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Abstract: The problem of virtual sensor design for nonlinear systems under the disturbance is
investigated. Two different mathematical techniques are used to solve the problem: the algebra
of functions and the logic-dynamic approach. The first one allows obtaining a general solution
while the second one produces a solution for nonlinear systems by linear algebra methods. The
virtual sensors are designed to be insensitive to the disturbance based on invariant functions. They
estimate the prescribed function of the original system state vector. The practical example illustrates
theoretical results.

Keywords: dynamic systems; virtual sensors; reduced-order models; non-smooth nonlinearities

1. Introduction

Modern technical systems are provided by different sensors which are used, in partic-
ular, to solve control and fault diagnosis problems. To simplify the solution, one can use the
additional physical sensors but this cannot always be realized in practice and may result in
extra expenses. Moreover, as usual, such sensors are unreliable. In this case, one can use
virtual sensors. Additionally, virtual sensors can replace the faulty physical sensor. Note
that the virtual sensors are similar to the reduced-order observers, which estimate some
of the system’s state variables. Virtual sensors are constructed to estimate the arbitrary
nonlinear function of the system’s state vector.

Different problems in the design and application of virtual sensors are studied [1–14].
The practical applications of such sensors have mainly been for an automotive engine [1],
an industrial motor [14], walking robots [6] and aircraft [7], and for fault diagnosis in a
bicomponent mixing machine [8]. For remotely deployed sensors, a new architectural
paradigm is presented in [10]. The different theoretical and practical aspects of virtual
sensor design are considered in [2,4,9,11].

The main contribution of this paper is that virtual sensors which are insensitive or
have minimal sensitivity to external disturbances are designed to estimate the prescribed
function of the system state vector. Unlike [4], where the procedure to design virtual
sensors estimating the entire state was developed for linear systems free of any external
disturbances, this present paper considers the systems with non-smooth nonlinearities such
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as backlash, dry friction, saturation, and hysteresis, estimating the prescribed function of
the state vector. Clearly, the use of the virtual sensors of the reduced dimension allows
one to diminish the computational complexity and implement more effective control. Such
sensors are designed using two different mathematical techniques. The first is the algebra
of functions, allowing one to obtain the general solution developed in [15] and used to
solve the different problems of nonlinear dynamic systems described by non-smooth
nonlinearities. The second is the logic-dynamic approach developed in [16] which produces
a solution for nonlinear systems by linear algebra methods. Such sensors estimate the
prescribed components of the system state vector and are of the minimal dimension.

Consider the system given by the nonlinear model

x(t + 1) = f (x(t), u(t), ρ(t)), y(t) = h(x(t)). (1)

Here, x ∈ X ⊆ Rn is the state vector, u ∈ U ⊆ Rm is the vector of control, y ∈ Rl is
the vectors of the output; ρ(t) ∈ Rs is an unknown function of time and describes the
disturbance; f and h are nonlinear functions, and the function f may be non-smooth.

The problem is to design a virtual sensor that is insensitive to the disturbance and
estimates the variable v(t) = ν(x(t)) ∈ Rp for the specified function ν. The reduced-order
model

z(t + 1) = f∗(z(t), u(t), y(t), v(t)), v(t) = hv(z(t), y0(t)), (2)

is used to design such a sensor. Here, z ∈ Rk is the vector of the state, f∗ and hv are
functions to be determined and the variable y0(t) will be explained below.

We consider two mathematical techniques to design the model (2): the general solution
is based on the algebra of functions while the logic-dynamic approach produces a solution
for nonlinear systems by methods of linear algebra.

2. General Solution

The general approach to the model (2) design is based on the algebra of functions
developed in [15] and used to solve the different problems of system theory [15,17–19] and
briefly described in Appendix A. The elements of this algebra are the functions determined
on X. The algebra of the functions contains: the relation of the partial pre-order ≤, binary
operations × and ⊕, binary relation ∆, and operators m and M.

One assumes that there exists the function ψ such that z(t) = ψ(x(t)). It follows
from (2) that the considered problem is closed to the fault diagnosis problem described
in terms of the algebra of functions in [15,17]. The differences are the variable v(t) in the
function f∗ and y0(t) in the function hv. The similarity of these problems allows to conclude
that the function ψ satisfies the condition [15,17]

ψ× h∗ ≤M(ψ), (3)

where h∗(x) = (h× ν)(x) =
(

h(x)
ν(x)

)
=

(
y
v

)
.

