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Abstract
Numerical modeling of unidirectional flow in self-affine fractures using the lubrication 
approximation requires averaging of the transmissivity between the nodes. Seven averag-
ing techniques are reviewed: arithmetic averaging of transmissivity; harmonic averaging 
of transmissivity; two averaging techniques derived by cell-based collocation method; 
global reconstruction of profile by means of multiquadrics; arithmetic averaging of aper-
ture; harmonic averaging of aperture. In order to evaluate the performance of the seven 
techniques in terms of pressure errors and hydraulic aperture errors, self-affine profiles of 
1024 nodes with different Hurst exponents (0.4 to 0.8) are generated. Every second node is 
then removed, resulting in 512-node profiles. Apertures at removed nodes are used in refer-
ence flow simulations on the 512-node profiles. Then, simulations with the seven averaging 
techniques are performed on 512-node profiles. Errors are computed with regard to the 
results obtained in the reference simulations. Reconstruction with multiquadrics is found 
to provide superior accuracy on self-affine profiles, followed by harmonic averaging of 
transmissivity or harmonic averaging of the aperture (Some of the errors analyzed in this 
study are minimized with the two last mentioned schemes.). Multiquadrics reconstruction 
is found to provide the best accuracy also on a smooth periodic profile.

Keywords Flow · Self-affine linear profile · Finite-difference method · Transmissivity · 
Averaging

1 Introduction

Fluid flow in the subsurface is often controlled by natural fractures. In order to predict flow 
and contaminant transport in such systems, hydraulic properties of individual fractures 
must be available. Rock fractures usually have rough walls which leads to a variable local 
fracture aperture, w, defined as distance between the walls. There is strong evidence that 
aperture distributions of fractures in different materials, including rocks, are self-affine, 
with the fractal dimension in the range of 2.2–2.8 (Bouchaud et al. 1990; Måløy et al. 1992; 
Mandelbrot et al. 1984; Plouraboué et al. 1995; Schmittbuhl and Måløy 1997). Hydraulic 
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properties of such fractures are described by hydraulic aperture. This is the aperture of 
a smooth-walled conduit that yields the same flow rate as the real, rough-walled fracture 
does, given the same pressure difference. Substantial effort has been invested over the past 
3–4 decades into the study of hydraulic aperture of rough-walled fractures. A major part of 
these studies is numerical whereby a constant pressure difference is applied between two 
edges of a rectangular fracture or between two ends of a linear, one-dimensional fracture, 
and the resulting flow rate is computed by finite-difference or finite-element method. In 
the case of linear, one-dimensional fractures and under the assumptions of the lubrication 
theory approximation (Zimmerman et al. 1991), the numerical problem reduces to solving

where L is the length of the fracture; P is the fluid pressure; c = c(x) is the local fracture 
transmissivity that can be defined as w3. Second-order finite-difference discretization of 
Eq. (1) on a uniform grid typically used in these models yields:

where i is the node number. Both pressure and transmissivity are specified at nodes, which 
necessitates approximation, or averaging, of transmissivity, c, between the nodes, i.e., at 
locations i ± 1∕2 . Two types of transmissivity averaging are often used in numerical mod-
els of subsurface flow: arithmetic and harmonic, given, respectively, by

and

Harmonic averaging is the method of choice in some hydrogeological simulators, e.g., 
MODFLOW (Langevin et al. 2017). It is often used in fracture flow models (Tsang and 
Neretnieks 1998) and porous media flow models (Aavatsmark 2002; Bessone et al. 2022; 
Roth et al. 1996; Colecchio et al. 2020). Its use for diffusion equation in strongly heteroge-
neous media was advocated by van Es et al. (2014). Its use in nonlinear diffusion problems 
was disputed by Kadioglu et  al. (2008) who showed that it yields large errors when the 
transmissivity is P3. In fracture flow, harmonic averaging typically results in lower values 
of the hydraulic aperture than the arithmetic averaging because arithmetic average of two 
real numbers is always greater than or equal to their harmonic average. It was obtained by 
Lavrov (2022) that, in two-dimensional fracture flows, numerical schemes with arithmetic 
averaging perform better in terms of mass balance error.

Instead of averaging the transmissivity, some schemes make use of averaging the 
fracture aperture. Here, several options are available, too. The two main choices are 
arithmetic averaging and harmonic averaging. Arithmetic averaging of the local aper-
ture was used, e.g., by Lenci et al. (2022a). It was pointed out by Lenci et al. (2022b) 
that harmonic averaging of aperture preserves the energy in the scheme.
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The importance of averaging techniques in flux evaluation is not limited to fluid flow com-
putations. Accurate evaluation of fluxes is crucial also for numerical heat transfer (Klepikova 
et al. 2021), solute transport (Moreno et al. 1988) and particulates transport (Lin et al. 2022; 
Mao et al. 2023) in fractures.

The objective of this work was to assess the performance of several averaging tech-
niques in fracture flow on self-affine linear profiles.

2  Averaging Techniques

Seven averaging techniques were used in this study and are summarized in this Section.

2.1  Arithmetic Averaging of Transmissivity

Heuristically, arithmetic averaging of transmissivity is obtained by linear interpolation of 
transmissivity between the nodes, which yields Eq. (3). Another heuristic approach ending 
up with arithmetic averaging is by assuming the transmissivity to be constant between the 
nodes (Kadioglu et al. 2008); this implies discontinuous transmissivity at each node.

One way to properly derive Eq. (3) is by expanding the left-hand side of Eq. (1) as the 
derivative of a product:

The derivation is provided in the Appendix of (Lavrov 2022) and is repeated here 
for reader’s convenience. The aim is to derive a second-order accurate approximation of 
Eq. (5). A second-order approximation of the first term on the left-hand side of Eq. (5) by 
central difference is given by

A second-order accurate approximation of the second term on the left-hand side of 
Eq.  (5) can be obtained by adding Taylor expansions of c(x + Δx)P(x + Δx) and c(x—
Δx)P(x—Δx), resulting in

Using central difference approximations for d2P
/
dx2 and d2c

/
dx2 in Eq. (7) yields the 

following second-order approximation for the second term on the left-hand side of Eq. (5):

Substitution of Eqs. (6) and (8) into Eq. (5) recovers Eq. (2) with the internodal trans-
missivities given by Eq. (3):
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Thus, arithmetic averaging of transmissivity yields second-order accuracy as previously 
shown by Kadioglu et al. (2008) using a different technique.

