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“What I see in nature is a magnificent structure that we can comprehend only very 

imperfectly, and that must fill a thinking person with a feeling of humility.” 

~ Albert Einstein 
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Introduction 

As human beings we have been given a unique position of responsibility in taking care of 

nature—the foundation of our existence in this world that we share with innumerable other 

living entities in different forms of life. In order to adequately meet this responsibility, 

knowledge about the structuring forces and drivers behind the observable is essential. Within 

the field of biology alone, there are many levels at which this knowledge is sought—from the 

molecular level to the level of the entire ecosphere (Odum & Barrett 1971).  

In our search for knowledge, community ecology is a fundamental level of investigation due 

to its significance in understanding the co-existence of species inhabiting a given area (Vellend 

2010; Morin 2011). Community ecology serves as a bridge between research on the level of 

individual species and larger-scale ecological studies. It is an instance of research at which it 

is still possible to retain valuable species-level information, at the same time broadening the 

perspective to gain knowledge on more general patterns in nature. As such, studies within the 

field of community ecology are fundamental for conservation efforts. 

Nature is inherently complex, and we may never be able to fully describe and capture the 

intricate interplay of biotic and abiotic factors that takes place on so many different levels. 

However, we may be able to approximate the dynamics and patterns of nature using models. 

Models provide a valuable tool for simplifying complex ecological systems and making them 

more feasible for analysis (Hall & Day Jr 1977; Schmolke et al. 2010). Although models are 

certainly only a crude “sketch” of natures’ complexity, still, they are powerful tools that help 

us understand the general principles and mechanisms that underly the observed patterns. This 

is essential for making predictions about how nature might respond to future changes such as 

global warming and increased anthropogenic land use and modification. Models help us to 

identify relevant variables and relationships, which in turn is the foundation for the 

development of management strategies (Cardinale et al. 2012; Getz et al. 2018; Schuwirth et 
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al. 2019). Obviously, the accuracy and reliability of models heavily rely on the quality of the 

data used as input (e.g., Aubry, Raley & McKelvey 2017; Van Eupen et al. 2021). Models are 

only as good as the data they are based on, and the selection of appropriate variables as well as 

accurate measurements are essential for robust model performance.  

Communities 

Krebs (1972) defined a community in very general terms as being “an assemblage of 

populations of living organisms in a prescribed area or habitat”. This is a broad definition, 

based on which decisions can be made on what area and species assemblage should be studied 

in a given context. There are numerous different definitions of what a community is (Morin 

2011). In the broadest sense, a community could be defined as all species persisting together 

in a certain area. However, collecting high-quality data on all species of a community 

(including bacteria, protozoa etc., for which taxonomy still remains poorly known (e.g., 

Hughes et al. 2001), at this stage, must be considered impossible for most real communities. 

Therefore, community ecologists often focus their attention on subsets of communities, for 

example guilds, functional groups, taxocenes or trophic levels (Morin 2011).  

Community ecology began as a descriptive science, primarily concerned with listing and 

identifying the different species in different locations, as well as describing the conspicuous 

patterns that biodiversity exhibits (e.g., Clements 1916; Elton 1966). For instance, especially 

in temperate habitats, a few species often exhibit a clear dominance in abundance compared to 

others (Morin 2011). Also, for instance there are noticeable patterns in species richness along 

the latitudinal gradient (Rohde 1992; Hillebrand 2004), and in the succession of species in 

communities over time (Anderson & Kikkawa 1986; McCook 1994). To this day, the search 

for an understanding of the processes that shape community structure and dynamics, including 

the species’ abundances and their distribution is central to community ecology. Although many 
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hypotheses have been proposed and explored, there is still work to be done before we can claim 

that we have found the definite answers to these questions. Perhaps due to the overwhelming 

complexity of the task at hand, and the amount and quality of data required to transcend the 

often very local nature of community ecology studies, Lawton (1999) declared the field of 

community ecology to be “a mess”. However, recently, community ecology has made 

significant methodological and conceptual advances, discussed in the paragraph below (see 

e.g., Morin 2011; Vellend 2016; Leibold & Chase 2017). Factors such as considerable progress 

in computational techniques, development of multivariate statistical tools and increased data 

sharing among researchers all contribute favorably to a brighter outlook on our possibilities in 

answering long-standing questions in community ecology (Michener 2015; Shoemaker et al. 

2021; van der Veen 2022).  

Community data and analyses 

Data on species communities can be collected either in a natural setting or by recording the 

results obtained from experiments conducted either in the field or in the laboratory (Sutherland 

2006). Some examples of experimental approaches to studying communities include 

translocation or transplanting of individuals in order to study the effect of invasive species on 

biodiversity or the effect of removing a predator/herbivore (e.g., Maron, Pearson & Fletcher Jr 

2010; Sørensen et al. 2018). Also, for example specific environmental variables can be 

manipulated in order to study the effect of e.g. extreme weather phenomena or increased 

temperature on vegetation (e.g., Walker et al. 2006; Le Moullec et al. 2021).  

Community data can be measured in different units, such as for instance as presence-absence 

data, counts or cover percentage (in plant communities). Although often not feasible, counting 

or mapping every single individual can sometimes be done, for instance in experimental or 

laboratory settings (e.g., Brook, Grace & Hayward 1981; de Omena, Srivastava & Romero 
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2019), or in bird communities during the breeding season when individuals are territorial 

(territory mapping; (Enemar 1959, Sutherland 2006)). However, in most cases, only a sample 

of the community can be taken, which is assumed to represent the community as a whole. Many 

species are rare (i.e., they have a small relative abundance), and a commonly observed pattern 

is that the number of unique species in the sample grows with increasing number of individuals 

sampled, and even large samples will tend to contain some species with only one or a few 

sampled individuals. The real number of species in the community is mostly larger than the 

number of species sampled, and statistical techniques such as species rarefaction curves are 

often used to estimate the actual number of species in the community based on a sample of the 

community (Gotelli & Colwell 2001).  

Methods such as line transects (sampling along a defined route), point counts (regularly 

sampling at specific localities) or different types of trapping methods (for instance when 

studying insects) can all provide valuable samples of the community (Sutherland 2006). Cover 

percentage can be measured using quadrat sampling, and if the research question requires only 

presence-absence data, citizen science data (e.g. Dickinson, Zuckerberg & Bonter 2010; 

Krabbenhoft & Kashian 2020) or new promising methods such as the use of DNA-barcoding 

to identify species in samples (e.g. Yu et al. 2012; Deiner et al. 2017), automatic species 

recognition from acoustic recordings (e.g. Wood, Gutiérrez & Peery 2019; Desjonquères, 

Gifford & Linke 2020) or camera trap images (Tabak et al. 2019) can be explored.  

The collected data can subsequently be analyzed in many different ways, depending on the 

research question. In its most simple form, community data can be presented for instance as 

species lists or cover percentages. The use of biodiversity indices to describe communities is 

very prominent (Iknayan et al. 2014; Heydari, Omidipour & Greenlee 2020). Different indices 

are used to measure local and regional diversity as well as the turnover in species composition 

between communities either in space or time (α-, β- and γ- diversity respectively), such as for 
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instance Shannon’s and Simpson’s Diverstiy indices (α and γ diversity), Sørensen or Jaccard 

Similarity Indices, Bray-Curtis Dissimilarity Index (β diversity) etc. (see e.g. Iknayan et al. 

2014; Moreno et al. 2018; Heydari, Omidipour & Greenlee 2020). However, much information 

is lost when summarizing communities solely with single indices. An alternative or 

complementary way to study communities in more detail is provided by analyzing their species 

abundance distribution (SAD) (May 2011). The use of SADs in community inference dates 

back to the important contributions by Fisher, Corbet & Williams (1943) and Preston (1948). 

SADs can be used for instance to assess the level of rarity of endangered species (McGill 2011), 

or to estimate the richness and evenness of communities (Sæther, Engen & Grøtan, 2013). Also, 

monitoring changes in a communities’ SAD over time can serve as an early warning for 

extinction risk (Hågvar 1994; Mouillot et al. 2013), and the variance of different samples of 

SAD’s in time can be decomposed to analyze the relative contribution of different intrinsic and 

extrinsic factors to community dynamics (Engen et al. 2002).  

Another class of methods commonly used in community inferences is ordination. Ordination 

provides a means to reduce complex ecological datasets into a few key axes representing major 

trends (unconstrained ordination, such as e.g. Principal Component Analysis). Ordination can 

also be used to link community composition to environmental factors (constrained ordination, 

such as e.g., Canonical Correspondence Analysis) (see e.g. Palmer 2004 for an overview on 

ordination methods).  

Following the rapid methodological and technological advances in recent time, the use of 

model-based approaches has become more integrated in community ecology (Warton et al. 

2015). This is reflected for instance in the way various community measures are being 

analyzed; for example, generalized linear mixed-effect models (GLMMs) can be used to model 

biodiversity indices as functions of different environmental variables (e.g., Winkler et al. 2016; 

Hamza & Hanane 2021), and a recent study used GLMMs to investigate measures of 
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community sensitivity and resistance to environmental perturbations (Sæther, Engen & Solbu 

2023). In addition (and often hand in hand), the development and use of multispecies models 

is becoming increasingly established. For instance, Joint Species Distribution Models (JSDM), 

which can be viewed as extensions of GLMMs (i.e., treating the entire community data as the 

response variable), constitute an important advancement in community ecology. 

Especially the introduction of latent variable models into community ecology models (also 

known as generalized linear latent variable modeling, GLLVMs) is a key development, as it 

greatly reduces the dimensionality of multispecies analyses (JSDMs with latent variables can 

be viewed as model-based ordinations). The GLLVM framework is now commonly used in 

JSDMs, making it possible to study real species communities with hundreds of species (e.g. 

Warton et al. 2015a; Thorson et al. 2016; Ovaskainen & Abrego 2020; van der Veen 2022). 

Recently, GLLVMs have also been used to expand traditional ordination methods (van der Veen 

et al. 2023). JSDMs can be used to study co-occurrence patterns after accounting for species’ 

similar or dissimilar responses to environmental variables (e.g., Pollock et al. 2014; Tikhonov 

et al. 2017; D'Amen et al. 2018). They are also used to study the impact of phylogeny and traits 

on community structure (e.g., Morales‐Castilla et al. 2017; Ovaskainen et al. 2019; Violet et al. 

2022). An extension of JSDMs that can be fitted to time-series data constitutes a further 

milestone in the development of these models, as it allows for the estimation of species 

interactions directly from species abundance data in previous years instead of from the residual 

covariance matrix, greatly enhancing the reliability of the estimates (Ovaskainen et al. 2017b; 

Ovaskainen & Abrego 2020; Sandal et al. 2022). Some JSDM utilize Bayesian inference, using 

the Markov chain Monte Carlo (MCMC) method to fit the model to the data (see e.g., Warton 

et al. 2015a; Ovaskainen & Abrego 2020). The use of Bayesian inference in community 

ecology in general is another exciting and promising, flexible tool allowing for the use of 

complex ecological models (e.g., Ellison 2004; Warton et al. 2015b) 



11 
 

Community ecology methodology is being developed on multiple fronts. For instance, 

structural equation modeling (SEM) also constitutes a noteworthy contribution. SEM can be 

used to investigate hypothesized direct and indirect relationships (again, Bayesian approaches 

can be useful, especially in complex, non-linear cases, see e.g., Palomo, Dunson & Bollen 

2007; Muthén & Asparouhov 2012), and has for instance been used to study relations between 

species of different trophic levels along with different environmental variables influencing 

them (e.g., Riginos & Grace 2008; Du et al. 2015; Mamet et al. 2019). SEM has also been used 

to relate biodiversity indices to environmental variables (Santillán et al. 2020). Recent 

advancements in the use of artificial intelligence in ecological studies (e.g., Rammer & Seidl 

2019; Hsiang & Hull 2022; Stupariu et al. 2022) also have great potential as a future tool for 

inferences. 

Identifying key drivers of community dynamics 

In this thesis, we go back to very basic community ecology questions and try to answer them 

in a more general way by applying multivariate statistical models to high-quality, long-term, 

large-scale bird abundance data and utilizing Bayesian inferences. The first step in such an 

approach must be to identify key processes that need to be taken into account when building 

the models that attempt to describe the observed data. In other words, what structures 

communities? Obviously, we cannot take into account (and we have most likely not identified) 

all potential structuring factors, so the question is, which of these are necessary to include to 

adequately describe the observed? In this connection, Hubbel (2001) put forward his neutral 

theory of community ecology, proposing that biodiversity emerges and is organized at random. 

The theory assumes species to be identical, that is, on a per capita basis, species are equal in 

demographic variables such as growth rates, their ability to colonize a new area etc. Temporal 

and spatial variation in species abundances and composition is assumed to arise by chance 

migration from a regional species pool, as well as demographic stochasticity (which may also 
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cause random extinction of species) (Hubbell 2001; Chave 2004). While natural communities 

likely are not maintained solely by random processes, the neutral theory is a highly valuable 

contribution to ecology, because in the overwhelming complexity of factors to take into account 

when dealing with communities, it serves as a null-model for evaluating the roles of other, 

deterministic processes (Ovaskainen & Abrego 2020). 

In contrast to neutral theory, the traditional view on communities is a niche-based one. 

Hutchinson (1957, 1978) defined the fundamental niche of a given species as the sum of all 

environmental variables and resources required for that species to survive and reproduce. 

Further, species are thought to coexist within a certain area by partitioning resources and 

avoiding direct competition, either through differences in their ecological niches or through 

specialized adaptations or behaviors, such as for instance between-species differences in their 

timing of feeding or reproduction. The resulting actual dimension that the species can occupy 

in the presence of biotic interactions such as competition, predation, mutualism etc. is called a 

species’ realized niche. As Leibold and McPeek (2006) pointed out, the future of community 

ecology doesn’t lie in arguing about which of the two schools of thought (neutral vs. niche 

theory) is correct, but rather focusing our attention on synthesizing niche and neutral 

perspectives. Although this thesis builds upon a niche-based view of communities, it also 

recognizes the importance of stochastic processes. Thus, we herein explore the potential 

importance of both deterministic and stochastic processes in bird communities. Rather than 

strictly adhering to one paradigm or another, we here simply attempt to incorporate the 

knowledge that we as ecologists have gained from studying population dynamics and ask if the 

same mechanisms are acting also on the community as a whole. Single-species dynamics are 

relatively well understood, and different key deterministic and stochastic processes (outlined 

below) have been identified to be of importance on the population level. There is still limited 

knowledge about the potential significance of different such processes at the community level 
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(e.g., Kinzey & Punt 2009; Engelhardt, Neuschulz & Hof 2020), and thus we here make an 

attempt to broaden our understanding in that regard. 

