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Abstract: This research paper addresses the modelling of a new 3-D chaotic jerk system with a stable
equilibrium. Such chaotic systems are known to exhibit hidden attractors. After the modelling
of the new jerk system, a detailed bifurcation analysis has been performed for the new chaotic
jerk system with a stable equilibrium. It is shown that the new jerk system has multistability with
coexisting attractors. Next, we apply backstepping control for the synchronization design of a pair
of new jerk systems with a stable equilibrium taken as the master-slave chaotic systems. Lyapunov
stability theory is used to establish the synchronization results for the new jerk system with a stable
equilibrium. Finally, we show that the FPGA design of the new jerk system with a stable equilibrium
can be implemented using the FPGA Zybo Z7-20 development board. The design of the new jerk
system consists of multipliers, adders and subtractors. It is observed that the experimental attractors
are in good agreement with simulation results.

Keywords: jerk systems; chaos; hidden attractors; bifurcation analysis; multistability; FPGA design;
backstepping control

MSC: 34A34; 34D45; 93B52; 93C15

1. Introduction

Nonlinear dynamical systems with chaotic attractors have numerous applications
in engineering such as cryptosystem [1,2], secure communication [3,4], encryption [5,6],
memristors [7–10], circuits [11,12], chemical systems [13,14], etc.
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Autonomous jerk differential equations have the general structure given as follows:

d3x
dt3 = F

(
x,

dx
dt

,
d2x
dt2

)
(1)

In mechanical engineering, the term jerk stands for the third order derivative. Hence, (1)
is called a jerk differential equation. It is easy to express the ODE (1) as a system of
differential equations by introducing the phase variables as follows:

ẋ = y

ẏ = z

ż = F(x, y, z)
(2)

Jerk systems have several applications in science [15–19]. Li and Zheng [15] proposed
a 3-D jerk system with a sinusoidal term and noted that the system has an infinite number
of equilibrium points. Dongmo et al. [16] discussed the field programmable gate array
(FPGA) implementation of an autonomous jerk oscillator arising in a Josephson junction.
Qin and Lai [17] proposed a new memristive chaotic system by modification of a jerk
system with a typical memristor. Ramadoss et al. [18] proposed a new chaotic jerk system
with a septic nonlinearity and discussed its PSpice simulation.

Many of the jerk systems reported in the chaos literature involve jerk systems without
any equilibrium point [20] or with unstable equilibrium points [17,18,21–24], etc. In 2021,
Vijayakumar et al. [25] proposed a new chaotic jerk system with a stable equilibrium.
The motivation of this research work is to report a new chaotic jerk system with a stable
equilibrium. By modifying the dynamics of the Vijayakumar jerk system [25], we obtain a
new chaotic jerk system with a stable equilibrium.

Lyapunov exponents provide a direct measure of sensitive dependence on initial
conditions of a trajectory of a chaotic system by quantifying the exponential rates at which
neighboring orbits on an attractor diverge (or converge) as the system evolves in time.

To define the Lyapunov exponents of a dynamical system, we consider an n-dimensional
dynamical system described by

ẋ = f (x), (x ∈ Rn) (3)

Suppose that fi denotes the ith component of the vector field f for i = 1, 2, . . . , n.
The Lyapunov exponents of the system (3) describe the behavior of vectors in the

tangent space of the phase space and are defined from the Jacobian matrix J = [Jij], where

Jij(t) =
∂ fi(x)

∂xj

∣∣∣∣∣
x(t)

(4)

Next, we consider the matrix differential equation

Ẏ = JY (5)

with the initial condition Yij(0) = δij.
The matrix Y describes how a small change at the initial state x(0) propagates to the

final state x(t) for the dynamical system (3). Next, we consider the matrix Λ defined by

Λ = lim
t→∞

1
2t

log[Y(t)YT(t)] (6)

The Lyapunov exponents of the dynamical system (3) are defined as the eigenvalues
of the matrix Λ [26]. The maximal Lyapunov exponent (MLE) of the dynamical system (3)
is the largest eigenvalue of the matrix Λ. If the MLE of the system (3) is positive and
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the phase space is compact, then the system (3) is chaotic [26]. If the sum of Lyapunov
exponents of the system (3) is negative, then the system is called dissipative and the phase
space of the system is compact [26]. Thus, a dissipative system (3) is chaotic when the MLE
of the system is positive [26]. We also note that the MLE of the system (3) signifies the
exponential rate of growth of small perturbations along each of the principal axes in the
phase space [27].

In this work, we show that the MLE of the new chaotic jerk system exhibits a higher
value than the MLE of the Vijayakumar jerk system [25] for the same initial conditions.

Kaplan-Yorke dimension of a chaotic system gives the fractal dimension of a chaotic
system in terms of the Lyapunov exponents of the system [28]. For a 3-D dissipative
chaotic system with the Lyapunov exponents τ1 > 0, τ2 = 0 and τ3 < 0, the Kaplan-Yorke
dimension of the system is defined as

DK = 2 +
τ1 + τ2

|τ3|
(7)

In this work, we show that the Kaplan-Yorke dimension of the new chaotic jerk system
is greater than that of the Vijayakumar jerk system [25].

