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Abstract

Titanium dioxide (TiO2), with its distinctive properties and cost-effective,
non-toxic, and stable nature, is widely utilized in various sectors including
advanced energy technologies like photovoltaic devices. One such exam-
ple is the recently emerged interest in doped TiO2 as a potential interme-
diate band material for intermediate band solar cells (IBSCs). This thesis
explores the electronic and optical properties of rutile and anatase, two
polymorphs of TiO2, using various methods such as generalized gradient
approximation (GGA) based density functional theory (DFT), an adapted
version of the PHS method for improved optical predictions, and DFT+U.
Lastly, doped configurations of TiO2 are investigated to evaluate their po-
tential use in IBSCs. Our standard DFT calculations revealed a vast band
gap underestimation, highlighting the need for refined methods and the
potential utility of the hybrid Heyd–Scuseria–Ernzerhof (HSE06) functional.
The optical data, produced by our semi-empirical modification of the PHS
method, largely corroborated existing literature. However, certain discrep-
ancies, particularly on a detailed level, underscored the need for method-
ological enhancement. Our imaginary dielectric functions exhibited a greater
number of critical points (CPs) than have previously been reported in ex-
perimental research. In an attempt to address a gap in the literature, an
effort was made to connect the critical points to interband transitions. We
identified regions in the band structure with significant numbers of possible
optical transitions, and made comparisons with the CP energies. Our anal-
ysis identified likely contributing transitions to a majority of the CPs, but
lacked optical matrix elements as well as comparative literature to verify
our findings. Our explorations into doped TiO2 yielded promising results.
Two configurations, rutile doped with 25% and 12.5% CrN, formed an in-
termediate band between the valence and conduction bands. Although the
band gap prediction limitations inherent in GGA-based calculations intro-
duced uncertainties into our results for doped TiO2, the discovery of these
intermediate bands paves an exciting route for future research.
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Sammendrag

Titandioksid (TiO2), med sine særegne egenskaper og kostnadseffektive,
ikke-giftige, og stabile natur, er mye brukt i ulike sektorer, inkludert avanserte
energiteknologier som fotovoltaiske enheter. Et eksempel på sistnevnte er
den nyoppståtte interessen for dopet TiO2 som et potensielt mellombånd-
materiale for mellombåndsolceller. Denne oppgaven utforsker de elektro-
niske og optiske egenskapene til rutil og anatase, to polymorfer av TiO2,
ved hjelp av ulike metoder som generalized gradient approximation (GGA)
basert density functional theory (DFT), en tilpasset versjon av PHS-metoden
for forbedrede optiske prediksjoner, og DFT+U. Våre standard DFT-beregninger
avdekket en stor underestimering av båndgapet, noe som fremhever be-
hovet for forbedrede metoder og den potensielle nytten av den hybride
Heyd–Scuseria–Ernzerhof (HSE06)-funksjonalen. De optiske dataene, pro-
dusert av vår semi-empiriske modifikasjon av PHS-metoden, bekreftet i
stor grad eksisterende litteratur. Imidlertid understreket visse avvik, spe-
sielt på et detaljert nivå, behovet for metodologisk forbedring. Våre imag-
inære dielektriske funksjoner viste et større antall kritiske punkter enn hva
som tidligere har blitt rapportert i eksperimentell forskning. Med hensikt
om å adressere en mangel i litteraturen, ble det gjort et forsøk på å koble
de kritiske punktene til overganger i båndstrukturen. Vi identifiserte om-
råder i båndstrukturen med et betydelig antall mulige optiske overganger,
og gjorde sammenligninger med energiene til de kritiske punktene. Vår
analyse identifiserte sannsynlige bidragende overganger til flertallet av de
kritiske punktene, men manglet optiske matriseelementer i tillegg til sam-
menlignende litteratur for å bekrefte våre funn. Våre undersøkelser av
dopet TiO2 ga lovende resultater. To konfigurasjoner, rutil dopet med 25%
og 12.5% CrN, dannet et mellombånd mellom valensbåndet og lednings-
båndet. Selv om svakhetene i båndgapsprediksjon iboende i GGA-baserte
beregninger introduserte usikkerheter i resultatene våre for dopet TiO2,
baner oppdagelsen av disse mellombåndene vei for spennende ruter for
fremtidig forskning.

iv



Preface

This thesis was written during my final semester at the 5-year master’s
program in Nanotechnology at the Norwegian University of Science and
Technology (NTNU). I would like to especially thank my supervisor, Assoc.
Prof. Jon Andreas Støvneng, whose support and insightful guidance have
been invaluable throughout the course of this project. In addition, I thank
my co-supervisor Prof. Turid Reenaas, along with Prof. Morten Kildemo and
Thomas Vågenes Brakstad, for their academic insights into the matters of
materials and optics. Lastly, I am grateful for the developers of Talon, an
open-source speech-to-text program. Talon proved vital for the thesis’ com-
pletion during a long-lasting bout of tendinitis that rendered keyboards a
fierce adversary.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Density Functional Theory & Solid State Physics . . . . . . . . . 3

2.1 The Many-Body Schrödinger Equation . . . . . . . . . . . . . 3
2.2 The Hartree and Hartree–Fock Methods . . . . . . . . . . . . 4

2.2.1 The Hartree Method . . . . . . . . . . . . . . . . . . . . 4
2.2.2 The Hartree–Fock Method . . . . . . . . . . . . . . . . 6

2.3 The Hohenberg–Kohn Theorems . . . . . . . . . . . . . . . . . 7
2.4 The Kohn–Sham Equations . . . . . . . . . . . . . . . . . . . . 8
2.5 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . 9
2.6 Crystal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Reciprocal Space . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 k-Space Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Energy Cutoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.12 DFT+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.13 The Fermi–Dirac Distribution . . . . . . . . . . . . . . . . . . . 18
2.14 Energy Bands & Band Gap . . . . . . . . . . . . . . . . . . . . . 19
2.15 Electronic Density of States . . . . . . . . . . . . . . . . . . . . 20
2.16 Dielectric Function and Absorption Coefficient . . . . . . . . 20
2.17 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.18 The PHS Method . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.19 Intermediate Band Solar Cells . . . . . . . . . . . . . . . . . . 24

3 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Software & Infrastructure . . . . . . . . . . . . . . . . . . . . . 27
3.2 General Computational Procedure . . . . . . . . . . . . . . . . 27

vi



Contents vii

3.3 Pseudopotential & Exchange-Correlation
Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 The PHS Method . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Critical Point Analysis . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Second Derivative Analysis . . . . . . . . . . . . . . . . 29
3.5.2 Vertical Translation Analysis . . . . . . . . . . . . . . . 30

3.6 DFT+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Modified TiO2 Configurations . . . . . . . . . . . . . . . . . . . 32

4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 Pseudopotential & Exchange-Correlation

Functional Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Electronic Properties of TiO2 . . . . . . . . . . . . . . . . . . . 37

4.2.1 Band Structure . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Density of States . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Optical Properties of TiO2 and the PHS
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Critical Point Analysis . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Second Derivative Analysis . . . . . . . . . . . . . . . . 46
4.4.2 Vertical Translation Analysis . . . . . . . . . . . . . . . 50

4.5 DFT+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Modified TiO2 Configurations . . . . . . . . . . . . . . . . . . . 60

4.6.1 Rutile, 50% CrN . . . . . . . . . . . . . . . . . . . . . . 60
4.6.2 Rutile, 25% CrN . . . . . . . . . . . . . . . . . . . . . . 60
4.6.3 Rutile, 12.5% CrN . . . . . . . . . . . . . . . . . . . . . 61
4.6.4 Rutile, 25% Mo . . . . . . . . . . . . . . . . . . . . . . . 69
4.6.5 Anatase, 50% CrN . . . . . . . . . . . . . . . . . . . . . 69
4.6.6 Anatase, 25% CrN . . . . . . . . . . . . . . . . . . . . . 69
4.6.7 Anatase, Oxygen Vacancy . . . . . . . . . . . . . . . . . 75
4.6.8 Further Improvements . . . . . . . . . . . . . . . . . . 75

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Acronyms

BZ Brillouin zone. 13, 15, 22, 23, 52, 54

CB conduction band. 19, 22, 23, 25, 26, 30, 37, 40, 56, 60, 61, 64, 68

CP critical point. iii, 22, 23, 29–31, 41, 46–54, 77, 78

DFT density functional theory. iii, iv, 1–4, 7, 9, 17, 18, 23, 27, 29, 31, 32,
34, 37, 45, 50, 58, 75, 77, 78

DOS density of states. 20, 28, 32, 36, 37, 39, 40, 45, 54–56, 58, 61–64,
67–72, 75, 76

GGA generalized gradient approximation. iii, iv, 1, 10, 11, 23, 29, 35, 37,
45, 50, 75, 77, 78

HF Hartree–Fock. 6, 9

HSE06 Heyd–Scuseria–Ernzerhof. iii, iv, 11, 29, 34, 35, 46, 75, 77, 78

IB intermediate band. 25, 26, 60, 61, 64, 68, 69

IBSC intermediate band solar cell. iii, 1, 24, 25, 32, 60, 61, 77, 78

LDA local density approximation. 1, 10, 11, 29, 34, 35, 37

NC norm-conserving. 17, 28, 29, 34–44, 47, 48, 57, 59, 62, 63, 65–67,
70–74, 76

NSCF non-self-consistent field. 28, 32, 50

PAW projector augmented-wave. 17, 29, 31, 32, 34, 35, 55, 57, 58

PBE Perdew–Burke–Ernzerhof. 10, 11, 23, 28, 29, 34–44, 47, 48, 57, 62,
63, 65–67, 70–74, 76

viii



Contents ix

PBEsol Perdew–Burke–Ernzerhof for solids. 11, 29, 31, 32, 34–36, 55–59

PHS PBE+HSE06+Sum rule. iii, iv, vii, 1, 23, 29, 40–48, 77

PP pseudopotential. 28, 29, 34–37

PZ Perdew–Zunger. 29, 34, 35

QE Quantum ESPRESSO. 27, 28

SCF self-consistent field. 6, 9, 27, 28, 32

SQ Shockley–Queisser. 24

VB valence band. 19, 22, 23, 25, 26, 30, 37, 40, 56, 60, 61, 64, 68

XC exchange-correlation functional. 28, 29, 34–37



Chapter 1

Introduction

Titanium dioxide (TiO2) stands as a material of prime importance across
a variety of commercial and industrial applications, thanks to its unique
properties, such as its wide band gap, high refractive index, and impres-
sive photocatalytic behavior [1, p. 6]. Moreover, the extraordinary stabil-
ity, non-toxicity, and cost-effectiveness of TiO2 have marked it as a desired
component in diverse sectors, from traditional applications such as paints,
sunscreens, and catalysts to the forefront of cutting-edge technologies.

The advent of TiO2 in the field of advanced energy technologies, no-
tably in photovoltaic devices, has garnered considerable attention. The re-
cent surge of interest in doped TiO2 as a potential material for intermediate
band solar cells (IBSC) offers exciting possibilities [2–5]. IBSCs possess
theoretical efficiencies that surpass the limitations of traditional single-
junction solar cells by introducing a band of electronic states within the
band gap. This paper focuses on exploring the doping of TiO2 as a promis-
ing avenue for creating such an intermediate band. The study presents a
meticulous investigation of several doped configurations of the two most
common TiO2 polymorphs - rutile and anatase, employing chromium (Cr)
and nitrogen (N) co-doping or molybdenum (Mo), chosen due to their
abundance, environmental friendliness, and human tolerance [6, 7].

Before we explore these modified structures, an in-depth analysis of
the pure forms of rutile and anatase was conducted. This study deployed
a variety of density functional theory (DFT) approaches, such as the stan-
dard generalized gradient approximation and local density approximation
based calculations. Given the constraints of conventional DFT computa-
tions, such as the significant underestimation of the band gap – a defi-
ciency apparent in TiO2 [1, p. 68] – we also sought out alternative strate-
gies. These included the use of a hybrid exchange-correlation functional,
the DFT+U method, and the recently proposed PHS method, designed for
more accurate optical calculations [8].
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Chapter 1: Introduction 2

In our endeavor to comprehensively understand the properties of TiO2,
we identified a notable gap in the existing literature pertaining to critical
point analyses. More specifically, studies identifying the interband transi-
tions in k-space, which are responsible for critical points of the imaginary
dielectric function. These interband transitions carry significant weight as
they directly influence the material’s optical and electronic properties, con-
sequently impacting its efficiency and application potential in various fields
[9, 10, p. 267]. To address this, we undertook an analysis of the possible
optical transitions within the band structure and compared the results with
critical point energies. Our objective in doing so is to unearth deeper in-
sights that could pave the way for more effective optimization of TiO2 in
advanced technological applications.

In Chapter 2, the principles of density functional theory are discussed,
as well as the physical concepts integral to this research. Subsequently, in
Chapter 3, we provide an in-depth description of the computational tech-
niques utilized in our study. Chapter 4 presents and discusses our findings,
before a conclusion in Chapter 5.



Chapter 2

Density Functional Theory &
Solid State Physics

Note: Chapter 2, with the exception of Sects. 2.12, 2.17, 2.18, 2.19, and parts
of 2.5 and 2.16, are adapted from the author’s project thesis, titled "Electronic
and Optical Properties of TiO2" (2022).

The quantum mechanical study of molecules and materials often involves
multiple atoms that make up a many-body problem. To calculate the prop-
erties of these systems one must therefore solve the many-body Schrödinger
equation, to which finding an exact solution is virtually impossible. Nu-
merous approximate methods have been developed over the years, that
balance the numerical accuracy with the computational cost, but few have
been more successful than density functional theory (DFT).