2.2  Harmonic Averaging of Transmissivity

This type of averaging is hard to justify except heuristically. The latter can be done by 
imagining that the real transmissivity profile is replaced with a collection of conduits. Each 
conduit is centered around a grid node and has a constant aperture along its length (Fig. 1).

The fracture in Fig. 1 is assumed to be composed of three segments of constant aper-
ture. The transmissivity of each segment is equal to the transmissivity specified in the 
node located in the middle of the segment, i.e., ci-1, ci, ci+1. Pressures are referred to the 
nodes as well, i.e., Pi-1, Pi, Pi+1. Consider part of the fracture located within the shadow 
box. It consists of two half-segments connected in series. Pressure difference across 
these two half-segments is given by Pi+1—Pi. Due to mass conservation, the flow rate 
through this part of the fracture is given by 2cici+1

ci+ci+1

Pi−Pi+1
Δx

 . Thus, ci±1∕ 2 is given by Eq. (4), 
with the following scheme as a result:

By construction, this is a heuristic averaging method. The fact that it is based on the 
assumption of constant transmissivity within the cell has been recognized for at least two 
decades (Hyman et al. 2002). It can be shown that harmonic averaging yields second-order 
accuracy (Kadioglu et  al. 2008), just as arithmetic averaging does. However, the magni-
tudes of the errors can be considerably different on some types of problems unless very 
fine grids are used (Kadioglu et al. 2008).

It should be noted that the assumption about piecewise-constant aperture profile implied 
in Eq. (4) is not realistic for fractures. Fractures have self-affine aperture maps. Thus, aper-
ture varies at all scales, and it is only by chance that there could be a segment of constant 
aperture in a real fracture.

Both arithmetic and harmonic averaging procedures result in symmetric coefficient 
matrices. A symmetric matrix is necessary in order to ensure theoretical mass balance with 
the scheme (Romeu and Noetinger 1995).

2.3  Cell‑Collocation‑Based Averaging Techniques

When deriving the arithmetic averaging in Sect.  2.1, another, alternative path could be 
taken when approximating the second term on the left-hand side of Eq.  (5). Namely, we 
could have used central finite difference for each of the derivatives, dc/dx and dP/dx, result-
ing in the following scheme:
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Fig. 1  Heuristic approach to 
harmonic averaging of transmis-
sivity. The assumed shape of the 
fracture is shown with solid line. 
Nodes (i-1, i, i + 1) are located in 
the middle of constant-aperture 
segments

i i+1 i-1 

Δx 
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By construction, this is a second-order scheme.
Another way to arrive at Eq. (11) is by using the cell-collocation method introduced in 

(Lau and Brebbia 1978). The use of cell-collocation method for deriving finite-difference 
approximations is detailed by Brebbia et al. (1984). Following the procedure outlined by 
Brebbia et al. (1984), we approximate P around node i by

where the three basis functions are given by

with the origin of the local coordinate system, x̂ , being at node i. Since we are working 
with a three-node collocation cell, let us use the following interpolant for transmissivity 
between nodes i-1 and i + 1:

The interpolant takes on the nodal values of c at the nodes. Substituting Eqs. (12) and 
(14) into Eq. (1), and using x̂ = 0 as the collocation point (i.e., the point where the residual 
is equal to zero) yields:

i.e.,

Inspection of Eq. (16) reveals that it implies the following averaging for the internodal 
transmissivities:

We will call this collocation-based averaging. It is evident from Eq. (11) that the result-
ing coefficient matrix is not symmetric. As a consequence, this averaging technique yielded 
flux errors on the order of 1% in our simulations. Therefore, this averaging technique was 
not further considered in this study.

There are, however, at least two ways how to symmetrize Eq.  (16) and thereby improve 
the flux error considerably. One way to symmetrize Eq. (16) is to use Eq. (17) with the lower 
sign for all internodal transmissivities except the one near the right boundary (see below for 
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the boundary treatment). Essentially, this means averaging c by means of a three-node stencil 
where one node is located to the left of the internodal point of interest, and two nodes are 
located to the right of the internodal point of interest. The resulting scheme follows immedi-
ately from Eq. (16) and is given by

(The coefficient in front of Pi ensures conservation.) We will call Eq.  (18) right-col-
location-based averaging in the remainder of this paper. The resulting coefficient matrix is 
symmetric.

Equation (18) has a four-node stencil (− 1, 0, 1, 2) and thus, cannot be used in the right-
most node. There, Eq. (16) should be used instead. This adjustment in one node retains the 
symmetry of the coefficient matrix.

Another way to symmetrize Eq. (16) is by using Eq. (17) with the upper sign for all inter-
nodal transmissivities except that near the left boundary. This means averaging c by means of 
a three-node stencil where two nodes are located to the left of the internodal point of interest, 
and one node is located to the right of the internodal point of interest. The resulting scheme is 
given by

We will call Eq. (19) left-collocation-based averaging in the remainder of this paper. The 
resulting coefficient matrix is symmetric.

Equation (19) has a four-node stencil (− 2, − 1, 0, 1) and thus, cannot be used in the left-
most node. There, Eq. (16) should be used instead. This adjustment in one node retains the 
symmetry of the coefficient matrix.

2.4  Arithmetic Averaging of Aperture

Averaging methods considered so far in this Section were either heuristic (harmonic), or based 
on some formal mathematical derivation (arithmetic, collocation-based), or a combination 
of the two (right- and left-collocation-based). It should be remembered, however, that in the 
case of fracture flow the transmissivity is given by c = w3 where w is the local aperture. Thus, 
another way to obtain the internodal transmissivities, ci±1/2, is by reconstructing the fracture 
aperture profile between the nodes, which would yield the estimates of the local aperture, 
wi±1/2.

Such a reconstruction may be performed by either local or global approximation of the 
aperture profile. There is no unique way to construct such an approximation. In this study, 
three approximations are considered: two local (arithmetic and harmonic averaging of aper-
ture) and a global approximation by multiquadrics.