Modelling of the new chaotic jerk system with a stable equilibrium is detailed in
Section 2. Bifurcation analysis of dynamical systems aids in elucidating the qualitative
properties of the systems [29,30]. We describe the bifurcation analysis of the new chaotic
jerk system in Section 3. Multistability and coexisting attractors of the new chaotic jerk
system are some special properties which are detailed in Section 4.

Synchronization of chaotic and hyperchaotic systems have several applications in the
literature [31–34]. Using backstepping control, we achieve complete synchronization of a
pair of new chaotic jerk systems considered as master and slave systems for communication.
The synchronization results for the new chaotic jerk system with a stable equilibrium are
detailed in Section 5.

Hardware implementations allow us to observe the behavior of chaotic systems in
a physical environment, as well as to evaluate the system in aspects such as the use of
hardware resources required for its implementation, and the maximum frequency of the
system, among others. In this manner, one can infer that the design of chaotic systems
is quite good when they are implemented on hardware that is ready for an engineering
application. This is the case when using an FPGA which helps to perform a fast prototyping
of a dynamical system to observe experimental attractors. Recently, one can find several
FPGA implementations of chaotic systems, as shown in [16,35–39]. In Section 6, we show
the FPGA implementation of the new jerk system with a stable equilibrium using the FPGA
Zybo Z7-20 development board.

2. Modelling of the New Jerk System with a Stable Equilibrium

In 2021, Vijayakumar et al. [25] proposed a new chaotic jerk system with the dynamics
ẋ = y
ẏ = z
ż = −x− y− z− αz2 + xy− β

(8)

The equilibrium points or rest points of an autonomous system Ẋ = f (X) are defined
as the roots of the equation f (X) = 0. The equilibrium points refer to the constant solutions
of the system Ẋ = f (X).

For the Vijayakumar jerk system (8), the equilibrium points are got by solving the
following system of equations:

y =0 (9a)

z =0 (9b)

−x− y− z− αz2 + xy− β = 0 (9c)
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From the Equations (9a) and (9b), we get y = 0 and z = 0, respectively.
Thus, we can simplify the Equation (9c) as

−x− β = 0, (10)

which has the unique solution x = −β.
This simple calculation establishes that E0(−β, 0, 0) is the unique equilibrium point of

the Vijayakumar jerk system (8).
As shown in [25], the Vijayakumar jerk system (8) has a chaotic attractor and a locally

asymptotically stable equilibrium point for the parameter values taken in the following
two cases:

Case (A): α = 2.3, β = 0.02
We take the initial state as x(0) = 0, y(0) = −1, z(0) = 0.
For this case, the Lyapunov exponents of the Vijayakumar jerk system (8) can be

numerically calculated in MATLAB using Wolf’s algorithm [40] as follows:

τ1 = 0.0391, τ2 = 0, τ3 = −1.0395 (11)

Since the sum of the Lyapunov exponents of the Vijayakumar jerk system (8) is
negative, we conclude that the system (8) is dissipative. A dissipative system is chaotic if
its MLE is positive [26]. Thus, the Vijayakumar jerk system (8) has a chaotic attractor.

Also, the Kaplan-Yorke dimension of the Vijayakumar jerk system (8) is found in
Case A as follows:

DK = 2 +
τ1 + τ2

|τ3|
= 2.0376 (12)

Linearization of the Vijayakumar jerk system (8) at E0(−0.02, 0, 0) has the eigenvalues
given as follows:

µ1 = −0.99, µ2,3 = −0.005± 1.005i (13)

This shows that E0(−0.02, 0, 0) is a locally asymptotically stable equilibrium of the
Vijayakumar jerk system (8).

Case (B): α = 2.3, β = 0.005
We take the initial state as x(0) = 0, y(0) = −1, z(0) = 0.
For this case, the Lyapunov exponents of the Vijayakumar jerk system (8) can be

numerically calculated in MATLAB using Wolf’s algorithm [40] as follows:

τ1 = 0.0878, τ2 = 0, τ3 = −1.0883 (14)

Since the sum of the Lyapunov exponents of the Vijayakumar jerk system (8) is
negative, we conclude that the system (8) is dissipative. A dissipative system is chaotic if
its MLE is positive [26]. Thus, the Vijayakumar jerk system (8) has a chaotic attractor.

