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Abstract 
 

The transportation sector is responsible for a substantial share of the worldwide emissions. 

For this reason, efforts in climate change mitigation should include new vehicle 

technologies that have the potential of lowering carbon emissions along supply chains. 

Drones or Unmanned Aerial Vehicles (UAVs) have been identified as an emerging 

technology within last-mile package delivery operations, given that they are lightweight 

and energy efficient battery-powered vehicles. Major logistic service providers have 

already deployed early-stage drone delivery programs in recent years. Therefore, as UAVs 

become increasingly relevant in last-mile operations, there is a need to evaluate the 

potential environmental impact of future drone delivery systems. 

This master thesis evaluates the environmental performance of a drone delivery system, 

comparing it to a ground delivery system. Environmental performance was measured in 

terms of energy consumption and carbon emissions during the transportation phase.  

To achieve this objective, an urban case study set in five metropolitan cities in the U.S. 

was modeled based on a pioneering dataset, containing historical last-mile delivery data 

from Amazon. In the context of this thesis, 9,157 routes with over 1.3 million delivery 

coordinates were employed to model the system. A baseline ground delivery system was 

established based on an electric and a diesel delivery vehicle (G1, G2). Further, four drone 

delivery cases based on a state-of-the-art fixed-wing VTOL configuration were proposed 

(D1, D2, D3, D4). Additionally, the effects of transitioning to a less carbon-intensive energy 

mix were modeled.  

The results indicate that drones possess the benefit of being energy efficient, but face 

limitations in terms of distance traveled and package carrying capacity. In certain cases 

involving package multi-delivery and a closer distribution center, drones could contend 

with diesel vehicles. However, electric vehicles outperformed drones in terms of energy 

consumption and CO2 emissions.  

The findings highlight the importance of implementing multi-delivery as routing measure 

to enhance the performance of drone delivery in reference to the baseline case (D1). 

Battery constraints were found to be a significant limitation for multi-delivery; however, it 

is expected that future drone technology advancements will enable drones to operate over 

longer distances. 

Lastly, the transition to a less carbon-intensive electricity mix would significantly favor 

electric vehicles and drones, which are battery-powered vehicles, over diesel fleets in terms 

of operational emissions. However, this would also shift the relevance to other life cycle 

phases such as vehicle production, infrastructure or end-of-life phases. 
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Sammendrag 
 

Transportsektoren står for en betydelig andel av de globale utslippene. Derfor bør 

innsatsen for å redusere klimaendringene også omfatte nye kjøretøyteknologier som har 

potensial til å redusere karbonutslippene langs forsyningskjedene. Droner eller 

ubemannede luftfartøyer (UAV-er) har blitt identifisert som en ny teknologi innen 

pakkelevering, siden de er lette og energieffektive batteridrevne farkoster. Store 

leverandører av logistikktjenester har allerede tatt i bruk droneleveringsprogrammer i en 

tidlig fase de siste årene. I takt med at droner blir stadig mer relevante for pakkelevering, 

er det derfor behov for å evaluere den potensielle miljøpåvirkningen fra fremtidige 

droneleveringssystemer. 

Denne masteroppgaven evaluerer miljøytelsen til et droneleveringssystem og 

sammenligner det med et bakkeleveringssystem. Miljøytelsen ble målt i form av 

energiforbruk og karbonutslipp under transportfasen.  

For å oppnå dette målet ble det gjennomført en urban casestudie i fem storbyer i USA, 

basert på et banebrytende datasett som inneholder historiske data om levering av varer 

fra Amazon. I denne avhandlingen ble 9 157 ruter med over 1,3 millioner 

leveringskoordinater brukt til å modellere systemet. Det ble etablert et grunnleggende 

bakkeleveringssystem basert på et elektrisk og et dieseldrevet leveringskjøretøy (G1, G2). 

I tillegg ble det foreslått fire tilfeller av dronelevering basert på en moderne VTOL-

konfigurasjon med fastvinge (D1, D2, D3, D4). I tillegg ble effekten av en overgang til en 

mindre karbonintensiv energimiks modellert.  

Resultatene viser at droner har fordelen av å være energieffektive, men at de har 

begrensninger når det gjelder tilbakelagt distanse og kapasitet til å frakte pakker. I visse 

tilfeller med flere pakkeleveringer og et nærmere distribusjonssenter kan droner 

konkurrere med dieselkjøretøy. Elektriske kjøretøy presterte imidlertid bedre enn droner 

når det gjelder energiforbruk og CO2-utslipp.  

