking augmentation.

Figure 4.7: Example of applying time masking to a mel-spectrogram.

4.4 Self-Supervised Learning Architecture

For self-supervision on the constructed unlabeled bird vocalization dataset de-
scribed in section 4.2, the SimSiam architecture will be used as a starting point.
The SimSiam architecture was chosen because of its simpler implementation and
hardware requirements. Simsiam does not use explicit negative samples in con-
trast to MoCo and SimCLR (T. Chen et al. 2020) (He, Fan, et al. 2019), and
therefore does not require a large memory bank of negative samples. SimSiam is
also smaller than BYOL, with BYOL using a momentum encoder while SimSiam
uses identical encoders for both augmented views. This makes SimSiam faster
to pre-train compared to BYOL, as the forward pass only uses one encoder in-
stead of two and there is no need to update the weights of a momentum encoder.
SimSiam has also been shown to perform well on smaller batch sizes, as pre-
sented in section 3.4. Being able to use smaller batch sizes lessens the hardware
requirements on the GPU, making it possible to train on GPUs with less memory.

The specific architectural implementation of SimSiam will be constructed simi-
larly to the architecture for the CIFAR-10 dataset from the paper by Chen and
He (X. Chen and He 2020). To implement the self-supervised training scheme
the machine learning library TensorFlow will be used.
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The implemented SimSiam architecture can be split into three parts, backbone,
projector, and predictor, where the original encoder in SimSiam is split into the
backbone and the projector. The backbone is the convolutional neural net being
pre-trained. In this thesis, the backbone will be the convolutions of a ResNet18,
producing an output dimension of 512. Following the backbone is the projector,
which will consist of two fully connected linear layers of size 2048. Each layer in
the projector will be followed by a batch normalization layer. Only the first layer
of the projector will have a ReLu activation function. The predictor will only be
applied to one of the branches. The predictor will consist of a fully connected
linear layer of size 512 with batch normalization and ReLu activation function,
and a last fully connected linear layer of size 2048 without batch normalization
or activation function. A graphical representation of the architecture can be seen
in figure 4.8. Note that the figure only depicts spectrogram 1 going through the
branch with the predictor, but during training, both augmented spectrograms
will be sent down both branches.

The reason for using a smaller SimSiam architecture compared to the original
SimSiam architecture used for ImageNet (X. Chen and He 2020) is that the spec-
trograms used in this thesis are smaller than images from ImageNet. ImageNet
contains color images and is usually cropped to a shape of (224, 224, 3), while
the mel-spectrograms used in this thesis have a shape of (64, 448). Therefore, a
smaller architecture might be more appropriate.

The reason for choosing a ResNet as the backbone neural network is that ResNets
are commonly used as backbones for contrastive and non-contrastive learning ar-
chitectures. BYOL, SimSiam, MoCo, and SimCLR all use a ResNet50 as their
backbone (Grill et al. 2020), (X. Chen and He 2020), (He, Fan, et al. 2019), (T.
Chen et al. 2020).

To produce two different views from the same input, the spectrogram will be
fed through an augmentation module. This module takes in a spectrogram and
applies the selected augmentations, making two differently augmented views of
the same spectrogram. The augmentations to be used in this thesis are detailed
in section 4.3. Since ResNet18 expects a three-dimensional input shape, a du-
plication operation is appended after the augmentation module, as depicted in
listing 4.1. This operation copies the spectrogram two times and stacks them
together to create a shape of (64, 448, 3).
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The loss function to be used when evaluating the similarity of the outputs from
the two branches will be negative cosine similarity, shown in equation 4.4. p and
z are the output vectors from the two branches of the SimSiam architecture. The
triangle bracket denotes the dot product of the two vectors produced from each
branch, while the denominator is the product of the Euclidean distance of the
two vectors. This loss function is bounded between 0 and -1, where the closer to
-1 the loss is, the more similar the vectors outputted from the two branches are.

Loss = − ⟨z, p⟩
∥z∥2 · ∥p∥2

(4.4)

To symmetrize the loss, both of the augmented views of the spectrogram will
be passed through both branches of the SimSiam architecture and the computed
similarity loss will be averaged, as shown in equation 4.5. Doing this lets both
augmented spectrograms be a pseudo target for the other spectrogram.

AveragedLoss = −(0.5 · ⟨z1, p2⟩
∥z1∥2 · ∥p2∥2

+ 0.5 · ⟨z2, p1⟩
∥z2∥2 · ∥p1∥2

) (4.5)

When pre-training on bird vocalizations the hyperparameters for the SimSiam
training scheme will be set to those of the implementation for the CIFAR-10
dataset (X. Chen and He 2020). The optimizer will be stochastic gradient de-
scent with a batch size of 256, a weight decay of 0.0005, and a momentum of 0.9.
The initial learning rate will be set to 0.03 and follow a cosine decay schedule
during training.
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Listing 4.1: Pseudocode for handling of spectrograms during pre-training.

# loading batches of spectrograms from the dataset

for x in dataset:

# using augmentation module to get different views

spec_1, spec_2 = augmentation(x), augmentation(x)

# stacking of spectrograms to get shape [batch, 64, 448 ,3]

spec_1 = stack([spec_1, spec_1, spec_1])

spec_2 = stack([spec_2, spec_2, spec_2])

# passing the spectrograms through the SimSiam encoder

z_1, z_2 = projector(backbone(spec_1)), projector(backbone(spec_2))

# passing the embeddings through the SimSiam predictor

p_1, p_2 = predictor(z_1), predictor(z_2)

# computing negative cosine similarity between (z_1,p_2) and (z_2,p_1)

loss = loss(stop_grad(z_1),p_2)*0.5 + loss(stop_grad(z_2), p_1)*0.5

# updating SimSiam model

update(loss, predictor, projector, backbone)
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Figure 4.8: Diagram of SimSiam architecture used during self-supervision.
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4.5 Experimental Setup

4.5.1 Implementation Validation

To validate that the implementation of SimSiam is correct, a reproduction of a
simple result from the original SimSiam paper will be done by testing it on the
CIFAR-10 dataset. Before applying this thesis implementation of SimSiam on
bird vocalizations, it will be pre-trained on the CIFAR-10 dataset and evaluated
with linear fine-tuning to see if the backbone model learns good representations.
The architecture of the backbone, projector, and predictor will be the same as
for the bird vocalization domain.

The CIFAR-10 dataset is an image dataset consisting of 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck), where each class
contains 6000 color images of size (32, 32, 3) (Krizhevsky 2009). The dataset
is divided into 50000 training samples and 10000 test samples. Example images
from CIFAR-10 can be seen in figure 4.9.

Figure 4.9: Example images from CIFAR-10.

The augmentations done on the CIFAR-10 images while pre-training will follow
those of the simsiam paper. The augmentations are horizontal flipping, color
jitter, and grayscale. Random cropping and horizontal flipping will always be
applied, while color jitter and grayscale will be applied with a probability of 80%
and 20% respectively. An example of the augmented images can be seen in figure
4.10. The self-supervised pre-training will run for a total of 900 epochs with a
batch size of 512 and an initial learning rate of 0.06 for the cosine decay schedule.
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(a) Example images from CIFAR-10 before augmentations.

(b) Example images from CIFAR-10 after applying augmentations.

Figure 4.10: Augmented example images from CIFAR-10.

During pre-training on CIFAR-10, the per epoch loss and channel average stan-
dard deviation of the l2-normalized embedding will be recorded. If the loss con-
verges close to -1 fast during pre-training, it could be a sign that the solution
collapses and produces the same embedding regardless of input. If the channel
average standard deviation is close to 1√

d
, where d is the size of the output dimen-

sion during training, the model most likely avoided a collapsed solution, finding
a non-trivial embedding.