Also, the Kaplan-Yorke dimension of the Vijayakumar jerk system (8) is found in
Case B as follows:

DK = 2 +
τ1 + τ2

|τ3|
= 2.0807 (15)

Linearization of the Vijayakumar jerk system (8) at E0(−0.005, 0, 0) has the eigenvalues
given as follows:

µ1 = −0.9975, µ2,3 = −0.0012± 1.0013i (16)

This shows that E0(−0.005, 0, 0) is a locally asymptotically stable equilibrium of the
Vijayakumar jerk system (8).
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In this research work, we propose a new jerk system by introducing a cubic non-
linearity into Vijayakumar jerk system (8). Our new jerk system is described as follows:

ẋ = y
ẏ = z
ż = −x− y− z− αz2 + xy− β + γz3

(17)

We use the notation X = (x, y, z) to depict the state of the new jerk system (17).
For the new jerk system (17), the equilibrium points are obtained by solving the

following system of equations:

y =0 (18a)

z =0 (18b)

−x− y− z− αz2 + xy− β + γz3 = 0 (18c)

From the Equations (18a) and (18b), we get y = 0 and z = 0, respectively.
Thus, we can simplify the Equation (18c) as

−x− β = 0, (19)

which has the unique solution x = −β.
This simple calculation establishes that E0(−β, 0, 0) is the unique equilibrium point of

the new jerk system (17).
We will establish that the new jerk system (17) has a chaotic attractor and a locally

asymptotically stable equilibrium point for the parameter values taken in the following
two cases:

Case (A): α = 2.3, β = 0.02, γ = 0.05
We take the initial state as x(0) = 0, y(0) = −1, z(0) = 0.
For this case, the Lyapunov exponents of the new jerk system (17) can be numerically

evaluated in MATLAB using Wolf’s algorithm [40] as follows:

τ1 = 0.0915, τ2 = 0, τ3 = −1.0615 (20)

Since the sum of the Lyapunov exponents of the new jerk system (17) is negative, we
conclude that the system (17) is dissipative. A dissipative system is chaotic if its MLE is
positive [26]. Thus, the new jerk system (17) has a chaotic attractor.

Also, the Kaplan-Yorke dimension of the new jerk system (17) is found in Case A
as follows:

DK = 2 +
τ1 + τ2

|τ3|
= 2.0862 (21)

Linearization of the new jerk system (17) at E0(−0.02, 0, 0) has the eigenvalues given
as follows:

µ1 = −0.99, µ2,3 = −0.005± 1.005i (22)

This shows that E0(−0.02, 0, 0) is a locally asymptotically stable equilibrium of the
new jerk system (17).

Case (B): α = 2.3, β = 0.005, γ = 0.01
We take the initial state as x(0) = 0, y(0) = −1, z(0) = 0.
For this case, the Lyapunov exponents of the new jerk system (17) can be numerically

evaluated in MATLAB using Wolf’s algorithm [40] as follows:

τ1 = 0.0901, τ2 = 0, τ3 = −1.0835 (23)
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Since the sum of the Lyapunov exponents of the new jerk system (17) is negative, we
conclude that the system (17) is dissipative. A dissipative system is chaotic if its MLE is
positive [26]. Thus, the new jerk system (17) has a chaotic attractor.

Linearization of the new jerk system (17) at E0(−0.005, 0, 0) has the eigenvalues given
as follows:

µ1 = −0.9975, µ2,3 = −0.0012± 1.0013i (24)

Also, the Kaplan-Yorke dimension of the new jerk system (17) is found in Case B
as follows:

DK = 2 +
τ1 + τ2

|τ3|
= 2.0832 (25)

This shows that E0(−0.005, 0, 0) is a locally asymptotically stable equilibrium of the
new jerk system (17).

In summary, the new jerk system (17) has a chaotic attractor with a unique, locally
asymptotically stable equilibrium for the Cases (A) and (B). For the cases (A) and (B), the
maximum Lyapunov exponent (MLE) of new chaotic jerk system (17) is greater than that
of the Vijayakumar jerk system (8). Moreover, for the cases (A) and (B), the Kaplan-Yorke
dimension of the new chaotic jerk system (17) is greater than that of the Vijayakumar jerk
system (8). These results are tabulated in Table 1.

Table 1. Comparison of the Vijayakumar Jerk System [25] and the New Jerk system (17).

Jerk System Case MLE Kaplan-Yorke
Dimension

Vijayakumar Jerk system (8) Case A 0.0391 2.0376
New Jerk system (17) Case A 0.0915 2.0862

Vijayakumar Jerk system (8) Case B 0.0878 2.0807
New Jerk system (17) Case B 0.0901 2.0832

Figures 1–3 display the MATLAB simulation plots for Case (A) of the new jerk sys-
tem (17), where (α, β, γ) = (2.3, 0.02, 0.05) and the initial state is taken as X(0) = (0,−1, 0).

Figures 4–6 display the MATLAB simulation plots for Case (B) of the new jerk sys-
tem (17), where (α, β, γ) = (2.3, 0.005, 0.01) and the initial state is taken as X(0) = (0,−1, 0).

Figure 1. MATLAB phase plot in (x− y) plane of the 3-D chaotic jerk system (17) for Case (A), where
(α, β, γ) = (2.3, 0.02, 0.05) and X(0) = (0,−1, 0).
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Figure 2. MATLAB phase plot in (y− z) plane of the 3-D chaotic jerk system (17) for Case (A), where
(α, β, γ) = (2.3, 0.02, 0.05) and X(0) = (0,−1, 0).