Arithmetic averaging of aperture on a uniform grid is given by
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2.5  Harmonic Averaging of Aperture

Harmonic averaging of aperture is another way to perform local reconstruction. It is 
given by:

2.6  Global Reconstruction of Aperture Using Multiquadrics

Multiquadrics are a subclass of radial basis functions given, in general, by (Kansa 1990)

where β ≥ - − /2; �̂� is the shape factor. In this study, multiquadrics with β = 1/2, originally 
introduced by Hardy (1971), were used. By using multiquadrics as interpolants, with the 
grid points serving as collocation points, the approximated aperture at i + 1/2 is given by 
(uniform grid with grid step Δx is assumed throughout this paper):

where N is the number of grid points (N = 512 in this study); 𝜀 = �̂�Δx is the dimension-
less shape factor. The condition number of the linear system used to obtain the interpo-
lation coefficients, Ck, increases rapidly as the shape factor, ε, decreases. As ε increases, 
multiquadrics become more ‘pointy’, and the interpolation Eq. (23) approaches the arith-
metic averaging of aperture, Eq. (20). Various strategies are available for choosing ε. For 
instance, different (e.g., random) individual shape factors can be assigned to different k 
(Sarra,Sturgill 2009). In this study, the simplest possible choice was made by using the 
same shape factor, ε = 1.0, for all quadrics. With this choice of ε, and N = 512, the condi-
tion number is sufficiently low (2.1·106).

3  Methodology

None of the averaging techniques presented in Sect. 2 appear to be preferable based on 
the derivation only. It should be remembered though that Eq. (1) is to be solved on self-
affine linear profiles. In order to evaluate which averaging procedure suits best for solv-
ing Eq. (1) on such profiles, the following approach was employed in this study: First, 
a profile of 1024 nodes was constructed. Then, every second node was removed from 
the 1024-node profile. The hydraulic aperture of the resulting 512-node profile was 
computed, using the seven types of averaging introduced in Sect.  2 (arithmetic trans-
missivity, harmonic transmissivity, left- and right-collocation-based, reconstruction by 
global multiquadric approximation, arithmetic aperture, and harmonic aperture). The 
results of the seven computations were compared to the ‘true’ (reference) value which 
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was obtained with the internodal transmissivities corresponding to the ‘true’ internodal 
apertures, i.e., the apertures at the removed nodes of the 1024-node profile.

Profiles of 1024 nodes each were constructed as follows: Five square self-affine aperture 
maps of 1024 × 1024 nodes were generated using the spectral synthesis method (Huang et al. 
1992). The Hurst exponent of these surfaces was H = 0.4, 0.5, 0.6, 0.7 and 0.8. Lower Hurst 
exponent means that the map appears rougher. It is currently believed that most fractures 
have H = 0.8 which is sometimes considered a “universal value” (Lenci et al. 2022b). How-
ever, lower values of H, down to 0.45, have been measured as well (Lenci et al. 2022b). The 
value of the Hurst exponent set in the spectral generator was verified for each surface using a 
recently introduced version of box-counting method (Ai et al. 2014) and was double-checked 
with the variogram method (Ruello et al. 2006). From each of these surfaces, 10 linear profiles 
of 1024 nodes were extracted in the x-direction and 10 linear profiles of 1024 nodes were 
extracted in the y-direction. Each of these linear profiles was offset to make its average height 
equal to zero. The resulting profile was rescaled so that its range be equal to a given value, Δw. 
(‘Range’ here refers to the difference between the highest peak and the deepest valley.) The 
following values of Δw were used: 1, 2, 3, 4 and 5 mm. In the rescaled profile, the minimum 
height was identified. The rescaled profile was then offset so that the minimum height be equal 
to a given value, wmin, where wmin was 1, 2, 3, 4 and 5 mm. The ratio of root mean square 
variation (RMS) to the mean aperture varied in the range 0.0278 to 0.3091 for x-profiles 
and 0.0257 to 0.3008 for y-profiles. In each of these rescaled-and-offset profiles, every other 
node was removed thus giving rise to a 512-node profile. The pressure diffusion equation 
was solved on this profile with the seven averaging techniques discussed above. The pressure 
applied at the left-hand boundary was equal to 1, the pressure applied at the right-hand bound-
ary was 0. In addition, on each 512-node profile, a reference simulation was performed with 
the ‘true’ internodal transmissivities based on the apertures at the removed nodes. The total 
number of flow computations excluding the reference simulations was thus equal to 17,500: 5 
Hurst exponents × 20 linear profiles (10 in x- and 10 in y-direction) × 5 range values × 5 offset 
values × 7 averaging schemes. Direct solvers were used in flow computations and in solving 
for multiquadric coefficients.

In each simulation, the mass balance error was evaluated as follows: The flux between 
the two leftmost nodes, Ql, and the two rightmost nodes, Qr, was evaluated. The mass bal-
ance error was the magnitude of the difference between the two divided by their average, 
2||Ql − Qr

||
/(

Ql + Qr

)
 . It was required for the mass balance error to be below  10–6 for a simu-

lation to be accepted.
In each simulation, the error in hydraulic aperture and the error’s absolute magnitude were 

calculated. The error is given by 
(
w
(a)

h
− w

(t)

h

)/
w
(t)

h
 where a stands for averaging type (arith-

metic transmissivity, harmonic transmissivity, left-collocation, right-collocation, multiquad-
rics, arithmetic aperture, harmonic aperture); w(t)

h
 is the ‘true’ value of the hydraulic aperture 

obtained in the reference simulation.
For each value of the Hurst exponent and each type of averaging scheme, average error 

in hydraulic aperture and average absolute value of the error in hydraulic aperture were cal-
culated by summing the individual values obtained in each simulation and dividing by the 
number of simulations (250, i.e., 10 profiles × 5 range values × 5 offset values). This was done 
separately for profiles extracted in the x- and y-directions.

In each simulation, three norms were calculated to assess the error in the pressure distribu-
tion along the profile:
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where summation was performed over internal nodes of the grid (510 in total); the mean-
ing of superscripts is explained above.1

For each value of the Hurst exponent and each type of averaging scheme, average norms 
were calculated by summing the individual values obtained in each simulation and dividing 
by the number of simulations (250). This was done separately for profiles extracted in the 
x- and y-directions.

In the simulations described so far in this Section, the minimum aperture, wmin, was 
1, 2, 3, 4 or 5 mm and the aperture range, Δw, was 1, 2, 3, 4 or 5 mm. In order to inves-
tigate the performance of the seven schemes with smaller apertures, an additional series 
of simulations was conducted, with wmin = 0.1 mm and Δw = 1, 2, 3, 4 or 5 mm. Only the 
1024 × 1024 fracture with Hurst exponent equal to 0.8 was used to construct linear profiles 
as this H value is believed to be the most common for rock fractures (Lenci et al. 2022b). 
As before, 10 profiles were selected in x-direction and 10 in y-direction.