The value of 1√
d
is derived by noting the output embedding from the encoder

as z and the l2-normalized output embedding as z′ where z′j =
zj√∑d

n=j
z2
j

. If

zj is assumed to be an independent identically distributed Gaussian distribution
with a zero mean and standard deviation of 1 for all j. Then the squared sum of
all channels

∑d
n=j z

2
j follows the chi-squared distribution and have an expected

value of d (Ross 2010). Thus z′j =
zj√
d
and std(z′j) = std(

zj√
d
), and because

√
d

is a constant we can write std(z′j) =
1√
d
· std(zj). Following the assumption that

zj have a standard deviation of 1 we get std(z′j) = 1√
d
. Since this is assumed

for all the channels in the embedding, the expected average standard deviation
over all channels will be 1√

d
. In this thesis, the embedding dimension d has a

size of 2048, making the expected average standard deviation over all channels
1√
2048

= 0.02209708691.

After self-supervised pre-training of the model, images from the CIFAR-10 dataset
will be passed through the backbone, and the embeddings will be saved. T-SNE
will then be used to reduce the dimensionality of the image embeddings and plot
them in a two-dimensional space. This visualization will be compared to the em-
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beddings of a ResNet18 backbone that have been initialized with random weights
to see if there are any visual indications that the self-supervised ResNet18 model
clusters images from the same classes together.

To test the performance of the self-supervised Resnet18 backbone, a linear evalu-
ation will be conducted. For the linear evaluation of the SimSiam backbone, the
ResNet18 backbone weights will be frozen and a fully connected linear layer of
10 neurons will be appended to the head of the backbone, as depicted in figure
4.11. This final linear layer will be trained on the CIFAR-10 training set for a
total of 100 epochs with the Adam optimizer, using a learning rate of 0.0025 and
categorical entropy as the loss function. The resulting linearly fine-tuned network
will then be evaluated on the center crop of the CIFAR-10 test set.

4.5.2 Augmentation Exploration

To explore the impacts of the different augmentations, described in section 4.3,
on the self-supervised pre-training scheme, multiple models using different spec-
trogram augmentations during the self-supervised learning will be trained.

For each augmentation, seven models using the setup described in section 4.4
will be pre-trained with self-supervised learning using only one of the augmenta-
tions. The dataset used to pre-train these models will be a subset of the unlabeled
dataset, containing 274,567 spectrograms, approximating 28% of the entire un-
labeled dataset. Each model will be pre-trained for a total of 100 epochs, taking
approximately 8 hours to run on an NVIDIA A100 40GB GPU.

After all the models of one augmentation are done pre-training, a downstream
task will be used to evaluate the models and augmentations. This entails using
the pre-trained backbone, freezing the ResNet18 model weights, and appending
a single fully connected linear layer of 10 neurons to the head of the model. The
downstream task used in the evaluation will be to classify the bird vocalizations in
the manually labeled dataset, described in section 4.1. The final linear layer ap-
pended to the frozen backbone will be fine-tuned on the labeled training dataset
and then evaluated on the labeled validation dataset. The fine-tuning will be
done for a total of 100 epochs with the Adam optimizer using a learning rate of
0.0025 and a categorical cross-entropy loss function. A depiction of fine-tuning
the frozen backbone and linear layer can be seen in figure 4.11.
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Each model will be fine-tuned and evaluated five times. Since each augmenta-
tion will be used to pre-train seven models, the total amount of evaluations per
augmentation will be 35. These evaluations will then be averaged to find the
average performance for each augmentation, and their standard deviation will be
calculated.

Figure 4.11: Depiction of linearly fine-tuning on the downstream task. The
ResNet18 backbone for the SimSiam architecture is frozen, and a linear layer of
10 neurons is appended to the head of the backbone.

After the performance of all augmentations has been calculated, the three best
performing augmentations will be chosen for further testing. The three best
performing augmentations will be combined into pairs of augmentations to find
if any of the combinations of augmentations enhances the performance. These
tests will be carried out with the same procedure as the single augmentations.

4.5.3 Fine-Tuning Evaluation

The purpose of self-supervised learning schemes like SimCLR, BYOL, and Sim-
Siam is to be able to use large datasets of unlabeled data to train a neural network
backbone to produce good representations that can later be used in a downstream
task that uses supervised learning. This is similar to using the weights of a neural
network that has been trained on a large labeled dataset, such as ImageNet, and
then fine-tuning it on a downstream task dataset.
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After the combinations of augmentations have been evaluated, seven models, us-
ing the best performing augmentation setup, will be pre-trained on the full size of
the unlabeled dataset, containing 987,305 spectrograms 1. The self-supervision
will run for a total of 100 epochs, taking approximately 29 hours for each model
on an NVIDIA A100 40GB GPU.

Convolutional neural networks trained on ImageNet are readily available through
platforms such as TensorFlow, PyTorch, and other open-source projects, making
it easy to implement pre-trained models for classification tasks. Since using mod-
els pre-trained on ImageNet has shown good results within the bird vocalization
classification task and general audio classification, as discussed in section 3.5, a
pre-trained Resnet18 model will be used as the baseline model when evaluating
the performance of the model pre-trained with self-supervision on the unlabeled
bird vocalization dataset from Xeno-canto.

After the self-supervised models are done pre-training on the full size of the
unlabeled dataset, they will be compared against a ResNet18 pre-trained on Im-
ageNet. Each model will be linearly evaluated where the ResNet18 backbones are
frozen, and a single fully connected linear layer with 10 neurons is appended to
the model. This layer will then be trained on different amounts of the manually
labeled training dataset to see how well the self-supervised model compares to a
model pre-trained on ImageNet. The different amounts of training data will be
5%, 10%, 25%, 50%, and 100% of the manually labeled training dataset, which is
approximately 10, 20, 50, 100, and 200 samples per class. The networks will be
fine-tuned for a total of 100 epochs and 200 epochs with a learning rate of 0.0025
to explore their behaviors on different training durations. Each self-supervised
model will be linearly evaluated five times for each experiment, making a total
of 35 linear evaluations for the self-supervised models. These evaluations will be
averaged and used to compare against the model pre-trained on ImageNet.

The self-supervised models and the model pre-trained on images will also be fully
fine-tuned where the ResNet18 backbones are unfrozen such that all weights in
the models are trained, as depicted in figure 4.12. This test will be conducted
with the same setup as the linearly fine-tuned evaluation to see if self-supervision
on bird vocalizations produces better weight initialization than pre-training on
ImageNet.

1Ideally, more than seven models would be trained on the full size of the unlabeled dataset
to get more statistically significant results, but because of the long training time and hardware
waiting queue this was not feasible.
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The ResNet18 model pre-trained on ImageNet used in this thesis will be taken
from the GitHub repository of Pavel Iakubovskii (Iakubovskii 2023). The pre-
trained ResNet18 is implemented in TensorFlow and achieves a top-1 accuracy
of 68.24% and top-5 accuracy of 88.49% on the center crop of the ImageNet val-
idation dataset.

When fine-tuning and evaluating the self-supervised model and the model pre-
trained on ImageNet, each model will be fine-tuned and evaluated a total of 35
times, and the average accuracy of the models will be calculated over all fine-
tuning runs. The standard deviation for all the fine-tuning runs will also be
calculated.

In the end, embeddings produced by the ResNet18 backbones of the self-supervised
models and the Resnet18 pre-trained on ImageNet will also be evaluated. This
will be done by using t-SNE dimension reduction to visualize the embeddings in a
two-dimensional space to get a visual understanding of how the different models
cluster the embeddings.