Birds as study system 

Birds comprise an exceptional study unit for numerous reasons. Firstly, birds are extensively 

studied. Some of the reasons for the great research interest in birds is that they are easily 

observed- they are active during daytime, easy to detect (birds are often conspicuous and highly 

vocal), relatively easy to trap and mark with leg rings, etc. (e.g., Feduccia 1978; Busse & 

Meissner 2015). Territoriality during the breeding season is widespread in birds (Nice 1941), 

creating an ideal situation for detailed territory mapping (Enemar 1959), yielding exceptionally 

high-quality count data (see more details in the Methods section below). Due to the extensive 

data collected and continuous monitoring effort being done relative to other taxa, birds also 

serve as indicator species of the general ‘health’ of ecosystems (e.g., Mekonen 2017; Fraixedas 

et al. 2020). The great interest in birds makes it possible to study for instance the impact of 

human disturbances such as pollution, habitat fragmentation and climate change on bird 

communities (e.g., Brotons et al. 2010; Halstead et al. 2019; Sander & Tietze 2022), with 

implications also for other taxa. 

Another feature which sets birds apart from most other living entities is their high dispersal 

ability (Paradis et al. 1998). Many birds are migrants, sometimes covering vast distances every 

year (e.g., Mouritsen 2018). The high mobility of most birds makes dispersal limitation in their 

abundance distributions less pronounced than in many other taxa (with notable exceptions; for 

instance, some tropical forest birds have been found to be unable to cross even seemingly 

insignificant barriers between habitat patches, see e.g., Moore et al. 2008). For instance, Qiang 

(2009) found β-diversity to be consistently lower for birds and mammals both at regional and 

global extents (i.e., species composition across space was more similar) than for reptiles and 
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amphibians. Similarly, Steinitz et al. (2006) confirmed that, as expected, the decay in species 

similarity between communities was significantly faster in mollusks compared to in birds 

within the same geographic extent. Thus, bird distribution patterns might be relatively more 

influenced by other factors, such as environmental constraints, interspecific interactions or 

stochasticity (e.g., Alatalo 1982; McCain 2009; Campbell, Witham & Hunter Jr 2010), see 

paragraph below. The main environmental limitations for birds globally seem to be temperature 

and water variables, as summarized by McCain (2009) in an extensive review.   

From populations to communities 

Species display a wide range of differences in their respective dynamics, such as for instance 

differences in life histories, intrinsic rates of increase, dispersal rates etc. (e.g., Roff 1992; Clark 

2009; Purves & Turnbull 2010). In addition to between-species differences in their dynamics, 

there can also be within-species variation across regions (e.g., Menges & Dolan 1998; 

Jongejans et al. 2010). Despite such between-species differences, there are some processes 

which emerge as important across species, outlined below. 

Time-series studies of single or few species have demonstrated that density dependence, which 

is the impact of current or past population densities on the population growth rate, is an 

important process affecting population dynamics. (e.g., Royama 1992; Lande, Engen & Saether 

2003). Density dependence may occur through intraspecific competition for limited resources 

(e.g., Hansen et al. 1999; Amundsen, Knudsen & Klemetsen 2007) or through interference 

competition that excludes individuals’ access to space (e.g., Moksnes 2004; Denac 2006). 

Brook and Bradshaw (2006) demonstrated that 75% of 1198 invertebrate and vertebrate 

species, including birds, showed intraspecific density dependence in their per-capita growth 

rates.  
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Population fluctuations are additionally influenced by environmental stochasticity, i.e., 

between-year variation in populations’ expected survival and fecundity, caused by random 

variation in the environment such as for instance weather, pollution, or habitat loss, leading to 

fluctuations in population size (Lande 1993; Lande, Engen & Saether 2003). Environmental 

stochasticity tends to reduce the long-run population growth rate (Lewontin & Cohen 1969; 

Lande, Engen & Saether 2003) and has been shown to strongly affect many species (e.g., 

Dobinson & Richards 1964; Grant 1986; Grøtan et al. 2009). Environmental stochasticity 

affects individual species in varying degrees due to specific traits and life history 

characteristics, such as differences in habitat preferences, feeding behavior, or reproductive 

strategies (Lande, Engen & Saether 2003; Morris & Doak 2004). The responses of species to 

the variation in the environment may thus be correlated to a larger or lesser extent, depending 

on their ecological similarity. A high degree of synchrony in species’ abundance fluctuations 

can negatively influence the long-term persistence of communities (Harrison & Quinn 1989; 

Heino et al. 1997). 

Demographic stochasticity, within-year variation between individuals in survival and fecundity 

(MacArthur & Wilson 1967; Lande, Engen & Saether 2003) is also widely accepted as being 

an important process in population dynamics. Its impact is most pronounced at low population 

sizes, where individual fitness variation reduces the long-term population growth rate and 

increases the risk of extinction (e.g., Lande, Engen & Saether 2003; Melbourne & Hastings 

2008).  

Apart from such mechanisms acting on the level of the individual species, when moving to the 

level of the community, it is obviously also necessary to consider the context in which the 

species co-exist. This involves direct and indirect interaction among the species sharing a 

common space, which is considered an important structuring force in natural communities 

(Elton 1946; Hardin 1960; Cody & Diamond 1975). In this thesis, we evaluate the role of 
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species interactions in the community in terms of interspecific density dependence—i.e., as the 

effects of the changes in one species’ abundance on that of other species, a mechanism 

considered important in regulating species abundances (e.g., Ovaskainen et al. 2017b). 

Additionally, movement can greatly influence occurrence patterns (Wiens 1989; Martin, 

Pearce‐Higgins & Fahrig 2017). For instance, interspecific interactions can affect the 

abundances and distribution of species not only locally, but on a larger spatial scale as well 

(Gotelli, Graves & Rahbek 2010; Araújo & Rozenfeld 2014). Thus, a set of local communities 

can be linked together by dispersal in what is called a metacommunity (Holyoak, Leibold & 

Holt 2005). 

Processes such as those discussed above are the “building blocks” underlying different 

observed patterns that give rise to classic community ecology theory. In this thesis, we study 

key processes driving community dynamics, allowing us to relate our findings to such theories. 

For instance, following classic Lotka-Volterra theory, intraspecific competition must be 

stronger than interspecific competition for species to be able to coexist in the long run without 

extinction (see e.g., Chesson 2000), and thus determining the relative contribution of intra- and 

interspecific competition to community dynamics contributes to a better understanding of the 

existing theory. Likewise, estimating the influence of different components of environmental 

stochasticity (i.e., environmental stochasticity affecting all species in the same way, versus 

stochasticity influencing different species in different ways) is relevant in the study of 

community stability, as synchronized responses of different species to environmental 

perturbation can have a destabilizing effect on communities (De Mazancourt et al. 2013; 

Valencia et al. 2020). Species diversity is, as mentioned, central in community ecology studies, 

and thus, careful estimation of its components can shed new light on long-standing hypotheses 

such as energy-diversity theory (predicting that the more energy is available in the ecosystem, 
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the more species can be sustained by it, see e.g., McNaughton et al. 1989; Rosenzweig & 

Abramsky 1993; Srivastava & Lawton 1998) 

Spatial and temporal context 

As briefly touched upon in the previous paragraph, the spatial and temporal context in which 

ecological studies are performed is highly relevant, as it affects the patterns which can be 

perceived (e.g., Allen & Hoekstra 1991; Levin 1992; Dornelas et al. 2013; McGill et al. 2015). 

Variability in time and space is an inherent characteristic of nature (Sousa 1984). Community 

dynamics exhibit spatial and temporal variability due to a wide range of abiotic and biotic 

factors, such as for instance species’ tolerance ranges, anthropogenic and natural disturbances, 

changes in environmental conditions, disease outbreaks, increased competition over resources, 

arrival of invasive species etc. (see e.g. Sousa 1984; Ricklefs 1987; Kolasa, Hewitt & Drake 

1998; Brown 2014). Therefore, a comprehensive understanding of community level processes 

ideally necessitates study across large spatial and temporal scales (Ives et al. 2003; Magurran 

2007; Magurran et al. 2010). This is, of course, not an easy task, as the community time-series 

data of sufficient length, quality and spatial extent ideally needed is very rare (Wolfe et al. 

1987; Magurran et al. 2010). Nevertheless, in a world of increasing sharing of data between 

researchers much can be achieved in this regard (Farley et al. 2018; Kühl et al. 2019; Runting 

et al. 2020; McCrea et al. 2023).  
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Aims 

My thesis aimed to address key questions in community ecology by investigating the drivers 

of community changes over time and space using large-scale, long-term time-series abundance 

data on European bird communities. By utilizing multivariate statistical methods and modeling 

approaches, we investigated how the composition and dynamics of temperate bird communities 

in time and space are influenced by potentially important structuring forces such as intra- and 

interspecific density dependence as well as common and species-specific stochasticity. We also 

examined how species diversity changes along ecological gradients related to productivity. 

Throughout all three papers, we also investigated between-habitat differences in the observed 

patterns; more specifically, we made a distinction between simpler, open habitat types, and 

more complex, forest habitat types.  

We approached these questions from slightly different angles throughout this work as follows: 

Paper I 

The aim of paper I was to increase our understanding of the drivers of community changes over 

time occurring at different spatial scales using unique large-scale, long-term time-series data 

on British bird communities. We used a Joint Species Distribution Model, taking into account 

both abiotic and biotic processes in an integrated way, to examine the relative contribution of 

intra- and interspecific density dependence at different spatial scales, as well as the influence 

of environmental variables, to spatio-temporal variation in abundance. Accounting for species 

interactions is computationally intensive and may lead to overparameterization, and we here 

investigated to what extent the inclusion of species interactions improved model performance.  

Paper II 

Species diversity is of great importance for many aspects of ecosystem structure and function, 

and thus we need to understand what maintains and supports it. In paper II, we investigated 
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how the two components of species diversity, namely species richness and evenness, are related 

to each other as well as to different measures of productivity. We applied multivariate Poisson 

log-normal distributions to long-term time-series data on European bird communities, allowing 

us to estimate the variance of the log-normal species abundance distribution, which acts as an 

inverse measure of evenness, as well as species richness. Using these estimated parameters, we 

investigated the relationship between richness and evenness, as well as their potentially 

differentiated responses to net primary productivity, territory densities and community biomass 

along a latitudinal gradient in European bird communities.  

Paper III 

In paper III, we utilized the multivariate Poisson log-normal model from paper II and based on 

a theoretical framework addressing the underlying mechanisms producing a log-normal species 

abundance distribution, we were able to decompose its variance into contributions of ecological 

heterogeneity as well as species-specific and common stochasticity. The aim of this study was 

to shed light on the mechanisms structuring European bird communities in two major 

categories of habitat type (open and forest habitat types), reflecting different degrees of habitat 

complexity, by the use of species-abundance distributions fit to time-series data. The increasing 

concern regarding biodiversity loss emphasizes the necessity to understand temporal 

biodiversity changes. For instance, if effects of ecological heterogeneity among species are 

large compared to effects of noise on fluctuations of abundance, this will lead to a stable 

community structure with little temporal turnover in relative abundances of species. On the 

other hand, if species abundances are highly influenced by noise acting independently among 

species and relative effects of ecological heterogeneity are small, the community correlation 

will decay more quickly over time. 
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Methods 

The overall recurring theme in this thesis has been to apply and develop novel multivariate 

statistical tools to utilize the unique wealth of ecological information stored in long-term, large-

scale community time-series count data (described in detail below). There are several important 

advantages of our approach which make this work an important contribution to the ecological 

literature.  

Firstly, community inferences are often performed on “snap-shot” data, i.e., on data gathered 

at only one point in time. While such studies are very valuable, still, we know from the study 

of time-series data of single species how variable species abundances are over time. Thus, such 

“snap-shot” data can only give us an incomplete picture (e.g., Recher & Gebski 1990; Adamík 

& Kornan 2004). On the other hand, studies that have monitored communities over time are 

often conducted at one single location. This approach, again, while very valuable, will not give 

us sufficient information on the generality of the observed patterns, nor on how community 

drivers might change across space due to e.g., differences in climatic or geophysical conditions. 

Moreover, count data, such as used herein, has several advantages over presence-absence data 

which is often used in ecological studies. One such advantage is that count data provide more 

detailed and precise information about the abundance of the species within a given area and/or 

time period. Another advantage is that count data retains variability, which is valuable for 

detecting patterns and relationships in ecological systems.  

Secondly, recently, there have been significant advances in statistical and mathematical tools 

that can be utilized in our inferences within the field of community ecology (Shoemaker et al. 

2021; van der Veen 2022). Utilizing and continuing to develop such tools may seem daunting, 

as, by nature, dealing with multivariate analyses is a complex matter. However, the reward in 

terms of increased knowledge about, and insights into, the processes that govern natural 

communities is great.  In the following, I will give a short presentation of the data underlying 
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my work, as well as a brief summary of the methodology applied and developed in the three 

papers. 

Data 

Territory mapping data 

Birds, due to their relatively “outgoing” behavior and charming features, have always been 

endearing to biologists and the general populace. Hence, many dedicated people have over 

decades collected detailed data on these animals, sometimes using very rigorous sampling 

protocols. Throughout the thesis, the basis for our analyses was territory mapping data collected 

by the method developed by Enemar (1959) of bird communities in Europe. In this area-based 

sampling method, a complete census of a fixed area is performed at several instances during 

each years’ observation period. This sampling method practically removes uncertainty due to 

differences in sampling intensity, and furthermore gives a uniquely precise and complete 

observation of the species abundance distribution. The result obtained from this strenuous 

method is of very high quality. In my thesis, I have had the great fortune to be allowed to work 

on bird data obtained by such territory mapping, not only for one or a handful of communities, 

but for hundreds of communities across numerous European countries. Therefore, throughout 

this thesis, I have felt confident that the foundation for our inferences is solid.  

Because of differences in the methods used in our three papers, the data selection varied 

between the first and the last two papers. In paper I, we applied a JSDM to the entire data set, 

and therefore, some data selection criteria were necessary in order to ensure a minimum input 

quality. Therefore, we only included data from plots monitored continuously for ≥ 10 years 

across the UK, and excluded species observed in less than 30% of the plots. Thus, the data set 

underlying the analyses performed in paper I was comprised of community count time-series 



22 
 

of 10-36 years, monitored between 1965 and 2002, from a total of 121 plots (68 farmland and 

53 woodland plots). 

In paper II and III our research questions focused on within-community patterns over time and 

relating these estimated parameters to spatial gradients. Consequently, the data selection also 

differed. Here, we included data from plots monitored for ≥ 6 years across Europe. We excluded 

plots with a total of < 10 species and/or if the mean average number of counts per year was < 

30, as the reliability of parameter estimates in such plots may be compromised, e.g., through 

the influence of demographic stochasticity. The dataset utilized in these two papers 

encompassed n=376 plots (open habitat: n=289, forest habitat: n=87) monitored for 6-50 years, 

censused between 1950 and 2018. 