4  Results

4.1  Results Obtained with wmin = 1 mm to 5 mm

The average errors obtained with profiles extracted in the x- and y-directions are displayed 
in Figs. 2 and 3, respectively. It follows from these Figures that, in the case of x-profiles, 
the best results are obtained with multiquadric approximation of the aperture or with har-
monic averaging of the aperture. The errors obtained with these two techniques are virtu-
ally indistinguishable from each other, no matter what type of error is used as a selection 
criterion.

Average errors obtained with left- and right-collocation-based averaging are close, as 
evidenced in Figs. 2 and 3. This is hardly surprising since the schemes are similar.

Examining the errors obtained in individual simulations revealed that the magnitude of 
error in hydraulic aperture obtained with arithmetic averaging of transmissivity is higher 
than that obtained with harmonic averaging of transmissivity in the majority of cases, espe-
cially for lower H (Table 1). This is also evident from Figs. 2 and 3. Thus, if the choice 
is to be made between arithmetic averaging of transmissivity and harmonic averaging of 
transmissivity, the latter appears for self-affine linear profiles to be a better choice.
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1 The norm definitions given by Eqs. (24) and (25) are common, e.g., in functional analysis (Kreyszig 
1978) but are different from those usually used in numerical analysis, where it is customary to divide these 
by the number of nodes (LeVeque 2002). In this study, the same number of nodes was used in all simula-
tions, and thus, definitions (24) and (25) were used.
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Errors obtained with arithmetic averaging of transmissivity and displayed in Figs. 2 and 
3 are relatively large. In order to understand the poor performance of arithmetic averaging, 
it is instructive to take a closer look at individual errors in the simulations rather than at 
their averaged values. In Fig. 4, errors in hydraulic aperture obtained with arithmetic aver-
aging of transmissivity and with multiquadric reconstruction (the best performing scheme) 
are displayed as a function of ‘true’ hydraulic aperture for 250 simulations obtained on 
H = 0.4 x-profiles. Each point represents an individual simulation. As evident from Fig. 4, 
errors obtained with multiquadric reconstruction are distributed symmetrically around 0, 
while errors obtained with arithmetic averaging of transmissivity are predominantly posi-
tive. It means that arithmetic averaging of transmissivity systematically overestimates the 
hydraulic aperture. A graph similar to the one in Fig. 4 is obtained also if, instead of multi-
quadrics reconstruction, harmonic average of transmissivity is used.

4.2  Results Obtained with wmin = 0.1 mm

All average errors, except signed error in the hydraulic aperture, were at their minimum 
when multiquadric reconstruction was used. In particular, all pressure errors (L1, L2, L∞) 
were minimized this way. Only the average signed error in hydraulic aperture was mini-
mized with an averaging technique other than multiquadrics, namely with harmonic aver-
aging of transmissivity. For all other types of errors, the latter was the second best aver-
aging technique. This is in contrast to the simulations discussed in Sect.  4.1 where the 
second-best technique was typically harmonic averaging of the aperture.

Thus, three averaging techniques stand out for flow simulations on 1D self-affine frac-
ture profiles: (1) multiquadrics reconstruction, (2) harmonic averaging of transmissivity 
and (3) harmonic averaging of aperture. Multiquadrics reconstruction of the aperture pro-
file appears, on average, to be superior, followed by the two others. The higher accuracy of 
the multiquadrics reconstruction is bought by the additional computational cost this tech-
nique entails, compared to all other techniques.

5  Discussion

Multiquadrics have, in the past, demonstrated surprisingly good performance in various 
interpolation and reconstruction jobs even though it was pointed out that the reasons for 
this good performance were unknown (Kansa 1990). Our work provides yet another exam-
ple of an application where reconstruction with multiquadrics can be used with advantage, 
compared to other, traditionally used, techniques, e.g., arithmetic or harmonic averaging of 
transmissivity.

The choice of the shape factor for multiquadrics in this work was based solely on the 
requirement of sufficiently small condition number. No attempt was made to optimize 
further.

Harmonic averaging of aperture or transmissivity yields virtually the same accuracy as 
the multiquadrics reconstruction. Computational overhead of the latter is, however, higher.

Fig. 2  Errors averaged over 8750 simulations performed on 512-node profiles oriented in the x-direction: a 
absolute value of error in hydraulic aperture; b error in hydraulic aperture; c pressure solution error using 
L1; d pressure solution error using L2; e pressure solution error using L∞. Results obtained on 1024-node 
profiles were used as reference when computing errors in each 512-node simulation

▸
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The fact that the second best option is provided by harmonic averaging schemes is consist-
ent with the earlier results by Romeu and Noetinger (1995) who found harmonic averaging of 
transmissivity to be a superior scheme for linear flow in porous media. They did not consider 
multiquadrics reconstruction though (the multiquadrics-based method makes sense for frac-
ture flow where it has a clear geometric meaning).

The focus in this paper has been on the flow along random profiles. It is instructive to 
compare the performance of the seven averaging techniques on a smooth profile for which an 
analytical solution is available. As an example, consider transmissivity given by

(27)c(x) = 1 + cos2 (2�x), 0 ≤ x ≤ 1
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Equation  (27) represents a smooth periodic transmissivity. The analytical solution to 
Eq. (1) with P0 = 1, L = 1 and c(x) given by Eq. (27) is

The analytical solution is displayed in Fig. 5 along with the numerical solution obtained 
on a 512-node grid with multiquadric reconstruction of c1/3. Errors in hydraulic aperture 
obtained with the seven averaging schemes and N = 512 nodes are summarized in Table 2.

From Table 2, multiquadrics approximation yields, with a good margin, the best accu-
racy on a smooth periodic profile. This is contrary to the results obtained with self-affine 
profiles where multiquadrics reconstruction and harmonic averaging of the aperture pro-
duced very similar errors. This is yet another illustration that there is apparently no univer-
sal choice of the averaging technique and the choice should be determined by the nature of 
the problem at hand, a conclusion made by Kadioglu et al. (2008).