Funnene understreker viktigheten av å implementere multilevering som rutetiltak for å 

forbedre ytelsen til dronelevering i forhold til referansealternativet (D1). 

Batteribegrensninger viste seg å være en betydelig begrensning for multilevering, men det 

forventes at fremtidige teknologiske fremskritt vil gjøre det mulig for droner å operere over 

lengre avstander. 

Til slutt vil overgangen til en mindre karbonintensiv elektrisitetsmiks i betydelig grad 

favorisere elektriske kjøretøy og droner, som er batteridrevne kjøretøy, fremfor dieselbiler 

når det gjelder driftsutslipp. Dette vil imidlertid også ha betydning for andre faser av 

livssyklusen, for eksempel produksjon av kjøretøy, infrastruktur og utrangeringsfasen. 
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1.1 Background and relevance 

 

According to the Intergovernmental Panel on Climate Change (2022), 15% of the global 

carbon emissions originated within the transportation sector in 2019. Although this sector 

is responsible for a considerable share of the worldwide emissions, it is simultaneously 

regarded as a challenging sector to decarbonize. 

In recent years, environmental impact has emerged as a growing concern for businesses 

worldwide. This heightened concern stems from a combination of factors, including legal 

and regulatory requirements, the increasingly perceptible effects of climate change and a 

shift in relevance for some consumer markets. For this reason, companies specifically in 

the logistics sector are undertaking efforts to redesign their distribution activities, not 

solely with the aim of reducing costs, but also to minimize environmental impact (Frota 

Neto et al., 2008). These efforts are included within the expanding field of Sustainable 

Logistics and Supply Chain Management, which recognizes the major impact of logistics 

and supply chain operations on the environment. This field strives to minimize 

environmental impacts through emission assessment, reverse logistics and the 

decarbonization of supply chains (Grant et al., 2015).  

A highly complex component within the supply chain is the last-mile (Laseinde & Mpofu, 

2017). Last-mile operations consist on the delivery of goods to the final customer, 

specifically along the last leg of transportation (Macioszek, 2018). However, last-mile 

delivery is considered to be one of the most expensive stages along the supply chain and 

one of the most challenging to optimize (Awwad et al., 2018). At the same time, service 

level requirements keep rising as customers come to expect faster deliveries (Capgemini 

Research Institute, 2019). 

Last-mile delivery is also being influenced by the rapid surge of the e-commerce sector in 

the past years. In 2022, the worldwide e-commerce retail sales were estimated to surpass 

5.7 trillion USD with a growing prognosis for the following years (Statista, 2022). For 

reference, in the U.S. it was estimated that for the year 2017, an average person received 

around 21 e-commerce packages per year, while in markets such as China this number 

went up to around 70 packages per year (Briest et al., 2019). Following this pattern, last-

mile customer delivery exhibits a clear tendency towards smaller packages and more 

frequent customer deliveries (European Environment Agency, 2020). 

As e-commerce delivery becomes ubiquitous and packages tend to be smaller in size, the 

potential of Unmanned Aerial Vehicles (UAVs) or drones to address last-mile logistic 

challenges is greater than ever (Yowtak et al., 2020). To illustrate this, Jeff Wilke, former 

Amazon Consumer CEO, estimated that around 75-90% of Amazon’s deliveries could 

technically be carried out via drone due to their small weight and size (D’Onfro, 2019). 

 

 

1 Introduction 
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Commercial drones are an emerging technology that is argued to be more energy efficient 

compared to larger delivery vehicles such as trucks (Borghetti et al., 2022;  Goodchild & 

Toy, 2018). A further commonly stated benefit of drones, is that in an urban context they 

would not contribute to traffic congestion (Oršič et al., 2022). In addition, drone delivery 

is expected to increase in the next years. It is estimated that around 660,000 drone 

customer deliveries were carried out worldwide from 2019 until 2021, and that this number 

considerably grew in 2022 (Carter et al., 2022).  