Figure 4.12: Depiction of fully fine-tuning on the downstream task. The ResNet18
backbone is unfrozen and a linear layer of 10 neurons is appended to the head of
the backbone.
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4.6 Summary

This chapter has given an overview of the methodology used in this thesis. A
description of how the large unlabeled bird vocalization dataset and the manu-
ally labeled dataset were obtained has been given, as well as how these datasets
were pre-processed and converted to mel-spectrograms. The five data augmen-
tations cropping, addition of noise, background audio, frequency masking, and
time masking have been presented as well as the reason for their selection. This
chapter has also presented a detailed description of the implemented SimSiam
architecture, as well as a description for validating its implementation. Lastly, a
protocol for evaluating the different augmentations and the final self-supervision
scheme has been given.



Chapter 5

Results and Analysis

This chapter presents the results from the experiments described in chapter 4,
and discusses the results in the context of previous work within bird vocalization
and self-supervised learning. Section 5.1 presents the results from running the
experiments explained in section 4.5 in the previous chapter. Section 5.2 discusses
the results presented in section 5.1 and relates the results to other relevant work.

5.1 Results

5.1.1 Validation of Implementation

By testing the thesis’s implementation of SimSiam on the CIFAR-10 dataset, it is
possible to know if the implementation is correct by seeing if the implementation
produces the expected behavior. It is also possible to explore and display the
different behaviors of the model.

Figure 5.1 depicts the negative cosine similarity loss during self-supervised learn-
ing on the CIFAR-10 training dataset. The loss during pre-training rapidly de-
creases in the first couple of epochs before stabilizing around -0.8 and decreasing
slowly before ending on a loss of -0.85 after 900 epochs. As mentioned in section
4.4, the negative cosine similarity is bounded between 0 and -1, where similar
outputs are closer to -1.

63
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Figure 5.1: Loss values during pre-training on CIFAR-10.

Figure 5.2a shows the channel average standard deviation for the SimSiam model
while pre-training on the CIFAR-10 training dataset. The dimension size of the
output from the projection layer is 2048. Therefore, the expected channel average
standard deviation is about 0.22, shown in orange. The channel average standard
deviation for the SimSiam model during pre-training can be seen hovering around
0.020 and 0.015, before ending at 0.017 after 900 epochs.

The SimSiam model was also pre-trained on CIFAR-10 with the stop-gradient
removed, allowing gradients to flow through both branches. Figure 5.2b records
the channel average standard deviation during pre-training of the SimSiam model
with no stop-gradient. With the stop-gradient removed, the channel average stan-
dard deviation quickly decreases towards zero, before stabilizing and ending at
0.002 after 900 epochs.

The ResNet18 backbone used during the SimSiam self-supervised training on
CIFAR-10, was linearly evaluated on the CIFAR-10 dataset. Figure 5.3 depicts
the performance of the self-supervised ResNet18 backbone during linear fine-
tuning on the CIFAR-10 dataset. The backbone is able to achieve an accuracy
of 75.80% on the training data and an accuracy of 75.14% on the validation data
after 100 epochs of training.
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(a) With stop-gradient (b) Without stop-gradient

Figure 5.2: Channel average standard deviation during self-supervised learning
on CIFAR-10.

Figure 5.3: Accuracy of linear evaluation of ResNet18 on CIFAR-10.
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(a) After self-supervision. (b) Random initialization

Figure 5.4: Comparing t-SNE plots over Renset18 embeddings on CIFAR-10.

As mentioned in section 4.5.1, t-SNE was used on the embeddings created by the
self-supervised ResNet18 to visualize how the different samples were clustered.
Figure 5.4 shows a comparison between the t-SNE plot from the self-supervised
backbone and a ResNet18 initialized with random weights, where each class of
CIFAR-10 is color coded. From comparing the different plots, one can see that the
plot generated from the self-supervised ResNet18 embeddings has a more defined
clustering between the different classes than the plot generated from a ResNet18
initialized with random weights. Still, the plot generated with the embeddings
from the self-supervised backbone does not have all the classes completely sepa-
rated, with the green, red, purple, and gray classes not being clearly separated
but are bounded within the same area.
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5.1.2 Study of Different Individual Augmentations

By using the self-supervised architecture to pre-train the ResNet18 backbone
with different data augmentations, it is possible to test how each augmentation
affects the performance of the backbone on the downstream task. As mentioned
in section 4.5.2, each augmentation was used to pre-train seven models on a
subset of the unlabeled bird vocalization dataset, and each model was linearly
fine-tuned five times. The results of these tests can be seen in table 5.1 as the
average and standard deviation over all the different fine-tuned models on the
validation dataset.

Table 5.1: Linear evaluation for the different augmentations on the supervised
dataset.

Augmentations Accuracy (%) Standard deviation
Crop 24.69 3.33

Time mask 19.07 2.46
Frequency mask 19.71 1.75

Noise 19.66 1.06
Background audio 17.49 1.61

The results in table 5.1 show that the crop augmentation gives the highest ac-
curacy out of all the augmentations with 24.69% on average over the validation
data. Cropping also has the highest standard deviation with 3.33. Time mask-
ing, frequency masking, and the addition of noise perform similarly to each other.
The addition of background audio has the lowest average accuracy of the aug-
mentations, with an average of 17.49% on the validation set.

Figure 5.5 depicts the average accuracy on the validation dataset while linearly
fine-tuning with the ResNet18 backbones. From figure 5.5, one can see that crop-
ping achieves the highest average accuracy regardless of the number of epochs.
The four other augmentations are closer to each other during the fine-tuning.
One can also see that the augmentations start off with similar performances, be-
tween 11.63% and 14.34% after the first epoch, with the difference increasing as
the number of epochs increases.

From these results, a decision can be made on which augmentations to further
test and combine with each other. Since cropping performed significantly better
than the other augmentations, it will be one of the three augmentations to be
tested further. The augmentation of adding background audio performed the
worst and will, therefore, not be tested further. Time masking, frequency mask-
ing, and adding noise performed similarly during the test, making it harder to
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choose between them. Because the time mask augmentation has the lowest ac-
curacy and the highest standard deviation of the three, it will not be used in
further testing. This leaves cropping, frequency masking, and adding noise to be
the three augmentations used in further testing.

Figure 5.5: Accuracy from linear evaluation of the different individual augmen-
tations.

5.1.3 Study of Combinations of Augmentations

After choosing the three augmentations, self-supervised models using combina-
tions of the augmentations were trained and linearly fine-tuned on the manually
labeled dataset with the same setup previously used for the testing of individual
augmentations. The result of these tests can be seen in table 5.2 as the average
and standard deviation over the validation set.

The results in table 5.2 show that combining the crop augmentation with the
noise augmentation gives the highest accuracy out of all augmentation combina-
tions, with an average accuracy of 35.66%. This combination of augmentations
also has the highest standard deviation of 3.71, slightly higher than cropping
alone. The combination of crop and frequency mask also performs better than
only cropping and only frequency masking, with an average accuracy of 25.86%
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and a standard deviation of 1.73. The same holds for the combination of noise
and frequency masking, with an increase in accuracy of 1.56 percentage points
compared to using only frequency masking.

Table 5.2: Linear evaluation for the different combinations augmentations on the
supervised dataset.

Augmentations Accuracy (%) Standard deviation
Crop + Noise 35.66 3.71

Crop + Frequency mask 25.86 1.73
Noise + Frequency mask 21.27 0.80

Figure 5.6 depicts the average accuracy of the different combinations of augmen-
tations on the validation dataset. The backbones pre-trained with the combi-
nations of augmentations start with similar performances between 12.67% and
15.36%. This starting point is similar to the single augmentations that can be
seen in figure 5.5, but during training, the accuracy increases faster for all the
models using a combination of augmentations compared to the models with a
single augmentation.