Excellent performance of multiquadrics on a profile given by Eq. (27) should perhaps 
come as no surprise since the profile is smooth and the global reconstruction technique 
does a superior job here (at the expense of some computational overhead).

It should be noted that we called multiquadrics approximation, arithmetic averaging of 
aperture and harmonic averaging of aperture “reconstruction techniques” in this text. How-
ever, all seven averaging techniques examined in this study could be considered as recon-
struction techniques since in all of them we attempt to assign transmissivity to a location 
between the nodes.

Uniform grids were used in this study. Uniform grids are typically used in fracture flow 
simulations. Averaging on nonuniform grids should be investigated in the future.

Only linear (1D) fracture profiles were considered in this study. In practice, fracture 
flow simulations are performed on two-dimensional aperture landscapes. Dimensionality 
has a crucial effect on conductivity and flow structure, as demonstrated, e.g., by Colecchio 
et al.(2021). The results of our study might therefore not be directly applicable to 2D grids. 
In particular, in 1D, even a single node with zero aperture results in a trivial solution (zero 
flow rate), and a simulation does not need to be performed. Treatment of zero apertures is 
therefore not relevant for 1D schemes. In 2D, zero apertures may still result in a conduc-
tive fracture, and a simulation can be performed. In this case, in order to avoid a singular 
coefficient matrix, zero apertures are usually replaced with very small values. Comparison 
of different averaging schemes on 2D grids, especially with clusters of nodes having very 
small apertures, should be the subject of a future work. It should be noted, however, that 
it might be difficult to match the number of 1D simulations used in this study (a total of 
17,500) when doing 2D simulations.

The work presented in this paper focused on the effects that averaging has on the flow. 
It might be worthwhile, in the future, to examine also how these seven reconstruction tech-
niques affect geometric properties of the reconstructed fractures, e.g., their correlation 
length, RMS, Hurst exponent, etc.

All development in this paper has been for Newtonian fluids. The situation would 
become more complicated with non-Newtonian fluids. This can be illustrated using the 

(28)P(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1 −
1

2�
arctan

tan (2�x)√
2

, x ∈ (0, 0.25]

0.5 −
1

2�
arctan

tan (2�x)√
2

, x ∈ [0.25, 0.75)

−
1

2�
arctan

tan (2�x)√
2
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simplest possible non-Newtonian rheology, i.e., a power-law fluid. For a linear fracture 
flow under the lubrication theory approximation, the fluid velocity averaged across the 
fracture aperture is given for such a fluid by equation (Lavrov 2023)

where n is the flow index; C is the consistency index. Mass conservation for one-dimen-
sional steady incompressible flow, i.e., ∇(w�) = 0 , results in a p-Laplace equation:

Inspection of Eqs. (29–30) suggests that the very concept of local fracture conductivity 
as a proportionality factor between velocity and pressure gradient acquires an additional 
dimension here: it becomes dependent on the pressure gradient. One promising approach 
here could be using reconstruction of aperture instead of averaging of transmissivity. This 
approach was pursued, e.g., in the recent work by Lenci et al. where arithmetic averaging 
of w between nodes was used to approximate the internodal aperture (Lenci et al. 2022b). 
As another alternative, the method of aperture reconstruction with multiquadrics advocated 
in the present paper could be tried for Eq.  (30). Whether this method has advantages as 
compared to other averaging techniques also in the case of non-Newtonian fluids should be 
investigated in a dedicated study.

It should be stressed that conclusions drawn in our study pertain to self-affine linear 
profiles. It is straightforward to construct an example of profile where local averaging tech-
niques, e.g., arithmetic or harmonic averaging of aperture or transmissivity, should per-
form at least as well as multiquadrics. An example I will use here is inspired by the recent 
work on ‘binary media’ (Colecchio et al. 2021) where fractures were constructed such that 
local aperture could take only two values,: wl or wu. Let us construct a special version of 
such ‘binary media’, namely a linear profile of 100 nodes where all nodes with index i < 50 
have w = wl, while all nodes with i > 49 have w = wu. On such a profile, any local averag-
ing method, e.g., arithmetic or harmonic averaging of aperture or transmissivity, should 
perform at least as well as any global reconstruction technique such as multiquadrics 
reconstruction.

Moreover, the very methodology employed in our study, with removing every other 
node and using the original profile for a reference computation, was designed for self-
affine profiles and may become faulty in other cases, e.g., when the aperture profile has 
a distinctive regular structure. As an illustration, let us again construct a ‘binary’ pro-
file of a 100 nodes where every node with an even index has w = wl, while every node 
with an odd index has w = wu. This resembles the profile studied, e.g., by Haugerud 
et al. (2022). This is the profile to be used for the reference simulation. Now, if every 
other node is removed from this profile and a flow simulation is performed, all seven 
averaging methods considered in this study will perform poorly. From the averaging 
point of view, there is no way to distinguish between two possible original profiles once 

(29)� = −
n

2n + 1

1

C1∕ n

(
w

2

)(n+1)∕ n||||
dP

dx

||||
(1−n)∕ n

dP

dx

(30)d

dx

[
w(2n+1)∕ n

||||
dP

dx

||||
(1−n)∕ n

dP

dx

]
= 0

Fig. 3  Errors averaged over 8750 simulations performed on 512-node profiles oriented in the y-direction: a 
absolute value of error in hydraulic aperture; b error in hydraulic aperture; c pressure solution error using 
L1; d pressure solution error using L2; e pressure solution error using L∞. Results obtained on 1024-node 
profiles were used as reference when computing errors in each 512-node simulation
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every other node has been removed: the one where all apertures were the same and the 
one where even nodes had w = wl and odd nodes had w = wu. Once the nodes have been 
removed, the information is lost (cf. Nyquist theorem). This brings us to the next issue, 
that of correlation length in the original profile. In practice, various degree of correla-
tion may exist in an aperture profile, with the correlation length being determined by 
various factors, e.g., by the magnitude of the shear displacement (Brown et  al. 1986; 
Wang et al. 1988). For instance, if two identical (matching) self-affine fracture surfaces 
are put together with zero offset, the resulting aperture profile will be w = const (i.e., 
infinite correlation length), and any local averaging technique in a numerical flow simu-
lation will perform perfectly [cf. also the results of Nicholl et  al. (1999) where sev-
eral local averaging techniques were tested and their results converged at high mesh 
resolution, namely when the grid spacing became smaller than 1/5 of the correlation 
length]. Global reconstruction techniques, e.g., based on multiquadrics, would have no 
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advantage in this case. Thus, there might be an extra angle to the problem of choosing 
between different averaging techniques in fracture flow modeling. The role of correla-
tion length and profile structure in this choice should be examined in the future.