Note that the function ψ is (h∗, f )-invariant and is similar to that used in [20] to solve
the different problems of control theory.

The case when the model is insensitive to the disturbance is the best solution. Such a
model can be designed as follows. Let γ0 be a minimal function (in the sense of the relation
≤) such that ρ is not in γ0( f (x, u, ρ)). The sequence of functions γ0 ≤ γ1 ≤ . . . is defined
using the formula

γi+1 = γi ⊕m(γi × h∗), i = 0, 1, . . .

One proves that for some finite k the relation γk+1 = γk is true [15,19]. Define ψ := γk.

Theorem 1 ([15,19]). The function ψ is minimal, meeting the conditions (3) and γ0 ≤ ψ.
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The relation ≤ and the operator M mean that the condition (3) implies the existence of
the function f∗ satisfying the equality

f∗((ψ× h∗)(x(t)), u(t)) = ψ( f (x(t), u(t), ρ(t))); (4)

whilst, additionally, it follows from γ0 ≤ ψ that the function f∗ does not contain the
disturbance ρ(t).

To avoid the influence of ρ(t) on v(t), the variable y0(t) in (2) should not also contain
ρ(t). This means that this variable should be such part of the vector y(t) = h(x(t)) which
is insensitive to the disturbance: y0(t) = (γ0 ⊕ h)(x(t)). Denote h0 = γ0 ⊕ h.

To design the dynamic part of the model (2), perform the transformation according to
(4) of the right hand side of the relation

z(t + 1) = ψ(x(t + 1)) = ψ( f (x(t), u(t), ρ(t)))

To design the static part in the form v = hv(z, y0), write down it as follows:

ν(x) = hv(ψ(x), h0(x)), (5)

which is equivalent to the functional inequality

ψ× h0 ≤ ν. (6)

If this condition is true for the function ψ, then based on (6) and the relation ≤, the function
hv can be calculated. As a result, the model (2) was designed.

Recall that the function ψ is minimal; this provides the best condition to satisfy (6) but
produces the model of maximal dimensions. To simplify the model, one has to find the
function ψ∗ satisfying the conditions

ψ ≤ ψ∗, h∗ × ψ∗ ≤M(ψ∗). (7)

Since γ0 ≤ ψ, then γ0 ≤ ψ∗, and ψ∗ can be used instead of ψ.
If the condition (6) is not satisfied, one cannot design the model insensitive to the

disturbance. In this case, to design the model weakly sensitive to the disturbance, one
has to supplement the function ψ by the maximal (containing the minimal number of
independent components) function ψ′ satisfying the condition

ψ× ψ′ × h0 ≤ ν. (8)

Since the function ψ′ is ambiguously defined, it should be chosen so that the contribution
of the disturbance ρ(t) in the function ψ′( f (x, u, ρ)) is minimal.

Remark 1. If the system is linear and is described by matrix equations, one can formulate the
precise definition of the disturbance ρ(t) contribution in the model and then solve the problem to
minimize this contribution [21]. Generally, one may call this weak sensitivity.

As a result, the total model is a composition of system (2) being insensitive to the disturbance
and new system with the state vector z0 = ψ0(x) (Figure 1), where function ψ0 satisfies conditions

ψ0 ≤ ψ′, (ψ× h∗)× ψ0 ≤ M(ψ0). (9)

The first condition means that the function ψ0 contains information no less than ψ′ and can be used
in (8) instead of ψ′. The second condition is similar to the inequality (3) and describes the dynamic
of the second system in Figure 1.
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Figure 1. The total model.

The algorithm below (Algorithm 1) is used to compute the function ϕ0 satisfying the
conditions in (9) [15,19] .

Algorithm 1: Computation of the function ϕ0

1. Set i := 1, β1 := ϕ′.
2. Compute the function γi = M(βi).
3. If γi can be expressed via ϕ× h∗ × β1 × . . .× βi, go to Step 5.
4. Find the function βi+1 with a minimal number of components satisfying the
inequality

(ϕ× h∗)× β1 × . . .× βi × βi+1 ≤ γi, (10)

set i := i + 1 and go to Step 2.
5. Set ϕ0 := β1 × . . .× βi.

The algorithm does not guarantee that ψ0 is unique, since different functions βi+1

(incomparable in the sense of the relation ≤) satisfying the conditions (10) can be chosen at
Step 4. More information about the algorithm can be found in [15,19].