Figure 5.6: Accuracy from linear evaluation from combinations of augmenta-
tions.
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5.1.4 Comparison Between Self-Supervision and ImageNet

From comparing different combinations of augmentations, the combination of
cropping and adding noise was chosen for self-supervised learning on 100% of the
unlabeled dataset. After doing self-supervised learning on the whole unlabeled
dataset, linear fine-tuning and fine-tuning of the whole models were conducted,
varying the size of the fine-tuning dataset. These results were compared to an
identical ResNet18 backbone pre-trained on ImageNet.

For the linear evaluation of the self-supervised ResNet18 models and the ResNet18
model pre-trained on ImageNet, it is clear that the model pre-trained on Ima-
geNet outperforms the self-supervised models, both for 100 and 200 epochs. Table
5.3 and 5.4 shows that for all the different amounts of training data, the model
pre-trained on ImageNet achieves significantly higher accuracies, with the highest
difference being 28.33% percentage points when linearly fine-tuning with 25% of
the labeled training data for 100 epochs. The standard deviation is higher for
the self-supervised models compared to the model pre-trained on ImageNet, with
the highest standard deviation being 2.38 when linearly fine-tuning on 100% of
the training data on 200 epochs. The size of the training data has a significant
effect on the models, with the models performing better with larger training sets.
The average validation accuracy for the self-supervised models when training on
100% of the training data increases from 54.53% to 58.42% when running for 200
epochs. In contrast, the accuracy of the model pre-trained on ImageNet does not
change significantly from 100 epochs to 200 epochs.

Table 5.3: Linear evaluation of pre-training with self-supervision and pre-
training with ImageNet using different amounts of training data. Linearly fine-
tuning for 100 epochs.

Pre-training Portion of training data (%) Accuracy (%) Standard deviation

Self-supervised

100 54.53 2.32
50 49.32 2.56
25 44.05 2.61
10 33.38 2.17
5 30.74 1.67

ImageNet

100 76.47 0.68
50 73.94 0.47
25 72.38 0.81
10 61.47 0.92
5 53.59 1.00
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Table 5.4: Linear evaluation of pre-training with self-supervision and pre-
training with ImageNet using different amounts of training data. Linearly fine-
tuning for 200 epochs.

Pre-training Portion of training data (%) Accuracy (%) Standard deviation

Self-supervised

100 58.42 2.38
50 53.37 2.30
25 48.41 3.27
10 36.47 1.83
5 33.93 1.53

ImageNet

100 76.06 0.49
50 73.55 0.47
25 72.18 0.54
10 62.07 0.85
5 53.56 0.88

Figure 5.7 shows the average accuracy and standard deviation of the models dur-
ing linear fine-tuning. The model pre-trained on ImageNet has a consistently
small standard deviation during training, while the self-supervised models’ stan-
dard deviation increases with higher epochs. The average accuracy of the self-
supervised models does not seem to plateau after 200 epochs, while the model
pre-trained on ImageNet plateaued after 50 epochs.

For the comparisons where the whole models were fine-tuned on the training
dataset, the ResNet18 model pre-trained on ImageNet outperforms the self-
supervised models, as shown in table 5.5 and 5.6. For all the different amounts
of training data, the model pre-trained on ImageNet archives higher accuracies.
Still, the difference between the models is smaller than the results from table 5.3
and 5.4. The largest difference between the models is 9.70% when using 10% of
the training set for 100 epochs. The impact from the number of epochs is smaller
for the self-supervised models when fine-tuning the whole model compared to
linear fine-tuning, with the biggest increase being from an average validation ac-
curacy of 59.78% to 63.26% using 10% of the training data.

Figure 5.8 shows the calculated negative cosine similarity loss for the seven mod-
els during the self-supervised learning of the ResNet18 backbones on the large
unlabeled bird vocalization dataset. All the models have a similar loss pattern.
The loss begins around -0.92 and ends at -0.98 after 100 epochs of self-supervision.
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Figure 5.7: Validation Accuracy of the self-supervised and ImageNet models
during linear evaluation using 100% of the training data for 200 epochs.

Table 5.5: Full fine-tuning comparison of pre-training with self-supervision and
ImageNet on different amounts of training data. Fine-tuning for 100 epochs.

Pre-training Portion of training data (%) Accuracy (%) Standard deviation

Self-supervised

100 90.03 1.17
50 84.75 2.24
25 78.18 2.37
10 59.78 3.99
5 51.79 2.74

ImageNet

100 92.00 1.45
50 89.82 1.31
25 85.71 2.00
10 69.48 2.97
5 59.21 2.88
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Table 5.6: Full fine-tuning comparison of pre-training with self-supervision and
ImageNet on different amounts of training data.Fine-tuning for 200 epochs.

Pre-training Portion of training data (%) Accuracy (%) Standard deviation

Self-supervised

100 90.64 0.98
50 85.94 1.58
25 79.05 2.40
10 63.26 2.82
5 52.91 3.75

ImageNet

100 92.22 1.26
50 89.55 3.17
25 86.03 3.87
10 68.91 2.65
5 60.71 2.88

Figure 5.8: Loss values from the seven models during self-supervised learning on
the large unlabeled bird vocalization dataset. Using the crop and noise
augmentations.
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Figure 5.9 shows the channel average standard deviation of the seven models dur-
ing the self-supervised learning on the large unlabeled bird vocalization dataset.
All the models have a similar channel average standard deviation pattern, ending
on a channel average standard deviation of 0.019.

Figure 5.9: Channel average standard deviation from the seven models during
self-supervised learning on the unlabeled bird vocalization dataset.

Figures 5.10 and 5.11 show t-SNE plots of the embeddings produced by the
self-supervised ResNet18 backbones and the ResNet18 pre-trained on ImageNet.
The embeddings are created by passing the manually labeled dataset through the
ResNet18 models. Each bird vocalization class is color coded. Figure 5.10 shows
no clear clustering for any of the seven self-supervised models except for parts
of the blue and purple classes. For the embeddings produced by the ResNet18
pre-trained on ImageNet, more class-based clusters can be seen, but many of the
samples are still not clustered well, with clusters blending together.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.10: T-SNE plots of the embeddings from the seven self-supervised
models.
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Figure 5.11: T-SNE plot of the embeddings from the ResNet18 pre-trained on
ImageNet.

5.2 Analysis

5.2.1 Validation of Implementation

From the results displayed in section 5.1, one can argue that this thesis implemen-
tation of the SimSiam architecture is correct. The implemented training scheme
displays the expected behavior with respect to the stop-gradient detailed in the
SimSiam paper (X. Chen and He 2020). When the stop-gradient is applied, the
output of the encoder does not collapse but stays close to the theoretically ex-
pected value of 0.02209708691. Whereas when the stop-gradient is removed, the
output of the encoder collapse to similar outputs regardless of input, as shown
in figure 5.2.

The results from linearly evaluating the self-supervised model on the CIFAR-10
test set show that the ResNet18 backbone is able to learn good feature extrac-
tions. The self-supervised ResNet18 accuracy starts at 66% after one epoch and
ends at 75% after 100 epochs, indicating that the self-supervised ResNet18 back-
bone produces good embeddings that the last linear layer can make use of. From
figure 5.4, it is clear that the self-supervised ResNet18 backbone is able to cluster
embeddings from the same class better than a ResNet18 initialized with random
weights. Although most of the classes are not completely separated from each
other in the self-supervised ResNet18 embeddings.