Other ecological data 

Additionally, for paper I, we accessed local monthly temperature and precipitation data for each 

plot from the Met Office UKCP09 databases (Jenkins, 2007; MetOffice, 2017).  

For paper II, we collected body mass data from Dunning Jr (2007), to obtain a measure of 

community biomass per area. Additionally, to obtain an estimate of net primary productivity 

for each plot, we accessed data for annual Net Primary Production (NPP) from 

https://lpdaac.usgs.gov/  (MOD17A3HGF Version 6 product; 500 m pixel resolution) using the 

R-package “MODIS” (Mattiuzzi & Detsch 2020).  

For both paper II and III, we utilize land cover data in order to determine habitat type for each 

plot. For this, we accessed the European Space Agency’s Climate Change Initiative (ESA CCI) 

annual landcover maps from 1992-2015 with 300 m resolution (https://www.esa-landcover-

cci.org/) (ESA 2017). A continuation of these maps for the years 2016-2018 was accessed 

through the Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 

(https://cds.climate.copernicus.eu/). Subsequently, we extracted each year’s dominant 

https://cds.climate.copernicus.eu/
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landcover class for each plot with a buffer of 300 m around the coordinates and utilized this 

information to divide the plots into two rougher categories: “open” and “woodland”, reflecting 

simpler and more complex habitat types, respectively. 

Statistical analyses 

In all three papers of my thesis, the application of statistical models that account for the joint 

dynamics of multiple species in ecological communities is central. We approached our 

investigations by the use of two major types of models, namely Hierarchical Modeling of 

Species Communities (HMSC; a JSDM) and a multivariate Poisson log-normal model. 

Although there are differences in the specific assumptions and implementations of these 

models, they also have much in common. Firstly, both methods adopt a multivariate statistical 

approach, considering multiple species simultaneously. Secondly, both approaches incorporate 

hierarchical structures to account for the nested nature of ecological data, e.g., multiple 

sampling sites and/or repeated measurements over time. Such hierarchical modeling allows us 

to account for shared information among species, including potential autocorrelation in time 

and space.  

Paper I 

In paper I, we analyzed the data with HMSC, using the implementation for time-series data by 

Ovaskainen et al. (2017). The time-series HMSC jointly models the species count time-series 

data of the entire community within a Bayesian hierarchical framework. HMSC is a powerful 

tool to investigate species interactions: Especially when working with time-series data, species 

interactions can be inferred as responses to species abundances in previous years, rather than 

from the residual covariance matrix as is done for “snap-shot” data (Mutshinda, O'Hara & 

Woiwod 2009; Ovaskainen et al. 2017a). This approach greatly enhances the reliability of the 

estimated interactions. Still, estimating the interaction coefficients for each pair of species can 
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be challenging, as it requires a large amount of data, and therefore, we here evaluated if 

including species interactions to the model increased model performance. 

The foundation of the time-series HMSC is a first-order multivariate autoregressive [MAR(1)] 

model, a tool used to infer strengths of both between- and within-species interactions (Ives et 

al., 2003; Novak et al., 2016; Wootton & Emmerson, 2005), specified as follows: 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑖𝑖 + ∑ 𝛼𝛼𝑖𝑖,𝑗𝑗𝑦𝑦𝑗𝑗,𝑡𝑡−1 + 𝑒𝑒𝑖𝑖,𝑡𝑡𝑚𝑚
𝑗𝑗=1 ,         (1) 

where 𝑦𝑦𝑖𝑖,𝑡𝑡 is the log-abundance of species i at time t. 𝑐𝑐𝑖𝑖 denotes the intercept, and 𝛼𝛼𝑖𝑖,𝑗𝑗 is the 

interaction coefficient, and 𝑒𝑒𝑖𝑖,𝑡𝑡 is the noise term. MAR(1) models can be used as relatively 

simple approximations to complex natural systems, and essentially represent multispecies 

Gompertz dynamics (i.e., a species’ population growth is assumed to be exponential but 

gradually slows down as the population approaches its carrying capacity) (Ives et al. 2003, 

Certain et al. 2018).  

In the HMSC framework, this model is built for all species simultaneously. In vector form, for 

all species, eqn. 1 can be written as: 

𝒚𝒚𝒕𝒕 = 𝒄𝒄 + 𝑨𝑨𝒚𝒚𝒕𝒕−𝟏𝟏 + 𝒆𝒆𝒕𝒕           (2) 

Assuming a normal distribution of the data on the log-scale, the standardized log-abundance of 

species i in plot p at time t is modelled as a draw from a normal distribution: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡~𝑁𝑁(𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡 ,  𝜎𝜎𝑖𝑖2),           (3) 

with mean determined by 𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡,  the linear predictor of the log-abundance, and variance 𝜎𝜎𝑖𝑖2. The 

linear predictor includes a fixed (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐹𝐹 ) and random (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝑅𝑅 ) term, as well as some residual error. 

The fixed part is further decomposed into an environmental term (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐸𝐸 ) and a species 

association term (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐴𝐴 ).  
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Technically speaking, when applying the time-series HMSC, the response variable is the entire 

matrix of community time-series data from all plots and at all points in time. As predictor 

variables, we included the densities of the species in the previous year (in different ways, as 

described below), species- and site-specific temperature and precipitation data, as well as area 

and habitat type. We utilized a sliding time-window approach (van de Pol et al. 2016) to 

identify the critical time-window during which temperature and precipitation influence the 

abundance of each species the most. We included plot as a spatially explicit random effect, and 

year as a temporally explicit random effect. Here, we modelled species interactions in 3 

different ways and compared explanatory- and predictive power to a model excluding 

interactions. In the second variant (the first being the variant excluding interactions), we 

estimated the full matrix of species-to-species interaction coefficients by including as 

predictors the densities of all the species in the previous year. The diagonal elements of this 

matrix (also estimated in the first model variant) model the intra-specific density dependence. 

In the third variant, we assumed most species interactions to be zero, using a variable selection 

approach to identify non-zero interactions. In the fourth variant, we used a latent variable 

approach wherein species are assumed to contribute to one or more “community-level drivers”, 

defined as linear combinations of species densities (Ovaskainen et al. 2017a). 

To examine at which spatial scale intra- and interspecific density dependence might influence 

local population sizes the most, we tested the performance of the four different model variants 

described above by calculating the log-transformed densities of the species in the previous 

years at four spatial scales. To do so, we applied spatial smoothing, using the exponentially 

decaying weighting function 𝑒𝑒−𝑑𝑑/𝑟𝑟 , where 𝑑𝑑 is the pairwise distance between plots in km and 

𝑟𝑟 models the spatial scale of interactions. 
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HMSC uses Markov Chain Monte Carlo (MCMC) sampling to estimate the model parameters. 

In this method, the goal is to estimate the posterior distribution of the parameters given the 

observed data. MCMC sampling is used to explore and approximate this posterior distribution. 

Subsequently, to determine the significance of inter-specific density dependence at the different 

spatial scales, we used a five-fold cross validation technique, comparing model predictions to 

observed data, to evaluate predictive- and explanatory power of the different model variants. 

To estimate the contribution of the remaining variables to the explained variance, we performed 

a variance partitioning for the model variant which excluded species interactions. We also 

estimated the percentage of unexplained variance. 

Paper II 

For the analyses performed in paper II and III, we developed a multivariate Poisson log-normal 

model which we applied to the time-series data of each community. Our approach builds on 

the theoretical framework developed by Engen & Lande (1996); Engen et al. (2002); Lande, 

Engen & Saether (2003); Engen (2007) and Engen, Grøtan & Sæther (2011), who found that a 

community in which the species are governed by a Gompertz’ type of density regulation 

produces a log-normal species abundance distribution, even when allowing growth rates to 

differ among species. Thus, our model assumes that the observed species abundances follow a 

Poisson distribution, while the true, underlying abundances are a realization from a normal 

distribution on the log-scale.  

The PLND, first described by Grundy (1951), has been widely used for ecological study since 

its first application by Bulmer (1974) (see e.g., Connolly & Dornelas 2011; Grøtan et al. 2012; 

Sæther, Engen & Grøtan 2013), and contains valuable information on a communities’ species 

diversity. For instance, the variance of this distribution acts as an inverse measure of evenness 

(Sæther, Engen & Grøtan 2013). More specifically, a small variance indicates that most species 
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are equally abundant, while a large variance points to a few species being more than average 

dominant in the community. In addition, the true underlying number of species of the 

community can be estimated from the probability density function of the distribution (Grøtan, 

Engen & Grøtan 2022). This is particularly valuable since accurately estimating species 

richness is notoriously difficult in natural communities (O'Hara 2005).  

Previous studies have fitted the bivariate Poisson log-normal distribution to all pairs of samples 

to study community similarity (e.g., Engen, Grøtan & Sæther 2011; Grøtan et al. 2012; Grøtan 

et al. 2014) and to decompose the variance of the log-normal species abundance distribution 

(e.g., Engen et al. 2002; Engen, Aagaard & Bongard 2011). However, such an approach treats 

each pair of samples as being independent, and species identity is not shared across pairwise 

samples. Here, we instead simultaneously utilize all samples in time of a given community to 

directly estimate the community variance, 𝜎𝜎2, the correlation function of relative species 

abundances at different time-lags, as well as the community richness, S. This approach allowed 

us to take into account autocorrelations and trends in the data. Additionally, estimates may be 

assumed to become stabilized because information is drawn from multiple data-points in time.  

More specifically, we let the vector of the log abundances of species i across all years, log(𝝀𝝀𝒊𝒊),  

at a given location be modelled as a realization of a multivariate normal distribution defined 

by the vector 𝛍𝛍 of yearly mean log abundances (indexed by t below), as well as by a variance-

covariance matrix (Ʃ): 

log(𝝀𝝀𝒊𝒊) ~MVN(𝛍𝛍, Ʃ).                (4) 

Herein, we model the yearly mean log abundances 𝜇𝜇𝑡𝑡 as being dependent upon a community 

mean abundance across years (related to the general habitat quality of the community), 

potential trends arising from long-term changes in climatic conditions, as well as a variance 

influenced by common stochasticity acting equally on all species. 
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The community is further defined by the variance-covariance matrix, with the community 

variance 𝜎𝜎2 as its diagonal elements, and 𝜎𝜎2 × 𝜌𝜌𝑡𝑡, where 𝜌𝜌𝑡𝑡 is the correlation at time difference 

t, as its off-diagonal elements. We assume the function of autocorrelation in the time-series to 

decay exponentially.  

We account for unobserved species by augmenting the data with multiple “species” with 0 

observations across all years and use a zero-inflated model (see e.g., Royle, Dorazio & Link 

2007; Zuur et al. 2009; Kéry & Royle 2020) to facilitate the process of estimating the true 

number of species in the community.  

Thus, we model the counts (including the augmented data), C, for a given species (i) in a given 

year (t) as: 

𝐶𝐶𝑖𝑖,𝑡𝑡~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎𝑖𝑖 × 𝜆𝜆𝑖𝑖,𝑡𝑡),             (5) 

i.e. we let 𝐶𝐶𝑖𝑖,𝑡𝑡 be a realization of the Poisson distribution with expectation 𝜆𝜆𝑖𝑖,𝑡𝑡 (see eqn. 4). 𝑎𝑎𝑖𝑖 

is a realization from a Bernouilli distribution with a probability π of being 1. Species richness, 

𝑆𝑆, can be estimated as the sum of the discrete latent variables 𝑎𝑎𝑖𝑖. 

We implemented our model using MCMC computation to find the joint posterior distribution 

of the parameters. Subsequently, we ran intercept-only models as well as linear and 2nd order 

polynomial models for each sample of the obtained (thinned) posterior distribution for all plots 

as well as separately for the plots of each of the two habitat types. We related 1) the estimates 

of species richness (S) and 𝜎𝜎2 to each other and 2) S, as well as the residuals of 𝜎𝜎2 after 

accounting for S to density (i.e., territories per area) and community biomass (i.e., bird biomass 

per area), as well as to latitude and Net Primary Productivity (NPP). We subsequently 

performed cross-validation to rank the model alternatives. 
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Paper III 

The analyses in paper III build on the same multivariate Poisson log-normal model developed 

in paper II. In this paper, we perform a variance decomposition of 𝜎𝜎2, the total variance of the 

PLND. Our approach in this paper is a phenomenological model based on the theoretical 

framework developed by Engen & Lande (1996); Engen et al. (2002); Lande, Engen & Saether 

(2003); Engen (2007) and Engen, Grøtan & Sæther (2011), who showed that analyzing the 

decay in correlation in the species abundance distributions of a community over time (governed 

by the strength of density regulation) allows for a partitioning of the variance in the relative 

log abundances of the community into different components. Phenomenological models aim 

to describe and explain observable phenomena based on empirical data, without explicitly 

incorporating all underlying mechanisms in detail. In this case, the variance decomposition 

model allowed for the quantification of the relative contributions of ecological heterogeneity 

(𝜎𝜎ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟2 , i.e., differences in species’ growth rates and thus log carrying capacities) as well as 

species-specific- (𝜎𝜎𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠2 ) and common stochasticity (𝜎𝜎𝑠𝑠𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐
2 ) to the overall community 

variance, without explicitly modeling the processes driving those variations.  

We let the population fluctuations of the log abundances X1, X2, …, Xi of species i in the 

community (i.e., the species assembly at a given time t in a plot p) be described by the following 

discrete-time first-order autoregressive model: 

𝑋𝑋𝑖𝑖,𝑡𝑡+1 = 𝑟𝑟𝑖𝑖 + 𝜙𝜙 × 𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 + 𝛦𝛦𝑡𝑡 ,            (6) 

Herein, 𝑟𝑟𝑖𝑖 are the species-specific, density-independent intrinsic growth rates. 𝜙𝜙 is the 

autocorrelation in log-abundance. 𝜀𝜀𝑖𝑖,𝑡𝑡 captures species-specific stochasticity, and 𝛦𝛦𝑡𝑡 denotes 

common stochasticity, i.e., those events which affect all species of the community (including 

common environmental effects and certain types of competition).  𝑟𝑟𝑖𝑖, 𝜀𝜀𝑖𝑖,𝑡𝑡 and 𝛦𝛦𝑡𝑡 are modelled 
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as draws from normal distributions with mean �̅�𝑟 and 0, respectively, as well as variances 𝜎𝜎𝑟𝑟2, 

𝜎𝜎𝑠𝑠2 and 𝜎𝜎𝑠𝑠2. 