The final model is given by

z(t + 1) = f∗(z(t), u(t), y(t), v(t)),
z0(t + 1) = f0(z0(t), z(t), u(t), y(t), v(t)),

v(t) = hc(z0(t), z(t), y0(t)),
(11)

where the functions hc and f0 are defined based on relations (8) (after replacing the function
ψ′ by ψ0) and (9), respectively.

The stability of the model (2) or (11) can be achieved by known methods [22]; some of
them are considered in Section 4.

3. Logic-Dynamic-Based Solution
3.1. Insensitivity to the Disturbance

When the function ψ is assumed to be nonlinear, the theorem gives a general solution
to the problem and demands a complex mathematical technique—the algebra of functions.
If one limits a class of functions ψ by linear functions, the solution can be obtained by the
logic-dynamic approach [16] which is based on the linear algebra. To use this approach,
system (1) should be presented in the form

x(t + 1) = Ax(t) + Bu(t) + GΦ(x(t), u(t)) + Dρ(t),
y(t) = Cx(t),

(12)



Symmetry 2023, 15, 993 5 of 14

where A, B, and C are matrices, the matrix D describes the disturbance, the contribution of
nonlinear terms G is presented in the form

Φ(x(t), u(t)) =

 φ1(F1x(t), u(t))
. . .

φq(Fqx(t), u(t))

;

φ1, . . . , φq are nonlinearities, and F1, . . . , Fq are the matrices. One assumes that v(t) = Vx(t)
for the prescribed matrix V. System (12) can be obtained from (1) [16].

Note that the nonlinear smooth systems can be studied by geometric approaches [20,23];
in our case, where the systems with non-smooth nonlinearities are considered, these approaches
cannot be applied.

As is already known [16], there are three steps in the logic-dynamic approach: at the
first step, one removes the nonlinear term from (12); then, the linear model is designed
with additional restriction; finally, one transforms the nonlinear term and adds it in the
linear model. The linear model at the second step is given by

z(t + 1) = A∗x∗(t) + J∗y∗(t) + B∗u(t),
v(t) = Cvx∗(t) + Qy0(t),

(13)

where y∗(t) = C∗x(t) =
(

y(t)
z(t),

)
, C∗ =

(
C
V

)
.

As above, the variable y0(t) in (13) must be insensitive to the disturbance ρ(t). To ob-
tain such a variable, introduce the matrix D0 of the maximal rank such that D0D = 0;
note that D0 corresponds to the function γ0. Clearly, x′ = D0x is insensitive to ρ(t) and
y0 = N1x′ = N1D0x for some matrix N1. Additionally, since y0 is a part of the vector y,
then y0 = N2Cx for some matrix N2. Both equalities result in the equation N1D0 = N2C.
The matrices N1 and N2 of maximal rank can be found from the equation

(N1 − N2)

(
D0
C

)
= 0. (14)

Finally, one set y0(t) = N2Cx(t) = N2y(t).
Recall that z(t) = ψ(x(t)) for some function ψ in Section 2; here, this function is

assumed to be linear and z(t) = Ψx(t) for some matrix Ψ. It is known that this function
satisfies the condition [16]

ΨA = A∗Ψ + J∗C∗, B∗ = ΨB. (15)

Besides one assumes that matrix A∗ is in canonical form. In [24], two different forms are
considered: identification and Jordan ones; it was shown that, for the continuous-time
systems, the Jordan form is preferable from the point of view of stability. The identification
of the canonical form with the matrix

A∗ =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . .
0 0 0 . . . 0

, (16)

has zero eigenvalues, ensuring that the stability is therefore preferable for the discrete-
time systems.

The matrices describing system (12) and model (13) meet the following equations
based on (15) and (16) [16,24]:

Ψi A = Ψi+1 + J∗iC∗, i = 1, . . . , k− 1, Ψk A = J∗kC∗.
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Here, Ψi and J∗i are i-th rows of matrices Ψ and J∗, respectively, i = 1, . . . , k. Since system
(12) contains the nonlinearity Φ(x, u) and model (13) contains the variable v(t), the matrix
Ψ should satisfy additional restrictions. The first of them has the form [16]

F′ = F∗

(
Ψ
C∗

)
(17)

for some matrix F∗. Here,

F′ =

 Fj1
. . .
Fjd

,

the numbers j1, j2, . . . , jd denote nonzero columns in ΨC. The equality (17) is solvable if

rank
(

Ψ
C∗

)
= rank

 Ψ
C∗
F′

. (18)

