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Abstract: In the thermal industry, one common way to transfer heat between hot tubes and cooling
fluid is using cross-flow heat exchangers. For heat exchangers, microscale coatings are conventional
safeguards for tubes from corrosion and dust accumulation. This study presents the hypothesis that
incorporating domain knowledge based on governing equations can be beneficial for developing
machine learning models for CFD results, given the available data. Additionally, this work proposes
a novel approach for combining variables in heat exchangers and building machine learning models
to forecast heat transfer in heat exchangers for turbulent flow. To develop these models, a dataset
consisting of nearly 1000 cases was generated by varying different variables. The simulation results
obtained from our study confirm that the proposed method would improve the coefficient of determi-
nation (R-squared) for trained models in unseen datasets. For the unseen data, the R-squared values
for random forest, K-Nearest Neighbors, and support vector regression were determined to be 0.9810,
0.9037, and 0.9754, respectively. These results indicate the effectiveness and utility of our proposed
model in predicting heat transfer in various types of heat exchangers.

Keywords: computational heat transfer; coating; feature combination; machine learning;
heat exchangers

1. Introduction

Coatings are applied to improve various properties, such as corrosion resistance, abra-
sion resistance, toughness, chemical resistance, etc. Some of the most common materials
used for coating purposes are polyurethane foams because of their simple handling, eco-
nomic cost, and proper physical properties [1–3]. In the most recent decade, researchers
have studied how coating thickness affects heat transfer in finned-tube heat exchang-
ers [4,5]. An accurate estimation of coating thickness is crucial to increase heat exchanger
lifetime, especially in high working temperatures [6]. Machine learning methods have
recently attracted much attention alongside the usual approaches to heat transfer and
thermodynamics analysis. For instance, estimating the heat values of different kinds of
fuel with machine learning methods is faster and computationally cheaper than direct
calculations and experiments [7,8]. Machine learning models are also employed to predict
optimal system design. Mohamed et al. suggested multiple machine learning models to
predict eleven different parameters for proton exchange membrane (PEM) electrolyzer
cells to achieve optimum design [9]. Recently, machine learning has shown great promise
in computational fluid dynamics (CFD) studies [10] and is becoming more accurate and
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faster [11,12]. Making machine learning models with acceptable generalization capabilities
for different heat transfer problems is another approach that has made analysis faster. For
instance, a universal model for predicting heat transfer that occurs with condensation and
pressure drops using machine learning techniques has been recently proposed [13]. These
techniques are also used to analyze heat exchangers for different purposes, like predicting
the thermal performance of fins for a novel heat exchanger [14]. Lindqvist et al., with
machine learning models, successfully optimized heat exchanger designs and developed
good correlations with trends in the CFD model [15]. Moreover, machine learning has
shown great potential in predicting heat transfer for high-order nonlinear cases [16]. In the
absence of a valid physical-based model, machine learning can be utilized to predict heat
transfer in many thermal systems [17]. Considering recent advances in machine learning
techniques, CFD computational costs can be reduced by using genetic algorithms [18].
Similarly, neural networks have demonstrated their effectiveness in analyzing the thermal
conductivity of oil-based nanofluids [19]. Gradient-boosting decision trees can reduce
the cost of measuring equipment for computing transient heat flux [20]. Although more
advanced ensemble models can lead to better results for more complicated datasets [21],
the use of such models for heat transfer problems has received less attention. The most
common model of this category, random forest, has shown a remarkable ability to evaluate
heat transfer across various scenarios [16]. Swarts et al. compared three different algorithms
for predicting the critical heat flux of pillar-modified surfaces and concluded that random
forest provides the best results [22]. Its performance with large datasets [23] and a precise
ranking of features’ importance [24] are its main benefits. Despite the benefits of random
forest and other machine learning algorithms, collecting training data can be a challenge.
The number of data required for training can be minimized by combining features, which
enhances regression accuracy [25]. Another solution is state-of-the-art machine learning
models; to address this, Yuqing Zhou et al. proposed entropy-based sparsity measures
for the prognosis of defects, which can evaluate physical degradation phenomena based
on impulsive signals and sparsity criteria. That study also introduced a new directed
divergence measure and a sparsogram method based on the proposed entropy measure
to identify defect-related information in complicated hydraulic machinery, which can be
suppressed by deterministic vibration. The sparsogram tool helps to select the appropriate
filtering band for envelope analysis [26]. As far as we know, there are no studies on machine
learning models that investigate the correlation between coating and heat transfer in a heat
exchanger. This study has filled this gap with machine learning models with acceptable
generalization capabilities for unseen data, using a new method.