The foundations of DFT were laid by Hohenberg, Kohn, and Sham
in the mid-1960s, when they discovered an alternate way of solving the
Schrödinger equation. The popularity of the method exploded in the 1990s,
when approximation improvements led to significantly higher accuracy of
results [11]. These days, DFT is widely used in a number of fields, including
physics, chemistry, materials science, chemical engineering, and geology.
In this chapter, we will lay out the main principles behind DFT and discuss
the theory behind properties computed in this project. Unless otherwise
stated, the contents of this chapter are based on chapters 1, 3, and 8 of
[12].

2.1 The Many-Body Schrödinger Equation

The goal of DFT is often to find the ground state energy of a given system,
meaning its lowest energy configuration, a property that is independent

3



Chapter 2: Density Functional Theory & Solid State Physics 4

of time. Thus, it is the time-independent Schrödinger equation that is of
relevance, which in its simplest form, discounting relativistic effects, reads

Ĥψ= Eψ. (2.1)

This is an eigenvalue equation, where Ĥ is the energy operator, called the
Hamiltonian, ψ is the set of eigenstates of Ĥ, and E is a set of eigenvalues
associated with each solution ψ.

In a many-body problem, the Hamiltonian must describe the interac-
tion of many nuclei with even more electrons. A common simplification
to the problem is the Born–Oppenheimer approximation, where the wave
functions of the nuclei and the electrons are treated separately [13]. This
is made possible by the electron mass being several orders of magnitude
smaller than the nuclei mass, while experiencing similar forces. As a result,
one can then first solve for the electrons, with the nuclei positions fixed.
In such a system, the equation takes the form

�

−
ħh2

2m

N
∑

i=1

∇2
i +

N
∑

i=1

V (ri) +
N
∑

i=1

∑

j<i

U(ri, r j)

�

ψ= Eψ, (2.2)

where m is the electron mass, N is the number of electrons, and ψ is the
many-body wave function for the N electrons. ∇2 is the Laplacian oper-
ator and relates to the kinetic energy term for each electron. V (ri) is the
interaction energy between electron i and the set of nuclei and U(ri, r j)
describes the interaction energy between electron i and j.

2.2 The Hartree and Hartree–Fock Methods

2.2.1 The Hartree Method

In the 1920s, a computational method for solving the many-body Schrö-
dinger equation was developed, called the Hartree method. This method
is somewhat of a precursor to DFT and is therefore useful to understand
before moving forward. If one assumes that the electrons in the system
have no interaction effects, then the total Hamiltonian can be expressed as
a sum of the individual energy operators of the system’s N electrons,

Ĥ =
N
∑

i=1

ĥi. (2.3)

The corresponding Schrödinger equation for a single electron would
then be
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ĥχ = Eχ, (2.4)

where each χ is a spin orbital, to which there are multiple per single-
electron equation. The j-th spin orbital will be denoted χ j(xi), where xi

defines the position and spin state of electron i. As a consequence of Eq.
(2.3), the eigenfunctions of Ĥ can be expressed as products of the single-
electron spin orbitals, called the Hartree product,

ψ(x1, ...,xN ) = χ1(x1)χ2(x2) · · ·χN (xN ) =
N
∏

i=1

χi(xi). (2.5)

The Hartree method uses a fixed nuclei approach and attempts to calcu-
late the wave function of an N -electron system. The Schrödinger equation
for a single electron is then

�

−
ħh2

2m
∇2 + V (r) + VH(r)

�

χ j(x) = E jχ j(x). (2.6)

Here, VH(r) is the Hartree potential, which describes the Coulomb repulsion
from other electrons as an average and not as a potential between each pair
of charges,

VH(r) = e2

∫

n(r′)
|r− r′|

d3r ′. (2.7)

The electron density n(r) is expressed as

n(r) = 2
N
∑

i=1

ψ∗i (r)ψi(r), (2.8)

where the factor 2 accounts for the spin degeneracy of the orbitals.
As the Hartree method is computational, the continuous wave func-

tion must be represented by a linear combination of a finite set of func-
tions called the basis set, φ1(x),φ2(x), . . . ,φK(x). The approximate single-
electron wave function may then be expressed as

χ j(x) =
K
∑

i=1

α j,iφi(x). (2.9)

Thus, one merely has to find the expansion coefficient α j,i for all j and
i to determine the spin orbitals. Using a larger basis set will increase the
accuracy of the wave functions, but also increases the computational cost.
Therefore, one has to strike a balance between these two considerations
when performing the calculations.



Chapter 2: Density Functional Theory & Solid State Physics 6

We now have the fundamentals to solve the many-body Schrödinger
equation in iterations. One must first create an ansatz for the spin orbitals
χ j by choosing expansion coefficients α j,i, and then calculate the electron
density n(r′). The electron density can then be used to solve Eq. (2.6) for
the spin orbitals. If the resulting wave functions are consistent with the
initial ansatz, satisfying a specified convergence criterion, then the solution
is found. If not, a new ansatz is constructed and the process reiterates
until the convergence criterion is fulfilled. This type of iterative approach
is termed a self-consistent field (SCF) method, and the iteration scheme is
visualized in Fig. 2.1.

2.2.2 The Hartree–Fock Method

The Hartree approach to solving the many-body Schrödinger equation is
not in agreement with the anti-symmetry principle, which states that ferm-
ions’ wave functions are anti-symmetric, i.e. the wave function must change
sign when the particles interchange [14, p. 201]. This is not the case for
the Hartree product, since swapping one electron for another leaves the
sign of the product unchanged.

A correction to this violation is presented in the Hartree–Fock (HF)
method, where the use of a Slater determinant combines the single-electron
wave functions while still adhering to the anti-symmetry principle. The N -
electron wave function is expressed as the determinant of a single-electron
wave function matrix,

ψ(x1, . . . ,xN ) =
1
p

N !

�

�

�

�

�

�

�

�

χ1(x1) χ2(x1) · · · χN (x1)
χ1(x2) χ2(x2) · · · χN (x2)

...
...

. . .
...

χ1(xN ) χ2(xN ) · · · χN (xN )

�

�

�

�

�

�

�

�

, (2.10)

where the determinant coefficient is a normalization factor. In addition
to obeying the anti-symmetry principle, the HF method also satisfies the
Pauli exclusion principle, which states that no two fermions can occupy
the same quantum state simultaneously [15]. This is true for the Slater
determinant, as two electrons with identical coordinates or identical wave
functions would cause the total wave function to vanish.

In addition to the Hartree method’s energy terms of Eq. (2.6), the HF
method includes an exchange potential VX, which accounts for the antisym-
metry of the total wave function. The following single-electron Schrödinger
equations are then solved iteratively in a similar self-consistent fashion as
in the Hartree method,
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Ansatz for χ j

(Eq. 2.9)

Calculate n(r′)
(Eq. 2.8)

Solve for χ j

(Eq. 2.6)

Are χ j self-
consistent?

χ j are the
true solutions

Yes

No

Figure 2.1: The Hartree iterative procedure.

�

−
ħh2

2m
∇2 + V (r) + VH(r) + VX(r)

�

χ j(x) = E jχ j(x). (2.11)

2.3 The Hohenberg–Kohn Theorems

The bedrock on which DFT rests consists of two mathematical theorems
proved by Hohenberg and Kohn in 1964 [16], and a set of equations de-
rived by Kohn and Sham in 1965 [17]. The first Hohenberg–Kohn theorem
reads:

Theorem 1. The ground state energy from Schrödinger’s equation is a unique
functional of the electron density.

Every ground state electron density can be mapped to exactly one ground
state wave function and thus produce a unique ground state energy. A func-
tional is simply a function that takes in another function as a variable and
generates an output. In other words, the theorem states that there exists an
ground state energy functional of the ground state electron density E[n(r)].

This theorem carries immense implications. We now merely have to
compute the three-dimensional electron density to uniquely determine the
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properties of the ground state, instead of solving for the 3N -dimensional
wave function directly. Thus, the computational cost is drastically reduced.

While Hohenberg and Kohn’s first theorem proves that such a func-
tional exists, their second theorem describes how to find it:

Theorem 2. The electron density that minimizes the energy of the overall
functional is the true electron density corresponding to the full solution of the
Schrödinger equation.

That is, if one knows the form of the energy functional, one can use the
variational principle to determine the true ground state energy, i.e. varying
the electron density until the energy is minimized.

2.4 The Kohn–Sham Equations

So, now that the fundamental theorems are in place, we need to know
which energy functionals to include in the Schrödinger equation. Recall
from Eq. (2.8) that the electron density is defined by the single-electron
orbitals ψi, so we can write the energy as a functional of ψi,

E[{ψi}] = Eknown[{ψi}] + EXC[{ψi}], (2.12)

where Eknown[{ψi}] is the collection of all analytically known energy terms
and EXC[{ψi}] is the remaining energy contribution, called the exchange-
correlation functional. The known energy terms are

Eknown[{ψi}] = −
ħh2

m

∑

i

∫

ψ∗i∇
2ψid

3r +

∫

V (r)n(r)d3r

+
e2

2

∫ ∫

n(r)n(r′)
|r− r′|

d3rd3r ′ + Eion,

(2.13)

i.e. the electron kinetic energy, the Coulomb interactions between the elec-
trons and the collective nuclei, the electron-electron pair Coulomb inter-
actions, and the nuclei-nuclei pair Coulomb interactions, respectively.

Kohn and Sham proved that the task of actually minimizing the total
energy functional could be accomplished by solving a set of single-electron
equations, later termed the Kohn–Sham equations,
�

−
ħh2

2m
∇2 + V (r) + VH(r) + VXC(r)

�

ψi(r) = εiψi(r). (2.14)
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The Kohn–Sham equations are somewhat similar to the many-body Schrö-
dinger equation, Eq. (2.2), except that they involve only one electron and
are solved for a single-electron wave function instead of the 3N -dimensio-
nal total wave function. The first three energy terms are the same as the
those introduced in the HF method (Eq. (2.6)), i.e. the kinetic energy term,
the electrostatic interaction between the electron and the collection of nu-
clei, and the Hartree potential, defined in Eq. (2.7). The final term, the
exchange-correlation functional, is mathematically defined as

VXC(r) =
δEXC(r)
δn(r)

, (2.15)

that is, the functional derivative of the exchange-correlation energy with
respect to the electron density.

As was the case for the HF method, the process of solving the Kohn–
Sham equations is circular and must be done in iterations. An initial ansatz
for the electron density is defined and used to solve the Kohn–Sham equa-
tions for the single-electron wave functions. The wave functions are then
used to calculate the electron density, which is compared to the trial den-
sity. If the difference between the two is smaller than the specified con-
vergence criterion, then it is the ground state electron density and is used
to calculate the ground state energy of the system. If not, a new electron
density trial function is created and the cycle is repeated until convergence.
This iterative procedure, like the Hartree method, is a self-consistent field
method and is illustrated in the flowchart of Fig. 2.2.

2.5 Exchange-Correlation Functionals

The Hohenberg–Kohn theorems and the Kohn–Sham equations provide the
foundation of DFT, but there is still one essential piece missing. As we saw
in Eq. (2.14), the exchange-correlation functional is necessary to solve the
Kohn–Sham equations, but it is unknown in all but one instance. In a uni-
form electron gas, the electron density n(r) is constant in space and the
exchange-correlation functional V electron gas

XC can be exactly defined. This re-
sult can be used to solve the Kohn–Sham equations for a specific system by
setting the exchange-correlation functional at position r to be the uniform
electron gas exchange-correlation functional of the electron density at the
given position. That is,

V LDA
XC (r) = V electron gas

XC [n(r)]. (2.16)

As this method uses the local electron density to approximate the
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Ansatz for n(r)

Solve for ψi(r)
(Eq. 2.14)

Calculate n(r)
(Eq. 2.8)

Is n(r) self-
consistent?

Compute ground state energy
(Eq. 2.12)

Yes

No

Figure 2.2: The iterative procedure of the Kohn–Sham equations.

exchange-correlation functional, it is called the local density approxima-
tion (LDA).

In real materials, LDA is of limited use, since the variation of the elec-
tron density is a vital part of how materials’ properties differ. However, the
LDA is important in the construction of more elaborate functionals, such as
the approach called the generalized gradient approximation (GGA). GGA
functionals combine the local electron density with the local gradient in
the electron density in their approximation,

V GGA
XC (r) = VXC[n(r),∇n(r)]. (2.17)

When the electron density is constant, the non-empirical GGA func-
tionals converge to the exact energy of the uniform electron gas. Thus,
they satisfy the uniform density limit. Since the GGA functionals include
more physical information in their approximations, they provide a more
accurate result for most systems, with a few exceptions.

The approach as to how the density gradient is included into the func-
tional can vary a great deal, and there exists a multitude of different GGA
functionals. One such functional is the Perdew–Burke–Ernzerhof (PBE)
functional, developed by the three authors in 1996 [18]. The PBE func-
tional is non-empirical and widely applicable for many different systems.
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Although it is not always the most accurate GGA, its universality has made
it one of the most extensively used functionals to date.

A revised version of the PBE functional was introduced in 2008, called
the Perdew–Burke–Ernzerhof for solids (PBEsol), which aimed to improve
equilibrium properties of bulk solids and their surfaces [19]. PBEsol pro-
vides more accurate predictions of lattice constants than PBE, which often
overestimates these quantities [20].

Another branch of exchange-correlation functionals are the hybrid func-
tionals, which integrate parts of the exact exchange from Hartree–Fock
theory [12, p. 218]. Hybrid functionals may provide more accurate esti-
mates of several properties in solid state physics, including the band gap
and structural properties, but carry a markedly higher computational cost
than GGA- or LDA-based functionals [21]. One of the most widely used
hybrid functionals for solid state systems is the Heyd–Scuseria–Ernzerhof
(HSE06) functional [22, 23], which is based on the PBE functional with
the incorporation of exact exchange into the short-range interaction [12,
p. 219].