With these results, it is reasonable to assume that the SimSiam architecture is
implemented correctly. Therefore, the validity of the implementation will not be
discussed in future subsections. The results from the validation experiment will
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be used to compare the results of the other experiments to discuss the system’s
behavior.

5.2.2 Study of Different Individual Augmentations

According to the results presented in table 5.1, the cropping augmentation per-
forms the best out of all the single augmentations, averaging an accuracy of
24.69% on the validation set. This result is in line with previous self-supervision
papers like SimCLR and BYOL-A, with both of these papers reporting cropping
as the best performing augmentation in their ablation studies (T. Chen et al.
2020) (Niizumi et al. 2021). From looking at figure 5.5, the cropping augmenta-
tions also start at a higher accuracy after the first epoch compared to the other
augmentations. This could be a sign that the embeddings produced by the mod-
els pre-trained with the crop augmentation are easier for the last linear layer to
separate and classify, as it takes fewer training steps to increase its performance.

The crop augmentation has a higher standard deviation when calculating the
average accuracy over the seven self-supervised models. The larger standard
deviation could be explained by the crop augmentation being the strongest aug-
mentation, changing the view of the original spectrogram more than any of the
other augmentations. From a visual inspection of the unlabeled bird vocalization
dataset, shown in figure A.2 in the appendix, one can see that the bird vocaliza-
tions often are not present in the entirety of the spectrogram. Therefore, the bird
vocalization might not be present in the spectrogram after cropping and resizing
it. This could lead to worse performance on the downstream task. Since the
experiment self-supervised seven backbones, the amount of cropping leading to
empty spectrograms during each self-supervision could vary, leading to varying
performance between the seven models.

Although finding cropping to be the highest performing augmentation is in line
with BYOL-A, the performance of cropping in BYOL-A and this thesis differ sig-
nificantly. It is important to note that the linear evaluation done with BYOL-A
and the models in this thesis use different datasets and is, therefore, not an ideal
numerical comparison. The UrbanSound8K (US8K) dataset used in BYOL-A is
the most similar to the manually labeled bird vocalization dataset used in this
thesis. The US8K dataset has 10 different audio scene classes and 8,732 samples,
while the manually labeled dataset has 10 bird vocalization classes and 2,500
samples. On the US8K dataset, BYOL-A achieves 77.1% on linear evaluation,
while the self-supervised model pre-trained with cropping in this thesis achieves
24.69% on the manually labeled bird vocalization dataset.
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The difference in accuracy for the cropping augmentation between BYOL-A and
this thesis can be the result of several factors. One explanation could be that the
crop augmentation is not as effective on the bird vocalization dataset as on the
AudioSet used by BYOL-A. As mentioned earlier, the bird vocalizations in the
unlabeled dataset often do not cover the whole spectrogram. Therefore a crop
might not contain any bird vocalizations, making the augmentation less effective.
Another plausible explanation could be the quality of the unlabeled dataset. The
unlabeled dataset could contain too many spectrograms that do not contain any
bird vocalizations, as subfigure A.2g in the appendix depicts. Since the unlabeled
dataset is generated by taking longer audio recordings and splitting them into
smaller segments, as described in section 4.2, there is a possibility that many of
the spectrograms generated do not contain bird vocalizations. If there is a sig-
nificant amount of empty spectrograms, the backbone’s ability to learn specific
features of bird vocalization could be negatively impacted.

The augmentation of adding background audio performed the worst out of all
individual augmentations. The background audio augmentation was included in
this thesis because of its results during the ablation study of BYOL-A. A possible
explanation for why the background audio augmentation performed worse than
expected is that the audio recordings constituting the unlabeled dataset are field
recordings. These field recordings often have natural background audio, as birds
and other animals can often be heard in the background. Therefore, adding more
background audio to the recording might not impact the view of the spectrogram
in a meaningful way, producing a sub-optimal self-supervision task.

5.2.3 Study of Combinations of Augmentations

The results from combining two augmentations, displayed in table 5.2, show that
all the tested combinations of augmentations outperform their single augmen-
tation counterpart. This is in line with the results from the papers by Chen
et al, Grill et al, and Niizumi et al, finding that contrastive learning and non-
contrastive learning benefits from using combinations of augmentations (T. Chen
et al. 2020) (Grill et al. 2020) (Niizumi et al. 2021). The same seems to be
true for the self-supervision of bird vocalizations. According to Tian et al., good
augmentations generates views that retain task-relevant information and reduce
irrelevant information (Tian et al. 2020). The reason for the higher accuracies for
combinations of augmentations in this thesis might be that applying more aug-
mentations lowers the amount of irrelevant information from the views, making
the encoder focus more on the task-relevant information.
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In this thesis, the combination of augmentations giving the highest accuracy on
the downstream task was cropping and adding noise. Even though cropping and
adding noise performed better than any other augmentation setup, the starting
accuracy after one epoch was the same as the other augmentations, seen in the
figures 5.5 and 5.6. If the backbone was able to learn good embeddings, it would
be expected for the validation accuracy to start at a higher accuracy after one
epoch, as is the case with the validation implementation depicted in figure 5.3.
Instead, the accuracy of cropping and noise starts near the other augmentations
and increases faster during the first couple of epochs. This could be because the
backbones that were self-supervised with cropping and noise were not able to
learn good feature extractions to produce clustered embeddings but were able to
learn partial features, making it easier for the linear layer to learn faster during
fine-tuning.

5.2.4 Comparison Between Self-Supervision and ImageNet

From the comparison of the self-supervised models pre-trained on the whole un-
labeled bird vocalization dataset and the model pre-trained on ImageNet, it is
clear that the self-supervised models are inferior to the model pre-trained on Im-
ageNet on all tasks. There are many different factors that could explain these
results, and these are discussed below.

ImageNet achieves surprisingly high accuracy on the validation set for the dif-
ferent training dataset sizes, managing an average of 53.56% when linearly fine-
tuning on only 5% of the original training dataset size. The model also starts at
a high validation accuracy when training on 100% of the training set, reaching
an accuracy above 50% after the first epoch of linear fine-tuning. This behavior
is similar to the self-supervised model pre-trained on CIFAR-10, shown in figure
5.3. The large increase in accuracy could be a sign that the backbone is able to
produce useful embeddings for the last linear layer, making training of the last
layer easier and faster during fine-tuning. An explanation of this could be that
some of the feature extractions learned from training on images are still appli-
cable for spectrograms of bird vocalizations, such as edge detection or certain
pattern extractions.

Although the ResNet18 pre-trained on ImageNet performed well on the linear
evaluation, fine-tuning the whole model improves the average accuracy from
76.06% to 92.22% when training on 100% of the training data. This shows that
the embeddings produced by a frozen ResNet18 model pre-trained on ImageNet
are not optimal for bird vocalization classification, showing that another set of
weights can achieve higher accuracies. It is important to note that the classifica-
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tion task used in this paper is relatively easy, with only 10 classes of birds. The
performance of the model pre-trained on ImageNet might differ if the number of
classes were to increase.

From figure 5.7, one can see that the average validation accuracy of the self-
supervised models starts lower than the model pre-trained on ImageNet. This
could be a sign that the self-supervised backbones did not learn beneficial fea-
ture extractions during self-supervision, leading to embeddings that are hard to
classify for the last linear layer. Therefore, the last linear layer would need more
training steps to increase the model’s accuracy. This could explain why there is
an increase in validation accuracy between training 100 and 200 epochs for the
self-supervised models, while the accuracy of the model pre-trained on ImageNet
stays more or less constant. The t-SNE plots in figure 5.10 support the expla-
nation of hard-to-classify embeddings, with figure 5.10 showing that there is no
clear clustering among the majority of the classes in the embeddings produced
by the seven self-supervised models.