In this study, a new method for combining input features is proposed to investigate the
effect of variable coating thickness on the prediction of heat transfer in a finned-tube heat
exchanger at different inlet Reynolds numbers. Almost 1000 different cases were simulated
using a 3D finite volume model to generate the dataset. The random forest model was
initially trained using numerical simulation data. Using the created model, selected features
were combined and new features were added. In addition, various new data were used
to validate models’ interpolations. Lastly, the capability of the introduced method for
dimension reduction was investigated with different models. The main contributions of
this study are summed up as follows:

1. To the best of our knowledge, this is the first general machine learning model for
predicting heat transfer in heat exchangers based on coating thickness over a wide
range of domains.

2. This paper presents the hypothesis that incorporating domain knowledge based
on governing equations can be beneficial for developing machine learning models
for CFD results, given the available data. Additionally, this work proposes a novel
approach for combining features that have equal impacts on heat transfer, such as
coating thickness, resulting in a reduction in the total number of features without
compromising the sensitivity of the original feature space.
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3. The proposed method cures the curse of dimensionality of the K-Nearest Neighbors
algorithm, and, as a result, the model accuracy has been significantly improved.

4. The feature engineering and feature combination methods used in this work make
it possible to train machine learning models for smaller datasets with acceptable
accuracy for unseen data from new domains.

Section 2 explores the impacts of the input features on heat transfer and examines the
features’ extraction and data collection processes. The proposed method, input features,
training strategy, and results are described in Section 3. In Section 4, the results are
explained to validate the presented approach with a comparative analysis of different
machine learning models. Finally, the last subsection concludes this article.

2. Heat Transfer Analysis and Feature Extraction

The case study in this work was the passage of hot gas flow over a bunch of tubes
with a triangular arrangement. An isometric view of the domain is shown in Figure 1a
and the geometry dimensions (in mm) are shown in Figure 1b. The symmetry boundary
condition was set around the selected volume, shown with dashed lines in Figure 1a. The
coating material on each tube was polyurethane, and the coating thickness on each tube was
different but in the range of 10–30 µm. The wall temperature of all tubes was assumed to be
constant. The gas entered the domain with different Reynolds numbers and temperatures,
which caused heat transfer. A finite volume model (FVM) was developed to simulate
turbulent gas flow. Table 1 reveals some results from this FVM.
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Figure 1. Computational domain of the gas flow over the tube bundle with a triangular arrangement
from the perspective (a) and front views (b). The dimensions are in mm. (Note: tube bundles are
numbered sequentially).

Figure 2 displays the temperature distribution for the third case’s conditions as pre-
sented in Table 1. The purpose of this figure is to provide a visual representation of the
relation between temperature and the target variable being studied. The chosen distribu-
tion shows the overall trend in the data and was selected for the case with the maximum
temperature difference. Due to space constraints, including all temperature groups may
not have been necessary if the overall trend were consistent across different temperature
groups. In order to understand how coating thickness and Reynolds numbers influence
heat transfer, different simulations were performed with variations in coating thickness,
Reynolds number and temperature. Figure 3a,b represent the total heat flux and heat
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transfer coefficients for the last tube in the fluid flow direction. Our simulation results also
showed that the change in flow velocity with increasing coating thickness was negligible.
Specifically, we found that the velocity change between a case without coating and the
maximum coating thickness considered in this paper (30 µm) was less than 0.000029 percent.
Therefore, we concluded that it was valid to neglect the impact of coating thickness on
flow velocity in this study. Also of note is that the results obtained from the last tube were
representative of the impacts of the coating thickness and Reynolds number on the outlet
flow. It is worth noting that this was the overall behavior of the heat exchanger and the
total heat flux and heat transfer coefficient increases for larger Reynolds numbers, and they
both decreased when the coating thickness was increased.