For this reason, companies are exploring how drone delivery could be integrated into their 

last-mile logistics operations. Major Logistic Service Providers (LSPs) such as DHL, FedEx, 

UPS, the e-commerce company Amazon, or Google-owned Alphabet have established 

prominent drone delivery programs. Some of them have already carried out pilot deliveries 

during the past 7 years. Furthermore, the Federal Aviation Administration has authorized 

different types of Part 135 certifications for these companies, in order to be able to carry 

out drone delivery beyond the visual sight line in the U.S. (FAA, 2022). 

In terms of the latest advancements in delivery programs, Amazon unveiled its latest drone 

design, the MK30, which is expected to be employed for deliveries under 5 pounds in 2024 

(Amazon, 2022). Recently, in December 2022, Amazon carried out with their first small-

scale suburban customer deliveries as a part of the Prime Air program in Lockeford, 

California and College Station, Texas (Lenihan, 2022). Additionally, Walmart has 

established a network of 36 stores in the U.S. with drone delivery hubs that deliver items 

from a 20,000-item catalogue to customers within 1 mile of the hubs within less than 30 

minutes (Garland, 2023). 

In other parts of the world, drone delivery systems have reached a more advanced stage. 

Meituan, a Chinese digital commerce platform, has been carrying out food delivery with 

drones in the city of Shenzhen for around 18 months, demonstrating that drones can also 

be used in the challenging context of urban areas. The company executed over a 100,000 

deliveries in 2022 with kiosk-like rooftop stations distributed within the city (Z. Yang, 

2023). 

In general, the adoption of green vehicles is needed to achieve a reduction of the 

environmental impacts of last-mile logistics (Patella et al., 2020). However, while emerging 

technologies exhibit a great potential, they could also have negative externalities on the 

environment (Yang et al., 2023). Hence, the necessity to evaluate the environmental 

implications of possible technology transitions arises. 

Given that the widespread use of drones in last-mile delivery is still in a relatively early 

phase, there is a lack of extensive research and consensus regarding the environmental 

impacts of drone delivery systems (Mitchell et al., 2023). As the current understanding 

remains limited, it is necessary to further evaluate the possible environmental effects of 

scaling up drone delivery programs.  
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1.2 State of knowledge 

 

This subsection provides a condensed overview of the state of knowledge of last-mile 

delivery in the U.S., the state of current drone delivery and the research regarding the 

sustainability of last-mile drone delivery. This serves primarily to understand the context 

of the modeling assumptions made in the study and to contextualize the existing research 

gaps in literature that were addressed in this master thesis.  

 

1.2.1 Last-mile delivery in the U.S.  

 

Several main enterprises dominate in the U.S. parcel shipping market. According to the 

Pitney Bowes Parcel Shipping Index (2022), the most relevant entities in the market are 

UPS, Amazon and DHL, FedEx and the US Postal Service. As can be observed in Figure 1, 

excluding the postal service, the most significant actors in the parcel market in 2021 were 

UPS and Amazon, occupying about 24% and 22% of the market parcel volume share 

respectively. The next relevant actor is FedEx with 19% of the market share by package 

volume. 

 

 

Figure 1. Parcel shipping market share in 2021, by parcel volume (data from Pitney Bowes, 

2022) 

 

Last-mile delivery is mainly carried out by light delivery trucks (Awwad et al., 2018). In 

terms of electrification, 50% percent of fleet operators in the U.S. have taken initial steps 

to electrify their transportation fleets (Chauhan et al., 2022a). However, it is assumed that 

the majority of commercial fleets still employ internal combustion vehicles (ICEVs).   

As the electrification of commercial fleets is expected to be slower than with passenger 

vehicles, charging infrastructure is an additional concerning factor (Chauhan et al., 2022b). 

24%

22%
33%

19%

2%

Parcel shipping market share in 2021, 
by parcel volume

UPS

Amazon Logistics

USPS (Postal Service: United
Parcel Service of America Inc)

FedEx
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Nonetheless there are discussed benefits to fleet electrification, which can include carbon 

savings and a potential reduction in the total cost of ownership of the fleets (Heid et al., 

2017). 

The relevant players in the electric delivery van market include startups such as Rivian, 

Canoo, Workhorse and Arrival, but also established automotive manufacturers such as Ford 

with the E-Transit or GM with BrightDrop (Boudette, 2023). Nonetheless, delays in the 

production of electric vans, have also influenced the limited pace of electrification of 

delivery fleets (Boudette, 2023).  