Finally, it should be emphasized that this study makes use of the lubrication theory 
approximation when formulating the flow problem. Our findings suggest that multiquadrics 

Table 1  Fraction of simulations 
in which the magnitude of error 
in hydraulic aperture obtained 
with arithmetic averaging of 
transmissivity was greater than 
with harmonic averaging of 
transmissivity

Type of profile Hurst exponent, H Fraction of 
simulations

x-profiles 0.4 0.536
0.5 0.516
0.6 0.508
0.7 0.500
0.8 0.500

y-profiles 0.4 0.568
0.5 0.548
0.6 0.536
0.7 0.528
0.8 0.544

Fig. 4  Signed error in hydraulic 
aperture obtained in individual 
simulations with arithmetic aver-
aging of transmissivity and with 
multiquadric reconstruction vs. 
‘true’ hydraulic aperture. Data 
for simulations with H = 0.4 are 
displayed. Each point represents 
an individual simulation
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Fig. 5  Analytical solution and 
numerical solution obtained with 
multiquadrics approximation 
of profile. The transmissivity is 
given by Eq. (27). The profile is 
discretized with 512 nodes. The 
two curves are indistinguishable
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reconstruction provides superior results when the flow is modeled using the lubrication 
approximation. This does not suggest that multiquadrics reconstruction provides the most 
accurate flow solution in general. The effect of out-of-plane flow on the accuracy of 1D 
flow simulations has been recognized in the research community for at least 25 years by 
now (Oron and Berkowitz 1998; Nicholl and Detwiler 2001; Brush and Thomson 2003; 
Wang et al. 2015, 2018, 2020; He et al. 2021). An earlier attempt to reconcile the use of 
Eq. (1) with experimental results obtained using Hele-Shaw cells with artificial rough sur-
faces (not self-affine), while solving the flow with different averaging techniques, can be 
found in the work by Nicholl et al. (1999) There, corrections were introduced in order to 
account for out-of-plane flow dynamics, all with limited success.

6  Conclusions

The following conclusions are drawn:

• In most cases studied here, global reconstruction of the aperture profile using multi-
quadrics provided superior accuracy in terms of both the modeled hydraulic aperture 
and the pressure error for fluid flow on one-dimensional self-affine aperture profiles.

• The second best averaging technique was either harmonic averaging of the aperture or 
harmonic averaging of transmissivity. The former can outperform multiquadrics with 
regard to certain types of errors when the ratio of the minimum aperture to the aperture 
range is sufficiently large. The latter can outperform multiquadrics reconstruction with 
regard to certain types of errors when the ratio of the minimum aperture to the aperture 
range is sufficiently small.

• On a smooth periodic profile, multiquadrics reconstruction outperformed all other tech-
niques examined here, with a good margin.
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Table 2  Errors in the pressure distribution obtained with six averaging techniques on the benchmark prob-
lem [Eqs. (1), (27)]. Errors are with regard to the analytical solution [Eq. (28)]

Averaging method Pressure error L1 Pressure error L2 Pressure error L∞

Arithmetic transmissivity 4.887·10–4 2.410·10–5 1.524·10–6

Harmonic transmissivity 4.612·10–4 2.334·10–5 1.579·10–6

Right-collocation 9.500·10–4 4.708·10–5 3.075·10–6

Left-collocation 9.500·10–4 4.708·10–5 3.075·10–6

Multiquadrics reconstruction 2.041·10–4 1.086·10–5 9.186·10–7

Arithmetic aperture 4.796·10–4 2.368·10–5 1.504·10–6

Harmonic aperture 4.700·10–4 2.343·10–5 1.524·10–6



Transmissivity Averaging in Fracture Flow on Self‑affine Linear…

1 3

 Data Availability  Material All the necessary data are provided in the text of the article.

Code Availability Not applicable.

Declarations 

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this 
article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 
6(3), 405–432 (2002). https:// doi. org/ 10. 1023/A: 10212 91114 475

Ai, T., Zhang, R., Zhou, H.W., Pei, J.L.: Box-counting methods to directly estimate the fractal dimension of 
a rock surface. Appl. Surf. Sci. 314, 610–621 (2014)

Bessone, L., Gamazo, P., Dentz, M., Storti, M., Ramos, J.: GPU implementation of explicit and implicit 
Eulerian methods with TVD schemes for solving 2D solute transport in heterogeneous flows. Comput. 
Geosci. 26(3), 517–543 (2022). https:// doi. org/ 10. 1007/ s10596- 022- 10136-8

Bouchaud, E., Lapasset, G., Planès, J.: Fractal dimension of fractured surfaces: a universal value? Europhys. 
Lett. 13(1), 73–79 (1990). https:// doi. org/ 10. 1209/ 0295- 5075/ 13/1/ 013

Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques: Theory and Applications in 
Engineering. Springer, Berlin (1984)

Brown, S.R., Kranz, R.L., Bonner, B.P.: Correlation between the surfaces of natural rock joints. Geophys. 
Res. Lett. 13(13), 1430–1433 (1986). https:// doi. org/ 10. 1029/ GL013 i013p 01430

Brush, D.J., Thomson, N.R.: Fluid flow in synthetic rough-walled fractures: Navier-Stokes, Stokes, and 
local cubic law simulations. Water Resour. Res. (2003). https:// doi. org/ 10. 1029/ 2002W R0013 46

Colecchio, I., Boschan, A., Otero, A.D., Noetinger, B.: On the multiscale characterization of effective 
hydraulic conductivity in random heterogeneous media: a historical survey and some new perspectives. 
Adv. Water Resour. 140, 103594 (2020). https:// doi. org/ 10. 1016/j. advwa tres. 2020. 103594

Colecchio, I., Otero, A.D., Noetinger, B., Boschan, A.: Equivalent hydraulic conductivity, connectivity and 
percolation in 2D and 3D random binary media. Adv. Water Resour 158, 104040 (2021). https:// doi. 
org/ 10. 1016/j. advwa tres. 2021. 104040

Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 
1905–1915 (1971). https:// doi. org/ 10. 1029/ JB076 i008p 01905