Figure 3. MATLAB phase plot in (x− z) plane of the 3-D chaotic jerk system (17) for Case (A), where
(α, β, γ) = (2.3, 0.02, 0.05) and X(0) = (0,−1, 0).

Figure 4. MATLAB phase plot in (x− y) plane of the 3-D chaotic jerk system (17) for Case (B), where
(α, β, γ) = (2.3, 0.005, 0.01) and X(0) = (0,−1, 0).

Figure 5. MATLAB phase plot in (y− z) plane of the 3-D chaotic jerk system (17) for Case (B), where
(α, β, γ) = (2.3, 0.005, 0.01) and X(0) = (0,−1, 0).
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Figure 6. MATLAB phase plot in (x− z) plane of the 3-D chaotic jerk system (17) for Case (B), where
(α, β, γ) = (2.3, 0.005, 0.01) and X(0) = (0,−1, 0).

3. Bifurcation Analysis of the New Jerk System with a Stable Equilibrium

The dynamic behaviors of nonlinear systems vary significantly based on the values of
their parameters. The system can transition from one type of behavior to another, called
a bifurcation, when certain parameter ranges are reached. This section will explore the
dynamic behaviors of the new jerk system (17) through numerical calculations, when the
parameters α, β and γ are varied.

3.1. Variation with Respect to the Parameter α

By holding the values of β and γ at 0.02 and 0.05, respectively, we can observe the
effect of varying α between 2 and 2.3 on the new jerk system (17). The Lyapunov exponents
spectrum and the corresponding bifurcation diagram of the jerk system (17) are presented in
Figure 7 indicating that the system can display periodic and chaotic behavior as Tincreases
within the range [2, 2.3].

Define L = [2, 2.2424] ∪ [2.2470, 2.2476] ∪ [2.2630, 2.2672].
When α ∈ L, the behavior of the jerk system (17) is periodic, which is supported by the

presence of one zero Lyapunov exponent and two negative Lyapunov exponents. For ex-
ample, when α = 2.1, the corresponding Lyapunov exponents have the following values:

τ1 = 0, τ2 = −0.478, τ3 = −0.493 (26)

Define M = [2.2425, 2.2469] ∪ [2.2477, 2.2629] ∪ [2.2673, 2.3].
When α ∈ M, the jerk system (17) displays chaotic behavior, with one positive Lya-

punov exponent. In particular, when α = 2.26, the corresponding Lyapunov exponents are:

τ1 = 0.064, τ2 = 0, τ3 = −1.030 (27)

In this case, the Kaplan-Yorke dimension of the jerk system (17) is a non-integer value
of DK = 2.0621.

Moreover, the bifurcation diagram depicted in Figure 7 reveals that the jerk system (17)
experiences the well-known period-doubling route to chaos.
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(a) (b)
Figure 7. (a) Bifurcation Diagram and (b) Lyapunov Exponents (LE) Spectrum of the new jerk
system (17) when α ∈ [2, 2.3], β = 0.02, γ = 0.05.

The bifurcation diagram presented in Figure 7 illustrates that the system experiences
a series of period-doubling as the parameter α increases, resulting in the well-known
period-doubling route to chaos within specific ranges of parameter α.

When the value of α is within the interval [2, 2.1978], the system (17) exhibits a period-
1 attractor. When α ∈ [2.1978, 2.2336], the system (17) has a period-2 attractor. When
α ∈ [2.2338, 2.2404], the system (17) displays a period-4 attractor. When α ∈ [2.2406, 2.2418],
the system (17) exhibits a period-8 attractor. When α ∈ [2.2420, 2.2424], the system (17)
demonstrates a period-16 attractor. Finally, when α ∈ [2.2425, 2.2469], the system (17)
displays a chaotic attractor, which signifies the end of the period-doubling cascade.

Table 2 summarizes the various attractors observed through numerical simulations,
illustrating the period-doubling route to chaos discussed earlier. Additionally, Figure 8
provides a graphical representation of these attractors.

(a) (b)

(c) (d)

Figure 8. Cont.
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(e) (f)
Figure 8. 2-D MATLAB plots of the new jerk system (17) in (x, y) plane for β = 0.02, γ = 0.05 and
X(0) = (0,−1, 0). (a) Period-1 for α = 2.1; (b) Period-2 for α = 2.22; (c) Period-4 for α = 2.236;
(d) Period-8 for α = 2.2412; (e) Period-16 for α = 2.2424; (f) Chaos for α = 2.2465.

Table 2. Period-doubling route to chaos with parameter α varying.

α Range α Value Dynamics Attractor

[2, 2.1978] 2.1 Period-1 Figure 8a
[2.1980, 2.2336] 2.22 Period-2 Figure 8b
[2.2338, 2.2404] 2.236 Period-4 Figure 8c
[2.2406, 2.2418] 2.2412 Period-8 Figure 8d
[2.2420, 2.2424] 2.2424 Period-16 Figure 8e
[2.2425, 2.2469] 2.2465 Chaos Figure 8f

3.2. Variation with Respect to the Parameter β

To analyze how changes in the values of β affect the qualitative behavior of the jerk
system (17), we fix the values of α and γ as α = 2.3 and γ = 0.05, and vary the values of β
in the interval [0.02, 0.06]. The Lyapunov exponents spectrum and the bifurcation diagram
of the jerk system (17) are illustrated in Figure 9, indicating that as β increases within this
range, the 3-D jerk system (17) can exhibit both periodic and chaotic behavior.