Based on the work by Engen et al. (2011), additionally defining a variance component 

attributed to the common stochasticity and adapted to a discrete-time process, the variance 

components 𝜎𝜎ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟2 , 𝜎𝜎𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠2  and 𝜎𝜎𝑠𝑠𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐
2  can be found using the estimated parameters of eqn. 6. 

as follows: 

𝜎𝜎ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟2 = 𝜎𝜎𝑟𝑟2

(1−𝜙𝜙)2
                          (7) 

𝜎𝜎𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠2 =  𝜎𝜎𝑠𝑠2

1−𝜙𝜙2
                             (8) 

𝜎𝜎𝑠𝑠𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐
2 =  𝜎𝜎𝑐𝑐2

1−𝜙𝜙2
                         (9) 

The model definition developed in paper III differs slightly from that in paper II in that we 

additionally accounted for autocorrelation in the annual deviations from the community mean 

log-abundance across all years. Such an autocorrelation may arise in populations returning to 

their carrying capacity after a disturbance. As mentioned, we also adapted the variance 

decomposition approach to a discrete-time process instead of a continuous one. This 

specification is important if density-dependence is strongly negative. In such a case, a 

continuous model specification would not be able to accurately capture the strong and abrupt 

population declines that would follow a over-shooting beyond the species’ carrying capacity. 

In practice, for our data set, the change from continous- to discrete-time specification did not 

affect our results, but for species such as birds with discrete-time population growth, we 

considered this a more correct model definition. 

We again implemented the model using MCMC computation to find the joint posterior 

distribution of the parameters. Subsequently, we related the different variance components to 
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each other using linear regression on each sample of the (thinned) posterior distribution, 

evaluating statistical significance through cross-validation. We also investigated potential 

between-habitat differences in the proportion of variance explained by the three components 

by extracting the plot means of the three proportions for all iterations of the posterior 

distribution. We did these analyses for all plots across all habitats, as well as for the plots in 

each of the two habitat types (open and forest) separately. Further, we performed a Dirichlet 

regression (a multivariate generalization of beta regression) to predict changes in the three 

components of variance across species richness. 
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Main Results and Discussion 

This thesis investigated the drivers of temperate bird community abundances in time and space, 

and thus, the findings of our study contribute to our understanding of the mechanisms 

underlying community assembly and highlight the complex interplay between deterministic 

and stochastic processes in shaping ecological communities. In the following, I will present a 

summary of the main results and discussions of the three papers of my thesis. 

Paper I 

This study was the first to apply the time-series implementation of Hierarchical Modeling of 

Species Communities (HMSC), modeling interspecific density dependence in three different 

ways. In this paper, we studied the relative importance of intra- and interspecific density 

dependence and environmental effects on the composition of temperate bird communities. We 

found intra-specific density dependence to be of great importance for community composition 

locally. The influence of intraspecific density dependence rapidly decreased with increasing 

spatial scale. Consequently, local population dynamics were largely unaffected by conspecifics 

at larger spatial scales. Environmental variables, such as temperature and precipitation, showed 

only a comparably small influence on the community dynamics. We did not find a strong 

structuring effect of interspecific interactions on the bird community, as including interspecific 

density dependence to the different model variants did not improve explanatory power nor 

predictive power at any spatial scale.  

Using simulations, we verified that interspecies interactions should be detectable in our data, 

if present. A low signature of inter-species interactions supports the theory of stable 

coexistence, in which competitive exclusions can be expected to have already taken place (see 

e.g., Brown & Wilson 1956; Lack 1971; Connell 1980) or as an ongoing process confining 

each species to their current realized niches (e.g., Dhondt 2012; Tuck et al. 2018), leading to 
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the contemporary species assembly in which intraspecific competition dominates over 

interspecific competition (e.g., MacArthur & Levins 1967; Chesson 2000; Barabás, J. 

Michalska-Smith & Allesina 2016). If, for instance, interspecific interactions primarily 

influence species’ carrying capacities, and the species are currently fluctuating around these, 

we would not be able to detect the interactions that in the past led to the current community 

composition from the time-series data. Our findings are in accordance with this theory of niche 

differentiation, as well as recent studies supporting it (Adler et al. 2018; Barraquand et al. 2018; 

Tuck et al. 2018). 

It is important to note that our results do not imply the absence or insignificance of interspecific 

interactions in bird communities. Rather, it is a question of the scale at which these interactions 

occur. Interactions between bird species are known to be of importance at the individual level 

(e.g., Källander 1981; Robb et al. 2008; Francis et al. 2018). However, they might not have a 

significant impact on the species’ abundance fluctuations at the community level. Similarly, 

variables such as temperature and precipitation that might have a strong effect within single 

plots can appear to be less important as the focus is moved to a more general picture, as done 

here. Also, the temporal random effect, caused by environmental stochasticity, explained more 

of the total variation compared to the fixed environmental effects. This indicates that other 

environmental factors than those included in our model have an additional effect on the 

dynamics of the species. The random plot effect constituted a relatively prominent proportion 

of the variation even at the local scale, indicating permanent variation in habitat suitability 

among plots.  

We conclude that it is advisable to conduct model selection prior to including interspecific 

interactions into community models, in terms of developing efficient models while avoiding 

overparametrization. At the same time, heterogeneity in the dynamics of single species, 
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especially density dependence, is important to include to obtain a realistic understanding of 

community changes over time occurring at different spatial scales. 

Paper II 

In paper II, we investigated the relationship between community dynamics and productivity in 

two different habitat types (open and forest). We did not find strong support for any relationship 

between species richness and the evenness in the distribution of abundance of species in the 

community. Further, richness and evenness showed distinct responses to various measures of 

productivity: While richness was clearly related (but not in a simple, linear way, discussed 

below) to productivity, we did not see any evidence for a bottom-up regulation of evenness. 

Several previous studies have investigated the richness-evenness relationship in birds. Later 

investigations consistently report a negative relation for this taxa (e.g., Pautasso & Gaston 

2005; Bock, Jones & Bock 2007; Sæther, Engen & Grøtan 2013; Berduc, Lorenzón & Beltzer 

2015). Similarly, our study found a slight positive relationship between species richness and 

the variance in species abundance distribution, indicating a slightly negative relationship 

between species richness and evenness. However, our simulation study revealed that such a 

relationship can arise even in the absence of an actual relationship between variance and 

richness, highlighting the challenge of producing a measure of evenness that is fully 

independent of richness (Jost 2010). Therefore, we strongly encourage the use of simulations 

to verify results also in future studies. Also, our findings indicate that richness does not reflect 

evenness in a simple way. There have been many calls for treating richness and evenness as 

distinct measures of species diversity (e.g., Whittaker 1965; Magurran 1988; Weiher & Keddy 

1999), and our study suggests the same. 
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In this study, we did not see a one-to-one translation of available energy (NPP) to species 

richness. Both the levels of biomass supported by the ecosystem (measured as community 

biomass) and density were explained by NPP, and we observed an increase in species richness 

with increasing levels of community biomass. However, richness increased with increasing 

density only in forest habitat types, but not in open habitats. Energy-diversity hypotheses 

predict that richness should increase linearly with energy. NPP was linearly correlated with 

latitude, and both density and community biomass were explained by NPP. However, we 

observe a unimodal relationship between NPP and richness across habitats and in open habitat 

types, but no relationship in forest habitats. This may indicate richness to be more independent 

of productivity levels in more heterogeneous habitats, for example if these can provide more 

opportunities for niche division. 

Relative evenness (i.e., evenness after correcting for the slight dependency with richness, 𝜎𝜎𝑟𝑟𝑒𝑒𝑠𝑠 
2 ) 

was not influenced by any of the aspects of total abundance (number of territories or total 

biomass) in the communities, nor by NPP. Thus, we did not find any support here for a bottom-

up regulation of evenness in the studied bird communities. There are many other factors that 

could potentially influence evenness, for instance the scale of the study. The observed patterns 

of evenness may vary depending on the spatial extent and resolution of the data. Additionally, 

the interplay between bottom-up (resource availability) and top-down (predator-prey 

interactions) regulation might be a potentially important factor shaping evenness. Further 

research is needed to better understand the specific mechanisms underlying the observed 

patterns of evenness and to explore the potential interplay of various ecological factors. 

Paper III 

In paper III, we conducted a variance decomposition analysis to assess the contributions of 

ecological heterogeneity as well as species-specific and common stochasticity to the overall 
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community variance. Heterogeneity among species, reflecting differences in growth rates and 

log carrying capacities, was found to explained on average ~93 % of the total variance in the 

studied communities. Forest habitats showed a larger proportion of variance explained by 

heterogeneity compared to open habitats [open: ~92 %, forest: ~95 %]. Moreover, the 

proportion of variance explained by species-specific as well as common stochasticity was 

reduced in forest- compared to in open habitat types. The proportion of variance explained by 

species-specific stochasticity increased with increasing species richness. 

High ecological heterogeneity among species leads to a low rate of decay in community 

correlation over time, indicative of low temporal turnover in species relative abundances 

(McGill et al. 2015). Thus, the observed community structure may be indicative of a state of 

stable coexistence (although it is important to note that changes can disrupt this stability and 

lead to shifts in species composition and higher rates of temporal turnover). The observed 

stability in community structure may arise by different mechanisms, such as for instance 

density regulation (e.g., May 1974; Chesson 2000), past competition (e.g., Rosenzweig 1987; 

Rosenzweig 1991), or niche differentiation (e.g., Hutchinson 1957; Schoener 1974). The strong 

contribution of 𝜎𝜎ℎ𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟2  to the total variance observed here indicate that the species’ abundance 

fluctuations are bounded around their respective carrying capacities, suggesting strong density 

regulation, which is in line with our findings from paper I. 

The reduction of levels of and proportion of variance explained by both species-specific- and 

common noise in forest habitats may be due to a variety of different factors. For instance, forest 

habitats may provide a more stable and predictable environment (e.g., Whittaker 1970; Leibold 

& Chase 2017). Also, greater availability of resources and available shelters due to a richer 

microclimatic variation in forest habitats may also buffer against the effects of stochasticity 

(e.g., MacArthur & MacArthur 1961; Pearsons, Li & Lamberti 1992). We observed that the 
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between-habitat difference was larger for species-specific than for common noise. Thus, forest 

habitats may offer only some degree of protection against the effects of common stochastic 

events such as e.g. extreme environmental conditions.  

Additionally, we observed an increase in the proportion of variance explained by species-

specific stochasticity with increasing estimated number of species. There was a corresponding 

decrease in the proportion of variance explained by heterogeneity. This relationship remained 

significant even after accounting for the richness-area relationship. The observed pattern might 

arise from superior species being able to outcompete others in environments that experience 

less disturbance (e.g., Grime 1973; Huston & Huston 1994). Additionally, a larger influence 

of stochasticity may promote richness for instance through temporal openings of new niches 

(e.g., Chase & Leibold 2009; Leibold & Chase 2017). Alternatively, niche size of each species 

might decrease with increasing richness (e.g., Holt, Grover & Tilman 1994; Tilman 1994), 

potentially increasing the vulnerability of each species to stochasticity. 

While the proportion of variance explained by species-specific noise increased with richness, 

the proportion explained by common noise was unaffected by richness. It has been proposed 

that species richness might increase stability by decreasing synchrony, because higher richness 

increases the chances that some of the species will respond individually to environmental 

factors (McCann 2000; Valencia et al. 2020). Assuming a larger proportion of variance 

explained by common noise to be suggestive of synchrony, here, we did not see any indication 

of a relationship between synchrony and species richness. However, we did observe an increase 

in species richness with increasing proportion of variance explained by species-specific noise. 

This is in line with previous research which stresses the importance of between-species 

differences in their responses to the environment for the diversity-stability relationship (e.g., 

De Mazancourt et al. 2013; Loreau & De Mazancourt 2013). The relationship between 
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richness, stability and synchrony is intricate (Valencia et al. 2020), and more investigation is 

necessary. 
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Summary and Future Prospects 

Sustainable management decisions and successful conservation efforts need to be based on the 

solid foundation of knowledge about the structuring forces underlying observed patterns in 

nature. Especially in a world of ever-increasing anthropogenic demands on natural resources 

and space, combined with the tangible threat of climate change, attempting to answer the long-

standing core questions within the field of community ecology is as relevant and urgent today 

as ever before. For instance, we still do not fully understand the factors which determine species 

diversity and the distribution of species within ecosystems, or which mechanisms are driving 

the observed patterns of species coexistence and what the role of biotic and abiotic factors are 

in shaping community structure. Furthermore, understanding how communities respond to 

different biotic and abiotic factors, such as interactions between species or environmental 

changes and disturbances, is crucial for the protection and management of ecosystems. 

Throughout the thesis, intra-specific density dependence and ecological heterogeneity emerged 

as important factors shaping community dynamics, while the signature of inter-specific density 

dependence on community abundance data was small. High ecological heterogeneity indicates 

low temporal turnover in relative abundances of species, which is associated with community 

stability. Additionally, the observed pattern of weak inter- but strong intra-specific density 

dependence is in line with expectations from the theory of stable coexistence. Environmental 

variables and stochasticity played a comparatively small role, highlighting the importance of 

deterministic processes in shaping European bird community structure. We also found that 

increased habitat complexity was related to decreased levels and impact of species-specific and 

common stochasticity, indicating buffering effects and/or stronger niche differentiation in 

forests. Additionally, we found species diversity to be linked to net primary productivity and 

habitat complexity. The two components of species diversity—richness and evenness—

showed differentiated responses to productivity gradients: While richness was clearly related 
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to (but not fully explained by) productivity, we did not see any evidence for a bottom-up 

regulation of evenness. Stochasticity and/or the degree of between-species differences in their 

responses to stochasticity additionally seems to be involved in determining species richness. 

In this thesis, I have attempted to address some of community ecologies’ most long-standing 

questions by applying and developing multivariate statistical tools. The work done here is thus 

also an attempt to widen the horizon in terms of the use of statistical methodology within the 

field of community ecology. The investigations performed in all three papers were based on 

extensive time-series count data distributed along a latitudinal gradient. As such, our analyses 

provided an important temporal and spatial dimension to central community ecology questions, 

contributing to a broader knowledge of community ecology and providing valuable insights 

that may be used in further research as well as for sustainable conservation and management 

strategies in temperate bird habitats. 

A natural next step in the work that we have started on here would be to extend our multivariate 

Poisson log-normal model to also include a spatial aspect. This extension would greatly 

increase computational effort, but such an approach would enable us to additionally utilize the 

information stored in the potential spatial autocorrelation between the plots in the parameter 

estimation process. Additionally, this extension could allow us to take into account possible 

over-dispersion and/or estimate demographic stochasticity.  

In addition, the simulations performed in paper II indicate that common metrics of evenness 

will tend to produce some relationship with richness even when there actually is none. Thus, it 

would be interesting to further explore the potential use of the variance of the Poisson log-

normal distribution as an inverse measure of evenness which is possibly less interrelated with 

richness. Depending on availability of data, one could thus fit our multivariate PLND also to 
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communities of other taxa and/or other locations to similarly check the produced patterns 

against simulations.  
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“But ask the animals, and they will teach you, or the birds in the sky, and they will tell you; 

or speak to the earth, and it will teach you, or let the fish in the sea inform you. 

Which of all these does not know that the hand of the Lord has done this? 

In His hand is the life of every creature and the breath of all mankind.”  