The second restriction arises from the demand v(t) = Vx(t) and (13), which imply

V = CzΨ + QC0 = (Cz Q)

(
Ψ
C0

)
. (19)

This equation is solvable if

rank
(

Ψ
C0

)
= rank

 Ψ
C0
V

. (20)

The inequalities (18) and (20) are the desired additional restrictions.
The condition ΨD = 0 guarantees that the model is insensitive to the disturbance; this

demand can be presented in the form [21]

(Ψ1 −J∗1 . . . −J∗k) (W(k) D(k)) = 0, (21)

where

W(k) =


Ak

C∗Ak−1

. . .
C∗

,

D(k) =


D AD A2D . . . Ak−1D
0 C∗D C∗AD . . . C∗Ak−2D

. . . . . . . . . . . . . . .
0 0 0 . . . 0

.

This equation is solvable if

rank(W(k) D(k)) < n + (l + p)k. (22)

If it is true, the matrix (Ψ1 −J∗1 . . . −J∗k) exists and satisfies the condition (21). Then,
the matrix Ψ is found and the conditions (18) and (20) are checked; if they are fulfilled,
the matrices F∗, Cz, Q, and B∗ can be found from (17), (19) and (15), respectively. If (18) or
(20) are not fulfilled, another solution of (21) should be found. In what follows, we assume
that (18) and (20) are satisfied.
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The transformed nonlinear term is given by

G∗Φ(z(t), y∗(t), u(t)) = G∗

 φj1(F∗j1 w(t), u(t))
. . .

φjd(F∗jd w(t), u(t))

, (23)

where w =

(
z

y∗

)
. One can find the matrices F∗j1 , . . . , F∗jd from the equation F′j =

F∗j

(
Ψ
C∗

)
, j = j1, . . . , jd, corresponding to (17). The term (23) is added to the model (13),

and a nonlinear model which is insensitive to the disturbance was designed.

3.2. Sensitive to the Disturbance Solution

If (21) has no solutions or (18) or (20) are not satisfied for all k < n, the nonlinear
model insensitive to the disturbance cannot be designed. Here, one has to use the robust
method based on the singular value decomposition described in [21].

Consider another approach to obtain a robust solution based on the composition
Figure 1. Assume that the matrix Ψ is found from (21) and the condition (18) is satisfied
while (20) is not. Find all the rows of matrix V for which the condition (20) is satisfied,
denote them by V′, and design the model (the first subsystem in Figure 1) estimating the
vector v′(t) = V′x(t) insensitive to the disturbance. The rest of the rows, denoted by V0,
are used to design the model (the second subsystem)

z0(t + 1) = A∗z0(t) + J0v(t) + B0u(t),
v0(t) = C0z0(t) + Q0y(t),

(24)

estimating the variable v0(t) = V0x(t). The first row of the matrix Ψ0 such that z0(t) =
Ψ0x(t) is found from the equation

(Ψ01 −J01 . . . −J0k) W(k)
0 = 0 (25)

for minimal k, where

W(k)
0 =


Ak

Cc Ak−1

. . .
Cc

, Cc =

(
Ψ
C∗

)
=

 Ψ
C
V

.

Then, the matrix Ψ0 is found and the conditions (18) or (20) are checked after replacing
the matrices Ψ, C∗, and V by Ψ0, Cc, and V0, respectively. If these conditions are satisfied,
compute the matrices H0, Q0, G0 = Ψ0G, and B0 = Ψ0B and the linear model (24) is
designed. The nonlinear term has the form

G0

 φi1(F0i1 w0(t), u(t))
. . .

φig(F0ig w0(t), u(t))

,

where w0 =

(
z0
v

)
, i1, i2, . . . , ig are numbers of nonzero columns in G0 = Ψ0G. The rows

F0i1 , . . . , F0ig are found from the equation F′′i = F0i

(
Ψ0
Cc

)
, i = i1, . . . , ig, where

F′′ =

 Fi1
. . .
Fig

.
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If (18) or (20) is not satisfied, one has to find another solution of (25) with a former or
incremented k. The total model is a composition of the models (13) and (24) supplemented
by nonlinear terms.

To the contrary, if the condition (20) is satisfied while (18) is not, the model can be
analogously designed by analyzing the matrix F′.