Define N = [0.02, 0.0256] ∪ [0.0259, 0.0297] ∪ [0.0311, 0.036]. When β ∈ N, the jerk sys-
tem (17) generates chaotic behavior with a single positive Lyapunov exponent.
When β = 0.034, the Lyapunov exponents for the jerk system (17) are found as follows:

τ1 = 0.049, τ2 = 0, τ3 = −1.107 (28)

Define P = [0.0257, 0.0258] ∪ [0.0298, 0.0310] ∪ [0.037, 0.06].
When β ∈ P, the behavior of the jerk system (17) is periodic, which is supported by the

presence of one zero Lyapunov exponent and two negative Lyapunov exponents. For ex-
ample, when β = 0.06, the corresponding Lyapunov exponents have the following values:

τ1 = 0, τ2 = −0.172, τ3 = −0.769 (29)

Moreover, the bifurcation diagram depicted in Figure 9 reveals that the jerk system (17)
experiences the well-known reverse period-doubling route from chaos to a period-1 orbit.

The bifurcation diagram presented in Figure 9 illustrates that the jerk system (17)
experiences a series of period-doubling as the parameter β increases. As a result, within
certain intervals of β, the well-known phenomenon of reverse period-doubling occurs,
where the jerk system (17) makes transitions from chaos to period-16, period-8, period-4,
period-2 attractors and ultimately to a period-1 attractor.
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(a) (b)
Figure 9. (a) Bifurcation Diagram and (b) Lyapunov Exponents (LE) Spectrum of the new jerk
system (17) when β ∈ [0.02, 0.06], α = 2.3, γ = 0.05.

The values of the parameter β have a significant impact on the behavior of the jerk
system (17). For instance, when β takes values in the interval [0.0311, 0.0365], the jerk
system (17) exhibits a chaotic attractor. When β takes values in the interval [0.0366, 0.0367],
a period-16 attractor for the jerk system (17) is observed. Similarly, a period-8 attractor
occurs for the jerk system (17) when β takes values in the interval [0.0368, 0.0375]. Also, a
period-4 attractor is observed for the jerk system (17) when β takes values in the interval
[0.0376, 0.0391]. Furthermore, a period-2 attractor is observed for the jerk system (17) when
β takes values in the interval [0.0392, 0.0475]. Finally, a period-1 attractor is observed for
the jerk system (17) when β takes values in the interval [0.0476, 0.06].

Table 3 enumerates the different attractors obtained from numerical simulations that
illustrate the reverse period-doubling route mentioned earlier. Additionally, Figure 10
provides a graphical representation of these attractors.

Table 3. Reverse period-doubling route from chaos to a period-1 attractor with parameter β varying.

β Range β Value Dynamics Attractor

[0.0311, 0.0365] 0.034 Chaos Figure 10a
[0.0366, 0.0367] 0.0366 Period-16 Figure 10b
[0.0368, 0.0375] 0.0369 Period-8 Figure 10c
[0.0376, 0.0391] 0.039 Period-4 Figure 10d
[0.0392, 0.0475] 0.042 Period-2 Figure 10e
[0.0476, 0.06] 0.06 Period-1 Figure 10f

3.3. Variation with Respect to the Parameter γ

To investigate the effect of γ on the jerk system (17), α and β are kept constant at the
values α = 2.3 and β = 0.02, while γ varies in the interval [−0.1, 0.05]. The corresponding
results are shown in Figure 11, which displays the Lyapunov exponent values and the
corresponding bifurcation diagram as γ increases. The analysis reveals that the 3-D jerk
system (17) can exhibit both chaotic behavior and periodic behavior as γ increases.

We define Q = [−0.1,−0.006] ∪ [0.015, 0.0182]. When γ ∈ Q, the jerk system (17)
exhibits periodic behavior and does not have any positive Lyapunov exponent. For example,
when γ = 0.075, the corresponding Lyapunov exponents of the jerk system (17) are found as

τ1 = 0, τ2 = −0.053, τ3 = −1.008 (30)
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(a) (b)

(c) (d)

(e) (f)
Figure 10. 2-D MATLAB plots of the new jerk system (17) in (x, z) plane for α = 2.3, γ = 0.05 and
X(0) = (0,−1, 0); (a) Chaos for β = 0.034; (b) Period-16 for β = 0.0366; (c) Period-8 for β = 0.0369;
(d) Period-4 for β = 0.039; (e) Period-2 for β = 0.042; (f) Period-1 for β = 0.06.