One factor for the poor performance of the self-supervised models could be the
augmentations applied during self-supervised learning. As shown in figure A.3,
different augmentations during self-supervision can lead to large differences in
performance on the downstream task. Even though cropping and adding noise
were the best augmentations in this thesis, they might not be adequate augmenta-
tions for learning bird vocalization-specific feature extractions. If the augmenta-
tions are too weak and do not remove information irrelevant to bird vocalization,
the backbone might learn to look at task-irrelevant information in the spectro-
gram when generating the embeddings. This could lead to the loss decreasing
rapidly during self-supervised learning, as seen in figure 5.8, while not learning
valuable feature extractions, leading to poor performance on the downstream
task. The attention heatmaps depicted in figure 5.12 support this hypothesis,
showing the self-supervised backbones often fail to focus on the bird vocaliza-
tions when trying to classify the bird species.

During self-supervision on the large unlabeled dataset, the seven self-supervised
models quickly achieve low loss values, as depicted in figure 5.8. Each self-
supervised model achieves similar loss values, suggesting that this behavior is
likely not an outlier. The models achieve a relatively low loss compared to the
self-supervised model used on CIFAR-10, shown in figure 5.1. Because of the pre-
viously discussed poor performance, this likely does not come from the backbones’
ability to learn task-important features. The more likely explanation is that the
self-supervised models have found a way to satisfy the similarity metric without
learning downstream task-specific features. When looking at the channel aver-
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age standard deviation, depicted in figure 5.9, the values during self-supervised
learning do not tend toward zero, as depicted in subfigure 5.2b, suggesting that
the models do not reach a collapsed solution. Instead, the self-supervised model
might produce a partially collapsed solution. According to Li et al., a partial
dimensional collapse is when parts of the output vector are constant across the
dataset, or parts of the output vector covary with other parts of the vector (Li
et al. 2022). These partial collapses would not show up when calculating the
channel average standard deviation but would impact the performance of the
backbone on the downstream task. Therefore, it could be that the reason for the
poor performance of the self-supervised models is partial dimensional collapse.

(a) Wrongly classified (b) Correctly classified

(c) Wrongly classified (d) Correctly classified

(e) Wrongly classified (f) Correctly classified

(g) Wrongly classified (h) Correctly classified

(i) Wrongly classified (j) Correctly classified

Figure 5.12: Examples of attention heatmaps for one of the self-supervised
ResNet18 models when classifying bird species. The ResNet18 pre-trained using
self-supervised learning often does not focus on the focal bird vocalization when
classifying. Focusing instead on the edges of the spectrogram. The heatmaps
were made by using the Grad-CAM technique (Selvaraju et al. 2020).
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Another factor that could explain the self-supervised models’ poor performance
and inability to cluster embeddings could be the unlabeled dataset itself. Unlike
datasets such as CIFAR-10 and ImagenNet used in previously discussed papers,
the large unlabeled dataset used in this thesis is truly unlabeled. As mentioned
in section 4.1, the large dataset was generated by downloading bird vocaliza-
tion recordings and splitting them up into smaller spectrograms. This means
that some of the spectrograms might not contain any bird vocalizations, and
the dataset can contain a large amount of noise. When training neural net-
works, the quality of the dataset used during training has a huge impact on the
model’s performance. If the unlabeled bird vocalization dataset contained too
many empty spectrograms or too much noise and not enough bird vocalizations,
then learning bird vocalization-specific feature extractions would be difficult for
the self-supervised model.

The use of a relatively small convolutional network as a backbone could also
be a factor for the self-supervised models’ low performance. According to Li et
al. SimSiam is extraordinarily sensitive to model size, with smaller backbones
being more prone to partially collapse on larger and more complex datasets, as
depicted in A.4 in the appendix (Li et al. 2022). Therefore, the ResNet18 back-
bone might be too small for the large unlabeled dataset, leading to partial collapse
and lower performance. This could also explain why SimSiam with a ResNet18
performs better on the CIFAR-10 dataset than on the bird vocalization task, as
the dataset is smaller.

5.3 Summary

The best combination of augmentations tested in this thesis was cropping and
adding noise to the spectrogram. The self-supervised models trained on a large
unlabeled bird vocalization dataset with these augmentations still performed
worse than an equivalent model pre-trained on ImageNet. This most likely comes
from the self-supervised scheme’s inability to learn the ResNet18 backbone rel-
evant feature extractions. There can be many different explanations for this.
The self-supervision scheme could have experienced partial collapse during self-
supervised learning because of the dataset and the backbone size. The unlabeled
dataset could have also contained too many samples not of bird vocalizations,
making it hard for the self-supervised model to learn relevant features. Lastly,
the augmentations applied during self-supervised learning might not have been
effective for learning bird vocalization-specific feature extractions.
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Conclusion

This thesis used the SimSiam architecture to test the use of self-supervised learn-
ing on the bird vocalization classification task. The goal set forth by this thesis
was to investigate the effectiveness of self-supervised learning on the bird vo-
calization classification problem. Different data augmentations were tested, and
self-supervised models were compared against a model pre-trained on images.
Section 6.1 in this chapter will present an overview of the thesis. Section 6.2 dis-
cusses the findings of this thesis with respect to the goal and research questions
laid out in section 1.2. In section 6.3, the contributions of this thesis to the bird
vocalization classification field are discussed. Section 6.4 gives suggestions for fu-
ture work for self-supervised learning on bird vocalization classification. Lastly,
a few final words are given in section 6.5

6.1 Overview

Chapter 1 introduced why bird classification and detection are important and
explained the motivation for testing self-supervised learning on the bird vocaliza-
tion classification problem. This chapter also laid out the goal of the thesis and
the two research questions used to achieve the goal.

Chapter 2 contained information about bird vocalization and popular audio rep-
resentations for machine learning. An introduction to convolutional neural net-
works, self-supervised learning, contrastive learning, and non-contrastive learning
was also presented to give the reader the background knowledge needed for this
thesis.

83
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A review of related work was conducted in chapter 3. The chapter starts by
introducing papers related to bird vocalization classification, reviewing papers
from state-of-the-art bird vocalization detection, and papers with results ranking
high in bird vocalization competitions. Then the chapter reviewed papers related
to self-supervised learning for both the image and audio domains. Lastly, papers
concerning transfer learning from the image domain to the audio domain were
reviewed.

Chapter 4 explained in detail the method and architecture used to answer the
research questions presented in chapter 1. The data collection method was de-
tailed at the start of the chapter, explaining how the bird vocalizations were
downloaded from Xeno-canto. Then a description of the pre-processing pipeline
was given, describing the methods for producing mel-spectrograms from bird au-
dio. The different data augmentations used during the self-supervised learning
were also described before the specific SimSiam architecture used to conduct the
experiments was detailed. Lastly, a description of the experimental setup for the
three main experiments was given.

The key results of the experiments were displayed in Chapter 5. The first part
of the chapter presented the results of running the validation experiment, show-
ing that the implementation of SimSiam was most likely correct. After this,
the chapter lays out the results of using the SimSiam architecture with different
individual augmentations and combinations of augmentations for deciding the
final augmentations for the self-supervised learning scheme. The last section of
the results compares the downstream performance of self-supervised models us-
ing cropping and noise augmentations against a model pre-trained on ImageNet,
using linear fine-tuning and fine-tuning the whole model. At the end of the chap-
ter, the results were analyzed. From the results and analysis, the best performing
combination of augmentations was cropping and adding noise. The results also
showed that the self-supervision scheme set up in this thesis did not perform
as well as the model pre-trained on ImageNet on the downstream task of bird
vocalization classification.
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6.2 Discussion

The goal of this thesis was to investigate the effectiveness of self-supervised learn-
ing on the bird vocalization classification problem. This section discusses the key
implications of the results and analysis with respect to the thesis research ques-
tions.