2.6 Crystal Structures

A crystal is made up of atoms or ions arranged in a periodic fashion in three
dimensions [24, p. 3]. The smallest group of atoms that is repeated in the
crystal, called the basis, is attached to a set of points in space, referred
to as the lattice. Any point in the lattice can be described by an integer
combination of the three translation vectors a1, a2, and a3,

r= n1a1 + n2a2 + n3a3. (2.18)

All lattice points are equivalent, meaning their properties are invariant to
any translation by the lattice vectors.

The primitive lattice is defined by the primitive lattice vectors, which
constitute the smallest volume that can be used to generate the crystal
structure. A special type of primitive unit cell is the Wigner–Seitz cell, illus-
trated in Fig. 2.3. The Wigner–Seitz cell is constructed by Voronoi decom-
position, i.e. separating the lattice volume into regions around each lattice
point such that every position in one region is closer to the corresponding
lattice point than any other lattice point [24, p. 6].

The 14 distinct types of three-dimensional lattice structures are called
Bravais lattices. Rutile and anatase, the two most common polymorphs of
titanium dioxide [1, p. 13], and the subjects of this report, are both part of
the tetragonal lattice system. Tetragonal lattices are rectangular prisms
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Figure 2.3: Wigner–Seitz cell, highlighted in gray.

(a) Rutile (b) Anatase

Figure 2.4: Conventional unit cells of rutile and anatase TiO2, created in
VESTA [25]. The larger, blue balls are titanium atoms and the smaller, red
balls are oxygen atoms.

in which one side length is different from the other two. The Bravais lat-
tices of rutile and anatase are the primitive tetragonal lattice and the body-
centered tetragonal lattice, respectively [26]. The conventional unit cells
of both polymorphs are shown in Fig. 2.4.
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2.7 Reciprocal Space

For mathematical convenience, DFT predominantly utilizes the Fourier
transform of the real, three-dimensional space, called the reciprocal space
or k-space. The latter term comes from the fact that the reciprocal space is
spanned by the infinite set of wave vectors k, whereas real space is spanned
by the position vector r. Analogous to the translation vectors in real space,
we have three axis vectors of the reciprocal lattice describing positions in
k-space, defined by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
,

b2 = 2π
a3 × a1

a1 · (a2 × a3)
,

b3 = 2π
a1 × a2

a1 · (a2 × a3)
.

(2.19)

Each axis vector bi is orthogonal to two of the lattice vectors, i.e.

bi · ai = 2πδi j. (2.20)

Any point in the reciprocal lattice can be expressed by a linear combi-
nation of the three vectors defined by Eq. (2.19),

G= m1b1 +m2b2 +m3b3, (2.21)

where G is called a reciprocal lattice vector [24, p. 31].
Lengths in reciprocal space are inversely related to the lengths in real

space. For example, a tetragonal unit cell with two long side lengths and
one short one, like rutile, will have two short side lengths and one long
one in k-space. This attribute is of relevance when sampling k-points (see
Sect. 2.9).

The reciprocal space equivalent to the Wigner–Seitz cell is the first Bril-
louin zone, usually referred to simply as the Brillouin zone (BZ). Some
points in the Brillouin zone are of high symmetry and are given letter
names, such as Γ where k = 0. The Brillouin zone of rutile and anatase,
with selected k-points, is shown in Fig. 2.5.

2.8 Bloch’s Theorem

For the study of systems with a periodic potential, such as a crystal lattice,
the solutions of the Schrödinger equation must satisfy Bloch’s theorem [24,
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Figure 2.5: The first Brillouin zone of rutile and anatase TiO2. Marked are
the high symmetry k-points used in the computations.
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p. 169]. This theorem states that the solutions take the form

ψk(r) = uk(r)e
ik·r, (2.22)

where uk(r) carries the same periodicity as the crystal lattice, i.e. uk(r) =
uk(r+n1a1+n2a2+n3a3) for all integers n1, n2, and n3. In other words, the
wave functions are a product of some periodic function uk(r) and a plane
wave eik·r. Thus, these types of calculations are commonly referred to as
plane-wave calculations.

A Bloch function with a wave vector k′ outside the first Brillouin zone
can always be modified with a reciprocal lattice vector G, such that the
new wave vector k = k′ +G is located within the first Brillouin zone [24,
p. 225]. Mathematically,

ψk′(r) = eik′·ruk′(r) = eik·r(e−iG·ruk′(r))

= eik·ruk(r) =ψk(r).
(2.23)

Since both e−iG·r and uk′(r) have the periodicity of the crystal, so too does
uk(r) = e−iG·ruk′(r), and ψk is thus also a Bloch function. In other words,
because of periodicity, each Bloch functionψk is only unique within the first
Brillouin zone, and we can restrict the calculations to this area without loss
of generality.

2.9 k-Space Sampling

The Brillouin zone is an essential concept in DFT because a large portion
of the calculations take the form

ḡ =
Vcell

(2π)3

∫

BZ

g(k)dk, (2.24)

where some function g(k) is integrated over all k in the first Brillouin zone.
Such integrals are approximated numerically by summing the function val-
ues at discrete points multiplied with a corresponding weight. These dis-
crete k-points are chosen within the bounds of the integral, i.e. within the
first BZ.

A number of different approaches to selecting the k-points used for the
BZ integration have been developed. None have been as widely used as the
method devised by Monkhorst and Pack in 1976 [27]. For this method, the
user only has to specify the number of k-points to be sampled in each direc-
tion in reciprocal space. It is generally reasonable to select these numbers
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to be proportional to the lengths of the respective reciprocal lattice vec-
tors. If all three lattice vectors in real space are of equal length, so too
will the reciprocal lattice vectors be, and the standard choice would be an
M×M×M Monkhorst–Pack grid. If two of the lattice vectors a1 and a2 are
of equal length and the third one is smaller, a3 < a1,2, then the opposite
relation would be true in reciprocal space, i.e. b3 > b1,2. Thus, the natural
choice of k-points would be an M ×M × N grid, where N > M .

A denser set of k-points results in a more accurate energy approxima-
tion, but also a higher computational cost. It is therefore necessary to per-
form a convergence test of the given system to determine how many points
are needed to get a well-converged result without using an unnecessary
amount of computational resources.

2.10 Energy Cutoffs

As discussed in Sect. 2.8 and Eq. (2.22), the solutions we are seeking for
periodic structures include a function uk(r) which has equal periodicity to
the crystal lattice. As a result of this periodicity, uk(r) can be expanded by
a set of plane waves,

uk(r) =
∑

G

cGeiG·r, (2.25)

where the reciprocal lattice vector G is defined by Eq. (2.21). Inserting Eq.
(2.25) into Eq. (2.22) gives an updated expression for the Bloch function,

ψk(r) =
∑

G

ck+Gei(k+G)r. (2.26)

Using this Bloch function exactly would mean summing up an infinite
amount of points in k-space defined by G, which for obvious reasons is
impractical for a calculation following the laws of time and space. How-
ever, these Bloch functions are solutions to the Schrödinger equation, with
kinetic energy

Ek =
ħh2

2m
|k+G|2. (2.27)

Only kinetic energies up to some limit are of physical importance, as high-
energy states are unlikely to be occupied. Therefore, the infinite sum of Eq.
(2.26) can be limited by a value determined by the kinetic energy cutoff,

Ecut =
ħh2

2m
G2

cut. (2.28)



Chapter 2: Density Functional Theory & Solid State Physics 17

The Bloch function can then be expressed as

ψk(r) =
∑

|G+k|<Gcut

ck+Gei(k+G)r. (2.29)

The kinetic energy cutoff must be provided in the input of DFT calculations
and should be tested for convergence.

2.11 Pseudopotentials

To not exclude the plane waves of core electrons one would have to select a
large kinetic energy cutoff, since core electrons oscillate at a faster rate and
have high kinetic energies. As discussed, it is computationally beneficial
to select lower Ecut, but ignoring these inner electrons altogether would
produce incorrect results. However, these tightly bound electrons need not
be as precisely described as the loosely bound valence electrons, as it is
the latter that are most critical in determining the properties of the system.
Therefore, methods to approximate the properties of core electrons have
been developed to reduce the computational cost of the calculations, the
most common of which are pseudopotentials.

Pseudopotentials aim to approximate the electron density of a chosen
set of core electrons, attempting to satisfy physical and mathematical char-
acteristics of the true ion core. The ion core is then most commonly as-
sumed to be fixed for all calculations, which is called the frozen core ap-
proximation. Pseudopotentials have a transferability, which is the property
that they can be applied to the element in any system without needing to
amend the pseudopotential.

A natural consequence of our discussion above, regarding core elec-
trons and high kinetic energies, is that the choice of pseudopotential will
have an effect on the minimum choice of Ecut. Pseudopotentials requir-
ing a high Ecut are referred to as hard, while those requiring lower Ecut

are called soft. Several different types of pseudopotentials have been con-
structed over the years, with ultrasoft pseudopotentials (USPP), the pro-
jector augmented-wave (PAW) method, and norm-conserving (NC) pseu-
dopotentials being some of the most common.

2.12 DFT+U

While standard DFT shows acceptable accuracy in structural and cohesive
properties, it is not as impressive in the prediction of electronic and opti-
cal properties [28]. For instance, it is well known that DFT systematically
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underestimates the band gap of semiconductors and insulators, an error
which has significant implications for the resulting electronic and optical
data [12, p. 28]. These limitations arise due to the electron self-interaction
in the Hartree potential of the Kohn–Sham equations – namely the unphys-
ical electron repulsion of itself [12, p. 227]. A lack of perfectly accurate
exchange-correlation functionals, which would cancel out this effect, has
led to the development of correction methodologies.

One such correction method is DFT+U. The "+U" refers to the inclusion
of an additional Hubbard U term in the DFT Hamiltonian. The standard
DFT total energy functional can be extended in the DFT+U method as [29]

EDFT+U[n] = EDFT[n] + EU[n]− EDC[n]. (2.30)

Here, EDFT[n] is the standard DFT energy, EU[n] is the Hubbard U term
that takes into account the on-site Coulomb interaction, and EDC[n] is the
double counting correction term. EU[n] represents the energy penalty of
localizing electrons in the same atomic orbital, thus capturing the physics
missed by standard DFT for strongly correlated electron systems. However,
as the selection of an appropriate U value is typically system-dependent,
this parameter is commonly adjusted to fit some known property of the sys-
tem, such as the band gap or the lattice constant. Thus, DFT+U is usually
of semiempirical nature [28].

2.13 The Fermi–Dirac Distribution

At absolute zero temperature, an N -electron system has no kinetic energy.
The electrons then only fill the lowest energy orbitals while obeying the
Pauli exclusion principle. The highest filled energy level of this ground state
system is defined as the Fermi energy [24, p. 137].

As the temperature increases, the electron distribution will shift so that
some former unoccupied orbitals will be occupied, and some occupied or-
bitals will be unoccupied. The Fermi–Dirac distribution provides the prob-
ability that an electron orbital with energy E is occupied under thermal
equilibrium [24, p. 138],

f (E) =
1

e(E−µ)/(kB T ) + 1
. (2.31)

Here, kB is the Boltzmann constant, T is the temperature, and µ is the
chemical potential, commonly referred to as the Fermi level. The Fermi level
EF is temperature dependent and is equal to the Fermi energy at abso-
lute zero, as the electron distribution then becomes a step function, where
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f (E < EF) = 1 and f (E > EF) = 0. f (µ) = 1
2 for all temperatures, mean-

ing that the probability of an electron state with energy equal to the Fermi
level being occupied is always 50%.

2.14 Energy Bands & Band Gap

Electrons bound to atoms are allowed to exist in quantized energy levels,
but for solids these discrete levels are broadened into energy bands [30,
p. 51]. The bands are quasi-continuous, in reality consisting of a multitude
of discrete levels in close proximity, requiring only tiny amounts of energy
to excite an electron from one state in the band to the next. The energy
bands in the solids are separated by gaps of forbidden regions.

The band structure of a solid can be separated into two main phenom-
ena, the first being that the highest occupied band is only partially filled.
The second is that, at 0 K, the highest occupied energy band is completely
filled with electrons, with an energy band gap (Eg) separating it from the
next, completely unoccupied band. In the first case, electrons are able to
flow freely under application of an electric field, and the material is said
to be a metal. In the second case, the solid cannot conduct electricity at
zero temperature, since there are no available states for electrons to move.
These materials are called semiconductors or insulators, where the former
has a lower band gap than the latter. The highest occupied bands are called
the valence bands (VB), while the lowest unoccupied bands are called the
conduction bands (CB).

The exact band gap value distinguishing semiconductors from insula-
tors is somewhat arbitrary, but it is generally said that materials with a
band gap greater than ~3 eV are insulators. Due to the band gap being of a
lesser size in semiconductors, they have more excited electrons at nonzero
temperatures, allowing for some conductivity. Semiconductors also have a
better capability of absorbing photons and excite valence band electrons
into the conduction band, an important characteristic for solar cells and
other optoelectronic devices.

Different states in a band structure are not only characterized by their
energies, but also by their wave vector k. If the highest energy state in
the VB and the lowest energy state in the CB have a different k-vector, the
semiconductor is said to have an indirect band gap, whereas it is direct if
they are equal.
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2.15 Electronic Density of States

While the Fermi–Dirac function reveals the probability distribution of elec-
trons in a system, it does not take into account the states available to the
electrons. For that, we need the density of states (DOS), which describes
the number of electron states per unit energy range [24, p. 142]. The den-
sity of occupied electron states is then the product of these two functions,
f (E)D(E).

Density functional theory is able to estimate the DOS by integrating
the electron density in k-space. Due to the k-space integration, there is a
need for a greater number of k-points than in normal ground state energy
calculations in order to get accurate results.

One can characterize the type of material in study by looking at the
DOS at the Fermi level. The material is a metal if it has a nonzero number
of states at the Fermi level, while it is a semiconductor or an insulator if
the Fermi level is located within the band gap between the valence and
conduction bands. The band gap can then be estimated by calculating the
energy difference between the lowest state in the conduction band and the
highest state in the valence band.