Haugerud, I., Linga, G., Flekkøy, E.G.: Solute dispersion in channels with periodic square boundary rough-
ness. J. Fluid Mech. 944, A53 (2022). https:// doi. org/ 10. 1017/ jfm. 2022. 522

He, X., Sinan, M., Kwak, H., Hoteit, H.: A corrected cubic law for single-phase laminar flow through rough-
walled fractures. Adv. Water Resour. 154, 103984 (2021). https:// doi. org/ 10. 1016/j. advwa tres. 2021. 
103984

Huang, S.L., Oelfke, S.M., Speck, R.C.: Applicability of fractal characterization and modelling to rock joint 
profiles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 29(2), 89–98 (1992). https:// doi. org/ 10. 1016/ 
0148- 9062(92) 92120-2

Hyman, J., Morel, J., Shashkov, M., Steinberg, S.: Mimetic finite difference methods for diffusion equations. 
Comput. Geosci. 6(3), 333–352 (2002). https:// doi. org/ 10. 1023/A: 10212 82912 658

Kadioglu, S.Y., Nourgaliev, R.R., Mousseau, V.A.: A comparative study of the harmonic and arithmetic 
averaging of diffusion coefficients for non-linear heat conduction problems. Report INL/EXT-08–
13999. In. Idaho National Laboratory, Idaho Falls, Idaho (2008)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/A:1021291114475
https://doi.org/10.1007/s10596-022-10136-8
https://doi.org/10.1209/0295-5075/13/1/013
https://doi.org/10.1029/GL013i013p01430
https://doi.org/10.1029/2002WR001346
https://doi.org/10.1016/j.advwatres.2020.103594
https://doi.org/10.1016/j.advwatres.2021.104040
https://doi.org/10.1016/j.advwatres.2021.104040
https://doi.org/10.1029/JB076i008p01905
https://doi.org/10.1017/jfm.2022.522
https://doi.org/10.1016/j.advwatres.2021.103984
https://doi.org/10.1016/j.advwatres.2021.103984
https://doi.org/10.1016/0148-9062(92)92120-2
https://doi.org/10.1016/0148-9062(92)92120-2
https://doi.org/10.1023/A:1021282912658


 A. Lavrov 

1 3

Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational 
fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. Appl. 
19(8), 127–145 (1990). https:// doi. org/ 10. 1016/ 0898- 1221(90) 90270-T

Klepikova, M., Méheust, Y., Roques, C., Linde, N.: Heat transport by flow through rough rock fractures: a 
numerical investigation. Adv. Water Resour. 156, 104042 (2021). https:// doi. org/ 10. 1016/j. advwa tres. 
2021. 104042

Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, Hoboken (1978)
Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, S., Provost, A.M.: Documentation for 

the MODFLOW 6 Groundwater Flow Model. U.S. Geological Survey, Reston, Virginia (2017)
Lau, P.C.M., Brebbia, C.A.: The cell collocation method in continuum mechanics. Int. J. Mech. Sci. 20(2), 

83–95 (1978). https:// doi. org/ 10. 1016/ 0020- 7403(78) 90070-X
Lavrov, A.: Comparison of symmetric and asymmetric schemes with arithmetic and harmonic averaging 

for fracture flow on Cartesian grids. Transp. Porous Media 142(3), 585–597 (2022). https:// doi. org/ 
10. 1007/ s11242- 022- 01760-0

Lavrov, A.: Flow of non-Newtonian fluids in single fractures and fracture networks: Current status, chal-
lenges, and knowledge gaps. Eng. Geol. 321, 107166 (2023). https:// doi. org/ 10. 1016/j. enggeo. 
2023. 107166

Lenci, A., Méheust, Y., Putti, M., Di Federico, V.: Monte Carlo simulations of shear-thinning flow in 
geological fractures. Water Resour. Res. 58(9), e2022WR032024 (2022a). https:// doi. org/ 10. 1029/ 
2022W R0320 24

Lenci, A., Putti, M., Di Federico, V., Méheust, Y.: A lubrication-based solver for shear-thinning flow 
in rough fractures. Water Resour. Res. 58(8), e2021WR031760 (2022b). https:// doi. org/ 10. 1029/ 
2021W R0317 60

LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cam-
bridge (2002)

Lin, C., Taleghani, A.D., Kang, Y., Xu, C.: A coupled CFD-DEM simulation of fracture sealing: effect 
of lost circulation material, drilling fluid and fracture conditions. Fuel 322, 124212 (2022). https:// 
doi. org/ 10. 1016/j. fuel. 2022. 124212

Måløy, K.J., Hansen, A., Hinrichsen, E.L., Roux, S.: Experimental measurements of the roughness of 
brittle cracks. Phys. Rev. Lett. 68(2), 213–215 (1992). https:// doi. org/ 10. 1103/ PhysR evLett. 68. 213

Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 
308(5961), 721–722 (1984). https:// doi. org/ 10. 1038/ 30872 1a0

Mao, S., Wu, K., Moridis, G.: Integrated simulation of three-dimensional hydraulic fracture propagation 
and Lagrangian proppant transport in multilayered reservoirs. Comput. Methods Appl. Mech. Eng. 
410, 116037 (2023). https:// doi. org/ 10. 1016/j. cma. 2023. 116037

Moreno, L., Tsang, Y.W., Tsang, C.F., Hale, F.V., Neretnieks, I.: Flow and tracer transport in a single 
fracture: a stochastic model and its relation to some field observations. Water Resour. Res. 24(12), 
2033–2048 (1988). https:// doi. org/ 10. 1029/ WR024 i012p 02033

Nicholl, M.J., Detwiler, R.L.: Simulation of flow and transport in a single fracture: macroscopic effects 
of underestimating local head loss. Geophys. Res. Lett. 28(23), 4355–4358 (2001). https:// doi. org/ 
10. 1029/ 2001G L0136 47

Nicholl, M.J., Rajaram, H., Glass, R.J., Detwiler, R.: Saturated flow in a single fracture: evaluation of 
the Reynolds equation in measured aperture fields. Water Resour. Res. 35(11), 3361–3373 (1999). 
https:// doi. org/ 10. 1029/ 1999W R9002 41

Oron, A.P., Berkowitz, B.: Flow in rock fractures: The local cubic law assumption reexamined. Water 
Resour. Res. 34(11), 2811–2825 (1998). https:// doi. org/ 10. 1029/ 98WR0 2285