4. Stability of the Model

If G∗ = 0, the model is linear and its stability is ensured by the canonical form of the
matrix A∗, otherwise, an additional analysis is required. Consider this in detail; define the
error e(t) = Ψx(t)− z(t).

Assume that the error e(t) is small and the function Φ(z, y∗, u) is differentiable with
respect to z. Initially consider the case when q = 1 and Φ(x, u) = φ(Ax, u). Since

F = F∗

(
Ψ
C∗

)
and e = Ψx− z, then

Fx = F∗

(
Ψ
C∗

)
x = F1

∗Ψx + F2
∗ F∗x = F1

∗ (z + e) + F2
∗y∗,

where F∗ = (F1
∗ F2

∗ ). The function ∆Φ(t) can be transformed as

∆Φ(t) = G∗(φ(Fx(t), u(t))− φ(F1
∗ z(t) + F2

∗y∗(t), u(t)))
= G∗(φ(F1

∗ (z(t) + e(t)) + F2
∗y∗(t), u(t))

−φ(F1
∗ z(t) + F2

∗y∗(t), u(t)))
≈ G∗

∂φ(z,y∗ ,u)
∂z F1

∗ e(t).

As a result, the final relation for e(t) is given by

e(t + 1) =
(

A∗ + G∗
∂φ(z, y∗, u)

∂z
F1
∗

)
e(t) = Ae(z, y∗, u)e(t).

If the eigenvalues of the matrix Ae(z, y∗, u) are in the unit circle, the model is stable.
Otherwise, one has to use a feedback with the residual r(t) = Rry(t)− yr(t), where the
matrix Rr satisfies the condition RrC = CrΨ for some matrix Cr and yr(t) = Crx∗(t) [21].
These matrices can be found from the equation

(Cr − Rr)

(
Ψ
C

)
= 0.

The nonlinear model with the feedback Kr(t) is given by

z(t + 1) = A∗z(t) + J∗y∗(t) + B∗u(t) + G∗Φ(z(t), y∗(t), u(t)) + Kr(t).

The equation for the error becomes

e(t + 1) =
(

A∗ − KCr + G∗
∂φ(z, y∗, u)

∂z
F1
∗

)
e(t) = Ar(z, y∗, u)e(t).

This equation implies that the feedback matrix K depends on z, y∗, u. This matrix can be
constructed as follows: find the characteristic polynomial of the matrix Ar(z, y∗, u)

det(Ar(z, y∗, u)− λIk) = λk + a1(K, z, y∗, u)λk−1 + . . . + ak(K, z, y∗, u),



Symmetry 2023, 15, 993 9 of 14

specify the eigenvalues λ1, . . . , λk, obtain the nonlinear equations

a1(K, z, y∗, u) = −(λ1 + λ2 + . . . + λk),
a1(K, z, y∗, u) = λ1λ2 + λ1λ3 + . . . + λk−1λk,

. . .
ak(K, z, y∗, u) = (−1)kλ1λ2 . . . λk,

and find elements of the matrix K.
If the model has several nonlinearities, one obtains

Ar(z, y∗, u) = A∗ − KCr + G∗

 (∂φji (z, y∗, u)/∂z)F1
∗j1

. . .
(∂φjd(z, y∗, u)/∂z)F1

∗jd

.

In practice, the suggested approach can be used for a model of no more than 3–4 dimensions
since it results in complex impressions when the determinant det(Ar(z, y∗, u) − λIk) is
calculated.

5. Practical Example

Consider the control system

x1(t + 1) = a4u1(t)− a1
√

x1(t)− x2(t) + x1(t) + ρ(t),
x2(t + 1) = a5u2(t) + a1

√
x1(t)− x2(t)− a2

√
x2(t)− x3(t) + x2(t),

x3(t + 1) = a2
√

x2(t)− x3(t)− a3
√

x3(t) + x3(t),
y(t) = x2(t).

(26)

Equation (26) constitutes a sampled-data model of the well-known three-tank system.
The system consists of three consecutively united tanks. The liquid flows into the first
and second tanks and follows from the third one through the pipe. The levels of liquid in
the tanks are x1, x2, and x3, respectively, and a1, . . . , a5 are coefficients. It is assumed that
x1 ≥ x2 ≥ x3.