~ Job 12:7-10 
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Abstract

Our knowledge of the factors affecting species abundances is mainly based on

time-series analyses of a few well-studied species at single or few localities, but

we know little about whether results from such analyses can be extrapolated

to the community level. We apply a joint species distribution model to long-

term time-series data on British bird communities to examine the relative con-

tribution of intra- and interspecific density dependence at different spatial

scales, as well as the influence of environmental stochasticity, to spatiotempo-

ral interspecific variation in abundance. Intraspecific density dependence has

the major structuring effect on these bird communities. In addition, environ-

mental fluctuations affect spatiotemporal differences in abundance. In con-

trast, species interactions had a minor impact on variation in abundance.

Thus, important drivers of single-species dynamics are also strongly affecting

dynamics of communities in time and space.

KEYWORD S
community dynamics, density dependence, environmental stochasticity, joint species
distribution model, multi-species, spatiotemporal, species interactions, time-series

INTRODUCTION

While single-species dynamics are reasonably well under-
stood, much less is known about the potential impor-
tance of various deterministic and stochastic processes on
the community level (e.g., Engelhardt et al., 2020;
Kinzey & Punt, 2009).

From time-series studies of single, or few, species, we
know that density dependence, i.e., a negative effect of cur-
rent, or previous year’s population densities on the popula-
tion growth rate, is an important process affecting
population dynamics (e.g., Lande et al., 2003; Royama, 1992).

This can occur, e.g., through intraspecific competition for
limited resources (e.g., Hansen et al., 1999; Newton, 1998) or
through interference competition that excludes individuals’
access to space (e.g., Denac, 2006; Moksnes, 2004). Brook
and Bradshaw (2006) found that about 75% of 1198 inverte-
brate and vertebrate species, including birds, showed intra-
specific density dependence in their per-capita growth rates.
Intraspecific density dependence in birds has been found to
vary in strength and form both between (Sæther et al., 2002)
and within species (Sæther et al., 2008), influenced for exam-
ple by species-specific life-history strategies such as genera-
tion time or by local adaptations within species to spatial
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variation in the biotic and abiotic environment (Sæther
et al., 2002, 2005).

Interspecific competition is also a potentially impor-
tant structuring force in natural communities (e.g., Cody
et al., 1975; Elton, 1946; Gause, 1934; Hardin, 1960). Both
intra- and interspecific interactions are fundamental to
classical niche theory (Hutchinson, 1947, 1967, 1978),
according to which stable coexistence of species is possi-
ble through resource partitioning (e.g., Lande et al., 2003;
Mittelbach, 2012; Tilman, 1982). Interspecific density
dependence, i.e., the effects of changes in one species’
abundance on that of other species, is considered impor-
tant in regulating species abundances (May et al., 1974;
Rosenzweig, 1995) and ample experimental and observa-
tional quantification shows its importance also in birds
(e.g., Alatalo et al., 1987; Dhondt, 2012; Gamelon
et al., 2019). Central to coexistence theory is that density
dependence within species must be stronger than that
between species (Chesson, 2000) and recently, Adler
et al. (2018) found evidence for this pattern in their
review of plant studies.

Population fluctuations are additionally influenced by
environmental stochasticity, i.e., between-year variation
in populations’ expected survival and fecundity caused by
random variation in the environment, such as,
e.g., weather variables, pollution, or habitat loss, which
affects all, or groups of, individuals exposed to it similarly
(Lande, 1993; Lande et al., 2003). Environmental
stochasticity tends to reduce the long-run population
growth rate (Lande et al., 2003; Lewontin & Cohen, 1969)
and has been shown to strongly affect many species
(Dobinson & Richards, 1964; Grant, 1986; Grøtan
et al., 2009; Sæther et al., 2016).

Demographic stochasticity, i.e., within-year variations
between individuals in their survival and fecundity
(Engen et al., 1998; Lande et al., 2003; MacArthur &
Wilson, 1967) is also widely accepted as being an impor-
tant process in population dynamics. It is known to have
the strongest influence at low population sizes, because
variation in individual fitness lowers the long-term popu-
lation growth rate, increasing risk of extinction
(e.g., Lande, 1993; Melbourne & Hastings, 2008). Demo-
graphic stochasticity is the major form of stochasticity in
neutral theories of community dynamics (Hubbell, 2001).

The scale, both in time and space, at which communi-
ties are observed, determines what patterns are perceived
(Allen & Hoekstra, 1991; Levin, 1992). Species can per-
form differently in different environments (e.g., Levine &
Rees, 2002; Wiens, 1989), so that their growth rates vary
across space, and two species may thus co-exist in areas
that are not optimal for one/both of them, while they
might be competitively exclusive in more favorable envi-
ronments. Additionally, movement can greatly influence

occurrence patterns (Martin et al., 2017; Wiens, 1989). In
other words, interspecific interactions can affect occur-
rence patterns not only locally, but on a larger spatial
scale as well (Araújo & Rozenfeld, 2014; Gotelli
et al., 2010). Also, temporal variation in the environment
allows coexistence of species even with exactly over-
lapping niches, due to temporal openings of local niches
(Chesson, 2000; Hutchinson, 1951). To obtain a complete
picture of the species community, studies should be con-
ducted for long time periods and at large spatial scales
(Ives et al., 2003; Magurran, 2007; Magurran et al., 2010),
ideally retaining the species-level information.

The aim of this study was to increase our understanding
of the drivers of community changes over time occurring at
different spatial scales using unique large-scale, long-term
time-series data existing on British bird communities. We
use joint species distribution models (JSDMs) with latent
variable structures, taking into account both abiotic and
biotic processes in an integrated way (Warton et al., 2015) to
examine the relative contribution of intra- and interspecific
density dependence at different spatial scales, as well as the
influence of environmental stochasticity, to spatiotemporal
variation in abundance.

Recent studies have investigated various community
drivers at different spatial scales (Karp et al., 2018, Frishkoff
et al., 2019) based on information on the individual species
of the community. However, studies based on time-series
data are still rare (but see Hendershot et al., 2020).

MATERIALS AND METHODS

Common Bird Census data

We utilized estimates of territories from the British Trust
for Ornithology’s (BTO) Common Bird Census (CBC)
and the BTO/Joint Nature Conservation Committee/
Royal Society for the Protection of Birds, Breeding Bird
Survey (BBS). The CBC was a program monitoring
populations of common bird species in farmland and
woodland plots using territory mapping from 1962 to
2000 (Marchant et al., 1990). The CBC was replaced by
the BBS (using line transects) in 2001, with a period of
overlap where the established plots were continued, to
ensure compatibility of the two methods (Freeman
et al., 2007). We included only data from 1962 to 2002
(i.e., all data obtained from territory mapping) and used
plots monitored continuously for ≥10 years (a few plots
had two such stretches of observations; in which case, we
included both), resulting in community time series of
10–36 years between 1965 and 2002, from a total of
121 plots (68 farmland and 53 woodland plots) distrib-
uted across large parts of the UK (excluding Northern
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Ireland), see Figure 1. The mean size in square kilome-
ters for farmland plots was 0.8 (minimum, 0.19; maxi-
mum, 3.13) and 0.25 for woodland plots (minimum, 0.11;
maximum, 0.6). We excluded species ecologically linked to
aquatic communities as well as species observed in <30%
of the plots. While one of the advantages of joint species
distribution modeling is that parameter estimates for rare
species are facilitated by information on responses of more
common species (Ovaskainen & Abrego, 2020;
Ovaskainen & Soininen, 2011), we nevertheless adopted a
conservative approach by ensuring a minimum quality of
the input data. For the full species list, see Appendix S1:
Table S1.

Environmental data

The effects of environmental variables on population abun-
dances of birds are often complex, including direct, indirect

and time-lagged effects (Pearce-Higgins et al., 2015; Sæther &
Engen, 2010). We applied a sliding time-window approach
(van de Pol et al., 2016) to detect the critical time window
during which two key environmental factors, temperature
and precipitation, influence the abundance of each species
the most. We extracted monthly mean temperature (�C) and
precipitation sum (mm) for each plot from the corresponding
5-km2 resolution climate data grid obtained from the Met
Office UKCP09 databases (13.09.2017; MetOffice, 2017) for
the duration of the plot-specific sampling period (>10 years,
ranging from 1965 to 2002). There were only 11 out of our
121 plots for which the climate data from the same grid was
shared with one (and in one single case, two) other plot(s).
To identify the start and end of the time windows of the
species-specific variables that best predicted the observed
population dynamics, we followed the regression based slid-
ing time-window approach by van de Pol et al. (2016). We
transformed the estimates of territories n into an estimate of
log-transformed density y (number of pairs of individuals
per unit area) because of the well-known influence of
area on bird abundances (e.g., Ambuel & Temple, 1983;
van Dorp & Opdam, 1987), by y¼ log nþ1ð Þ=A½ �, where
A is the area of the plot, and we added 1 to n to assure
positive values. For each species, we evaluated the best
combination of time windows of the two environmental
covariates based on the Akaike information criterion
(AIC) value of the baseline model (a simple first-order
autoregressive model of the log population densities with
plot as random effect) compared to a model including the
aggregate statistics of a certain time-window (either of
one, both, or none of the covariates). We allowed for the
selection of a window spanning up to 12months prior to
June at year t, the last month of the census (hence, the
longest possible time-window tested for extended from
June at time t� 1 to May at time t). The best combination
sometimes included only one, or even none, of the
covariates; see Sandal et al. (2022) for the three top-
ranking combinations for each species.

Hierarchical joint species distribution
modeling

We analyzed the data with hierarchical modeling of species
communities (HMSC), a JSDM, using the implementation
for time-series data by Ovaskainen et al. (2017). This
approach utilizes first-order multivariate autoregressive
[MAR(1)] models, a tool used to infer strengths of both
between- and within-species interactions (Ives et al., 2003;
Novak et al., 2016; Wootton & Emmerson, 2005). MAR
(1) models can be used as relatively simple approximations
to complex natural systems, and essentially represent mul-
tispecies Gompertz dynamics (Certain et al., 2018; Ives

F I GURE 1 Distribution of farmland (F, orange) and

woodland (W, blue) plots monitored by the British Trust for

Ornithology (BTO; Common Bird Census [CBC] and Breeding Bird

Survey [BBS]). Time-series length (in years) is indicated by circle

size, with a minimum of 10 consecutive years in the period

1962–2002 (n = 121 plots)
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et al., 2003). We followed the approach by Ovaskainen
et al. (2017), using three different methods of including
species interactions, compared to a variant excluding any
interspecific interactions. See Appendix S2 for a detailed
outline of the model structure. Common for all model
variants, the response variable was the vector of log-
transformed species densities. We scaled these so that each
species had zero mean and unit variance to make the spe-
cies comparable among each other. Subsequently, we added
plot-specific constants (the same for all species) so thatP

ityipt ¼ 0, i.e., all plots had the same average summed
species density (y being the standardized, log-transformed
densities used as the response variable in the models).
This step accounted for unknown variation in general
habitat quality and sampling effort at the community
level, while species-specific variations are accounted for
by the random effect described in eq. 1 below (see
Appendix S3 for details on the linear transformations
applied to the data before model fitting).

The linear predictor of the standardized log-
transformed density of species i at plot p in year t (Lipt)
was defined as

Lipt ¼ LFiptþLR
iptþ eipt ð1Þ

where LFipt includes the fixed effects, LRipt the random
effects, and eipt the residual, which we assumed to be nor-
mally distributed for the log-transformed densities. The
fixed part was further decomposed as LFipt ¼ LEiptþLA

ipt,
where LEipt modeled the environmental effects (by the
environmental covariates included in the model) and LAipt
the species interactions (by the previous years’ densities,
see the following paragraphs).

As environmental covariates, we used the two
species-specific climatic variables identified before.
Habitat type (farmland and woodland) was included
as a factor, and log area of the plot was included as a
continuous covariate, to account for possible nonlinear
effects of plot area. To account for within-species
density dependence, we included the density of the
focal species in the previous year as a species-specific
covariate. We calculated the density of the species in
the previous year at four different spatial scales, as
explained in the section titled Spatial scale of intraspe-
cific density dependence and interspecific interactions.

All continuous covariates were mean centered and
scaled to unit variance to make them compatible with
the default priors of HMSC. To account for unmeasured
covariates that create permanent spatial variation
among the plots (i.e., variation in habitat quality among
sites), we included plot (n = 121) as a spatially explicit
random effect using latent variables with exponentially

decaying spatial covariance structure (Ovaskainen
et al., 2016). See Appendix S4: Table S1 for the esti-
mates of the spatial scaling of the spatial random effect.
Additionally, to be able to quantify the magnitude of
temporal variability in the community abundance
through time due to environmental conditions affecting
all species simultaneously, we included year (n = 38) as
a temporally explicit random effect, also with a expo-
nentially decaying covariance structure (to account for
the distance in time between sampling events).

We modeled species interactions as

LAipt ¼
Xm

j¼1

αijyjpt�1 ð2Þ

where m is the number of species, αij models the effect of
species j on species i, and yjpt�1 is the standardized, log-
transformed density of species j at plot p the previous year.
The interaction term αij was specified differently for the dif-
ferent variants of the model as follows (see Appendix S2
and Ovaskainen et al., 2017 for more details).

Model variant M1: No interspecific interactions

Only diagonal elements αii that model intraspecific
density dependence were estimated, whereas the
effects of interspecific interactions were excluded by
fixing αij ¼ 0 for i≠ j.

Model variant M2: Full interactions

We included as predictors the densities of all the species
in the previous year, thus estimating a full matrix of
species-to-species interaction coefficients.

Model variant M3: Sparse interactions

We assigned for interaction coefficients αij a multiplicative
prior in which the first factor modeled whether the interac-
tion either was zero (with prior probability 0.9) or non-zero
(with prior probability 0.1), and the second factor had the
same normally distributed prior as in model variant M2.

Model variant M4: Community-level drivers

We modeled interspecific competition αij as

αij ¼
Xnd

k¼1

qi,kwk,jþδijιi: ð3Þ
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Herein, species are assumed to contribute to one or more
of nd “community-level drivers”, defined as linear combi-
nations of species densities, ecologically corresponding to
e.g., total community biomass. As in Ovaskainen
et al. (2017), we estimated both the contribution (w) of
each species j to each driver k, as well as the influence of
each driver to each species qi,k . Additional effects of
intra-specific interactions ιi (beyond those captured by
the community-level drivers) are added to the interaction
matrix via the Kronecker’s delta δij, which is 1 for δii,
and otherwise 0. We assumed the prior of Ovaskainen
et al. (2017) that increases shrinkage with the index of
the driver and fixed the number of drivers to two.

We acknowledge that such a model would be better if
implemented as a state-space model, i.e., accounting for a
discrepancy between true and observed population sizes.
In its current form, this is not fully possible in HMSC.
Observation error is accounted for in the response, but
not in the predictor, and it would be better to separately
account for the process and observation error. However,
our simulations confirm that even the current model
does detect species interactions, if present (Appendix S7:
Table S1 and Figure S1).