Table 1. Numerical results of different case studies without coatings (cases 1 to 3) and with coating
(case 4). t is the average of five tubes’ coating thickness in micrometers. The inlet gas had variable
velocities (Vin) in SI units, temperature (Tin) is the inlet temperature in degrees Kelvin, and (∆Td) is
the temperature difference between the tubes and the inlet gas. The last column represents the total
heat transfer from the tube walls into the fluid flow.

Case t Vin Tin ∆Td qtotal

1 --- 10 498 200 108,599
2 --- 10 508 200 108,599
3 --- 15 498 200 144,887
4 30 10 498 200 96,316
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2.1. Collected Datasets

These numerical simulations were the basis of forming the dataset. The dataset
structure was made in two steps. First, each tube coating thickness was varied within three
values, i.e., 10, 20, and 30 µm. Thus, the total number of data (for five tubes) gathered from
the simulations was 35 = 243. This dataset was collected by varying the coating thickness
values within the three values mentioned before and calculating each case’s total heat
transferred from the heat exchanger. In our first analysis, mentioned in Section 3.1, we
utilized five features that were fixed and had limited numbers of values (each containing
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only the three values mentioned above) to calculate the feature importance. Besides the
coating thickness, other variables that were not involved in the training process of the first
random forest were kept constant throughout its entire training phase. For the next step,
after the feature combination process (which is explained in Section 3.2), new variables
were added and varied in a wide range of domains; as a result, the final dataset was
formed randomly, with 1000 data within range. We analyzed a range of data that included
values for T_inlet, T_pipe, velocity, and coating thickness. The maximum values for these
variables were found to be 498 K, 298 K, 20 m/s, and 30 µm, respectively. Conversely, the
minimum values for these variables were 398 K, 100 K, 6 m/s, and 0 µm, respectively. We
also calculated the maximum temperature difference, which was found to be 398 K. To
ensure that the context of our analysis remains consistent, more details are provided in
Section 3.2.

2.2. Simulation Details and Validation

The present study has investigated the impact of varying coating thickness on the total
heat transfer of a system of five aluminum pipes coated with polyurethane. The geometry
of the heat exchanger was discretized into control volumes with depths of 5 mm each,
and the symmetry condition was applied around the separated volume. The inner wall
temperature of all pipes was assumed to be constant and equal, while air entered the system
with variable inlet velocity and temperature. Heat transfer occurred between the air and
the pipes due to the temperature difference. A finite volume model (FVM) was employed
to collect the training data and to evaluate the impact of varying the coating thickness on
the total heat transfer. In order to calculate the individual effects of the selected features on
the total heat transfer, each feature was varied while the other features were held constant.
In this study, to validate the simulations, a comparison of their results with those obtained
from the simulations in reference [27] was performed. The only difference between the
simulations in this study and those in the reference study is that the former considered the
addition of coating to the pipes while the latter incorporated the use of fins. To assess the
accuracy of the present study’s results, the temperature distribution calculations obtained
were compared with those in reference [27], as depicted in Figure 4. Furthermore, the total
outlet temperature and exchanged heat flux per unit of the exchanger surface for different
boundaries were compared between this study and reference [27], as presented in Table 2.
These comparisons confirm the accuracy and reliability of the results obtained in this study
and support their agreement with the findings of reference [27].
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Table 2. Comparison of this study and the reference [27] results. Note that units are in m/s, degrees
Kelvin and W

m2 .