The DOS is an important characteristic of a semiconductor. The density
around the conduction band edge, together with the Fermi–Dirac function,
determines the charge carrier concentration, which at thermal equilibrium
is equal to

n=

∫ ∞

Ec

f (E)D(E)dE, (2.32)

where Ec is the conduction band edge energy [31, p. 92]. In turn, the
charge carrier concentration defines the material’s electrical conductivity
σ,

σ = enµn, (2.33)

where e is the elementary charge and µn is the electron mobility [31,
p. 103].

2.16 Dielectric Function and Absorption Coeffi-
cient

From Maxwell’s equations, we have that the wave equation for the electric
field in a medium can be expressed as [30, p. 349]
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∇2E= ϵAµ0
∂ 2E
∂ t2

+σµ0
∂ E
∂ t

. (2.34)

Here, we have assumed that the magnetic permeability µ is equal to µ0. ϵA

is the absolute dielectric constant and σ is the electrical conductivity. This
wave propagates with dissipation and has a solution of the form

E= E0ei(k·r−ωt), (2.35)

which, inserted into Eq. (2.34), gives

−k2 = −ϵAµ0ω
2 −σµ0iω. (2.36)

Expressed in terms of the vacuum speed of light c, this becomes

k =
ω

c

√

√

ϵ +
σi
ϵ0ω

, (2.37)

where c = 1/
p
µ0ϵ0 and ϵ is the relative dielectric constant. The square

root term is the complex refractive index,

nr =

√

√

ϵ +
σi
ϵ0ω

, (2.38)

which can be written as a combination of its real and imaginary parts,

nr = n′r + in′′r . (2.39)

The wavenumber k can then be expressed as

k =
n′rω

c
+ in′′r

ω

c
, (2.40)

which in turn can be inserted into the electric field wave Eq. (2.35), which,
assuming propagation in the +z direction, becomes

E= E0 exp

�

iω

�

n′rz

c
− t

��

exp

�

−n′′rωz

c

�

. (2.41)

The electric field wave thus experiences a damping effect, which is related
to the medium’s absorption of electromagnetic energy. The absorption co-
efficient is determined by the damping of the field wave’s intensity, i.e. the
square of Eq. (2.41), and is given by

α(ω) =
2n′′rω

c
. (2.42)
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The complex relative dielectric constant can be expressed in terms of
its real and imaginary parts,

ϵ = ϵ1 + iϵ2. (2.43)

These bear the following relation to the complex refractive index:

ϵ1 = n′2r − n′′2r

ϵ2 = 2n′r n
′′
r

(2.44)

Solving Eq. (2.44) for n′′r and inserting into Eq. (2.42) gives the absorption
coefficient in terms of the relative dielectric constant

α(ω) =
2ω
c

√

√

√−ϵ1 +
Æ

ϵ2
1 + ϵ

2
2

2
, (2.45)

which, upon exchanging the angular frequency with energy, becomes

α(E) =
2E
ħhc

√

√

√−ϵ1 +
Æ

ϵ2
1 + ϵ

2
2

2
. (2.46)

Thus, one can determine the absorption coefficient if the energy and the
real and imaginary parts of the complex relative dielectric constant are
known.

2.17 Critical Points

The band structure dictates the curve of the imaginary relative dielectric
function [9, p. 262]. The absorption of a photon with energy ħhω can take
place at any point within the Brillouin zone, as long as the energy is con-
served [24, p. 434],

ħhω= Ec(k)− Ev(k), (2.47)

where c is a conduction band and v is a valence band. Primarily, the imag-
inary relative dielectric function is dominated by direct interband transi-
tions. Although indirect optical transitions can occur with phonon assis-
tance, their contributions are several orders of magnitude smaller than
direct transitions [9, p. 265].

Spectral structures in the ϵ2 spectrum, that is, peaks and "shoulders"
[9, p. 253], are referred to as critical points (CPs) and signify the presence
of a substantial number of possible direct VB to CB transitions at a specific
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energy level [9, p. 262]. In the band structure, this is illustrated by valence
bands and conduction bands exhibiting vertical translation, i.e. having the
same line shape but shifted along the energy axis, for a given interval in
k-space. In other words, points in the BZ where the energy difference be-
tween a CB and a VB remains unchanged [24, p. 435],

∇k[Ec(k)− Ev(k)] = 0. (2.48)

At these energies, Ec(k)− Ev(k), transitions accumulate and cause spectral
structures in ϵ2(E). The critical points are, however, not solely determined
by the quantity of the potential VB to CB transitions, but also by their re-
spective transition probabilities [9, p. 260].

2.18 The PHS Method

Optical properties of materials can be computed using DFT methods. How-
ever, the precision of these calculations has demonstrated considerable
variation [32–34]. Results have been shown to be highly dependent on the
choice of exchange-correlation functional, injecting a level of unreliability
and a necessity to compare with experimental data.

A solution to this was proposed by Nishiwaki and Fujiwara [8], and en-
tails calculating ϵ2 with a GGA functional (PBE) and a high density k-grid,
before shifting the energy axis to fit the band gap determined by a hybrid
functional (HSE06 [22, 23]) calculation. Finally, the spectrum amplitudes
are corrected using a sum rule. This approach is referred to as the PHS
(PBE+HSE06+Sum rule) method, and was shown by authors to produce
optical data that closely match the experimental spectra for typical solar
cell materials.

The first step of the PHS method is, as mentioned, calculating ϵ2 using
a GGA–PBE exchange-correlation functional and a highly dense k-mesh.
To compensate for the DFT band gap underestimation [12, p. 28], the ϵ2

spectrum is shifted to match the band gap of a calculation based on the
hybrid functional HSE06.

∆Eg = Eg,HSE − Eg,PBE (2.49)

Here, Eg,HSE and Eg,PBE are the band gaps computed with HSE06 and PBE,
respectively. Eg,HSE is a suitable reference value because the HSE06 func-
tional is among the most accurate for estimating the band gap [35].

When shifting the spectrum, one has to make sure that the sum rule is
satisfied [36, p. 622]:
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∫

Eϵ2(E)dE = const. (2.50)

With an energy correction value of ∆Eg, it follows that
∫

Eϵ2,PBE(E)dE =

∫

(E +∆Eg)ϵ2,shift(E +∆Eg)dE, (2.51)

where ϵ2,shift is the shifted imaginary relative dielectric function. Assuming
the coefficients E and ∆Eg are constant, we derive

∫

ϵ2,shift(E +∆Eg)dE = f

∫

ϵ2,PBE(E)dE, (2.52)

where f = E/(E+∆Eg). Thus, it follows that ϵ2,shift(E+∆Eg) = f ϵ2,PBE(E).
Redefining the E axis so that E+∆Eg→ E, and setting ϵ2,PHS(E) = ϵ2,shift(E),
we get the final expression of the imaginary relative dielectric function:

ϵ2,PHS(E) =
E −∆Eg

E
ϵ2,PBE(E −∆Eg). (2.53)

The real relative dielectric function can then be derived by Kramers–
Kronig integration [36, p. 620]:

ϵ1,PHS(E) = 1+
2
π
P
∫ ∞

0

E′ϵ2,PHS(E′)

E′2 − E2
dE′, (2.54)

where P signifies the principal part of the integral.
To determine the absorption coefficient αPHS(E), one merely has to in-

sert ϵ1,PHS and ϵ2,PHS into Eq. (2.46).

2.19 Intermediate Band Solar Cells

Although conventional solar cells have vastly improved the last couple of
decades, they are restricted by the Shockley–Queisser (SQ) limit, which
states that the absolute efficiency for a single-gap solar cell is 40.8% under
maximum sunlight illumination [37, 38]. As the efficiencies of these con-
ventional solar cells are approaching their theoretical limit, the interest in
third-generation solar cells, introducing novel designs in order to exceed
the SQ limit, has increased markedly [39–42]. One such design is the in-
termediate band solar cell (IBSC), which has an ideal efficiency limit of
63.2% under maximum sunlight concentration [43]. Whereas traditional
solar cells employ a standard semiconductor as the absorbing material, the
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IBSC is based on a material uniquely defined by the presence of an isolated
electronic band, known as the intermediate band (IB), positioned between
the VB and CB.

A fundamental limitation of conventional solar cells is their utilization
of only a portion of the solar spectrum [44]. Exciting electrons from the VB
to the CB requires a photon energy equal to or greater than the band gap.
Photons with a smaller energy will not be absorbed, while photons with a
greater energy will result in a thermalization process – an electron excited
to a state above the conduction band edge, almost instantaneously relaxed
back to the edge while releasing heat. The IBSC reduces this problem by
introducing two more optical transitions, thus allowing a wider range of
electromagnetic radiation to be absorbed and reducing energy loss.

As shown in Fig. 2.6, the introduction of an intermediate band splits the
band gap (Eg) into two sub-band gaps, the lowest one (EL) and the highest
one (EH). In the case of a non-infinitesimal intermediate bandwidth, the
IB has a width of ∆EIB, with a distance to the CB and the VB of EC,I and
EI,V, respectively. At thermal equilibrium, the Fermi level is located inside
the IB [44]. This means that there exist two main mechanisms for creating
an electron-hole pair: a direct transition from the VB to the CB (labeled 1
in Fig. 2.6) and a two-step excitation process from the VB to the IB (2a)
and then to the CB (2b).

To maximize absorption of the electromagnetic spectrum, the IB should
ideally not be positioned in the middle of the band gap, since that would
result in only two distinct band gap energies (Eg and EL = EH). Whether
the IB exists above or below the middle of the band gap, however, is in-
significant.

The optimal theoretical efficiency limit of 63.2% assumes an infinites-
imally small bandwidth of the intermediate band, which in practice is not
realistic. Therefore, Levy and Honsberg conducted an analysis in 2008 that
examined the contrasting impacts of a finite band width: its beneficial ef-
fect, in that it can prevent recombination through the intermediate band,
and its negative effect, as it reduces optical absorption [45]. They deter-
mined that the optimal width for the intermediate band is less than or
approximately equal to 825 meV, which yields a theoretical efficiency of
57.9%. When this condition is fulfilled, the highest efficiencies are achieved
when the smallest band gap (EC,I or EI,V) is roughly 100 meV lower and the
second smallest band gap (EI,V or EC,I) is roughly 400 − 500 meV higher
than 825 meV.
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Figure 2.6: Sketch of the band diagram of an IB material, with the Fermi
level EF. The colored arrows illustrate the three optical transitions, 1 rep-
resenting the direct transition from the VB to the CB, whereas 2a and 2b
show the transitions facilitated by the IB. For an infinitesimally narrow IB,
the band gap Eg is divided into two sub-band gaps, EL and EH, determined
by the position of the IB. In the case of a finite length, the IB has a width
of∆EIB, with a distance to the CB and the VB of EC,I and EI,V, respectively.
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Computational Methods

3.1 Software & Infrastructure

The open-source software Quantum ESPRESSO (QE), versions 6.7 and 7.1,
was utilized for the computations in this thesis [46]. QE, which is built
upon the principles of DFT, employs plane wave basis sets and pseudopo-
tentials. The calculations were carried out in parallel across 32 CPU cores
on the Idun and the Hemmer clusters, both high-performance computing
infrastructures housed at NTNU [47].

3.2 General Computational Procedure

Unless stated otherwise, the following methodology was consistently ap-
plied for all structures discussed in this thesis.

The total energy of the systems was computed using the SCF method
detailed in Sect. 2.4, using the pw.x program in QE. The k-meshes, con-
structed on the basis of the Monkhorst-Pack method, were tested for con-
vergence, alongside the kinetic energy cutoff values. The k-points in each
direction were selected proportional to the lengths of the respective recip-
rocal lattice vectors, in order to attain equal k-point density in all direc-
tions. The number of electronic states (nbnd) was set to 30 more than the
number of occupied states at zero temperature, in order to compute states
in the conduction bands in addition to the valence bands.

For each unique structure, geometry optimization was carried out with
the aim of identifying the most stable configuration with the lowest possi-
ble ground state energy. This was achieved through a vc-relax calculation
in the pw.x program, optimizing both the atomic positions and the lattice
parameters.

27
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To approximate the band structure, an initial SCF calculation was exe-
cuted prior to running a bands calculation in pw.x. High-symmetry k-points
required for the bands calculations were identified using XCrySDen [48].
Appropriate k-point weights were selected to provide a detailed resolution
of the band diagrams. Finally, the post-processing tool bands.x was exe-
cuted before plotting the resulting band structures.

Density of states calculations were preceded by an SCF calculation em-
ploying the same parameters as above, with the exception of using Blöchl’s
tetrahedron method [49] for interpolation in k-space, securing a more ac-
curate integration [12, p. 182]. Since DOS calculations involve integrating
the electron density in k-space, a denser grid was necessary for precise re-
sults. Consequently, a non-self-consistent field (NSCF) calculation was ex-
ecuted post the SCF run, with a k-point grid of 30×30×30. The DOS was
then determined using the dos.x program. It is worth noting that QE’s unit
for DOS is states per energy (eV) per unit cell volume. Thus, it is generally
the case that calculations with larger units cells result in higher DOS.

For dielectric function calculations, an initial SCF run was conducted,
followed by an NSCF computation – this time setting the parameters nosym
and noinv to .true.. This was due to epsilon.x not allowing a reduction of
the k-point grid. Similar to the DOS calculations, a grid configuration of
30× 30× 30 was utilized. The complex dielectric function was computed
with the epsilon.x program, setting the calculation to eps and utilizing Gaus-
sian smearing with 0.20 eV as the broadening parameter for the interband
contribution. The absorption coefficient was then calculated by inserting
the real and imaginary parts of the relative dielectric function into Eq.
(2.46).