6.2.1 Reseach Question 1

What augmentations for the self-supervised model give the best results?

From the results and analysis in chapter 5, the best performing single augmen-
tation was Cropping with an average accuracy of 24.69%. When testing com-
binations of augmentations, all the combinations tested performed better than
any single augmentation. The best combination of augmentations was cropping
and adding noise with an average accuracy of 35.66%. Although the combina-
tion of cropping and adding noise performed the best in this thesis, it does not
mean that this is the optimal combination of augmentations. When comparing
its performance to BYOL-A with a similar dataset, there is a substantial dif-
ference, with BYOL-A managing an accuracy of 77.1% while the cropping and
noise augmentations in this thesis average an accuracy of 35.66%. Still, the re-
sults produced by the augmentation experiments show that the self-supervised
model benefits from using more than one augmentation. This makes a combi-
nation of augmentations the most likely augmentation scheme to perform well
on contrastive or non-contrastive learning schemes intended for the downstream
task of bird vocalization classification.

Another interesting result was that the augmentation of adding background noise
to the spectrograms performed the worst out of all the single augmentations. This
is in contrast to the results from BYOL-A, in which adding background audio to
the spectrograms performed significantly better than adding random noise. The
reason for this could be that there is already background noise in many of the
bird vocalization spectrograms, and therefore, adding background audio does not
augment the spectrograms significantly.

There can be many reasons why the augmentations of cropping and adding noise
perform worse than expected on the self-supervised model. As mentioned, one
reason could be that cropping and adding noise might not be suitable augmenta-
tion schemes for bird vocalization classification and that some other combinations
not tested in this thesis might perform better. Another probable explanation,
as mentioned in section 5.2.2, is that the dataset might not be ideal for self-
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supervision, as there may be too many spectrograms containing noice or that do
not contain any bird vocalizations. If there are too many empty spectrograms,
the backbone might not be able to sufficiently learn to extract features that are
important for bird vocalization classification.

6.2.2 Research Question 2

How does the self-supervised model compare against a supervised model pre-
trained on ImageNet, with linear fine-tuning and end-to-end tuning on dif-
ferent amounts of training data?

From the results and analysis in chapter 5, it is clear that the model pre-trained
on ImageNet outperforms the models using self-supervision. When comparing
the models on the linear fine-tuning task, it is clear that the model pre-trained
on ImageNet performs better, having higher accuracy regardless of training data
size and the number of epochs. The model pre-trained on ImageNet also per-
forms better than the self-supervised models in the experiments where the entire
models were fine-tuned, showing that the weights from ImageNet are also a better
weight initialization than the weights learned from self-supervision in this thesis.

As mentioned in section 5.2, there can be many reasons for the poor performance
of the self-supervised model. The way the unlabeled dataset was constructed
led to a possibly significant amount of noisy or empty spectrograms that could
impact the effectiveness of the self-supervised learning scheme. Another possible
reason could be that the augmentations chosen in this thesis were not appropriate
for the bird vocalization classification task. It could also be that the relatively
small size of the backbone used during self-supervision with SimSiam was not
ideal for the size of the unlabeled dataset used. Most likely, a combination of
these factors affects the performance of the self-supervised models constructed in
this paper.

The results of this thesis can not say anything about the general performance
of self-supervision on the bird vocalization task, as many different variables can
be changed, such as backbone, self-supervised algorithm, datasets, and augmen-
tations, that can change the performance of the self-supervised model. But the
results of these experiments suggest that the use of multiple augmentations im-
proves the performance on the downstream task. It also seems like using audio
from Xeno-canto without a method for filtering out noisy and empty spectro-
grams leads to poor performance on the downstream task, as the model struggles
to learn relevant features. It is important to note that the experiments in this
thesis used a limited amount of runs to acquire statistical averages and standard
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deviations because of long training time and high hardware requirements. Sev-
eral more runs and further experiments would be needed to verify any of the
explanations given.

Although the self-supervised learning scheme implemented in this thesis did not
do as well as a model pre-trained on ImageNet, another self-supervision scheme
could likely manage similar or even surpass the performance of the model pre-
trained on ImageNet. By testing more augmentations, backbones, and unlabeled
dataset pre-processing pipelines, one is likely to find a better performing self-
supervised learning scheme than the one laid out in this thesis.

6.3 Contributions

This thesis contributes to the field of bird vocalization classification in two as-
pects. The first contribution is the gathering of information through chapter 2
and chapter 3. Chapter 2 serves as an introduction to the information needed
for working with self-supervised learning on the bird vocalization classification
problem. This chapter describes popular self-supervised learning structures and
audio representations for machine learning. Chapter 3 contains a detailed survey
of state-of-the-art bird vocalization classification papers, self-supervised learn-
ing papers regarding both the image and audio domains, and papers concerning
transfer learning from the image domain to the audio domain. These chapters
give the reader needed background information for researching the intersection
between self-supervised learning and bird vocalization classification.

The second contribution comes from this thesis implementation and experiments.
To the best of the author’s knowledge, this is the first paper using the non-
contrastive learning scheme SimSiam on the bird vocalization classification task.
Therefore, anyone wanting to research similar self-supervised learning implemen-
tations for the bird vocalization classification task could benefit from reading
this thesis. The results and discussions from this thesis can be used as a start-
ing point for other researchers exploring self-supervision on the bird vocalization
classification problem.
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6.4 Future Work

To the author’s knowledge, this was the first attempt at self-supervised learning
for bird vocalization classification. There are a lot of changes and improvements
that can be explored for future research that builds on this thesis. Some possible
changes for future work based on the results and discussions from this thesis are
described below.

6.4.1 Using Different Unlabeled Dataset

The dataset used during self-supervised learning significantly impacts the back-
bone’s performance on the downstream task. During the analysis and discussion,
the unlabeled dataset was mentioned as a possible factor for the poor perfor-
mance of the self-supervised models because of noise and empty spectrograms.
For future work, it could be worth improving the quality of the unlabeled dataset.
This could be done by finding or developing a metric for noisy spectrograms or
detecting empty spectrograms and removing them.

Another approach to ensure a good quality of the unlabeled dataset could be
to use a labeled audio dataset and remove the labels, such as in BYOL-A. By
using previously labeled datasets, one can be assured that the amounts of noise or
empty spectrograms would be a minimum. It could be interesting to test if doing
self-supervision on large labeled audio datasets, such as AudioSet, increases the
performance on the downstream task of bird vocalization classification.

6.4.2 Futher Testing of Augmentations

As mentioned in section 5.2, the augmentations applied during self-supervision
have a significant impact on the performance of the downstream task. Due to
hardware limitations and time constraints, this paper only tested five different
augmentations and only did combinations of two augmentations at a time. Using
more than two augmentations would most likely benefit the self-supervised back-
bones on the downstream task. Therefore, a good topic for future work within
self-supervision for bird vocalization classification would be to test more data
augmentations and test the application of more than two augmentations at a
time during self-supervision.

6.4.3 Testing Different Self-Supervised Architectures

There are many different self-supervision architectures that can be used for self-
supervision for the bird vocalization classification task. This thesis only consid-
ered the SimSiam architecture, as this architecture was less hardware-demanding
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and time-consuming to train. As mentioned in section 5.2, the SimSiam architec-
ture used in this thesis did not perform well on the downstream task. The use of a
larger backbone or a different self-supervised learning architecture might increase
the downstream performance of the self-supervised model. As discussed by Li et
al. (Li et al. 2022), SimSiam performs better on larger backbones. Therefore,
it would be interesting to compare the performance of SimSiam on the bird vo-
calization classification task using different-sized backbones and see if there is a
significant improvement in accuracy on the downstream task.