Outlet Total Temperature Exchanged Heat per Unit of the
Exchanger Surface

Inlet Velocity Reference [27] This Work Reference [27] This Work

U = 1 321.8 321.2 1000 1080
U = 2.4 311.1 310.5 1650 1700
U = 5 304.3 305.7 2300 2320

Ref. [27]’s model of k-ω turbulence was used to model the heat transfer analysis. To
evaluate the accuracy and reliability of our heat transfer model, we performed a sensitivity
analysis by varying the input parameters and assessing the resulting changes in the output
results. Based on our sensitivity analysis and comparison with the analytical results in
Ref. [27], we believe that our heat transfer model provides accurate and reliable results for
the problem under investigation, as shown in Table 2. To investigate the effects of mesh
refinement on the simulation results, we performed additional simulations using a mesh
with higher numbers of nodes and elements. Specifically, we compared the results obtained
from the optimal mesh, with 320,787 nodes and 278,136 elements, to those obtained from
a mesh with 1,122,814 nodes and 1,055,700 elements. To further improve the accuracy of
our results in the second case, we used a higher mesh resolution near the boundaries. Our
findings indicated that the difference in the results between the two meshes was negligible,
with only a 0.000724% variation observed for a case with an inlet temperature of 498 degrees
Kelvin, a pipe temperature of 200 degrees Kelvin, an inlet velocity of 10 m/s, and a coating
thickness of 10 µm for all five pipes. Therefore, we conclude that the optimal mesh we
used in our initial simulation was sufficient to obtain accurate results for the problem
under investigation.

3. Proposed Method

In this study, a random forest algorithm was first trained with a limited dataset to
quantify each pipe coating thickness’s impact on the total heat transfer. Our proposed
approach enhanced the model’s performance by using domain knowledge to combine
related features. To evaluate the capability of this approach, it was validated on a larger
dataset with more features. As illustrated in Figure 5, new models were built based on this
approach, which reduced the required amount of training data while maintaining the same
level of accuracy. This approach demonstrates the potential to optimize machine learning
models and improve their efficiency in analyzing complex datasets. Finally, new regression
predictors, containing random forest, K-Nearest Neighbors, and support vector regression,
were trained using fourfold cross-validation. The hyperparameters of each model were
optimized using a random grid approach to identify the best set of hyperparameters to test
our approach’s accuracy.

After the creation of the models, unseen data were used to validate each model
generalization. To investigate the models’ accuracy, an R-squared criterion was used as
follows: 1 − residual sum of square

total sum of the square . Note that the best value for this metric equals 1, but it also
can be negative if the model were to perform worse than the mean of the data in predicting
the observed value.
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3.1. Training Model

Random forest quantitatively evaluates each input feature’s importance, but factors
like untuned hyperparameters and the total number of observed data can cause a nega-
tive impact on the value of each feature’s rank. The number of categories for each input
should also be equal for accurate ranking [28]. Tuning hyperparameters is the next step
toward having an accurate model. A model’s prediction is more accurate and its ability to
rank features’ importance is more precise when its hyperparameters are tuned. Bayesian
optimization is used for this [29]. A probability model was built using Bayesian optimiza-
tion based on past evaluation results; this model estimated the objective function and its
uncertainty, and then, with the help of the model, the next set of hyperparameters was
selected to estimate the cost function. This process continued with a search-based method
to find the best set of hyperparameters. Table 3 shows the selected hyperparameters for
this approach. The designed random forest based on the above steps could closely predict
the total heat flux for new input features for calculated results, as shown in Figure 6. The
random forest regressor fit q near to the FVM results, with R2 = 0.9832 for the training phase
and R2 = 0.9864 for the testing phase. The greater value of R-squared in the test dataset
indicated that the model was able to perform better on the test dataset than on the training
dataset; this is a desirable outcome that indicates that the model has a good generalization
capability. One may note that this phase was just a designed pre-task for the model to rank
feature importance and that this was not the final model to predict the total heat flux for
new input, so there was no need to evaluate this model with unseen datasets. This model
calculated the feature importance of the coating thickness variable by measuring how much
that variable contributed to the accuracy of predictions. This was automatically carried
out with the Scikit-learn library by measuring the reduction in the mean squared error
(MSE) of the model when a given predictor variable was used to split the data in a tree. The
results are shown in Figure 7. This figure presents how to reduce the size of feature space
dimensionality for the main model. Note that in this context, feature space dimensionality
refers to the total number of features used to represent the manifold dataset.
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Table 3. Optimization results with Bayesian approach before feature combination.