3.3 Pseudopotential & Exchange-Correlation
Functional

Different exchange-correlation functionals (XC) paired with pseudopoten-
tials (PP), listed in Table 3.1, were trialed on rutile and anatase TiO2. The
lattice parameters and band gaps of the two TiO2 polymorphs were cal-
culated and compared to known values from experimental literature, in
order to choose the most accurate pair for further calculations. Addition-
ally, the DOS was computed to see a more detailed electronic comparison.
The norm-conserving pseudopotential with the PBE functional were cho-
sen for subsequent computations. The converged k-point grid and kinetic
energy cutoff Ecut with all PP–XC pairs were 7× 7× 11 and Ecut = 400 Ry
for rutile and 8× 8× 8 and Ecut = 450 Ry for anatase.
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Table 3.1: Overview of the different pseudopotential (PP) files with at-
tached exchange-correlation functionals (XCs) used in this thesis.

PP Method XC Reference

PAW LDA PZ [50]
PAW GGA PBE [18]
PAW GGA PBEsol [19]
NC GGA PBE [18]
NC Hybrid HSE06 [22, 23]

3.4 The PHS Method

After performing standard DFT calculations, the optical data of rutile and
anatase were processed according to the PHS method, detailed in Sect.
2.18. Due to memory requirements beyond our resources, the HSE06 band
gap Eg,HSE in Eq. (2.49) was replaced with experimentally measured band
gaps from existing literature. These values were 3.03 eV for rutile and 3.20
eV for anatase [51]. The semi-empirical nature of this substitution made
the approach unsuitable for the other configurations of this thesis, as ex-
perimental data were lacking. The integral of Eq. (2.54) was calculated
numerically using Simpson’s method [52, p. 223].

3.5 Critical Point Analysis

3.5.1 Second Derivative Analysis

The dielectric functions obtained from the PHS method were used as a
basis for detecting critical points, as the energies will match experimental
data more closely. The PHS post-processing should not significantly affect
the CPs, aside from the energy shift and a slight amplitude adjustment.

Not all critical points of the imaginary relative dielectric function are
in the form of local maxima, but may also manifest as a "shoulder" [9,
p. 253]. Therefore, merely finding the roots of the first derivative is in-
sufficient to detect all critical points. As such, a second derivative analysis
was conducted to identify the CPs of rutile and anatase, based on the PHS
data. This was done to confirm the change in concavity associated with an
observed spectral structure in a dielectric function, denoting a CP. A peak
or a shoulder CP will occur around the points where the second derivative
experiences a local minimum below zero.
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The derivatives, dϵ2/dE and d2ϵ2/dE2, were calculated numerically,
after smoothing out the function with a Savitzky–Golay filter [53]. The
convolution coefficients, set to a cubic polynomial and a window size of
25, were chosen to smooth out digital noise while maintaining minimal
distortion of the line shape.

The exact placements of the shoulder critical points were then deter-
mined visually by the use of plotting tools, while for the peak critical points,
the exact energy was found by calculating the roots of the first derivative.

3.5.2 Vertical Translation Analysis

To locate the transitions in k-space responsible for the CPs, a Python script
was developed to analyze the band structures of rutile and anatase. This
script compares each valence band to each conduction band and identifies
regions in k-space where the two bands are vertical translations of each
other, meaning they have the same line shape but are shifted along the
energy axis. Typically, but not exclusively, this means that the bands are
parallel.

The script is based on Eq. (2.48). To identify vertical translation, the
code analyzes the transition energies, Et(k) = Ec(k)− Ev(k), between each
VB to each CB. If the transition energy between two bands remains un-
changed for a stretch in k-space longer than kinterval, then they are are
considered vertical translates at that particular k-vector. kinterval is set to
0.15 Å−1, a length visualized in Fig. 3.1.

If the energy difference between two Et within a k-space interval ex-
ceeds the parameter dEt, then the two bands are not considered vertical
translates at that interval. In other words, dEt defines the maximum al-
lowed difference between the highest and the lowest Et of a vertical trans-
lation point. dEt is set to 0.02 eV, a relatively strict requirement that was
tested to ensure exclusion of transitions that are clearly not vertical trans-
lates.

To differentiate the contributions of different transitions, a weighting
coefficient is assigned to each transition. This coefficient is proportionally
based on the extent of their vertical translation intervals. For instance, in
the case of two linear bands, the weighting coefficient would be deter-
mined by the distance in k-space over which the bands are parallel.

Finally, the critical points from the vertical translation analysis were
compared to those from the second derivative analysis, after readjusting
the latter’s energies back (see Eq. (2.49) of Sect. 2.18). The CPs from the
vertical translation analysis that matched those from the second deriva-
tive analysis, within an interval of ±0.04 eV, were visualized in the band
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structure as optical transitions. This interval was selected based on the un-
certainty of visual accuracy when determining the precise location of the
CP shoulders, and potential discrepancies between the electronic and opti-
cal DFT calculations. The main functions of the vertical translation analysis
code is provided in the appendix 5.

Figure 3.1: Example band diagram illustrating the kinterval parameter of
the vertical translation analysis code, visualized as the distance between
the two vertical orange lines.

3.6 DFT+U

In an effort to obtain more precise electronic and optical properties of rutile
and anatase, the DFT+U method was employed. The only pseudopotential
file available that allowed calculations with this method was the projec-
tor augmented-wave pseudopotential with the PBEsol functional, and was
thus selected for these calculations.

The Hubbard parameter was applied to the atomic orbitals dominant
around the band gap, that is, close to the valence band maximum and
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the conduction band minimum. To identify these orbitals, the projected
density of states was computed for both rutile and anatase with the PAW
pseudopotential and PBEsol functional. Initial SCF and NSCF calculations
were carried out in the same manner as the DOS calculations, described in
Sect. 3.2, prior to the execution of the projwfc.x program.

The Hubbard parameter was calibrated so that the resulting band gaps
closely matched empirical data, i.e. 3.03 eV for rutile and 3.20 eV for
anatase, with a precision up to two decimal points. Due to the influence
of the U parameter on geometrical properties, geometry optimization was
conducted prior to each SCF calculation that determined the band gaps.

Following the parameter tests, the DOS and the band structure of the
two polymorphs were computed. However, technical constraints prevented
optical calculations using the DFT+U method, thus precluding its use in
further calculations. A DOS calculation using the PBEsol functional and
identical parameters as the DFT+U calculations was conducted for both
polymorphs, in order to study the effects of the Hubbard parameter.

3.7 Modified TiO2 Configurations

Electronic and optical properties of various doped configurations of TiO2

were computed following the procedure outlined in Sect. 3.2, in order to
investigate their usefulness in IBSC technology. The configurations inves-
tigated included both rutile and anatase co-doped with CrN, as well as
rutile doped with Mo, as listed in Table 3.2. When doped with CrN, the su-
percells underwent substitution where one Ti atom and one O atom were
respectively replaced with Cr and N atoms bound together. In the case of
the supercell doped with Mo, a single Ti atom was substituted with a Mo
atom.

The main objective of computing the properties of doped TiO2 struc-
tures was to assess their potential applicability in IBSC technology. Primar-
ily, that includes investigating whether an intermediate band appears be-
tween the valence and conduction band, as well as studying the materials’
response to an external electromagnetic field.

In addition to the doped structures, properties of an anatase structure
with a 3.1% oxygen vacancy were computed, to study the effects of such
a point defect. For this, an anatase 2× 2× 2 supercell was utilized, with a
removal of 1/32 of the O atoms.
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Table 3.2: Overview of the different doping configurations investigated,
including the kinetic energy cutoff value Ecut and the k-mesh used.

Polymorph Dopant Doping [%] Supercell Ecut [Ry] k-mesh

Rutile CrN 50 1× 1× 1 150 5× 5× 8
CrN 25 2× 1× 1 150 3× 6× 9
CrN 12.5 2× 2× 1 200 2× 2× 6
Mo 25 2× 1× 1 300 3× 6× 9

Anatase CrN 50 1× 1× 1 200 6× 6× 6
CrN 25 2× 1× 1 300 8× 8× 3

O vacancy 3.1 2× 2× 2 300 4× 4× 3
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Results & Discussion

4.1 Pseudopotential & Exchange-Correlation
Functional Tests

The results of the lattice parameters and band gaps of rutile and anatase,
based on the different pseudopotential and exchange-correlation functional
pairs, are listed in Table 4.1. Due to insufficient computer memory re-
sources, computations with the HSE06 functional were not possible at an
acceptable precision level.

All PP–XC pairs showed decent ability in predicting structural proper-
ties of titania, as is generally the case with DFT calculations [12, p. 222].
PBE consistently overestimates the lattice parameters of both polymorphs.
This is an expected phenomenon, as discussed in Sect. 2.5, and is to some
degree corrected in the PBEsol functional, which was the most accurate
functional for predicting the structural properties.

While there was little difference between the two PBE pseudopotentials
(PAW and NC), the PZ functional consistently underestimated the lattice
parameters and exhibited the greatest deviations from experimental data.
This is not unexpected, since this functional was the only one based on
the LDA method, and thus does not take the electron density gradient into
account. Even so, all PP–XC pairs predicted the lattice parameters within
−1.4% to +2.3% of the empirical equivalents.

The band gaps, however, were markedly underestimated by all func-
tionals, with relative errors between 30.9% and 39.3%. As mentioned,
conventional DFT methods systematically undervalue the band gap, our
calculations being no exception. Similar DFT calculations on TiO2 have
yielded similar band gaps. For instance, the PBE functional has been re-
ported to yield band gaps of 2.08 [54], 2.19 [55], 2.20 [56], and 2.36 eV
[54], while ours were determined 2.14 eV (PAW) and 2.21 eV (NC).

34
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Table 4.1: Lattice parameters (a, c) and band gaps (Eg) of rutile and anatase, derived from the combinations of pseudopoten-
tials (PPs) and exchange-correlation functionals (XC), compared to their respective experimental values (aexp, cexp, Eg,exp).
Experimental values for rutile are aexp = 4.59 Å, cexp = 2.96 Å, and Eg,exp = 3.03 eV, while for anatase, they are aexp = 3.78
Å, cexp = 9.51 Å, and Eg,exp = 3.20 eV [1, p. 15] [51].

Polymorph PP XC a [Å] a/aexp[%] c [Å] c/cexp[%] Eg [eV] Eg/Eg,exp [%]

Rutile PAW LDA–PZ 4.56 99.3 2.92 98.6 1.84 60.7
PAW GGA–PBE 4.65 101.3 2.97 100.3 1.84 60.7
PAW GGA–PBEsol 4.60 100.2 2.95 99.7 1.85 61.1
NC GGA–PBE 4.64 101.1 2.97 100.3 1.90 62.7
NC Hybrid–HSE06 - - - - - -

Anatase PAW LDA–PZ 3.75 99.2 9.49 99.8 2.11 65.9
PAW GGA–PBE 3.80 100.5 9.73 102.3 2.14 66.9
PAW GGA–PBEsol 3.77 99.7 9.58 100.7 2.13 66.6
NC GGA–PBE 3.80 100.5 9.71 102.1 2.21 69.1
NC Hybrid–HSE06 - - - - - -
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(a)

(b)

Figure 4.1: The DOS of (a) rutile and (b) anatase, as calculated by the
different pseudopotential–exchange-correlation functional pairs. The en-
ergy axis is calibrated so that each valence band maximum aligns at E = 0
eV.

Although none were optimal, the most precise PP–XC pair for deter-
mining the band gap was the NC pseudopotential with the PBE functional.
Even though the PBEsol functional gave the best structural predictions, the
electronic properties were more important for the purposes of this thesis,
and so the NC–PBE file was selected for further calculations, unless other-
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wise stated.
Fig. 4.1 shows a comparison of the DOS computed by the different PP–

XC pairs. The energy axis is adjusted so that each valence band maxima is
located at E = 0 eV – a more practical zero point for comparison than the
Fermi energies. The different spectra exhibit the same trends and share all
major structures, though they are increasingly shifted further from the VB
maximum. If anything, these results illustrate that there are only minimal
electronic differences separating these conventional DFT methods, even in
the case of the LDA functional.

4.2 Electronic Properties of TiO2

4.2.1 Band Structure

The band structures of rutile and anatase, computed with the NC pseu-
dopotential and the PBE functional, are displayed in Fig. 4.2. Both poly-
morphs have the Fermi energy positioned inside a band gap, which cor-
rectly implies that they are semiconductors. Rutile has a direct band gap,
with the highest state in the valence band and the lowest state in the con-
duction band both situated at the Γ point. However, several points within
the CB possess energy levels just about 4% greater than the Γ point, par-
ticularly at M, between M and Γ , and at R. Prior literature has highlighted
this phenomenon, suggesting that rutile may have a direct band gap or a
nearly equivalent indirect band gap [57].

In contrast, the band gap nature of anatase is more readily interpretable
and exhibits an indirect gap. The peak state in the VB is close to the X
point, along the line between Γ and X, while the CB minimum is at the Γ
point. This indirect band gap has previously been reported in other GGA-
based first-principles studies [58–60]. Some references calculate the band
structure using symmetry points appropriate for a simple tetragonal lattice,
which makes direct comparison challenging [55, 61].

4.2.2 Density of States

The NC–PBE-based DOS plots from Fig. 4.1 are also presented in Fig. 4.3, to
better distinguish its features and show a wider energy range. As with the
band structures, the Fermi energy, now equated to E = 0 eV, resides within
a band gap, confirming the semiconducting nature of both polymorphs.
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(a)

(b)

Figure 4.2: Band structure of (a) rutile and (b) anatase, computed with
the NC pseudopotential and the PBE functional, with the Fermi energy set
to E = 0 eV.
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(a)

(b)

Figure 4.3: The DOS of (a) rutile and (b) anatase, computed with the
NC pseudopotential and the PBE functional, with the Fermi energy set to
E = 0 eV.

The band structure and the DOS plots are directly related. Energy levels
that consist of a large number of available states within the band structure
– particularly where bands are more horizontally aligned – are likely to
exhibit a high DOS. Oppositely, the levels with fewer available states will
display a lower DOS.