Design the virtual sensor estimation for the variables x1 and x3, that is ν = x1 × x3.
Compute the functions h∗ = (h× ν) = x2 × x1 × x3 = 0, γ0 = x2 × x3, and h0 = γ0 ⊕ h =
x2. Since γ0 × h∗ = 0, then m(γ0 × h∗) = 0, and so ψ = γ1 = γ0 = x2 × x3. Since
ψ× h0 = (x2 × x3)× x2 = x2 × x3, the condition (6) is not satisfied. The natural choice for
ψ′ in (8) is ψ′(x) = x1. To compute ϕ0, one uses Algorithm 1 and obtains ψ0(x) = x1. As a
result, the second subsystem in Figure 1 with z1 = ψ0(x) = x1 is given by

z1(t + 1) = a4u1(t)− a1

√
z1(t)− y(t) + z1(t). (27)

Since ψ(x) = x2 × x3, the first subsystem in Figure 1 is two-dimensional. To reduce
this subsystem, one may choose ψ∗(x) = x3 which satisfies the condition (7). As a result,
the first subsystem in Figure 1 with z2 = ψ∗(x) = x3 is given by

z2(t + 1) = a2

√
y(t)− z2(t)− a3

√
z2(t) + z2(t). (28)

The estimates of the variables x1 and x3 are as follows:

x̂1(t) = z1(t), x̂3(t) = z2(t).

One can check that the model is stable, and therefore, the virtual sensor was designed.
Consider the logic-dynamic way to solve the problem. Clearly, A = 0 in the model (12).

To overcome this difficulty, transform Equation (26) by entering the formal addends
−a1(x1 − x2) + a1(x1 − x2), (a1(x1 − x2)− a2(x2 − x3))− (a1(x1 − x2)− a2(x2 − x3)) and
a2(x2− x3)− a3x3− a2(x2− x3)+ a3x3 in the first, second, and third equations, respectively.
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The term −a1(x1 − x2) refers to the linear part while a1(x1 − x2) refers to the nonlinear
part; the rest of the formal addends are considered analogously.

As a result, the system is described by matrices and nonlinearities as follows:

A =

 1− a1 a1 0
−a1 1− a1 − a2 a2

0 a2 1− a2 − a3

, B =

 1 0
0 1
0 0

, C =
(

0 1 0
)
,

D =

 1
0
0

, G =

 a1 0 0
−a1 a2 0

0 −a2 a3

, Φ(x) =

 −√F1x + F1x
−
√

F2x + F2x
−
√

F3x + F3x

,

F1 = (1 − 1 0), F2 = (0 1 − 1), F3 = (0 0 1).

Since the variables x1 and x3 are estimated, then

V =

(
1 0 0
0 0 1

)
, C∗ =

 0 1 0
1 0 0
0 0 1

, D0 =

(
0 1 0
0 0 1

)
.

The matrix N2 is found from (14):

(N1 − N2)

 0 1 0
0 0 1
0 1 0

 = 0;

N2 = 1 and C0 = C = (0 1 0). Equation (21) has a solution with k = 1:

Ψ = (0 0 1), J∗ = (a2 0 1− a2 − a3).

One may check that the condition (18) is satisfied, whilst (20) is not. Clearly, V′ = (0 0 1)
and V0 = (1 0 0).

The solution for V′ with Ψ = (0 0 1) produces the matrices B∗ = (0 0), G∗ =

(0 − a2 a3), and F′ =
(

0 1 −1
0 0 1

)
. The solution of (17) is

F∗ =
(
−1 1 0 0
1 0 0 0

)
.

The linear model corresponding to V′ with z2 = v′ = V′x is given by

z2(t + 1) = a2y(t) + (1− a2 − a3)z2(t);

and the nonlinear term is of the form

G∗Φ(x, u) = a2

√
y(t)− z2(t)− a2(y(t)− z2(t))− a3

√
z2(t) + a3z2(t).

As a result, after inserting this term into the linear model and transforming it, one obtains
the nonlinear model (28).

For V0, Equation (25) has a solution with k = 1:

Ψ0 = (1 0 0), J0 = (1 0 0),

which produces B∗ = (a4 0), G0 = (a1 0 0), F′ =
(

1 −1 0
)

and F0 = (1 − 1 0 0).
The linear model corresponding to V0 with z1 = v0 = V0x being given by

z1(t + 1) = a4u1(t) + a1y(t) + (1− a1)z1(t);
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the nonlinear term is of the form

G0Φ(x, u) = −a1

√
z1(t)− y(t) + a1(z1(t)− y(t)).