Tuning Hyperparameters

Method Total Trees Learn Rate Min. Leaf Size

L.S. Boost 409 0.49 2

Energies 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

squared error (MSE) of the model when a given predictor variable was used to split the 
data in a tree. The results are shown in Figure 7. This figure presents how to reduce the 
size of feature space dimensionality for the main model. Note that in this context, feature 
space dimensionality refers to the total number of features used to represent the manifold 
dataset. 

Table 3. Optimization results with Bayesian approach before feature combination. 

Tuning Hyperparameters 
Method Total Trees Learn Rate Min. Leaf Size 

L.S. Boost 409 0.49 2 

 
Figure 6. Comparison of predicted total heat flux (q) with FVM simulations and ML regressor. 

 
Figure 7. Predictor importance estimation by model. 

3.2. Feature Combination and Expanding Model Domain 
In order to have a generalized model that could predict the total heat flux (q), new 

features were added to the feature matrix. Increasing the number of features required 
more data collection, since data are collected through either numerical simulation or ex-
periments that have costs. A new approach was employed to decrease the total number of 
required simulations in this work. To do so, a new variable (𝑡̀) was defined, as shown in 
Equation (1): 𝑡̀ = ∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑛) × 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒(𝑛)∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑛)  (1)

Figure 6. Comparison of predicted total heat flux (q) with FVM simulations and ML regressor.

Energies 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

squared error (MSE) of the model when a given predictor variable was used to split the 
data in a tree. The results are shown in Figure 7. This figure presents how to reduce the 
size of feature space dimensionality for the main model. Note that in this context, feature 
space dimensionality refers to the total number of features used to represent the manifold 
dataset. 

Table 3. Optimization results with Bayesian approach before feature combination. 

Tuning Hyperparameters 
Method Total Trees Learn Rate Min. Leaf Size 

L.S. Boost 409 0.49 2 

 
Figure 6. Comparison of predicted total heat flux (q) with FVM simulations and ML regressor. 

 
Figure 7. Predictor importance estimation by model. 

3.2. Feature Combination and Expanding Model Domain 
In order to have a generalized model that could predict the total heat flux (q), new 

features were added to the feature matrix. Increasing the number of features required 
more data collection, since data are collected through either numerical simulation or ex-
periments that have costs. A new approach was employed to decrease the total number of 
required simulations in this work. To do so, a new variable (𝑡̀) was defined, as shown in 
Equation (1): 𝑡̀ = ∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑛) × 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒(𝑛)∑ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑛)  (1)

Figure 7. Predictor importance estimation by model.

3.2. Feature Combination and Expanding Model Domain

In order to have a generalized model that could predict the total heat flux (q), new
features were added to the feature matrix. Increasing the number of features required more
data collection, since data are collected through either numerical simulation or experiments
that have costs. A new approach was employed to decrease the total number of required
simulations in this work. To do so, a new variable (t̀) was defined, as shown in Equation (1):

t̀ =
∑∞

n = 1 Feature importance(n)× f eature value(n)
∑∞

n = 1 Feature importance (n)
(1)

Based on the results presented in Figure 7, the first five features were combined into one
feature; then, three new features were added to the feature matrix. The final feature matrix
consisted of four features: inlet velocity; pipe temperature (T_pipe); fluid temperature
(T_fluid); and a new variable, t̀, which was introduced to represent the combined effect
of the five coating thickness features in the new feature matrix. Using the equivalent
coating thickness variable, t̀, we were able to calculate the heat flux values of tubes with
different coating thicknesses (t1, t2, t3, t4, t5) with an equivalent case that had t’ as the
coating thickness for all pipes. Once the features were selected, data collection was initiated.