Spatial scale of intraspecific density
dependence and interspecific interactions

We tested the performance of the four different model
variants by calculating the log-transformed densities of
the species in the previous years at four spatial scales.
Thus we applied spatial smoothing, using the exponen-
tially decaying weighting function e�d=r , where d is the
pairwise distance between plots in kilometers and r
models the spatial scale of interactions. We compared
four contrasting spatial scales called henceforth local
(denoted by L) scale (r0 ! 0, thus applying no smooth-
ing), proximal (P) scale (r1 = 18 km equaling the average
distance to the nearest plot), average (A) scale
(r2 = 204 km equaling the average distance between
plots), and regional (R) scale (r3 = 711 km equaling the
maximum distance between plots). Note that, in addition
to modeling the influence of large-range interactions,
spatial smoothing space may increase the predictive
power of the models by reducing noise in the predictor.

Model fitting

The combination of four model variants and four spatial
scales results in 16 models. We denote these by MA-B,
where A is the model variant and B is the spatial scale, so
that, e.g., M3-R is the model variant 3 (sparse

interaction), with the species densities in the previous
year measured at the regional scale. We fitted the
16 models used the R package Hmsc-R (Tikhonov
et al., 2020) assuming the default prior distributions (for
details, see Ovaskainen & Abrego, 2020: Chapter 8). We
sampled four MCMC chains with 37,500 iterations each,
discarded the first one-third (12,500 iterations) as burn-
in, and thinned the remaining by thin = 100 to yield
250 MCMC samples per chain and thus 1000 samples in
total. We evaluated MCMC convergence visually by
checking posterior trace plots (see Appendix S6:
Figure S1) as well as quantitatively by examining the
potential scale reduction factors of the model parameters
(see Appendix S6: Figure S2; Tikhonov et al., 2020).

Deriving ecological inferences from the
fitted models

To examine the predictive power of the different model
variants at the different spatial scales, we applied for each
of the fitted 16 model variants a five-fold cross-validation
strategy, a technique that ensures the independence of
model predictions from the data used to evaluate the
accuracy of the predictions (Refaeilzadeh et al., 2009).
We randomly split the years into five equal folds and
fitted each model variant five times, each time masking
the observations from one of the folds, and then combin-
ing the predictions from different folds to yield predic-
tions for the entire data. For each species and each plot,
we measured the predictive power as the correlation
between these predicted and the observed species densi-
ties. For some cases (i.e., a time series of a particular spe-
cies in a given plot) the calculation of correlation was not
meaningful because of lack of sufficient variation,
e.g., due to the species being mostly absent from the plot.
To account for this, cases where the observed values dif-
fered from the modal value of that case for <5 years were
excluded from the calculation of predictive and explana-
tory power.

We averaged the correlations over the plots to obtain
a mean correlation for each species, and we then aver-
aged over the species to obtain a mean correlation for
each of the 16 model variants. We successfully validated
the ability of the cross-validation procedure to reveal the
true structure of the interaction network with the help of
simulated data (see Appendix S7 for details). We evalu-
ated explanatory power by comparing the predictions
from models fit with the full data (no years masked) to
the observed data.

To estimate how much other variables than species
interactions contributed to the explained variance, we
utilized the function computeVariancePartitioning() from
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the Hmsc package (Tikhonov et al., 2020) to partition the
explained variance of model variant M1 (i.e., without spe-
cies interactions) among the fixed and random effects;
see Appendix S5 for details. To evaluate additionally the
percentage of unexplained variance, we first estimated
the amount of explained variance for each species as the
total variance (measured in the log-transformed data,
before normalization) multiplied by the mean R2 value of
the model, which in Hmsc corresponds to the proportion
of explained variance. We subsequently found the
amount of unexplained variance as the total variance
minus the amount of explained variance. To facilitate
comparison in the variance decomposition among spe-
cies, we then scaled the sum of both explained and
unexplained variance to 1 for each species and calculated
the mean values for the percentage of variance allocated
to each variable. To express intraspecific density depen-
dence in terms of the effect of previous years’ log popula-
tion densities on growth rate (rather than on the current
log population density), we subtracted 1 from the model
estimates of the effect of intraspecific density depen-
dence. We used the ggplot2 package (Wickham, 2016) to
visualize our results.

RESULTS

Evaluation of alternative models for
species interactions

The explanatory and predictive power of the models
decreased substantially with the spatial scale of intraspe-
cific density dependence and interspecific interactions,
with the local scale L providing the highest explanatory
and predictive power (mean explanatory and predictive
power ranging from L, 0.37 to R, 0.27 and from L, 0.33
to R, 0.07, respectively). Using the model without interac-
tions (M1) as baseline for comparison, neither explanatory

or predictive power increased substantially by including
species interactions into our models (M2-4; Table 1) at any
of the spatial scales (local [L], proximal [P], average [A],
and regional [R]). If the bird communities were structured
by species interactions to a large degree, one would expect
M1 to have a low explanatory power, while the other
model variants would perform better in comparison. At the
local and proximal scale, models M2, M3, and M4 had a
somewhat higher explanatory power than the simplest
model M1, because these models are more complex and
provide a tighter fit. The predictive power for the respective
models was slightly decreased, further indicating that the
slight increase in explanatory power was due to a higher
number of parameters included in these models.
Appendix S7: Table S1 and Figure S1 distinctly show the
expected increase in both explanatory and predictive power
in M2–M4 compared to M1 for a simulated data set with
clearly defined species interactions.

This pattern was retained also when examining the
comparison of explanatory and predictive power of
models M2–M4 to the baseline model M1-L at the level
of individual species (Figure 2a,b). Especially for M2 we
observed a somewhat increased explanatory power com-
pared to M1 for most species, even at larger spatial
scales of species interactions, but with a simultaneous
decreased predictive power. For M3 and M4, locally,
explanatory power was slightly better for most species,
but not at any of the larger scales. Including species
interactions did not improve the models’ ability to pre-
dict the dynamics of any particular individual species,
as M2-L, M3-L and M4-L did not give substantially bet-
ter predictions than M1-L for any of the species
(Figure 2b). The predictive power further decreased for
all species as the local scale of species interactions was
increased. Mean values of explanatory power and pre-
dictive power (Table 1) were similar between all model
variants at the local and the proximal scale, but at the
average, and especially at the regional scale, explanatory

TAB L E 1 Explanatory and predictive power of the models M1–M4 at the four different spatial scales of species interactions

Scale

Explanatory power Predictive power

M1 M2 M3 M4 M1 M2 M3 M4

L 0.366 0.392 0.370 0.369 0.336 0.320 0.334 0.333

P 0.346 0.382 0.351 0.352 0.293 0.275 0.288 0.293

A 0.275 0.367 0.297 0.226 0.111 0.114 0.104 0.095

R 0.267 0.365 0.280 0.168 0.078 0.048 0.064 0.065

Notes: Explanatory power is measured as the mean of the correlation for each species in each plot between the observed time-series and time-series predicted

by the different models fit to the observed data. Predictive power is measures as the mean of the correlation for each species in each plot between the observed
time-series and independently predicted time-series obtained by fivefold cross-validation. Scales are L (local scale), no spatial smoothing; P (proximal
scale), average distance to the nearest neighboring plot (18 km); A (average scale), the average distance between plots (204 km); R (regional scale), maximum
distance between plots (711 km).
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power was higher than predictive power, indicating that
these models might be overfitted.

In summary, we do not find a strong signal of inter-
specific interactions. Our simulations show that the
modeling approach would be able to capture biologically
significant interactions, if present, and we thus conclude
that our results are not a statistical artifact.

Relative contributions of intraspecific
density dependence and environment

For M1, we partitioned the variance among fixed
and random effects, as well as unexplained variance
(Table 2). M1 was able to explain on average between
63.6% and 70.8% of the variation in the species’

F I GURE 2 The difference for each species in (a) explanatory power and (b) predictive power between the focal model and the

generally best model M1-L. The horizontal lines indicate a difference of zero. The four subpanels in each panel, L–R, show results at each of

the four spatial scales (L, local; P, proximal [18 km]; A, average [204 km]; R, regional [711 km]; increasingly light color), for the four

different models, so that L1 = (M1-L) � (M1-L) = 0, L2 = (M2-L) � (M1-L), L3 = (M3-L) � (M1-L), L4 = (M4-L) � (M1-L), P1 = (M1-P) �
(M1-L), …, R4 = (M4-R) � (M1-L). The mean difference is indicated by a dot. Values for M1-L are exactly zero, since they are being

compared with self

TAB L E 2 Average percentage of variance partitioned among fixed and random effects, as well as unexplained variance, for model 1 (no

species interactions) at the four different spatial scales of species interactions

Factor

Scale (%)

Local Proximal Average Regional

Fixed effects

Density dependence 20.1 4.8 0.6 1.0

Habitat 1.2 1.6 2.7 1.9

Log area 1.4 4.9 5.5 4.3

Precipitation sum 0.3 0.2 0.2 0.1

Mean temperature 0.6 0.4 0.4 0.3

Random effects

Plot 31.7 42.4 51.2 53.5

Year 15.5 14.3 4.0 2.6

Unexplained variance 29.2 31.4 35.4 36.3

Notes: Note that only density dependence is subject to the spatial smoothing. Local scale, no spatial smoothing; proximal scale, average distance to the nearest
neighboring plot (18 km); average scale, the average distance between plots (204 km); regional scale, maximum distance between plots (711 km).
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log-densities across the four spatial scales. Note that the
proportion of explained variance was higher than the
average explanatory power (0.37). This is because the
measure of explained variance includes, e.g., the varia-
tion between plots, while such variance is not included in
the within-plot correlations performed to measure
explanatory power due to the normalization of the data.
The partitioning revealed a strong, localized effect of
intraspecific density dependence, as evidenced by a
reduction from constituting 20.1% of the variance at the
local scale to only 4.8% at the proximal scale. At an even
larger average and regional scale, intraspecific density
dependence explained only between 0.6% and 1%. The
species-specific temperature and precipitation time-
windows included into the model explained only a small
proportion of the explained variation at the local scale.
Habitat and log area constituted, relative to density
dependence, a moderate amount of variation. Note that
only density dependence was subject to spatial scaling,
hence it is most meaningful to analyze the partitioning at
the local scale. Random plot effects increased from L,
31.7% to R, 53.5%, while the random temporal effect
decreased from L, 15.5% to R, 2.6%.

DISCUSSION

We studied the relative importance of intra- and interspe-
cific density dependence and environmental effects on
the composition of temperate bird communities. Intra-
specific density dependence was of great importance
locally (Table 2). The influence of intraspecific density
dependence rapidly decreased with increasing spatial
scale. Consequently, local population dynamics were
largely unaffected by conspecifics at larger spatial scales.
Environmental stochasticity, such as temperature and
precipitation, showed only a comparably small influence
on the community dynamics (Table 2), as will be dis-
cussed in more detail later. We did not find a strong
structuring effect of interspecific interactions on the bird
community, as including interspecific density depen-
dence to the different model variants did not improve
explanatory power nor predictive power at any spatial
scale (Table 1 and Figure 2).

Inter- and intraspecific density
dependence in the light of stable
coexistence

Model performance was not enhanced by accounting for
interspecific density dependence. Similarly, Mutshinda
et al. (2009) did not find any strong signature of cross-

correlations in species abundances in their comparative
analyses of long-term studies of communities of moths,
fishes, macrocrustaceans, birds, and rodents (data cover-
ing up to 40 years in time). In their review of studies in
plants, Adler et al. (2018) report a weak influence of
interspecific compared to intraspecific effects in the
majority of cases.

Our simulations verified that interspecies interactions
should be detectable in our data, if present (Appendix S7:
Table S1 and Figure S1). Thus, the lack of an increase in
model performance is not a statistical artifact and could
be attributed either to (1) the nature of data collected in
large-scale, long-term community ecology studies, (2) an
actual low influence of species interactions on the con-
temporary community composition, or (3) a combination
of the two. Naturally, the area of the plots sampled are
limited, and there will be differences in species detect-
ability as well as in between-observer repeatability (Buck-
land et al., 2011; O’Connor & Marchant, 1982;
Williamson & Homes, 1964).

On the other hand, a low signature of interspecies
interactions supports the theory of stable coexistence, in
which competitive exclusions can be expected to have
already taken place (see, e.g., Brown & Wilson, 1956;
Connell, 1980; Lack, 1971) or as an ongoing process con-
fining each species to their current realized niches
(e.g., Dhondt, 2012; Tuck et al., 2018), leading to the con-
temporary species assembly in which intraspecific com-
petition dominates over interspecific competition
(e.g., Barab�as et al., 2016; Chesson, 2000; MacArthur &
Levins, 1967). If, for instance, interspecific interactions
primarily influence species’ carrying capacities, and the
species are currently fluctuating around these, we would
not be able to detect the interactions that in the past led
to the current community composition from the time-
series data. Our findings are in accordance with this the-
ory of niche differentiation, as well as recent studies
supporting it (Adler et al., 2018; Barraquand et al., 2018;
Tuck et al., 2018): while including interspecific interac-
tions to the model did not enhance explanatory power,
intraspecific density dependence clearly stands out as the
main variable driving the changes in population sizes
across species at the local scale (Table 1 and Figure 2).

In contrast, the neutral theory of biodiversity
(Hubbell, 2001) proposes that species can coexist (if only
temporarily so) by assuming functional equivalence among
species. However, this theory assumes population dynam-
ics to be solely driven by demographic stochasticity and dis-
persal (Chesson, 2000; Mittelbach, 2012), which is not
supported by our findings. Note that, within species, census
errors cause autocorrelations in time-series data that can
artificially increase the observed strength of intraspecific
density dependence (Freckleton et al., 2006), while across
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species, census errors inflate the variance of the data and
can decrease the cross-correlations among species. How-
ever, density regulation appears to be important in temper-
ate bird species (Sæther et al., 2008), operating through
both survival and reproduction (e.g., Grøtan et al. 2009;
Perrins, 1979; Sæther et al., 1998), and recent studies have
emphasized its importance for the structure and stability of
communities (Adler et al., 2018; Kuang et al., 2017; Sæther
et al., 2016; van Altena et al., 2016), thus further supporting
our findings.