We define R = [−0.005, 0.014] ∪ [0.0183, 0.05]. When γ ∈ R, the jerk system (17)
exhibits chaotic behavior and has a positive Lyapunov exponent. For example, when
γ = 0.004, the corresponding Lyapunov exponents are found as

τ1 = 0.057, τ2 = 0, τ3 = −1.008 (31)

Moreover, the bifurcation diagram depicted in Figure 11 reveals that the jerk sys-
tem (17) experiences the well-known period-doubling route to chaos.

The bifurcation diagram presented in Figure 11 illustrates that the system experiences
a series of period-doubling as the parameter γ increases, resulting in the well-known
period-doubling route to chaos within specific ranges of parameter γ, which progresses
from period-1 to period-2, period-4, period-8, period-16 and, ultimately, to chaos.
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(a) (b)
Figure 11. (a) Bifurcation Diagram and (b) Lyapunov Exponents (LE) Spectrum of the new jerk
system (17) when γ ∈ [−0.1, 0.05], α = 2.3, β = 0.02.

The behavior of the jerk system (17) varies depending on the values of γ. Specifically,
when γ falls within the interval [−0.1,−0.055], the jerk system (17) exhibits a period-1
attractor. When γ falls within the interval [−0.054,−0.017], the jerk system (17) displays
a period-2 attractor. When γ takes values in the interval [−0.016,−0.0095], the jerk sys-
tem (17) displays a period-4 attractor. When γ takes values in the interval [−0.0096,−0.008],
the jerk system (17) displays a period-8 attractor. When γ takes values in the interval
[−0.0096,−0.006], the jerk system (17) displays a period-16 attractor. Finally, when γ falls
within the interval [−0.0079,−0.006], the jerk system (17) displays a chaotic attractor, which
marks the end of the period-doubling cascade.

Table 4 summarizes the various attractors observed through numerical simulations,
illustrating the period-doubling route to chaos discussed earlier. Additionally, Figure 12
provides a graphical representation of these attractors.

Table 4. Period-doubling route to chaos with parameter γ varying.

γ Range γ Value Dynamics Attractor

[2, 2.1978] 2.1 Period-1 Figure 12a
[2.1980, 2.2336] 2.22 Period-2 Figure 12b
[2.2338, 2.2404] 2.236 Period-4 Figure 12c
[2.2406, 2.2418] 2.2412 Period-8 Figure 12d
[2.2420, 2.2424] 2.2424 Period-16 Figure 12e
[2.2425, 2.2469] 2.2465 Chaos Figure 12f

(a) (b)

Figure 12. Cont.
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(c) (d)

(e) (f)
Figure 12. 2-D MATLAB plots of the new jerk system (17) in (x, z) plane for α = 2.3, β = 0.02
and X(0) = (0,−1, 0). (a) Period-1 for γ = −0.075; (b) Period-2 for γ = −0.018; (c) Period-4 for
γ = −0.012; (d) Period-8 for γ = −0.0088; (e) Period-16 for γ = −0.0076; (f) Chaos for γ = 0.004.

4. Multistability and Coexisting Attractors of the New Jerk System with a
Stable Equilibrium

Multistability is a special property of a nonlinear dynamical system that refers to the
coexistence of periodic orbits or chaotic attractors for the same set of parameter values but
different sets of initial states [41,42]. Multistability makes a chaotic system more complex
and more useful in many applications that require complexity and provide a great degree of
freedom for the engineering chaos-based applications such as secure communication.

The 3-D jerk system (17) is a mathematical model that shows the existence of multiple
coexisting attractors. The system (17) can exhibit various coexisting attractors depending
on the initial points. In this work, we have used sensitivity analysis, which involves
systematically varying the initial values or parameters of the system to assess their impact
on the system’s behavior. By performing sensitivity analysis, we can identify the ranges of
initial values and parameters that lead to the appearance of coexisting attractors.

To investigate the multistability properties of the jerk system (17), we consider three
distinct starting points:

X01 = (0.07, 0.07, 0.07), X02 = (0.15, 0.15, 0.15), X03 = (0,−1, 0) (32)

4.1. CASE(A): α = 2.2625, β = 0.02 and γ = 0.05

In this case, the 3-D jerk system (17) demonstrates two distinct behaviors based on
its initial conditions X01 and X02 as demonstrated in Figure 13. If the system starts from
X01, it will converge to the equilibrium. However, if it starts from X02, then it will exhibit
chaotic behavior.

The Lyapunov exponents of the jerk system (17) at X01 are numerically found in
MATLAB using Wolf algorithm [40] as

τ1 = −0.0047, τ2 = −0.0049, τ3 = −0.9902, (33)
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which shows the existence of a stable orbit starting from X01.
The Lyapunov exponents of the jerk system (17) at X02 are numerically found in

MATLAB using Wolf algorithm [40] as

τ1 = 0.0572, τ2 = 0, τ3 = −1.0186, (34)

which shows the existence of a chaotic attractor starting from X02.
Figure 13 depicts the MATLAB plots of the coexisting stable orbit and chaotic attractor

generated by the 3-D jerk system (17) for Case (A), where the attractor generated from X01
is in red, while the attractor generated from X02 is in blue.