Energies 2023, 16, 5185 9 of 13

A total of 168 sample cases were simulated and used to create training and testing matrices
by randomly varying the inlet velocity, Tpipe, Tfluid, and t̀ within the mentioned range in
Section 2.1. The purpose of this data collection was to provide a representative sample of
the system and to ensure that the training and testing matrices were comprehensive enough
to capture the variability of the system. By collecting these data, we were able to train our
model to accurately predict the total heat flux based on the selected features. Once again,
the hyperparameters were tuned with the Bayesian optimization method. Table 4 shows the
hyperparameters designed with this optimization scheme. Figure 8 compares the total heat
flux predicted by the random forest and the calculated results from the FVM simulations.
The random forest regressor fit q nearly to the FVM results, with R-squared = 0.9994 for the
training phase and R-squared = 0.9600 for the testing phase.

Table 4. Optimization results with Bayesian approach after feature combination.

Tuning Hyperparameters

Method Total Trees Learn Rate Min. Leaf Size Max. Num.
Splits

Num. Variables
to Sample

L.S. Boost 202 0.132 4 18 3
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As shown in the previous subsection, although the training data were limited for
the second random forest with the combined features, the model performed well with
the test dataset. Still, the model needed to be evaluated with an unseen dataset. A new
dataset was collected in order to study the model performance with new domains for this
goal. To elaborate, we chose different Reynolds numbers within the range of interest and
used the corresponding velocities as input in our model. Nevertheless, it is essential to
understand that this model may not be valid if other terms in the Reynolds number, such
as the diameter or viscosity, are changed. The dataset we used contained a total of 549 new
cases, which were simulated based on eight variables, [Re, Tpipe, Tfluid, t1, t2, t3, t4, t5], as
input, where ti is the coating thickness of tube #i. The total heat flux was predicted with the
second random forest, with [Re, Tpipe, Tfluid, t̀] as input features. Note that t’ is calculated
with Equation (1), with [t1, t2, t3, t4, t5] as variables. The random forest regressor fit q
closely to the observed results, with R2 = 0.9810 for the unseen dataset (see Figure 9).
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4. Results and Discussion

In real-world problems in different industries, feature space contains lots of variables
that cause training processes to be slow and, in some cases, make it much harder to find
good solutions. Theoretically, it is possible to solve these problems by adding new data to
training datasets, but collecting new data can be impossible in certain scenarios. Reducing
the total number of features is another solution to this problem, but the available approaches
may cause some difficulties, like losing information about the original feature space or
even making the model perform worse. As indicated in the previous section, combining
related features with Equation (1) can save deleted features’ information. Our model can
accurately predict heat flux over new, distinct domain features, as shown in Figure 9. The
combination process also significantly reduced the amount of data needed to train the
model. Alternatively, using a simpler variable, such as the average value of the variables,

taverage = ∑n = 5
n = 1 Coating thickness (n)

n , instead of t̀, for combining features is not a good choice,
since this variable does not take into account any differences between the first and last
tube’s heat flux. In addition, the information about the original feature space would be lost
(see Table 5).

Table 5. The total heat flux calculated for different coating thicknesses.

[t1,t2,t3,t4,t5] taverage Total Heat Flux

[20, 20, 20, 20, 20] 20 100,020
[100, 0, 0, 0, 0] 20 104,066
[0, 0, 0, 0, 100] 20 100,685

[30, 30, 20, 10, 10] 20 100,940

Different models were made to analyze the impact of feature combination. The key to a
fair comparison of these models is to make sure that each model is evaluated with the same
approach and using the same data. The second random forest training dataset was used
to create new models and keep things fair. Each model was trained once with the feature
combination technique and once without it. The best combination of hyperparameters
was found using a grid search for each model, with a common fourfold cross-validation
technique. The results are shown in Table 6.