It is apparent from Fig. 4.3a that rutile has a comparatively low DOS
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around the VB edge. This observation corresponds well with Fig. 4.2a,
where the only available states near the VB edge exist around the Γ point.
Conversely, near the CB minimum, there is a significant incline in DOS,
which correlates to the flat band found between the M and Γ points and
the states around the R point in the band structure.

Anatase’s DOS presents an opposite behavior with a significant number
of states at the VB edge and fewer states at the lower segment of the CB,
as visualized in Fig. 4.3b. Once again, this characteristic is replicated in
the band structure shown in Fig. 4.2b, with bands providing more states
around the VB maximum than at the CB minimum.

With rutile’s direct band gap and a higher DOS at the CB edge, one
might predict it to be a superior conductor than anatase. This is because
exciting VB electrons to the CB edge does not necessitate a momentum shift
and phonon assistance, and an elevated DOS around the CB edge tends to
boost conductivity, according to Eqs. (2.32) and (2.33). Nevertheless, the
abundance of oxygen vacancies in anatase, which can serve as electron
donors, results in anatase displaying higher conductivity than rutile, as
reported in the literature [62].

4.3 Optical Properties of TiO2 and the PHS
Method

The dielectric function and absorption coefficient, calculated using the PHS
method and the NC–PBE pseudopotential-functional pair, are shown in
Figs. 4.4 and 4.5 for rutile and Figs. 4.6 and 4.7 for anatase. Given our
primary interest in TiO2 for photovoltaic applications, we have constrained
the energy axis to 6.5 eV (= 191 nm). This limit is set because only a mi-
nuscule portion of sunlight reaching the Earth’s surface exceeds this energy
level [63].

Since both polymorphs have a tetragonal structure, their optical prop-
erties are anisotropic, leading to a different dielectric function and absorp-
tion coefficient along the a and c axes. This anisotropy is evident in the
figures, depicting clear differences between the ordinary (a) and the ex-
traordinary (c) axes.

The dielectric function represents the response of a medium to an elec-
tric field, where the real part ϵ1 quantifies the field’s ability to permeate
the material and the imaginary part ϵ2 measures the material’s capacity to
absorb or dissipate energy. Consequently, ϵ2 is zero for energies below the
band gap in both polymorphs and rises with the number of possible optical
transitions from valence bands to conduction bands.
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(a)

(b)

Figure 4.4: Dielectric function of rutile along the (a) ordinary and the
(b) extraordinary axes. The spectra are computed according to the PHS
method, with the NC pseudopotential and the PBE functional.

Before delving into the ϵ2 CP analysis in Sect. 4.4, it can be useful to
look at the overall trends and precision of our optical data.

Rutile is reported to have a major ϵ2,a peak at ∼ 4.1 eV [64, 65], which
matches well with Fig. 4.4a. A smaller structure at ∼ 4.6 eV found in the
literature may correspond to the local maximum at ∼ 4.4 eV in Fig. 4.4a.
Other smaller structures are difficult to find in the experimental data, ex-
cept for the local maximum at ∼ 5.5 eV which is in good agreement with
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(a)

(b)

Figure 4.5: Absorption coefficient of rutile as a function of (a) photon
energy and (b) photon wavelength. The spectra are computed according
to the PHS method, with the NC pseudopotential and the PBE functional.

the peak at ∼ 5.5 eV of Fig. 4.4a, although the amplitudes deviate. ϵ2,c is
similarly reported to have a major peak at ∼ 4.2 eV [64, 65], matching the
maximum at∼ 4.0 eV of Fig. 4.4b. Although this peak is reported markedly
higher than the ϵ2,a equivalent, they are of similar magnitude in our data.
None of the other structures of Fig. 4.4b are found in the ellipsometry
literature.

The ϵ1,a maximum at ∼ 3.9 eV aligns well with the literature peak at
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(a)

(b)

Figure 4.6: Dielectric function of anatase along the (a) ordinary and the
(b) extraordinary axes. The spectra are computed according to the PHS
method, with the NC pseudopotential and the PBE functional.

∼ 3.8 eV. So does the ϵ1,c peak at∼ 3.8 eV, which corresponds to a literature
peak of ∼ 3.8 eV. The remaining ϵ1 spectra correlate well with the general
trends but show discrepancies in smaller structures and amplitudes.

As for anatase, Jellison et al. report an incline of ϵ2,a from 3.5 eV to a
shoulder structure at ∼ 4.0 eV, before a broad peak at around 4.8 eV [65].
This pattern is partially visible in Fig. 4.6a, although Jellison et al. do not
report energies above 5.6 eV. The two maxima of ϵ2,c, at ∼ 4.3 and ∼ 5.1



Chapter 4: Results & Discussion 44

(a)

(b)

Figure 4.7: Absorption coefficient of anatase as a function of (a) photon
energy and (b) photon wavelength. The spectra are computed according
to the PHS method, with the NC pseudopotential and the PBE functional.

eV, are in good agreement with the ellipsometry peaks – although Jellison
et al. measured the second peak to be significantly smaller than the first,
which is not reflected in Fig. 4.6b.

Ellipsometry data for ϵ1,a reveal two main features, a maxima at ∼ 3.8
eV and a shoulder at ∼ 4.5 eV [65]. This is only partially corroborated by
our data, as Fig. 4.6a depicts multiple closely spaced structures after 3.5 eV,
and a highest maximum at∼ 4.5 eV. ϵ1,c displays a maximum at∼ 4.1 eV in
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literature, closely matching the maximum at ∼ 4.2 eV in Fig. 4.6b, before
a steep decline. However, Jellison et al. do not report the local maximum
at ∼ 5.0 eV seen in our data.

The plots of the absorption coefficient as a function of both photon
energy and wavelength, are represented in Figs. 4.5a and 4.5b for rutile,
and Figs. 4.7a and 4.7b for anatase. As expected, the absorption coefficient
exhibits a slow, almost negligible, increase at the band gap, specifically at
3.03 eV for rutile and 3.20 eV for anatase. This behavior is attributed to
the limited number of optical transitions possible just above the band gap
energy.

In examining the absorption coefficient, parallels can be drawn with
the dielectric function, particularly in how the trends are linked with the
DOS and band structure. This is a logical correlation as the absorption
coefficient is directly calculated from the dielectric function according to
Eq. (2.46). Higher values of ϵ2 yield a greater α since this imaginary part is
connected with energy loss, as previously discussed. There is, however, not
a straightforward relation between ϵ1 and α, despite α∝ n′′r (Eq. 2.42)
and ϵ1∝−n′′2r (Eq. 2.44). That is because both n′2r and n′′2r of Eq. (2.44)
are frequency dependent [30, p. 349].

Rutile displays superior absorption capabilities along its c axis for UVA
and UVB rays, while demonstrating increased absorption along the a axis
for UVC rays. Conversely, anatase’s absorption coefficient is markedly higher
along the a axis for UVA rays, with absorption along both axes alternating
for shorter wavelengths. It is worth noting that neither polymorph displays
significant absorption of visible light, attributed to their expansive band
gaps. Rutile typically demonstrates a higher absorption coefficient than
anatase in the long-wavelength UV range, a finding that aligns with other
ab initio calculations [61, 66]. Broadly speaking, the overall trends and
magnitudes of α(λ) exhibit consistency with these calculations, although
local variations may deviate, akin to the dielectric function.

The PHS method has demonstrated decent ability in predicting the di-
electric function and absorption coefficient of rutile and anatase. The most
notable spectral structures and broad trends tend to agree well with the ex-
perimental data, although anomalies occur and detailed structures in the
DFT spectra are often not confirmed by ellipsometry. The latter is a com-
mon phenomenon for optical DFT calculations [67–69], and other GGA-
based calculations show strong correlation to our dielectric functions [67,
69]. Additionally, the amplitudes of our ϵ spectra frequently diverge from
those reported in the literature, occasionally computed as low as 25%-50%
of the empirical data, although at other instances they exhibit a higher de-
gree of precision.
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The necessitated choice to amend the PHS method and adjust the band
gaps to the empirical values greatly limits the applicability of our approach
to systems with unknown band gaps, such as doped TiO2. Adhering to the
standard PHS procedure and employing an HSE06 functional would re-
solve this issue and reduce the empirical nature of our approach.

4.4 Critical Point Analysis

4.4.1 Second Derivative Analysis

The second derivatives of ϵ2 for both polymorphs are plotted in Figs. 4.8
and 4.10. In the approximate location of each negative local minimum is
attached a label indicating the critical point, exactly determined by the
roots of the first derivative (peaks) or visual determination (shoulders).
For the sake of simplicity, the CPs are denoted E1, E2, etc., with a unique
set of labels for each axis. Figs. 4.9 and 4.11 show the dielectric function
spectra along with the critical points for rutile and anatase, respectively.
The CPs marked in the figures are also listed in Table 4.2.

When comparing our critical points to experimental literature, perhaps
the most notable discrepancy is the relatively large number of CPs we have
identified. Yet, some lines can be drawn between our results and the liter-
ature.

In our energy range, rutile’s CPs in the a direction have been reported
to be 4.00 eV (large peak), 5.35 eV (small peak), and 6.10 eV (shoulder) by
Cardona and Harbeke [70], 4.1 eV (large peak) by Jellison et al.1 [65], and
4.0 eV (large peak), 4.6 eV (shoulder), and 5.4 eV (small peak) by Tiwald
and Schubert [64]. The first CP reported by these authors matches well
with E1a = 4.01 eV, which appears as the earliest local maximum. The E5a

CP at 5.44 eV may also correlate to Cardona and Harbeke’s at 5.35 eV and
Tiwald and Schubert’s at 5.4 eV, although these are relatively small peaks,
while E5a is a relatively large peak. Aside from the possibility of the local
maximum E3a = 4.82 eV being the equivalent of Tiwald and Schubert’s
shoulder at 4.6 eV, and the shoulders E6a = 5.86 eV or E7a = 6.25 eV
matching with Cardona and Harbeke’s shoulder at 6.10 eV, the other CPs
are not found in the experimental literature.

In the c direction, all three references report only one CP at 4.11 eV
(Cardona and Harbeke), 4.3 eV (Jellison et al.), and 4.2 eV (Tiwald and
Schubert). This matches relatively well with our first CP E1c = 4.02 eV. All
other eight critical points are not documented in the mentioned literature,

1Jellison et al. did not report energies above 5.5 eV.
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Figure 4.8: Second derivative of ϵ2 for rutile.

(a)

(b)

Figure 4.9: Dielectric function of rutile with critical points along the (a)
ordinary and the (b) extraordinary axes. The spectra are computed ac-
cording to the PHS method, with the NC pseudopotential and the PBE
functional.
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Figure 4.10: Second derivative of ϵ2 for anatase.

(a)

(b)

Figure 4.11: Dielectric function of anatase with critical points along the
(a) ordinary and the (b) extraordinary axes. The spectra are computed
according to the PHS method, with the NC pseudopotential and the PBE
functional.
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Table 4.2: Critical points of rutile and anatase, based on second derivative
analysis of the imaginary relative dielectric function, along the direction
of the ordinary (a) and the extraordinary (c) axes.

Rutile Anatase

E# Ea [eV] Ec [eV] Ea [eV] Ec [eV]

E1 4.01 4.02 3.69 4.34
E2 4.47 4.42 3.84 4.62
E3 4.82 4.54 3.99 4.81
E4 5.10 4.76 4.14 5.14
E5 5.44 4.92 4.29 5.69
E6 5.86 5.08 4.69 -
E7 6.25 5.43 4.83 -
E8 - 5.54 5.10 -
E9 - 5.95 5.54 -
E10 - - 5.74 -
E11 - - 5.84 -
E12 - - 5.97 -
E13 - - 6.09 -
E14 - - 6.24 -
E15 - - 6.41 -

not even the relatively large peak E4c at 4.76 eV.
For anatase, CPs along the ordinary axis are reported 3.8 eV (shoulder)

and 4.8 eV (large peak) by Jellison et al. and 3.8 eV (small peak), 4.7 eV
(large peak), and 5.8 eV (small peak) by Hosaka et al. [71]. Not many
parallels can be drawn between our 15 CPs and those documented by the
literature. The structure reported at 3.8 eV may correspond to E2a = 3.84
eV, which appears as a relatively small peak. The large peaks reported at
4.8 eV (Jellison et al.) and 4.7 eV (Hosaka et al.) may correlate to either
E6a = 4.69 eV or E7a = 4.83 eV, or perhaps a broadened combination of the
two. The latter is not unlikely, since Jellison et al.’s peak has a broad char-
acter (the energy range covered by Hosaka et al. is too expansive to judge
broadness). Additionally, the global maximum E12a = 5.97 eV, and sur-
rounding shoulders, may correspond to the small peak at 5.8 eV of Hosaka
et al.

Along the extraordinary axis, Jellison et al. report CPs at 4.3 eV (large
peak) and 5.05 eV (shoulder), while Hosaka et al. at 4.4 eV (large peak)
and 5.0 eV (shoulder). The first CP matches well with the peak E1c = 4.34
eV, while the second peak, E4c = 5.14 eV, may correspond to the docu-
mented shoulder at ∼ 5 eV. The remaining shoulders are not identified by
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Jellison et al. or Hosaka et al.
There are several possible causes for the notable discrepancy in the

quantity of CPs between our DFT computations and empirical studies. For
one, the finite k-space sampling can lead to discontinuities or irregularities
in the resulting dielectric function if the grid is not sufficiently dense. We
attempted to minimize this error source by performing a dense NSCF cal-
culation using a 30× 30× 30 k-point grid, but due to high computational
cost, denser meshes were not tested. Secondly, approximations in DFT, like
the use of exchange-correlation functionals and pseudopotentials, can in-
troduce errors or anomalies compared to more exact methods.