Observations of interspecific interactions
at finer scales

While modeling interspecific interactions did not
improve explanatory power, it does not mean that inter-
specific interactions do not take place or are not impor-
tant. The influence of species interactions acts on the
level of the individual and might not be captured by
large-scale data. Many studies investigating species
interactions are carried out on a much finer scale, and
in a setting where interactions may be more likely to
occur. For instance, supplementary feeding is known to
increase population sizes to (artificially) higher levels
(e.g., Källander, 1981; Robb et al., 2008), likely intensi-
fying competition at such easily accessible study sites
(Francis et al., 2018). Nesting boxes may also be pre-
ferred over natural alternatives, further intensifying
competition. Several studies have shown that e.g., the
Blue Tit and the Great Tit compete over nest boxes
(e.g., Minot & Perrins, 1986; Newton, 1994), but in a
natural setting, their nest-site preferences, while over-
lapping, differ (Minot & Perrins, 1986). Competition
observed in these settings may thus be relatively local-
ized and might not be representative for the avian com-
munity in general.

Fluctuating environments

Temperature and precipitation had a comparably small
effect on the species’ population fluctuations (Table 2),
even if we included the best possible climate windows for
each species in each plot separately. The contribution of
habitat and log area to the total variance were also rela-
tively small. Note that at larger spatial scales, the variance
contributions simply changed in response to the changes
made to the predictor variable density dependence.

Our models simultaneously include the effect of vari-
ables acting both within and across plots, and variables
such as temperature and precipitation that might have a
strong effect within single plots can appear to be less

important as the focus is moved to a more general pic-
ture, as we do here. Previously, Mutshinda et al. (2009),
detected a large effect of environmental factors on com-
munity composition across taxa, but environmental vari-
ance in their study includes both fixed weather variables
and also, e.g., random and area effects.

The random plot effect constituted a relatively promi-
nent proportion of the variation even at the local scale,
indicating permanent variation in habitat suitability
among plots. The importance of the random plot effect
increased proportional to the decreased ability of density
dependence to explain the growth rates of the local
populations as the spatial scale of interactions is
increased (Table 2), emphasizing the importance of the
scale at which community dynamics are being studied.

The temporal random effect caused by environmental
stochasticity (Lande et al., 2003) explains annual varia-
tion in community abundance across sites. Compared to
the fixed environmental effects, the spatially structured
temporal random effect explained more of the total varia-
tion, indicating that other environmental factors than
those included in our model, have an additional effect on
the single species dynamics. One such variable is the so-
called beechmast. In large parts of Europe, seeds from
the beech (Fagus sylvatica) are an important, annually
highly variable, food source for many birds during win-
ter, and is known to strongly influence next years’ densi-
ties for many species (Chamberlain et al., 2007).

It is also known that an incorrect specification of den-
sity regulation can lead to biased estimates of environ-
mental effects (Lindén et al., 2013). Here, we observed
that especially the estimations of the contributions from
the two random effects were affected by the degree of
spatial smoothing of the density predictor variables. We
also note that, in spatial models, the environmental pre-
dictors and the spatial random effect can be partially con-
founded with each other, a phenomenon called spatial
confounding (Hanks et al., 2015; Marques et al., 2021).
However, we did not find signals of spatial confounding
in our study (see Appendix S4).

It is very difficult to capture the patterns observed in
nature in all its complexity by the use of simple models.
Important factors may remain unaccounted for, and noise
in the data generated by, e.g., demographic stochasticity
and observational errors might be quite strong. However,
the current implementation of HMSC does not allow for
the estimation of demographic stochasticity, see Ovaskainen
and Abrego (2020: 39).

In summary, utilizing a Joint Species Distribution
Modeling approach to investigate the factors structuring
a temperate bird community, we found intraspecific den-
sity dependence to be of great importance for community
composition locally, while climate variables accounted
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for a small proportion of the variation in the composition
of the bird communities. Including species interactions
did not result in a better explanatory power or predictive
power at any spatial scale. The observed pattern of weak
inter- but strong intraspecific density dependence is in
line with expectations from the theory of niche differenti-
ation. Thus, it is advisable to conduct model selection
prior to including interspecific interactions into commu-
nity models, in terms of developing efficient models
while avoiding overparametrization. At the same time,
heterogeneity in the dynamics of single species, especially
density dependence, is important to include to obtain a
realistic understanding of community changes over time
occurring at different spatial scales.
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Appendix S1: Species list 

Appendix S1: Table S1. List of bird species commonly encountered in the UK investigated in 

the here presented study (n=60 species). 

Species name English name 
Turdus merula Blackbird 
Sylvia atricapilla Blackcap 
Cyanistes caeruleus Blue Tit 
Pyrrhula pyrrhula Bullfinch 
Buteo buteo Buzzard 
Corvus corone Carrion Crow (Inc. Hooded Crow) 
Fringilla coelebs Chaffinch 
Phylloscopus collybita Chiffchaff 
Periparus ater Coal Tit 
Streptopelia decaocto Collared Dove 
Cuculus sp. Cuckoo 
Prunella modularis Dunnock 
Sylvia borin Garden Warbler 
Regulus regulus Goldcrest 
Carduelis carduelis Goldfinch 
Locustella naevia Grasshopper Warbler 
Dendrocopos major Great Spotted Woodpecker 
Parus major Great Tit 
Picus viridis Green Woodpecker 
Chloris chloris Greenfinch 
Perdix perdix Grey Partridge 
Passer domesticus House Sparrow 
Corvus monedula Jackdaw 
Garrulus glandarius Jay 
Falco tinnunculus Kestrel 
Vanellus vanellus Lapwing 
Dryobates minor Lesser Spotted Woodpecker 
Sylvia curruca Lesser Whitethroat 
Linaria cannabina Linnet 
Athene noctua Little Owl 
Aegithalos caudatus Long tailed Tit 
Pica pica Magpie 
Poecile palustris Marsh Tit 
Turdus viscivorus Mistle Thrush 
Sitta europaea Nuthatch 
Phasianus colchicus Pheasant 
Motacilla alba Pied Wagtail 
Alectoris rufa Red legged Partridge 
Acanthis flammea Redpoll 



Emberiza schoeniclus Reed Bunting 
Erithacus rubecula Robin 
Acrocephalus schoenobaenus Sedge Warbler 
Alauda arvensis Skylark 
Turdus philomelos Song Thrush 
Accipiter nisus Sparrowhawk 
Muscicapa striata Spotted Flycatcher 
Sturnus vulgaris Starling 
Columba oenas Stock Dove 
Hirundo rustica Swallow 
Strix aluco Tawny Owl 
Certhia familiaris Treecreeper 
Anthus trivialis Tree Pipit 
Passer montanus Tree Sparrow 
Streptopelia turtur Turtle Dove 
Sylvia communis Whitethroat 
Poecile montanus Willow Tit 
Phylloscopus trochilus Willow Warbler 
Columba palumbus Woodpigeon 
Troglodytes troglodytes Wren 
Emberiza citrinella Yellowhammer 
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Appendix S2: Supporting information on the model structure 

Appendix S2: Section S1 

We utilize the model described in detail in Ovaskainen et al. 2017. Please see also Ovaskainen 

and Abrego (2020). 

The foundation for our analysis is the standard first order multivariate autoregressive model 

MAR(1), specified as follows: 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑐𝑐𝑖𝑖 + ∑ 𝛼𝛼𝑖𝑖,𝑗𝑗𝑦𝑦𝑗𝑗,𝑡𝑡−1 + 𝑒𝑒𝑖𝑖,𝑡𝑡𝑚𝑚
𝑗𝑗=1          (1) 

Where 𝑦𝑦𝑖𝑖,𝑡𝑡 is the log-abundance of species i at time t. 𝑐𝑐𝑖𝑖 denotes the intercept, and 𝛼𝛼𝑖𝑖,𝑗𝑗 is the 

interaction coefficient, and 𝑒𝑒𝑖𝑖,𝑡𝑡 is the noise term. In the HMSC framework, we build this model 

for all species simultaneously. Writing equation 1 in vector form for all species: 

𝒚𝒚𝒕𝒕 = 𝒄𝒄 + 𝑨𝑨𝒚𝒚𝒕𝒕−𝟏𝟏 + 𝒆𝒆𝒕𝒕           (2) 

 

Assuming a normal distribution of the data on the log-scale, we model the abundance of species 

i in plot p at time t as a draw from the normal distribution,  

𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡~𝑁𝑁(𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡 ,  𝜎𝜎𝑖𝑖2)           (3) 

The linear predictor includes a fixed (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐹𝐹 ) and random (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝑅𝑅 ) term, as well as some residual 

error. The fixed part may further be decomposed into an environmental term (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐸𝐸 ) and a 

species association term (𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐴𝐴 ), so that 𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐹𝐹 = 𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐸𝐸 + 𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐴𝐴 . 

 



In further detail, the environmental term is described as: 

𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐸𝐸 = ∑ 𝑥𝑥𝑗𝑗𝑖𝑖𝑡𝑡𝛽𝛽𝑖𝑖𝑗𝑗𝑐𝑐
𝑗𝑗=1            (4) 

where 𝑥𝑥𝑗𝑗𝑖𝑖𝑡𝑡  is the covariate j (out of 𝑃𝑃 covariates) at plot p at time t, and 𝛽𝛽𝑖𝑖𝑗𝑗 is the response of 

species i to covariate j. The vector of regression coefficients for species i is modelled further 

as: 

β𝑖𝑖.~𝑁𝑁(𝜇𝜇𝑖𝑖, V)             (5) 

where 𝜇𝜇𝑖𝑖. is the expected environmental niche for species i and the variation in the expected 

niche is V, a matrix of 𝑃𝑃x𝑃𝑃 dimensions. In V, the variance in the species’ response to the 

environmental covariates is found on the diagonal, and the covariance in the species’ response 

to pairs of covariates is found on the off-diagonals. Here, we assume 𝜇𝜇𝑖𝑖. to be equal for all 

species. 

We modelled species interactions as 

𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝐴𝐴 = ∑ 𝛼𝛼𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡−1𝑚𝑚
𝑗𝑗=1 ,          (6) 

where 𝑚𝑚 is the number of species, 𝛼𝛼𝑖𝑖𝑗𝑗 models the effect of species 𝑗𝑗 on species 𝑃𝑃, and 𝑦𝑦𝑗𝑗𝑖𝑖𝑡𝑡−1 is 

the standardized, log-transformed density of species 𝑗𝑗 at plot 𝑝𝑝 the previous year. The 

interaction term 𝛼𝛼𝑖𝑖𝑗𝑗  was specified differently for the different variants of the model, described 

in the main text and in more detail below. For completeness, we include the description of all 

four model variants here, even if some of the information is presented in the main text also. 

 

Model Variant M1: No inter-specific interactions.  

Only diagonal elements 𝛼𝛼𝑖𝑖𝑖𝑖 that model intra-specific density dependence were estimated, 

whereas the effects of interspecific interactions were excluded by fixing 𝛼𝛼𝑖𝑖𝑗𝑗 = 0 for 𝑃𝑃 ≠ 𝑗𝑗. 

 

Model Variant M2: Full interactions. 



We included as predictors the densities of all the species in the previous year, thus estimating 

a full matrix of species-to-species interaction coefficients. In this case, the interaction 

coefficients 𝛼𝛼𝑖𝑖𝑗𝑗 were estimated for every pair of species as free parameters, assuming an 

independent normally distributed prior for each parameter. 

 

Model Variant M3: Sparse interactions. 

We assigned for interaction coefficients 𝛼𝛼𝑖𝑖𝑗𝑗 a multiplicative prior 

𝛼𝛼𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑖𝑖𝑗𝑗 𝛼𝛼�𝑖𝑖𝑗𝑗.            (7) 

The prior for the first factor is 𝑝𝑝𝑖𝑖𝑗𝑗~Bernoulli(0.1), so this models whether the interaction is 

zero (with prior probability 0.9) or non-zero (with prior probability 0.1). For cases where the 

interaction is non-zero, the second factor 𝛼𝛼�𝑖𝑖𝑗𝑗 has the same normally distributed prior as in 

Model Variant 2. 

 

Model Variant M4: Community level drivers.  

We modelled interspecific competition  𝛼𝛼𝑖𝑖𝑗𝑗, implemented through a latent variable approach, 

as follows: 

𝛼𝛼𝑖𝑖𝑗𝑗 = ∑ 𝑞𝑞𝑖𝑖,𝑘𝑘𝑤𝑤𝑘𝑘,𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑗𝑗𝜄𝜄𝑖𝑖
𝑐𝑐𝑑𝑑
𝑘𝑘=1            (8) 

Herein, species are assumed to contribute to one or more of 𝑃𝑃𝑑𝑑 “community-level drivers”, 

defined as linear combinations of species densities, ecologically corresponding to e.g. total 

community biomass. The term 𝑤𝑤𝑘𝑘,𝑗𝑗  models the contribution of species 𝑗𝑗 to driver 𝑘𝑘 and the 

term 𝑞𝑞𝑖𝑖,𝑘𝑘 the influence of this driver on species 𝑃𝑃. Here, 𝑤𝑤𝑘𝑘,𝑗𝑗 is treated as the latent factors, and 

𝑞𝑞𝑖𝑖,𝑘𝑘 as the factor loadings.  

Additional effects of intra-specific interactions 𝜄𝜄𝑖𝑖 (beyond those captured by the community-

level drivers) are added to the interaction matrix via the Kronecker’s delta 𝛿𝛿𝑖𝑖𝑗𝑗which is 1 for 



 𝛿𝛿𝑖𝑖𝑖𝑖, and otherwise 0. We assumed the prior of Ovaskainen et al. (2017) that increases shrinkage 

with the index of the driver and fixed the number of drivers to two. 

 

Finally, the random term is defined as 

𝐿𝐿𝑖𝑖𝑖𝑖𝑡𝑡𝑅𝑅 = ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑡𝑡
𝑗𝑗𝑐𝑐

𝑗𝑗=1 ,                        (9) 

i.e. the sum of n random effects (𝑟𝑟𝑖𝑖𝑖𝑖𝑡𝑡
𝑗𝑗 ) included in the model. In HMSC, the random effects are 

modeled using a latent variable approach, greatly reducing the amount of parameters. See 

Ovaskainen and Abrego (2020, Ch. 4) for details.  

Here, we defined 2 random effects: 𝑟𝑟𝑖𝑖𝑖𝑖𝑡𝑡1 , the spatial (plot) and 𝑟𝑟𝑖𝑖𝑖𝑖𝑡𝑡2 , the temporal (year) random 

effect. For both our spatial and temporal random effects, we specify an exponentially decaying 

structure in the latent factors, which is based on the exponentially decaying covariance function 

 𝑓𝑓(𝑑𝑑) = 𝜎𝜎𝑆𝑆2exp (−𝑑𝑑/𝛼𝛼), where 𝜎𝜎𝑆𝑆2 is the spatial variance, d the distance between plots (in the 

case of the temporal random effect, d refers to the distance in time between sampling events) 

and 𝛼𝛼 is the spatial scale of autocorrelation. 