After inserting this term into the linear model and transforming it, one obtains the nonlinear
model (27).

For simulation, consider system (26) and the sensor with the control u1(t) = u2(t) =
1 + sin(t), a1 = . . . = a4 = 0.1, a5 = 0.2, ρ(t) is a random process evenly distributed on
[−0.15, 0.15] appearing at t = 100. Simulation results are shown in Figure 2, where the
variables x1(t), x3(t) and their estimates z1(t), z2(t) are presented for the initial conditions
x1(0) = 8, x2(0) = 2, x3(0) = 1, x∗1(0) = 5, x∗2(0) = 2. Clearly, whilst the first sensor is
sensitive to the disturbance, the second one is not.

Figure 2. Behavior of variables x1 and x3 and virtual sensors z1 and z2.

6. Discussion

The problem of virtual sensor design estimating the prescribed function of the state
vector of the original system for nonlinear systems described by discrete-time models
under the disturbance was studied. Two different mathematical techniques are used to
solve the problem: the algebra of functions allows one to obtain a general solution and
the logic-dynamic approach produces a solution for nonlinear systems by methods of
linear algebra. The relations allowing one to design virtual sensor that is insensitive or
that has minimal sensitivity to the disturbance were obtained. The theoretical results were
illustrated by a practical example. A future research direction is the virtual sensor design
for hybrid nonlinear dynamic systems.

The virtual sensors can be used in addition to the physical sensors in different practical
systems or for replacing the faulty physical sensor. In particular, in [25,26], where the fault detec-
tion and estimation problems are considered, the additional virtual sensors allow simplifying
the obtained solutions. Additionally, the algebra of the functions and the logic-dynamic ap-
proach enables one to extend a class of systems studied in [25,26] to systems with non-smooth
nonlinearities.
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Appendix A. Algebra of Functions

The algebra of functions has four main ingredients: (1) the relation of the partial
pre-order ≤; (2) two binary operations × and ⊕; (3) binary relation ∆; (4) and operators m
and M. These ingredients are defined on the set of vector functions VX with the domain X

1. Relation of a partial pre-order. For the functions α, β ∈ VX, one writes down α ≤ β,
if the function γ exists such that β(x) = γ(α(x)) ∀x ∈ X. The definition means that each
component of the function β can be expressed via components of α. If α ≤ β and β ≤ α,
the functions α and β are called equivalent, denoted by α ∼= β.

2. Binary relations. It can be shown that ∼= is reflexive, symmetric and transitive. The
set SX of the functions is divided by the equivalence relation ∼= into the equivalence classes
with the equivalent functions. Denote the set of all equivalence classes by SX\∼=. Then, the
relation ≤ is a partial order on this set, and SX\∼= is a lattice [27]. Recall that a lattice is a set
with a partial order where every two elements α and β have a unique supremum sup(α, β)
and an infimum inf(α, β):

α× β = inf(α, β), α⊕ β = sup(α, β).

These operations define the function up to equivalence.
The rule to calculate the operation × is simple:

(α× β)(x) =
(

α(x)
β(x)

)
.

The operation ⊕ can be calculated based on differential geometry [15,28]. In simple cases,
one can use the direct definition of α⊕ β as the supremum of α and β.
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Consider the simple example. Let X = R3,

α(x) =
(

x1 + x2

x3

)
, β(x) =

(
x1x3

x2x3

)
.

Then, (α× β)(x) ∼= (x1 + x2, x3, x1x3)
T and (α⊕ β)(x) = x3(x1 + x2).

3. Binary relation ∆. For the functions α, β ∈ VX

(α, β) ∈ ∆⇐⇒ α( f (x, u, γ)) = f∗(β(x), u, γ)

for all (x, u) ∈ X×U and some function f∗. Binary relation ∆ is used to define the operators.
4. Operators m and M.
Operator m is a function m(α) ∈ VX satisfying two conditions: (i) (α, m(α)) ∈ ∆; (ii) if

(α, β) ∈ ∆, then m(α) ≤ β.
Operator M is a function M(β) ∈ VX satisfying two conditions: (i) (M(β), β) ∈ ∆; and

(ii) if (α, β) ∈ ∆, then α ≤ M(β).
The last definitions mean: given α, m(α) is the minimal function, forming a pair with

α, and given β, M(β) is the maximal function, forming a pair with ñ β.
The properties of the operators m and M as well as the rules to calculate them are

given in [15,28].
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