Furthermore, experimental measurements of the dielectric function of-
ten involve some form of broadening due to various factors like instru-
mental resolution, temperature effects [72], and lifetime broadening [9,
p. 318]. Lifetime broadening is a result of Heisenberg’s uncertainty princi-
ple for energy and time [14, p. 142],

∆t∆E ≥
ħh
2

.

Since an excited interband transition has a finite lifetime, there will nec-
essarily be a broadening of the energy position. The combined broadening
effects make experimental spectra appear smoother. In contrast, computa-
tional results do not inherently include these broadening effects, and so can
appear more "spiky" unless some form of artificial broadening is applied.
The epsilon.x program does, however, include a broadening parameter, of
which an increased value might reduce the number of CPs and more closely
match empirical data.

Discrepancies of the critical points from Table 4.2 compared to em-
pirical literature may therefore be caused by limitations of experimental
measurements or computational precision. Efforts to improve the accuracy
of our GGA-based DFT approach could be made, for example utilizing a
denser k-mesh, adjusting the interband broadening parameter, or consider
hybrid functionals or many-body perturbation theory [73, p. 551].

4.4.2 Vertical Translation Analysis

The vertical translation analysis code identified 22 CPs for rutile and 39
CPs for anatase. Out of those, 8 (36%) for rutile and 11 (28%) for anatase
matched with CPs from the second derivative analysis. The second deriva-
tive analysis grouped some CPs together during comparison, due to the CP
match precision requirement of ±0.04 eV. As a result, 9 out of 16 (56%)
of rutile’s and 13 out of 20 (65%) of anatase’s CPs from Table 4.2, aligned
with CPs identified by our code.
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Figure 4.12: Optical transitions in k-space corresponding to rutile’s CPs
found by second derivative analysis, based on vertical translation analy-
sis code. The arrows’ thicknesses are proportional to the weight of their
respective transitions, as explained in Sect. 3.5.2. The red outlined box
more clearly shows the E5a+E7c and E5c transitions at the A point.

A greater percentage of CPs from the second derivative analysis matched
with CPs from the vertical translation analysis than vice versa. This is rather
expected, since the latter method does not take the optical matrix elements
into account.

Shown in Figs. 4.12 and 4.13 are the optical transitions found by the
vertical translation analysis code, for the matching CPs. The arrows illus-
trate the interband transitions for each CP, with a thickness proportional
to the weight of the transition, as discussed in Sect. 3.5.2.

Interestingly, there does not seem to be a one-to-one relation between
the weight and the magnitude of ϵ2 at the CPs. For instance, judging by
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Figure 4.13: Optical transitions in k-space corresponding to anatase’s CPs
found by second derivative analysis, based on vertical translation analy-
sis code. The arrows’ thicknesses are proportional to the weight of their
respective transitions, as explained in Sect. 3.5.2. The red outlined box
more clearly shows the E2c and E5a transitions at the Γ point.

rutile’s Fig. 4.12 alone, one might assume that E3a, E5a, E7a, E2c, E7c, and po-
tentially E8c, would exhibit the highest amplitudes. Yet, some of the great-
est maxima, such as E4c, are absent. The reason behind this absence re-
mains uncertain. It is possible that parameters dEt and kinterval were set
too strictly, but our parameter testing indicated that loosening these re-
quirements led to transitions at clearly non-parallel bands (too large dEt)
or transitions with few state contributions (too low kinterval).

Rutile’s E4c, for example, the large amplitude may simply be a result of
a large number of transitions at different points in the BZ with significant
transition probabilities. To illustrate this, we have plotted all the optical
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(a)

(b)

Figure 4.14: Band structures of (a) rutile and (b) anatase showing all pos-
sible optical transitions corresponding to a critical point within an interval
of ±0.02 eV.
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transitions in the band structure with energies equal to E4c, within ±0.02
eV, in Fig. 4.14a.

Similarly, for the CPs exhibiting vertical translation, there may also be
contributions to ϵ2 at other points in the BZ. Fig. 4.14b illustrates that while
the majority of the contributions occur at the point of vertical translation,
near the Γ point, there exist other potential transitions.

It is worth noting that the vertical translation code only considers direct
interband transitions. Despite indirect transitions being greatly outnum-
bered by direct ones, their contributions can be observed in the dielectric
function at points below the direct band gap [9, p. 265]. However, they
generally do not result in CPs due to their relatively small impact. Fur-
thermore, since the epsilon.x program excludes indirect transitions from
its calculations [74], the influence of any potential indirect transition CP
can be discounted in our CP comparison.

To the best of our knowledge, no prior studies have isolated the tran-
sitions in k-space responsible for the critical points exhibited by rutile and
anatase. Hence, the reliability of our vertical translation analysis method
remains unconfirmed. The fact that our method identified a notable por-
tion of the CPs for rutile (56%) and anatase (65%) does suggest some
degree of validity. However, the remaining unidentified CPs, and more im-
portantly, the exclusion of transition probabilities, greatly undermines the
reliability of our findings. Applying our method to crystal structures with
more established literature concerning interband transitions contributing
to ϵ2 CPs could help assess its accuracy.

4.5 DFT+U

The projected density of states is shown in Fig. 4.16 for rutile and in Fig.
4.17 for anatase. Both figures suggest that the oxygen p orbitals dominate
at the valence band edge, while the titanium d orbitals dominate at the con-
duction band edge, for both polymorphs. Considering that the electronic
configuration of oxygen is 1s22s22p4 and 1s22s22p63s23p64s23d2 for tita-
nium [75, p. 355], we applied the Hubbard parameter to the O 2p and the
Ti 3d orbitals, in order to increase the band gap. Our projected DOS results
agree with the literature, in that the valence band is primarily composed
of O 2p orbitals and the conduction band of Ti 3d orbitals [1, p. 68].

The band gaps as a function of the U parameter are plotted in Figs.
4.15a for rutile and 4.15b for anatase. The graphs show nearly linear re-
sponse of an increased U parameter. Band gaps equal to the experimen-
tal values, with a precision of two decimal points, were achieved with
U = 4.98 eV for rutile and U = 3.86 eV for anatase.
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(a)

(b)

Figure 4.15: Band gaps of (a) rutile and (b) anatase as a function of the
Hubbard U parameter, calculated with the PBEsol+U method and the PAW
pseudopotential.

The density of states compared to a standard PBEsol calculation are
shown in Fig. 4.18a for rutile and 4.18b for anatase. As designed, the band
gaps of the PBEsol+U calculations are greater than the PBEsol calculations.
Both the valence band edge and the conduction band edge are pushed
further away from the Fermi level, but the conduction band edge more
so for rutile. Interestingly, the PBEsol DOS are more spread out along the
energy axis.

Although appearing at different energies, the featured structures of
both methods are mostly equivalent. The main anomalies with PBEsol+U
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(a)

(b)

Figure 4.16: Projected DOS of rutile. The O 2p orbital dominates the VB,
while the Ti 3d orbital dominates the CB.

are the occasional spikes not seen in the PBEsol spectra, such as anatase’s
spike at ∼ −3.8 eV.

The band diagrams obtained using the PBEsol+U method, as illustrated
in Figs. 4.19a and 4.19b, unsurprisingly bear a strong resemblance to the
structures depicted in Figs. 4.2a and 4.2b, with the exception of an ex-
panded band gap.

Interestingly, the direct band gap of rutile transforms into an indirect
one, transitioning from the Γ to the M point. This shift is attributed to
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(a)

(b)

Figure 4.17: Projected density of states of anatase. The O 2p orbital dom-
inates the valence band, while the Ti 3d orbital dominates the conduction
band.

subtle modifications in the electronic structure. Minor changes in the elec-
tronic structure have caused this shift, as the conduction band minimum
at the M and the Γ points are nearly identical for both methods. A band
structure calculation using the PBEsol functional confirmed that it was in-
deed the U parameter that incited this change, and not the switch from the
NC–PBE to the PAW–PBEsol file.

Comparing Fig. 4.19 to Fig. 4.2 reveals that certain bands have split at
the symmetry points, for example at the A point (E ≈ −6.5 eV) for rutile
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(a)

(b)

Figure 4.18: The DOS of (a) rutile and (b) anatase, computed with the
PAW pseudopotential and the PBEsol functional, both with and without
the DFT+U method. The Fermi energy is at E = 0 eV.

or the Γ point (E ≈ −2.5 eV) for anatase. Thus, there is reason to believe
that the DFT+U method has some limitations in accurately representing
the band structure.

It is also important to acknowledge the semi-empirical nature of this
approach. Determining Hubbard parameters that accurately replicate the
experimental band gaps of rutile and anatase does not necessarily
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(a)

(b)

Figure 4.19: Band structure of (a) rutile and (b) anatase, computed with
the NC pseudopotential and the PBEsol+U method, with the Fermi energy
set to E = 0 eV.
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guarantee their suitability for other modified versions of TiO2. Therefore,
one should be careful when applying these parameters to structures with
no available empirical data.

4.6 Modified TiO2 Configurations

Due to technical issues with the epsilon.x program, resulting in infinitely
large ϵ2 values, we were only able to compute the dielectric function for
the 25% CrN doped rutile and anatase.

4.6.1 Rutile, 50% CrN

Figs. 4.20a and 4.20b suggest that 50% CrN doped rutile has metallic prop-
erties. The Fermi energy is not located in a band gap, with plenty of states
below and above EF, allowing free flow of electrons. This leaves the struc-
ture unsuited as a primary material for an IBSC, or any other solar cell.

4.6.2 Rutile, 25% CrN

The 25% CrN doped rutile, on the other hand, has its Fermi energy located
inside an intermediate band between a valence and a conduction band,
as illustrated in Figs. 4.21a and 4.21b. The intermediate band has a rela-
tively large number of states, thereby providing many potential states for
electrons from the VB to transition into, and for further transitions into the
CB.

Considering rutile’s wide band gap, it is expected that the metal chromium
would be responsible for states within the gap, although nitrogen cannot
be ruled out. Therefore, we calculated the projected density of states, plot-
ted in Fig. 4.22, which suggests that the IB is mainly composed of Cr 3d
orbitals. Similar to rutile, the valence band is dominated by O 2p orbitals,
while the conduction band is dominated by Ti 3d orbitals, although the Cr
3d orbitals are significant at the CB edge.

The band gap of the compound is an estimated 1.17 eV, which com-
prises approximately 62% of the band gap computed for rutile. The IB has
a width ∆EIB of 0.50 eV, constituting a relatively large portion of the band
gap (43%). According to Levy and Honsberg [45], as highlighted in Sect.
2.19, this IB width is well-suited for IBSCs. However, the two smaller band
gaps – EC,I at 0.23 eV and EI,V at 0.45 eV – may be suboptimal as they are ap-
proximately one-third of the ideal values for achieving optimal efficiency,
as proposed by Levy and Honsberg.
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The dielectric function and absorption coefficient, shown in Figs. 4.23
and 4.24, illustrate the increased absorption of photons compared to pure
rutile, especially for energies below rutile’s band gap. The initial incline of
ϵ2, reaching an early peak at ∼ 0.65 eV, indicates excitation of electrons
from the VB to the IB and from the IB to the CB. ϵ2 then experiences a
decline until the energy exceeds the material’s main band gap, when it
again increases, as electrons can transition straight from the VB to the CB.
This pattern is mirrored in the absorption spectrum, but might be more
visible on a logarithmic scale. Compared to rutile (Fig. 4.5) this doped
version exhibits significantly higher absorption for all energies, at least up
to 6.5 eV.

4.6.3 Rutile, 12.5% CrN

Having successfully opened an intermediate band with 25% CrN-doped
rutile, we wanted to investigate a further reduction in doping percentage.
Figs. 4.25a and 4.25b reveal that a 12.5% configuration also produces such
an electronic structure. As with the 25% CrN structure, there is a lone
band within the band gap responsible for the intermediate states, as can
be seen in Fig. 4.25b. Compared to Fig. 4.21b, this band structure exhibits
a denser set of bands, primarily due to the larger supercell, which results
in an increased number of atomic states in the unit cell.

The DOS spectrum exhibits striking similarities with the configuration
doped by 25%, leading to the inference that the Cr 3d orbitals are the pri-
mary contributors to the formation of the intermediate band. This is con-
firmed by the projected density of states, as depicted in Fig. 4.26. The most
prominent difference between the intermediate bands of the two configu-
rations lies in the relatively reduced states in the IB of the 12.5% doped
configuration, compared to the unit cell size. This is a logical result of the
halved percentage of chromium which is principally accountable for the IB
states.

The 12.5% CrN configuration of rutile has a band gap of 1.37 eV, which
is 72% of pure rutile. The intermediate bandwidth is 0.41 eV, while the two
sub-band gaps are EC,I = 0.34 eV and EI,V = 0.62 eV. Compared to 25%
doped rutile, there is a slight increase in the band gap and the two sub-
band gap energies, and a slight decrease in the IB width. Thus, according
to Levy and Honsberg’s calculations, these electronic properties may lead
to a more efficient IBSC, despite EC,I and EI,V being only about half of the
optimal sub-band gap values.
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(a)

(b)

Figure 4.20: The (a) DOS and the (b) band structure of rutile doped with
50% CrN, computed with the NC pseudopotential and the PBE functional,
with the Fermi energy set to E = 0 eV.
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(a)

(b)

Figure 4.21: The (a) DOS and the (b) band structure of rutile doped with
25% CrN, computed with the NC pseudopotential and the PBE functional,
with the Fermi energy set to E = 0 eV.