Plouraboué, F., Kurowski, P., Hulin, J.-P., Roux, S., Schmittbuhl, J.: Aperture of rough cracks. Phys. 
Rev. E 51(3), 1675–1685 (1995). https:// doi. org/ 10. 1103/ PhysR evE. 51. 1675

Romeu, R.K., Noetinger, B.: Calculation of internodal transmissivities in finite difference models of flow 
in heterogeneous porous media. Water Resour. Res. 31(4), 943–959 (1995). https:// doi. org/ 10. 1029/ 
94WR0 2422

Roth, C., Chilès, J.-P., de Fouquet, C.: Adapting geostatistical transmissivity simulations to finite dif-
ference flow simulators. Water Resour. Res. 32(10), 3237–3242 (1996). https:// doi. org/ 10. 1029/ 
96WR0 1828

Ruello, G., Blanco-Sanchez, P., Iodice, A., Mallorqui, J.J., Riccio, D., Broquetas, A., Franceschetti, 
G.: Synthesis, construction, and validation of a fractal surface. IEEE Trans. Geosci. Remote Sens. 
44(6), 1403–1412 (2006). https:// doi. org/ 10. 1109/ TGRS. 2006. 870433

Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approxi-
mation methods. Eng. Anal. Boundary Elem. 33(11), 1239–1245 (2009). https:// doi. org/ 10. 1016/j. 
engan abound. 2009. 07. 003

https://doi.org/10.1016/0898-1221(90)90270-T
https://doi.org/10.1016/j.advwatres.2021.104042
https://doi.org/10.1016/j.advwatres.2021.104042
https://doi.org/10.1016/0020-7403(78)90070-X
https://doi.org/10.1007/s11242-022-01760-0
https://doi.org/10.1007/s11242-022-01760-0
https://doi.org/10.1016/j.enggeo.2023.107166
https://doi.org/10.1016/j.enggeo.2023.107166
https://doi.org/10.1029/2022WR032024
https://doi.org/10.1029/2022WR032024
https://doi.org/10.1029/2021WR031760
https://doi.org/10.1029/2021WR031760
https://doi.org/10.1016/j.fuel.2022.124212
https://doi.org/10.1016/j.fuel.2022.124212
https://doi.org/10.1103/PhysRevLett.68.213
https://doi.org/10.1038/308721a0
https://doi.org/10.1016/j.cma.2023.116037
https://doi.org/10.1029/WR024i012p02033
https://doi.org/10.1029/2001GL013647
https://doi.org/10.1029/2001GL013647
https://doi.org/10.1029/1999WR900241
https://doi.org/10.1029/98WR02285
https://doi.org/10.1103/PhysRevE.51.1675
https://doi.org/10.1029/94WR02422
https://doi.org/10.1029/94WR02422
https://doi.org/10.1029/96WR01828
https://doi.org/10.1029/96WR01828
https://doi.org/10.1109/TGRS.2006.870433
https://doi.org/10.1016/j.enganabound.2009.07.003
https://doi.org/10.1016/j.enganabound.2009.07.003


Transmissivity Averaging in Fracture Flow on Self‑affine Linear…

1 3

Schmittbuhl, J., Måløy, K.J.: Direct observation of a self-affine crack propagation. Phys. Rev. Lett. 
78(20), 3888–3891 (1997). https:// doi. org/ 10. 1103/ PhysR evLett. 78. 3888

Tsang, C.-F., Neretnieks, I.: Flow channeling in heterogeneous fractured rocks. Rev. Geophys. 36(2), 
275–298 (1998)

van Es, B., Koren, B., de Blank, H.J.: Finite-difference schemes for anisotropic diffusion. J. Comput. 
Phys. 272, 526–549 (2014)

Wang, J.S.Y., Narasimhan, T.N., Scholz, C.H.: Aperture correlation of a fractal fracture. J. Geophys. 
Res. Solid Earth 93(B3), 2216–2224 (1988). https:// doi. org/ 10. 1029/ JB093 iB03p 02216

Wang, L., Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp, J.M., Jr.: Modification of the local cubic 
law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour. Res. 51(4), 2064–
2080 (2015). https:// doi. org/ 10. 1002/ 2014W R0158 15

Wang, Z., Xu, C., Dowd, P.: A modified cubic law for single-phase saturated laminar flow in rough rock 
fractures. Int. J. Rock Mech. Min. Sci. 103, 107–115 (2018). https:// doi. org/ 10. 1016/j. ijrmms. 2017. 12. 
002

Wang, Z., Xu, C., Dowd, P., Xiong, F., Wang, H.D.: A nonlinear version of the Reynolds equation for flow 
in rock fractures with complex void geometries. Water Resour. Res. 56(2), 149 (2020). https:// doi. org/ 
10. 1029/ 2019W R0261 49

Zimmerman, R.W., Kumar, S., Bodvarsson, G.S.: Lubrication theory analysis of the permeability of rough-
walled fractures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(4), 325–331 (1991). https:// doi. org/ 
10. 1016/ 0148- 9062(91) 90597-F

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1103/PhysRevLett.78.3888
https://doi.org/10.1029/JB093iB03p02216
https://doi.org/10.1002/2014WR015815
https://doi.org/10.1016/j.ijrmms.2017.12.002
https://doi.org/10.1016/j.ijrmms.2017.12.002
https://doi.org/10.1029/2019WR026149
https://doi.org/10.1029/2019WR026149
https://doi.org/10.1016/0148-9062(91)90597-F
https://doi.org/10.1016/0148-9062(91)90597-F

	Transmissivity Averaging in Fracture Flow on Self-affine Linear Profiles: Arithmetic, Harmonic, and Beyond
	Abstract
	1 Introduction
	2 Averaging Techniques
	2.1 Arithmetic Averaging of Transmissivity
	2.2 Harmonic Averaging of Transmissivity
	2.3 Cell-Collocation-Based Averaging Techniques
	2.4 Arithmetic Averaging of Aperture
	2.5 Harmonic Averaging of Aperture
	2.6 Global Reconstruction of Aperture Using Multiquadrics

	3 Methodology
	4 Results
	4.1 Results Obtained with wmin = 1 mm to 5 mm
	4.2 Results Obtained with wmin = 0.1 mm

	5 Discussion
	6 Conclusions
	Acknowledgements 
	References