4.2. CASE(B): α = 2.3, β = 0.019 and γ = 0.05

In this case, the 3-D jerk system (17) demonstrates two distinct behaviors based on its
initial conditions X02 and X03 as demonstrated in Figure 14. The jerk system (17) exhibits
coexisting chaotic attractors for the solutions starting from X02 and X03.

The Lyapunov exponents of the jerk system (17) at X02 are numerically found in
MATLAB using Wolf algorithm [40] as

τ1 = 0.0837, τ2 = 0, τ3 = −1.0552, (35)

which shows the existence of a chaotic attractor starting from X02.
The Lyapunov exponents of the jerk system (17) at X03 are numerically found in

MATLAB using Wolf algorithm [40] as

τ1 = 0.0867, τ2 = 0, τ3 = −1.0591, (36)

which shows the existence of a chaotic attractor starting from X03.

(a) (b)
Figure 13. MATLAB plots of the coexisting stable orbit and chaotic attractor generated by the 3-D
system (17) for the parameter values at α = 2.2625, β = 0.02 and γ = 0.05, where the attractor
generated from X01 is in red, while the attractor generated from X02 is in blue. (a) (x − y) plot;
(b) (y− z) plot.

(a) (b)
Figure 14. MATLAB plots of the coexisting chaotic attractors generated by the 3-D system (17) for
the parameter values at α = 2.3, β = 0.019 and γ = 0.05, where the attractor generated from X02 is in
red, while the attractor generated from X03 is in blue. (a) (x− y) plot; (b) (y− z) plot.
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5. Complete Synchronization of the New Jerk Systems Using Backstepping Control

Taking advantage of the special structure of the jerk systems, we use the backstepping
control method to achieve complete synchronization between the master and slave chaotic
jerk systems [43]. Backstepping control method has also been applied for the synchro-
nization of other types of chaotic systems [44,45]. Synchronization of chaotic systems has
several applications in secure communication systems [3,4,46].

The master and slave jerk systems considered for the synchronization design are
described as follows:

ẋm = ym

ẏm = zm

żm = −xm − ym − zm − αz2
m + xmym − β + γz3

m

(37)


ẋs = ys

ẏs = zs

żs = −xs − ys − zs − αz2
s + xsys − β + γz3

s + v
(38)

In Equation (38), v is an active backstepping control which is to be designed in
this section.

We define the complete synchronization error by means of the following equations:
εx = xs − xm

εy = ys − ym

εz = zs − zm

(39)

The error dynamics is derived by means of the following equations:
ε̇x = εy

ε̇y = εz

ε̇z = −εx − εy − εz − α(z2
s − z2

m) + xsys − xmym + γ(z3
s − z3

m) + v
(40)

In this section, we shall establish the following main result.

Theorem 1. The backstepping control law defined by the equation

v = −2εx − 4εy − 2εz − xsys + xmym + α(z2
s − z2

m)− γ(z3
s − z3

m)− κφz (41)

with gain κ > 0 and φz = 2εx + 2εy + εz globally and exponentially stabilizes the chaotic jerk
systems (37) and (38) for all initial states in R3.

Proof. We begin with the Lyapunov function

P1(φx) =
1
2

φ2
x, (42)

where
φx = εx (43)

A simple calculation shows that

Ṗ1 = φxφ̇x = −φ2
x + φx(εx + εy) (44)

To simplify the calculations, we define

φy = εx + εy (45)
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Then we can express Equation (44) as follows:

Ṗ1 = −φ2
x + φxφy (46)

Next, we define the Lyapunov function

P2(φx, φy) = P1(φx) +
1
2

φ2
y =

1
2

φ2
x +

1
2

φ2
y (47)

A simple calculation shows that

Ṗ2 = −φ2
x − φ2

y + φy(2εx + 2εy + εz) (48)

To simplify the calculations, we define

φz = 2εx + 2εy + εz (49)

Then we can express Equation (48) as follows:

Ṗ2 = −φ2
x − φ2

y + φyφz (50)

As a final step of the backstepping control design, we consider the quadratic Lyapunov
function defined as follows:

P(φx, φy, φz) = P2(φx, φy) +
1
2

φ2
z =

1
2

φ2
x +

1
2

φ2
y +

1
2

φ2
z (51)

Differentiating P with respect to t, we get the following:

Ṗ = −φ2
x − φ2

y − φ2
z + φzQ (52)

where
Q = 2εx + 4εy + 2εz + xsys − xmym − α(z2

s − z2
m) + γ(z3

s − z3
m) + v (53)

Substituting the formula given in Equation (41) for v into Equation (53), we get

Q = −κφz (54)

Combining (52) and (54), we get

Ṗ = −φ2
x − φ2

y − φ2
z(1 + κ) (55)

Since κ > 0, we see that Ṗ is a quadratic and negative definite function defined on R3.
By Lyapunov Stability Theory, we deduce that the error dynamics (40) is locally

exponentially stable at (εx, εy, εz) = (0, 0, 0).
This completes the proof.

For MATLAB simulations, we pick the parameter values as in the chaotic situation,
viz. α = 2.3, β = 0.02 and γ = 0.05. We choose κ = 10.