Chapter 4: Results & Discussion 64

(a)

(b)

(c)

(d)

Figure 4.22: Projected DOS of rutile doped with 25% CrN. The O 2p or-
bital dominates the VB, the Cr 3d orbitals dominate the IB, while the Ti
3d and the Cr 3d orbitals dominate the CB.
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(a)

(b)

Figure 4.23: Dielectric function of rutile doped with 25% CrN, along the
(a) ordinary and the (b) extraordinary axes. The spectra are computed
with the NC pseudopotential and the PBE functional.
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(a)

(b)

Figure 4.24: Absorption coefficient of rutile doped with 25% CrN, as a
function of (a) photon energy and (b) photon wavelength. The spectra
are computed with the NC pseudopotential and the PBE functional.
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(a)

(b)

Figure 4.25: The (a) DOS and the (b) band structure of rutile doped with
12.5% CrN, computed with the NC pseudopotential and the PBE func-
tional, with the Fermi energy set to E = 0 eV.
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(a)

(b)

(c)

(d)

Figure 4.26: Projected DOS of rutile doped with 12.5% CrN. The O 2p
orbital dominates the VB, the Cr 3d orbitals dominate the IB, while the Ti
3d and the Cr 3d orbitals dominate the CB.
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4.6.4 Rutile, 25% Mo

Molybdenum was also evaluated as a potential dopant for rutile, specifi-
cally at a concentration of 25%, given the success of this proportion with
co-doped rutile involving chromium and nitrogen. Figs. 4.27a and 4.27b
depict the DOS and band diagram of this structure, respectively. Despite
the presence of a gap approximately 1 eV below the Fermi energy and the
existence of a relatively scant number of states directly beneath the Fermi
energy, the structure appears metallic. For this reason, a thorough exami-
nation of lower molybdenum doping percentages could be worthwhile to
determine whether an intermediate band might manifest.

4.6.5 Anatase, 50% CrN

Figs. 4.28a and 4.28b depict the Fermi level positioned within an electron
band, indicating metallic properties, and thus not relevant as an IB mate-
rial. The vanishing DOS at ∼ 1.3 eV and the near zero DOS at ∼ −0.7 eV
may suggest the potential for an intermediate band opening up at lower
CrN concentrations, aiming to minimize the number of states within the
natural band gap of anatase.

4.6.6 Anatase, 25% CrN

Unlike in the case of rutile, a 25% CrN doping of anatase does not result
in the formation of an intermediate band, as illustrated in Figs. 4.29a and
4.29b. However, one can observe from Fig. 4.29b that the Fermi energy
intersects only a single detached band. It could therefore be of interest in
future studies to examine even lower doping percentages to investigate
whether this band further separates from the others, potentially leading to
the creation of an IB.

The dielectric function and the absorption coefficient, presented respec-
tively in Figs. 4.30 and 4.31, affirm its metallic nature, absorbing photons
of all energies. Interestingly, the absorption coefficient along the extraor-
dinary axis is up to four times greater than that along the ordinary axis for
energies above 4 eV.
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(a)

(b)

Figure 4.27: The (a) DOS and the (b) band structure of rutile doped with
25% Mo, computed with the NC pseudopotential and the PBE functional,
with the Fermi energy set to E = 0 eV.
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(a)

(b)

Figure 4.28: The (a) DOS and the (b) band structure of anatase doped
with 50% CrN, computed with the NC pseudopotential and the PBE func-
tional, with the Fermi energy set to E = 0 eV.
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(a)

(b)

Figure 4.29: The (a) DOS and the (b) band structure of anatase doped
with 25% CrN, computed with the NC pseudopotential and the PBE func-
tional, with the Fermi energy set to E = 0 eV.
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(a)

(b)

Figure 4.30: Dielectric function of anatase doped with 25% CrN, along
the (a) ordinary and the (b) extraordinary axes. The spectra are computed
with the NC pseudopotential and the PBE functional.
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(a)

(b)

Figure 4.31: Absorption coefficient of anatase doped with 25% CrN, as
a function of (a) photon energy and (b) photon wavelength. The spectra
are computed with the NC pseudopotential and the PBE functional.
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4.6.7 Anatase, Oxygen Vacancy

As illustrated in Fig. 4.32a, the 3.1% oxygen vacancy in anatase appears
to induce a shift in the Fermi energy across the conduction band edge.
The band gap below EF is of approximately the same size as that of pure
anatase, but the placement of EF results in metallic properties. Besides this,
the structures of the DOS are almost identical to those of pure anatase. The
somewhat rougher curve of the plot may be due to a reduced number of
k-points, necessitated by the high computational cost of utilizing such a
large unit cell. The band structure of Fig. 4.32b corroborates the findings
from Fig. 4.32a. The high band density can be attributed to the size of the
unit cell, as discussed in Sect. 4.6.3.

Previous studies have reported an n-type behavior of TiO2, caused by
the two free electrons generated by each O vacancy [1, p. 19]. While our
results do not strictly demonstrate an n-type character, a 3.1% defect con-
centration is relatively high [76]. Moreover, oxygen vacancies typically ap-
pear on the surface of TiO2 [77], and not uniformly distributed as in our
calculations.

Improving our understanding of such defects in TiO2 could involve con-
ducting DFT calculations on the surface effects of O vacancies rather than
the bulk, and exploring lower concentrations to better represent naturally
occurring defects. Along with oxygen vacancies, other point defects such
as Ti vacancies and Ti interstitials, which are common in TiO2 [1, p. 19],
could also be interesting avenues for research.

4.6.8 Further Improvements

Although we have identified intermediate band formation in both 25% and
12.5% CrN-doped rutile, our conventional GGA-based calculations have
their limitations. This is demonstrated by the method’s significant band
gap underestimation of rutile, causing reason to believe a reduced relia-
bility of similar structures. The use of a hybrid functional, such as HSE06,
may increase the accuracy, as this has proven to provide a more accurate
electronic description of TiO2 [78]. Nevertheless, our results provide an
interesting avenue of further research into the prospects of doped TiO2 as
an intermediate band material.
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(a)

(b)

Figure 4.32: The (a) DOS and the (b) band structure of anatase with
3.1% oxygen vacancies, computed with the NC pseudopotential and the
PBE functional, with the Fermi energy set to E = 0 eV.



Chapter 5

Conclusion

Various methods have been employed to investigate the electronic and op-
tical properties of rutile and anatase, including standard GGA–DFT cal-
culations, an amended version of the PHS method for optimized optical
data, and DFT+U. Furthermore, the critical points of the two polymorphs
were analyzed using both second derivative analysis and vertical transla-
tion analysis. Finally, GGA–DFT computations were performed on doped
structures of TiO2, in addition to an O vacancy structure, to investigate the
effects on electronic and optical properties and evaluate their potential use
in intermediate band solar cells.

The electronic properties of TiO2 polymorphs were analyzed in depth,
showing rutile and anatase as semiconductors. Rutile demonstrated a di-
rect band gap, indicating its potential as a superior conductor, while anatase
showcased an indirect band gap. However, anatase may have higher con-
ductivity due to oxygen vacancies. Despite moderately successful predic-
tions, the underestimation of the band gap by conventional DFT methods
signifies the need for further refinement in these techniques. The use of
more advanced calculations, such as utilizing the hybrid HSE06 functional,
is suggested for improved prediction precision.

In parallel, the optical properties of rutile and anatase were studied us-
ing the PHS method, simplified by using experimental band gaps as energy
axis adjustment, instead of the HSE06 functional, due to technical limita-
tions. The results revealed their anisotropic nature and limited absorption
of visible light. While the method generally agreed with existing literature,
some discrepancies were noted, emphasizing the need for methodological
improvement. Specifically, efforts should be made to reduce the empirical
nature of our approach and increase its applicability to unknown systems,
such as doped TiO2.

Critical points in the dielectric function of rutile and anatase were ex-
amined, unveiling a larger number of CPs than previously reported. The
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CPs from the second derivative analysis were compared to interband tran-
sitions found by vertical translation analysis, identifying potential optical
transitions primarily responsible for a little over half of the CPs. However,
unidentified CPs and limitations of these techniques, especially the exclu-
sion of optical transition probabilities in the vertical translation analysis,
introduce substantial uncertainties into the findings. Therefore, these re-
sults should be interpreted with due caution and further studies are needed
to improve the precision and reliability of these methodologies.

The electronic structure of TiO2 was also studied using DFT+U, which
by adjusting the Hubbard U parameter, better replicated the band gaps
of rutile and anatase. However, DFT+U showed some limitations, such as
splitting of bands at symmetry points and a shift in rutile’s band gap from
direct to indirect, contradicting prior research. The semi-empirical nature
of DFT+U introduces uncertainties when structural or elemental modifica-
tions are undertaken. Additionally, we encountered a technical error that
obstructed optical calculations utilizing this method. Due to these consid-
erations, we ultimately decided against employing DFT+U for the exami-
nation of the doped TiO2 structures in this study.

Lastly, the study of different configurations of TiO2 yielded promising
results, particularly with the doping of rutile with CrN. Both a configura-
tion of rutile doped with 25% and with 12.5% CrN formed an interme-
diate band between the valence and conduction bands, potentiating their
use in intermediate band solar cells. The other doping configurations re-
sulted in metallic properties, making the materials unsuitable for IBSCs. A
point defect anatase structure, with a 3.1% oxygen vacancy, also resulted
in metallic properties by shifting the Fermi energy above the conduction
band edge.

The discussed constraints of GGA-based calculations introduce a degree
of uncertainty in our results for doped TiO2. Using an HSE06 functional,
however, could potentially yield more accurate property predictions. Re-
gardless, the formation of intermediate bands opens up an intriguing path
for further studies, reinforcing the potential of CrN doped TiO2 as a viable
candidate for an intermediate band material.
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Appendix

Code listing 1: Core Python functions for vertical translation analysis
def main(polymorph):

filename, fermi, kinterval, dEt = getInputData(polymorph)

# Get valence and conduction bands from file
vbands, cbands = readBands(filename, fermi)

# Find critical points based on parallel bands
critPoints = calcCritPoints(vbands, cbands, kinterval, dEt)

# Compare to CPs from second derivative analysis,
# and plot corresponding CPs as interband transitions.

# Read band stucture from file
def readBands(filename, fermi):

with open(filename, ’r’) as f:
lines = f.readlines()

bands = [] # List of all bands
band = [ [], [] ] # [ [k values], [E values] ]
for line in lines:

# An empty line separates bands in the file
if line.isspace():

bands.append(band)
band = [ [], [] ]

else:
k, E = map(float, line.split())
band[0].append(k)
band[1].append(E - fermi) # Adjust E axis by Fermi energy

# Add last band (usually no whitespace after last one)
bands.append(band) if any(band) else None

# Separate bands into valence bands and conduction bands
vbands = [band for band in bands if band[1][0] < 0]
cbands = [band for band in bands if band[1][0] > 0]

return vbands, cbands

def calcCritPoints(vbands, cbands, kinterval, dEt):
critPoints = [] # [ [k-pos, vb energy, cb energy, dE, weight], ... ]
for vb in vbands:

for cb in cbands:
i = 0

86



Appendix 87

# While i + 1 is not out of scope of the k-axis
while i + 1 < len(vb[0]):

dk, j = 0, i + 1
groupEt = [ cb[1][i] - vb[1][i] ] # Current group’s list of Et=Ec-Ev

# Exits loop if Et is not within +/- dEt of all of the group’s Et
while sameEt(vb, cb, j, dEt, groupEt):

dk += vb[0][j] - vb[0][j-1]

# Critical point registered if all Et are +/- dEt
# of each other for a length of kinterval
if dk >= kinterval:

critPoints = insertCritPoint(critPoints, vb, cb, i, j, dEt)

# Increase i so next iteration doesn’t recount the same points
# (important for correct weighting,
# since not all k[i+1]-k[i] are equal)
i += j-2
break

j += 1

i += 1

return critPoints

def sameEt(vb, cb, j, dEt, groupEt):
# Check if j out of scope
if j >= len(vb[0]):

return False

for Et in groupEt:
# if group’s Et=Ec-Ev is not within dEt of the new Et
if abs(Et - cb[1][j] + vb[1][j]) > dEt:

return False
return True

# Checks whether critical point is already in critPoints and edits accordingly
def insertCritPoint(critPoints, vb, cb, i, j, dEt):

cp = getCritPointEntry(vb, cb, i, j)

duplicate = False

for n in range(len(critPoints)):
if isDuplicate(cp, critPoints, n, dEt):

# If duplicate, redefine critPoints values to become the new
# average of all the duplicates, and increase the weight

critPoints[n][0] = (1/(critPoints[n][-1]+1)) * \
(critPoints[n][0]*critPoints[n][-1] + cp[0]) # k-pos.

critPoints[n][1] = (1/(critPoints[n][-1]+1)) * \
(critPoints[n][1]*critPoints[n][-1] + cp[1]) # Ev

critPoints[n][2] = (1/(critPoints[n][-1]+1)) * \
(critPoints[n][2]*critPoints[n][-1] + cp[2]) # Ec

critPoints[n][3] = (1/(critPoints[n][-1]+1)) * \
(critPoints[n][3]*critPoints[n][-1] + cp[3]) # Et

critPoints[n][-1] += 1 # Weight

duplicate = True
break
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# If not duplicate, add critical point as its own entry
if not duplicate:

critPoints.append(cp)

return critPoints

# Returns critical point entry, where each data point is the
# average value between (and including) indexes i and j.
def getCritPointEntry(vb, cb, i, j):

length = j + 1 - i
cp = [

sum(vb[0][n] for n in range(i, j+1)) / length, # k-pos. average
sum(vb[1][n] for n in range(i, j+1)) / length, # VB energy average
sum(cb[1][n] for n in range(i, j+1)) / length, # CB energy average
sum(cb[1][n] - vb[1][n] for n in range(i, j+1)) / length, # Et average
1 # Weight

]

return cp

# Checks if duplicate critical point
def isDuplicate(cp, critPoints, n, dEt):

k = abs(cp[0] - critPoints[n][0]) <= 0.2 # k-pos. difference
Ev = abs(cp[1] - critPoints[n][1]) <= 0.1 # Ev difference
Ec = abs(cp[2] - critPoints[n][2]) <= 0.1 # Ec difference
Et = abs(cp[3] - critPoints[n][3]) <= dEt # Et difference

return k and Ev and Ec and Et
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