As shown in Table 6, all models predicted unseen data better after Equation (1) was
used to combining features, but the downside is that a primary model is needed to calculate
Equation (1)’s coefficients. This may be disadvantageous if obtaining considerably better
results is not possible with this method. Conversely, this method can significantly improve
the performances of algorithms that are victims of the curse of dimensionality. For example,
the K-Nearest Neighbors (K-NN) regressor does not perform well in high-dimension
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inputs [30], but after feature combination, the K-NN performance increased by 67.66%.
Support vector regression (SVR) may also suffer from the curse of dimensionality when
enough data samples are not available. This issue can affect the generalization ability of
SVR, but after the feature combination, the R-squared value for the unseen data increased
by 2.82%. In the case of SVR, one may conclude that increasing the total number of
samples may be a better idea than reducing the dimensionality, but as a reminder, we
want to mention that SVR does not perform well on large datasets, so increasing the total
number of samples may not be a good strategy for this algorithm. Note that the mentioned
models were tuned using a grid search approach in which different combinations of
hyperparameters were evaluated to minimize the objective function mentioned earlier.
The best hyperparameters for models that are made without feature combination are as
follows: leaf_size = 64; number of neighbors = 8 for K-Nearest Neighbors; in the case of
SVR, rbf kernel is used; and to have more complex boundaries, the value of C, which
determines the penalty for misclassifying training data points, is set to a large value, which
is 10,000. After use of the feature combination method, new hyperparameters were set for
the models. In the case of K-Nearest Neighbors, leaf_size was set to 1 and the total number
of neighbors was 4, and for the SVR, once again, rbf kernel was used with the same C value.
The last model, random forest, was immune to the curse of dimensionality and overfitting,
so there was no need to combine input features, but by comparing the two random forest
models in Table 6, one can see that the R-squared value was just slightly improved after the
reduction of the total number of inputs. This point shows that after combining features with
Equation (1), no information will be lost. To ensure that our high prediction accuracy was
not due to fixed features, we compared the standard deviation and the mean of the target
between the training and unseen datasets, and we found that [mean, std] = [81,012.245125,
11,028.389484] for training and [mean, std] = [85,333.387071, 19,010.531518] for the unseen
dataset, indicating that our model’s performance with the unseen dataset was valid and the
model is capable of extrapolating and interpolating, which would have been impossible if
the inputs did not have enough diversity. However, it is important to note that our machine
learning models were based on the CFD details mentioned earlier, and changing the heat
transfer coefficient model could affect this model’s accuracy. Thus, we assume that our
model’s best performance on other heat transfer coefficient models would be achieved
when those models have similar target values. If this issue were a primary concern, the
simplest solution would be to collect data from the considered model and use the type of
model as an input feature.

Table 6. Comparison of all models (R2).

Methods

Feature Combination with
Equation (1)

Without Feature
Combination

Model (R2
train,R2

unseen data) (R2
train,R2

unseen data)

Random Forest (0.9994, 0.9810) (0.9979, 0.9732)
K-Nearest Neighbors (1.0, 0.9037) (1.0, 0.5390)

Support Vector Regression (0.9995, 0.9754) (0.9995, 0.9489)

A new feature was also created by combining the Re number and t as input for
Equation (1). The trained model with this approach was not as accurate as the previous
models. This process raised this question: “When can we use Equation (1)?”. As shown in
Figure 7, [t1,t2,t3,t4,t5] have closer importance scores to each other in comparison to the Re
number importance score. (Note that the Reynolds number has more impact on heat flux
than coating thickness, so its importance score is much higher than t̀ s importance score.)
By knowing this, it is better to combine features within the same order of magnitude or
with similar impacts on the target, like coating thicknesses for different tubes.
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5. Conclusions

This work investigated various models of heat transfer correlation to predict total heat
flux with varied coating thickness for different conditions. Feature selection was essential
before implementation of the machine learning model for studied cases. Despite all the
benefits of feature selection, there is a chance of losing important information because of
deletion. The employed approach can decrease the size of feature space without losing
sensitive knowledge about the main feature space and also showed potential for heat
transfer problems in which available data are limited. Training data for the algorithm were
obtained with the finite volume model method. The trained model predicted well with
the training dataset, with R2 ~ 0.9994, and with the testing dataset, with R2 ~ 0.9600. The
algorithm was also able to predict total heat flux, similar to the finite volume model, with
R2 ~ 0.9810, based on its interpolation mechanism. Other algorithms, like SVR and K-NN,
were also employed to check other aspects of the feature combination method used in this
work, and also showed great promise in predicting the total heat transfer based on unseen
data, with R2 ~ 0.9754 and R2 ~ 0.9037. For future works, the results of this study may be
beneficial for stacking models with better generalization of fewer data.
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