Latent variables can capture unexplained autocorrelation in the response variable that can either 

be due to e.g. environmental factors inducing population synchrony (Moran effect) that were 

not accounted for in the fixed part, or due to species associations. In this way, the residual 

variance-covariance matrix from the random term may, with careful consideration, be 

interpreted as possible species interactions. However, in this paper, we choose to model the 

species interactions directly in the fixed term rather than relying on the residual variance-

covariance matrix from the random term. 
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Appendix S3: Supporting information on linear transformations of the data 

Appendix S3: Section S1 

Let nipt be the count for species i in plot p at year t. We first converted the count data into log-

transformed species densities as: 

oipt = log((nipt+1)/Ap),          (1) 

where Ap is the area of plot p and we added 1 to nipt to assure positive values. We subsequently 

scaled the o data for each species i by the transformation  

uipt = bi (oipt - ai),          (2) 

where ai and bi were chosen to make the data for each species to have zero mean and unit 

variance (over all sampling units). In other words, in this step the species mean (ai) is subtracted 

from the log-transformed species densities, and subsequently divided by the species’ standard 

deviation (1/ bi). 

 

After this transformation, the summed density of all species ( ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡 ) decreased with the area 

of the plot. This is likely to be partially the case because smaller plots are on average of higher 

quality (per unit area) than large plots, in part because smaller plots are likely to be surveyed 

more thoroughly than large plots. We account for this systematic variation by adding a plot-

specific constant: 

yipt = kp + uipt,            (3) 



so that ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡 = 0, i.e. all plots have the same average summed species density. 𝑘𝑘𝑖𝑖 is the 

negative plot mean of u across all species and years within a plot, i.e. 𝑘𝑘𝑖𝑖 = −� 1
𝑐𝑐𝑖𝑖×𝑐𝑐𝑡𝑡

� × ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 , 

where 𝑃𝑃𝑖𝑖 is the number of species and 𝑃𝑃𝑡𝑡 is the number of years in the plot (note that the number 

of species included in the analyses is the same for all plots). In the model, y is used as the 

response variable. 

 

As explained above, the original count data n is translated into the standardized log-density y 

using three linear transformations. As we fit linear models that include intercepts and slopes 

and the random effect of the plot, these transformations are redundant in the following sense: 

For instance, if fitting a model to the original log-density o instead of the standardized log-

density y, the model would be mathematically equivalent (the parameters of the model fitted 

for o can be mapped to those of the model fitted for y). The transformations were performed to 

increase the interpretability of model parameters: y measures variation in species log-density 

in the same units for all species: in units of standard deviation that each species shows in the 

data. Further, as y is standardized to have zero mean over all species within each plot, a positive 

mean value of a focal species in a particular plot means that, compared to the other species in 

the community, the focal species is more abundant than the average of that plot. 
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Appendix S4: Supporting information on the spatial scaling of the spatial random effect 

Appendix S4: Table S1. The spatial scales of exponential decay of the spatial random effect 

(denoted r here, equivalent to the α parameter of HMSC; Ovaskainen and Abrego 2020). The 

table shows, for each model type (M1-M4) and each spatial scale (L-R) at which species 

interactions are defined, the posterior mean estimate of the r parameter (unit: km) related to the 

leading factor of the spatial random effect, as well as the posterior probability by which there 

is a spatial signal, i.e., that r>0 (note that the prior probability of r=0 equals 0.5; see Ovaskainen 

and Abrego 2020, p. 67). 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Model Spatial scale E[r] P[r >0] 

M1 L 558.12 1 
M2 L 532.45 .996 
M3 L 639.43 1 
M4 L 628.42 1 
M1 P 0 0 
M2 P 0.02 .002 
M3 P 0 0 
M4 P .008 .001 
M1 A 170.53 0.85 
M2 A 157.09 0.27 
M3 A 166.05 0.51 
M4 A 334.56 0.52 
M1 R 452.89 0.76 
M2 R 167.46 0.50 
M3 R 239.62 0.66 
M4 R 4.52 0.25 



L (Local scale) = no spatial smoothing, P (Proximal scale) = average distance to the nearest 

neighboring plot [18 km], A (Average scale) = the average distance between plots [204 km], R 

(Regional scale) = maximum distance between plots [711 km]. 

 

 
Appendix S4: Section S1. 

 

In spatial models, the environmental predictors and the spatial random effect can be partially 

confounded with each other, a phenomenon called spatial confounding (Hanks et al. 2015, 

Marques et al. 2020). If covariates are spatially autocorrelated, estimates of fixed effects of 

covariates may be biased because the effects of covariates could instead become captured in 

the spatial random effect. In essence, the spatial random effect and the spatially autocorrelated 

covariate would be “competing” to explain the same part of the variation. Such spatial 

confounding can lead to underestimation of the effects of spatially autocorrelated covariates. 

However, Page et al. (2017) suggested that model predictions would not become worse by 

spatial confounding.  

In our study, we applied varying degrees of spatial smoothing to the density predictor 

covariate (but not to any other covariates). When applying spatial smoothing to the density 

covariate, the spatial autocorrelation of this covariate increases. If spatial confounding 

occurred, this increased autocorrelation could be expected to increase the estimated spatial 

scaling of the spatial random effect. Here, we found a large-scale spatial signal for the model 

where spatial scale of the interactions was defined locally, i.e. P[r>0] equal or close to 1 (see 

Appendix S4: Table S1, spatial scale=L), but weak or no spatial signal in models where the 

spatial scale of interactions was non-local (spatial scale P-R). (Note that in the prior, the 

probability of r=0 is set to 0.5, and thus if P[r >0]<0.5, there is evidence against spatial signal. 

Thus, we considered there to be strong support for a spatial signal if the posterior probability 



by which the alpha parameter is positive was at least 0.90. With this criterion, the local models 

showed strong support for a spatial signal, but the non-local models did not). Thus, in contrast 

to what might be expected with spatial confounding, here we see that the estimates of the spatial 

scales of exponential decay of the spatial random effect (E[r], Appendix S4: Table S1.) 

decreased and became non-significant when spatial smoothing was applied to the density 

predictor variable.  

For a given model variant, increasing degree of spatial smoothing reduced both 

explanatory and predictive power (Table 1). Additionally, the proportion of variation explained 

by the density covariate decreased while the proportion of variation explained by the spatial 

random effect increased with increasing degree of spatial smoothing (Table 2). These patterns, 

in combination with the reduction of spatial scale of the random effect, are more likely linked 

to the decreasing explanatory power of the density covariate rather than to spatial confounding 

between this covariate and the spatial random effect.  

As an additional test of possible spatial confounding, we tested if estimated spatial 

random effects were correlated with the predictors related to the fixed effects. We extracted the 

posterior mean estimate of the leading spatial latent factor and computed its correlation (over 

all sampling units) with all the predictors included in the model, including the previous year’s 

abundances of all the 60 species. This analysis was done for all 16 models (four model variants 

times four spatial scales at which the predictors were computed). The results showed that the 

correlations were essentially normally distributed with mean approximately at 0, with maximal 

range within [-0.2,0.2] for all four model variants (Appendix S4: Figure S1-S4). This further 

indicates that spatial confounding was unlikely to be a major issue in the interpretation of our 

results. 
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Appendix S4: Figure S1. Distribution of correlation coefficients over all sampling units 

between the posterior mean estimate of the leading spatial latent factor and all the predictors 

for model variant 1 (M1) at all spatial scales (L-R), including the previous year’s abundances 

of all the 60 species. L (Local scale) = no spatial smoothing, P (Proximal scale) = average 

distance to the nearest neighboring plot [18 km], A (Average scale) = the average distance 

between plots [204 km], R (Regional scale) = maximum distance between plots [711 km]. 



 

Appendix S4: Figure S2. Distribution of correlation coefficients over all sampling units 

between the posterior mean estimate of the leading spatial latent factor and all the predictors 

for model variant 2 (M2) at all spatial scales (L-R), including the previous year’s abundances 

of all the 60 species. L (Local scale) = no spatial smoothing, P (Proximal scale) = average 

distance to the nearest neighboring plot [18 km], A (Average scale) = the average distance 

between plots [204 km], R (Regional scale) = maximum distance between plots [711 km]. 



 

Appendix S4: Figure S3. Distribution of correlation coefficients over all sampling units 

between the posterior mean estimate of the leading spatial latent factor and all the predictors 

for model variant 3 (M3) at all spatial scales (L-R), including the previous year’s abundances 

of all the 60 species. L (Local scale) = no spatial smoothing, P (Proximal scale) = average 

distance to the nearest neighboring plot [18 km], A (Average scale) = the average distance 

between plots [204 km], R (Regional scale) = maximum distance between plots [711 km]. 



 

Appendix S4: Figure S4. Distribution of correlation coefficients over all sampling units 

between the posterior mean estimate of the leading spatial latent factor and all the predictors 

for model variant 4 (M4) at all spatial scales (L-R), including the previous year’s abundances 

of all the 60 species. L (Local scale) = no spatial smoothing, P (Proximal scale) = average 

distance to the nearest neighboring plot [18 km], A (Average scale) = the average distance 

between plots [204 km], R (Regional scale) = maximum distance between plots [711 km]. 
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Appendix S5: Supporting information on the variance partitioning 

Appendix S5: Section S1 

Supporting information on the function computeVariancePartitioning(), see Ovaskainen and 

Abrego (2020). This function determines the magnitude of the contribution of each covariate 

(or group of covariates, if desired) to the total explained variance. The variance partitioning is 

conducted at the level of the linear predictor in HMSC. Recall that the variance of the weighted 

sum of X and Y, two random variables can be expanded as: 

 

Var[aX + bY] = a2Var[X] + b2Var[Y] + 2abCov[X, Y],      (1) 

 

Cov[X, Y] being the covariance between the two. Thus, the variance in the linear predictor can 

be expanded as follows: 

 

Var[L] = ∑ 𝛽𝛽𝑘𝑘2Var[𝑥𝑥·𝑘𝑘]𝑐𝑐𝑐𝑐
𝑘𝑘=1 + 2∑ ∑ 𝛽𝛽𝑘𝑘1𝛽𝛽2

𝑐𝑐𝑐𝑐
𝑘𝑘2=𝑘𝑘1+1

𝑐𝑐𝑐𝑐−1
𝑘𝑘1=1 Cov[𝑥𝑥·𝑘𝑘1 , 𝑥𝑥·𝑘𝑘1],   (2) 

 

with k explanatory variables (x). The dot notation in 𝑥𝑥·𝑘𝑘 means that 𝑥𝑥·𝑘𝑘 is the vector consisting 

of the 𝑥𝑥𝑖𝑖𝑘𝑘 values for all sampling units i. Expanding the variance in this way allows us to 

separately analyze the magnitude of contribution to the explained variance by each covariate. 
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Appendix S6: Supporting information on model convergence 

 

Appendix S6: Figure S1. Examples of posterior trace plots for some beta parameters from 

model M1-L. Panel A) shows intraspecific density dependence for Blue Tit, B) shows 

precipitation for Chaffinch, C) temperature for Grasshopper Warbler and D) habitat for 

Starling.  

 

We used the function traplot() from the package “mcmcplots” (Curtis et al., 2018) to generate 

Figure S5.1. 

 



 

Appendix S6: Figure S2. Evaluation of MCMC convergence of model M1-L in terms of 

potential scale reduction factors for the beta parameters, i.e. the estimates of intercepts and 

species responses to model covariates. 
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Appendix S7: Simulation study 6 

Appendix S7: Section S1 7 

We generated simulated data containing a clear signal of species interactions at the local scale, to 8 

verify the different models’ capacity to pick up such a signal, if existing. The models used in this 9 

analysis have all been tested by Ovaskainen et al. (2017), however, it is important to verify that 10 

the models are applicable to the data at hand. For instance, it needs to be verified that the time 11 

series are long enough. 12 

 To ensure stability of the simulated data, we use the real observed values at time t-1 as starting 13 

value for each time-step in the simulation, so that: 14 

𝒚𝒚𝒔𝒔𝒊𝒊𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒕𝒕𝒆𝒆𝒔𝒔 = 𝒚𝒚𝒐𝒐𝒐𝒐𝒔𝒔𝒆𝒆𝒐𝒐𝒐𝒐𝒆𝒆𝒔𝒔,   𝒕𝒕−𝟏𝟏 × 𝛼𝛼𝑖𝑖𝑗𝑗 + 𝜺𝜺                (1) 15 

where 𝒚𝒚𝒐𝒐𝒐𝒐𝒔𝒔𝒆𝒆𝒐𝒐𝒐𝒐𝒆𝒆𝒔𝒔,   𝒕𝒕−𝟏𝟏 is the matrix containing the observed, log-transformed and standardized 16 

densities at time t-1. 𝛼𝛼𝑖𝑖𝑗𝑗~𝑁𝑁(0,1), and is divided by the square root of the number of species, to 17 

create a matrix containing relatively weak inter-species density dependencies (𝛼𝛼𝑖𝑖𝑖𝑖 = 0, thus 18 

excluding intra-specific density dependencies in order to keep the simulation as simple as 19 

possible), and 𝜺𝜺~𝑁𝑁(0,1) multiplied by 0.5 is a matrix of relatively weak random error terms. 20 

We subsequently evaluated explanatory and predictive power at the local scale following the same 21 

procedure as described above and using the same settings for model fitting as before, apart from 22 

setting thin=10 (Appendix S7: Table S1). 23 



Appendix S7: Table S1. Explanatory and predictive power of the models at the local scale (no 

spatial smoothing). Explanatory power is measured as the mean of the correlation for each 

species in each plot between simulated time-series and time-series predicted by the different 

models fit to the simulated data. Predictive power is measured as the mean of the correlation 

for each species in each plot between simulated time-series and independently predicted time-

series obtained by 5-fold cross-validation [results based on thin=10]. 

 

 Explanatory Power Predictive Power 

 Model M1 M2 M3 M4 M1 M2 M3 M4 

Scale          L 0.201 0.980 0.979 0.350 0.09 0.980 0.977 0.275 

 

 

 

 

Appendix S7: Figure S1. The difference for each species in A) Explanatory power and B) 

Predictive power between the focal model and model M1-L at the local scale (L) for the 4 

different models, so that L 1= (M1-L) - (M1-L) = 0, L 2= (M2-L) - (M1-L), L 3= (M3-L) - 



(M1-L), L 4= (M4-L) - (M1-L). The mean difference is indicated by a dot. Values for M1-L 

are exactly zero, since they are being compared with self. 

Note that, since the species interactions in our simulation is defined in terms of M2, it is 

expected that explanatory and predictive power for M4 is substantially less than for M2 and 

also for M3, the latter performing better at capturing such data compared to M4. While the 

simulation study could have been extended by simulating the interactions in terms of M4 also, 

adding this component would be computationally intensive. Since Ovaskainen et al. (2017) 

performed a simulation study including the interactions in terms of M4 also, and the authors 

showed that Hmsc can identify the underlying model (and e.g. separate it from the sparse 

interaction models), adding such a component here would not provide great added value. 

 

In summary, Appendix S7:Table S1 and Figure S1 clearly show that Hmsc is able to pick up 

the signal of species interactions in the type of data analyzed in this study, if present. 
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