The initial states of the master and slave jerk systems represented by (37) and (38) are
taken as follows:

xm(0) = −0.1, ym(0) = 0.2, zm(0) = 0.3, xs(0) = 0.4, ys(0) = −0.1, zs(0) = −0.2 (56)

Figure 15 shows the convergence of the synchronization error (εx(t), εy(t), εz(t))
between the jerk systems (37) and (38).
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Figure 15. MATLAB plot showing the synchronization error (εx, εy, εz) between the jerk systems (37)
and (38).

6. FPGA-Based Implementation of the New Jerk System with a Stable Equilibrium

Due to the advantages of the FPGA for fast prototyping, it is very useful to observe
experimental attractors of different chaotic systems. As mentioned in [35], the FPGA
implementation depends on the numerical method that is used to solve the dynamical
system, as in the one given in (17), which can be solved by applying the Forward Euler
method. The hardware resources of an FPGA implementation depend on the numerical
method, and the throughput depends on the choice of the time-step, which is another
challenge to maximize the operating frequency of an FPGA, as shown in [37].

The application of the Forward Euler method to (17) leads us to the discretized
equations given in (57), where one can infer the need of using multipliers, adders and
subtractors to perform all the operations.

xn+1 = xn + hyn
yn+1 = yn + hzn
zn+1 = zn + h(−xn − yn − zn − αz2

n + x− nyn − β− γz3
n)

(57)

It is worth mentioning that Forward Euler method is quite useful for an implemen-
tation with the lowest count of hardware resources, although it has less precision than
other numerical methods, such as the fourth-order Runge-Kutta method or multi-steps
methods [37]. To observe an attractor, it is necessary to estimate the step-size h. In this
work, it is set to h = 0.001, and the computer arithmetic is performed using 32-bit, with
a fixed-point notation in the format 8.24, which means that one bit is associated with the
sign, seven bits with the integer part, and 25 bits with the fractional part. The equations
given in (57), can be described in a block diagram, as the one shown in Figure 16, where
it can be appreciated that the circuit is composed of eight multipliers, five adders, and
four subtractors.

The block description of the design shown in Figure 16, can be described under the
language named Very-High-Speed Integrated Circuit Hardware Description Language
(VHDL in short). The synthesis of the VHDL description is performed using Xilinx Vivado
tool. As a result, the discretized new jerk system with a stable equilibrium given in (57), is
implemented herein on the Zybo Z7-20 development board with xc7z020clg400-1. The ex-
perimental setup is shown in Figure 17, where one can see the oscilloscope, the FPGA Zybo
Z7-20, and two digital-to-analog (DAC) converters to observe the signals. The latency of the
FPGA design is two clock cycles. In this manner, the hardware resources are summarized
in Table 5.
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Figure 16. Circuit diagram of the new jerk system (57).

Figure 17. Experimental setup.

Table 5. Hardware resources of the FPGA implementation of (57) using Xilinx Zybo Z7-20
(xc7z020clg400-1).

Resources Used Util

Slice 134 1.01%
LUTs 302 0.57%
FFs 192 0.17%

DSPs 16 5.18%
Frequency Max 123 MHz -

The experimental attractors can be observed as depicted in the Figures 18 and 19.
Two Cases (A and B) have been tested, both with initial conditions equal to x(0) = 0,
y(0) = −1, z(0) = 0, and with a time-step set to h = 0.001. Case A works with the
coefficient values α = 2.3, β = 0.02, γ = 0.05, and the experimental attractors are shown in
Figure 18. Case B works with the coefficient values α = 2.29, β = 0.005, γ = 0.01, and the
experimental attractors are shown in Figure 19.
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Figure 18. Experimental views for Case A of the attractors x− y, x− z, and y− z. With coefficient
values α = 2.3, β = 0.02, γ = 0.05, initial conditions x(0) = 0, y(0) = −1, z(0) = 0, and the value of
time-step is set to h = 0.001.

Figure 19. Experimental views for Case B of the attractors x− y, x− z, and y− z. With coefficient
values α = 2.29, β = 0.005, γ = 0.01, initial conditions x(0) = 0, y(0) = −1, z(0) = 0, and the value
of time-step is set to h = 0.001.

7. Conclusions

In this research paper, we discussed the modelling of a new 3-D chaotic jerk system
with a stable equilibrium. Such chaotic systems are known to exhibit hidden attractors.
A detailed bifurcation analysis was performed for the new chaotic jerk system with a stable
equilibrium. We showed that the new jerk system has multistability with coexisting attrac-
tors. Using backstepping control theory, we derived new results for the synchronization
design of a pair of new jerk systems with a stable equilibrium taken as the master-slave
chaotic systems. The experimental attractors have been generated from the discretization of
the jerk system with a stable equilibrium and its implementation using the FPGA Zybo Z7-
20 development board. Two cases were implemented in the FPGA board, and one can see
that the experimental attractors are quite similar to those simulated from the mathematical
model of the new chaotic jerk system with a stable equilibrium reported in this work.
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