It would also be interesting to test other self-supervision architectures to see
if there is a significant difference in downstream task performance between them.
Self-supervised architectures that could be interesting to test are the contrastive
architectures SimCLR and MoCo and the non-contrastive architecture BYOL.
These self-supervised learning architectures use the same principle of generating
two augmented views for two different branches. Therefore, one can use identical
pre-processing pipelines across architectures, making the architecture the only
variable. It is important to note that these implementations often require larger
GPU memory and might take longer to train.

6.5 Final Words

This thesis has investigated the use of self-supervised learning for bird vocal-
ization classification, introducing the intersection between bird vocalization and
self-supervised learning. This thesis has given general introductions to how bird
audio can be processed and how self-supervised learning can be used to leverage
large unlabeled datasets. Novel experiments have also been conducted, using
the SimSiam architecture with unlabeled bird vocalization data collected from
Xeno-canto. The results from these experiments suggest that contrastive and
non-contrastive learning on bird vocalizations benefits from using several data
augmentations during self-supervision. The results also suggest that using un-
filtered audio clips from Xeno-canto as the unlabeled dataset with the SimSiam
architecture described in this thesis is not sufficient for a good performance on
the downstream task of bird vocalization classification. This thesis has also laid
out possible improvements and further work within the self-supervision for bird
vocalization classification.
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Appendix A

Additional Figures and
Tables

A.1 Manually Labeled Dataset

The labeled dataset has a size of 2514 instances, classified into 10 different bird
classes. All the recordings used to generate this dataset originates from the United
Kingdom. Each bird species is native to the United Kingdom but can also be
found in large parts of Europe. Table A.1 presents the number of instances in
each class in the dataset. An example spectrogram from each class can be seen
in figure A.1. It is important to note that each bird can have several distinct
vocalizations. Therefore, the spectrograms seen in figure A.1 are not a complete
representation of all spectrograms in the labeled dataset.
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Table A.1: Number of instances for each class in the labeled dataset.

Bird class Number of instances
Common Blackbird 251
Common Chaffinch 256
Common Chiffchaff 263

Common Whitethroat 250
Corn Bunting 250

Eurasian Blue Tit 253
Eurasian Tree Sparrow 255

Great Tit 227
Willow Warbler 257
Yellowhammer 252

Total 2514

(a) Common Blackbird (b) Common Chaffinch

(c) Common Chiffchaff (d) Common Whitethroat

(e) Corn Bunting (f) Eurasian Blue Tit

(g) Eurasian Tree Sparrow (h) Great Tit

(i) Willow Warbler (j) Yellowhammer

Figure A.1: Example of spectrograms from each class in the labeled dataset.
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A.2 Unlabeled Dataset

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure A.2: Sample of spectrograms from the unlabeled dataset. The dataset
contains noisy spectrograms and spectrograms without bird vocalizations, and
the bird vocalizations often do not cover the whole spectrogram.
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A.3 Figures From Other Papers

Figure A.3: Exploration of different data augmentation combinations for Ima-
geNet on SimCLR. The values are the linear evaluation accuracy on ImageNet.
The last column is the average over the row (T. Chen et al. 2020).

Figure A.4: Results from testing different contrastive and non-contrastive learn-
ing architectures on ImageNet with different sized backbones, with ResNet18 in
brown and ResNet50 in blue (Li et al. 2022).
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Goëau, Hervé et al. (Sept. 2018). “Overview of BirdCLEF 2018: monospecies
vs. soundscape bird identification”. In: CLEF 2018 - Conference and Labs of
the Evaluation Forum. Vol. 2125. CEUR Workshops Proceedings 9. Avignon,
France. url: https://hal.archives-ouvertes.fr/hal-02189229.

Grill, Jean-Bastien et al. (2020). “Bootstrap your own latent: A new approach
to self-supervised Learning”. In: Publisher: arXiv Version Number: 3. doi:
10.48550/ARXIV.2006.07733. url: https://arxiv.org/abs/2006.07733
(visited on 11/10/2022).

He, Kaiming, Haoqi Fan, et al. (2019). “Momentum Contrast for Unsupervised
Visual Representation Learning”. In: Publisher: arXiv Version Number: 3.
doi: 10.48550/ARXIV.1911.05722. url: https://arxiv.org/abs/1911.
05722 (visited on 11/10/2022).

He, Kaiming, Xiangyu Zhang, et al. (2015). “Deep Residual Learning for Im-
age Recognition”. In: Publisher: arXiv Version Number: 1. doi: 10.48550/
ARXIV.1512.03385. url: https://arxiv.org/abs/1512.03385 (visited on
11/14/2022).

Howard, Andrew G. et al. (2017). “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”. In: Publisher: arXiv Version Num-
ber: 1. doi: 10.48550/ARXIV.1704.04861. url: https://arxiv.org/abs/
1704.04861 (visited on 11/14/2022).

Huang, Gao et al. (2016). “Densely Connected Convolutional Networks”. In: Pub-
lisher: arXiv Version Number: 5. doi: 10.48550/ARXIV.1608.06993. url:
https://arxiv.org/abs/1608.06993 (visited on 11/14/2022).

Iakubovskii, Pavel (Apr. 2023). Classification models Zoo - Keras (and Tensor-
Flow Keras). original-date: 2018-05-21T22:07:06Z. url: https://github.
com/qubvel/classification_models (visited on 04/27/2023).

ImageNet (ILSVRC2012) (n.d.). url: https://www.image-net.org/challenges/
LSVRC/2012/. (visited on 11/14/2022).

Incze, Agnes et al. (Sept. 2018). “Bird Sound Recognition Using a Convolutional
Neural Network”. In: 2018 IEEE 16th International Symposium on Intelli-
gent Systems and Informatics (SISY). Subotica: IEEE, pp. 000295–000300.

https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=235873&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=235873&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=235873&site=ehost-live&scope=site
https://data.europa.eu/doi/10.2779/959320
https://doi.org/10.4324/9781315665061
https://www.taylorfrancis.com/books/9781317350996
https://hal.archives-ouvertes.fr/hal-02189229
https://doi.org/10.48550/ARXIV.2006.07733
https://arxiv.org/abs/2006.07733
https://doi.org/10.48550/ARXIV.1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://doi.org/10.48550/ARXIV.1608.06993
https://arxiv.org/abs/1608.06993
https://github.com/qubvel/classification_models
https://github.com/qubvel/classification_models
https://www.image-net.org/challenges/LSVRC/2012/
https://www.image-net.org/challenges/LSVRC/2012/


BIBLIOGRAPHY 97

isbn: 978-1-5386-6841-2. doi: 10.1109/SISY.2018.8524677. url: https:
//ieeexplore.ieee.org/document/8524677/ (visited on 11/14/2022).

Jaiswal, Ashish et al. (2020). “A Survey on Contrastive Self-supervised Learning”.
In: Publisher: arXiv Version Number: 3. doi: 10.48550/ARXIV.2011.00362.
url: https://arxiv.org/abs/2011.00362 (visited on 04/26/2023).

Kahl, Stefan (2020). Identifying birds by sound: large-scale acoustic event recog-
nition for avian activity monitoring. en. Wissenschaftliche Schriftenreihe Dis-
sertationen der Medieninformatik Band 10. Chemnitz: UniversitÃ¤tsverlag
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