 

1.2.2 Context of drone package delivery  

 

Drones have multiple possible designs, which are referred to as configurations. For this 

master thesis, it is relevant to distinguish between multi-rotor, fixed-wing and hybrid 

configurations.  

Firstly, multi-rotor or copter configurations utilize rotors to lift the drone from the ground. 

Copter configurations are the most common with four rotors (quadcopter), six rotors 

(hexacopter) or eight rotors (octocopter). The second category, the fixed-wing drone, 

utilizes wings of varying dimensions to fly, usually needing a large landing and takeoff 

space (JOUAV, 2022).  

Especially relevant for this study, is the hybrid configuration, which combines the fixed-

wing with the rotor technology. This hybrid configuration is also known as a fixed-wing 

vertical take-off and landing (VTOL) drone. Hybrid configurations use the rotors for vertical 

take-off and landing. However a significant benefit comes with the usage of the wings for 

cruise mode, which makes a fixed-wing VTOL drone more energy efficient than a copter 

drone (Figliozzi, 2017; Stolaroff et al., 2018), due to the lift provided by the wing. One 

downside is that fixed-wing VTOL drones tend to be larger in size than a multi-copter drone 

(Stolaroff et al., 2018).  

 

Table 1. Drone projects of the major logistic service providers or drone manufacturers 

(Prieto Camarillo, 2022) 

 

As can be seen in Table 1, the most relevant actors in drone package delivery are Amazon, 

Alphabet Wing, DHL, FedEx and UPS. Wingcopter and Alphabet are both drone 

manufacturers, while the rest are logistic service providers. A highly relevant player in the 

market is Wingcopter, given that it has undergone partnerships with other large LSPs such 

Overview of the most relevant drone delivery programs 

Logistic Service 
Provider (LSP) 

Drone Program Most recent drone 
configuration 

Partnership Use case 

Amazon Prime Air Delivery Fixed-wing VTOL - E-commerce delivery 

Alphabet Wing Wing’s Hummingbird Fixed-wing VTOL - Food delivery and e-commerce 
delivery 

DHL DHL Parcelcopter Fixed-wing VTOL Wingcopter Parcel delivery 

FedEx FedEx Express & Wing 
Collaboration 

Fixed-wing VTOL Alphabet Wing Commercial residential drone 
delivery service & e-commerce 

UPS UPS Flight Forward Fixed-wing VTOL Wingcopter  Parcel delivery 
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as FedEx and UPS. Most LSPs have established delivery programs, however these are in 

the early development phase and are yet to be scaled, mainly due to regulatory, safety or 

technical feasibility reasons. 

In package delivery programs, logistic service providers used to mostly employ copter 

drones at an earlier stage. This can be for instance observed in the evolution of DHL 

Parcelcopter program which started with copter configurations. However, a recent trend 

has been recognized in drone package delivery services that points towards the 

predominant use of fixed-wing VTOL configurations. 

 

1.2.3 Sustainability of last-mile drone package delivery  

 

Last-mile drone delivery publications have witnessed a surge in the past five years, with 

more than 50% of the works being published since 2018 (Bányai, 2022). However, in a 

study by Eskandaripour & Boldsaikhan (2023), it was found that most of the publications 

relate to routing problems and battery usage or swapping; whereas only a small fraction 

of the papers includes aspects of environmental protection. This is a known critique, since 

the economic perspective tends to be more present than the environmental perspective in 

last-mile drone delivery research (Kirschstein, 2021).   

As identified by Eskandaripour & Boldsaikhan (2023) environmental protection is one of 

the main challenges or aspects to consider with last-mile drone delivery. The authors 

identified main measures, which include the reduction of Green House Gas emissions 

(GHG), the improvement energy efficiency and the utilization of renewable energy sources. 

Given the aim of this study, this literature review focuses primarily on selected works that 

consider the environmental aspects of last-mile drone delivery. Table 2 shows an overview 

of the most relevant works, including their compared delivery systems, employed distance 

calculation methods, drone model employed, drone energy consumption model, life cycle 

phases considered and context of the study. 

With regards of how the environmental perspective is considered in last-mile drone 

delivery, most of the studies have focused on quantifying energy consumption and 

environmental impact in terms of carbon emissions, mainly considering the operational 

delivery phase. There are a few studies that go beyond the operational operations, which 

will be mentioned at the end of this subsection.  

The methods to calculate the distances, which are the basis to obtain carbon emissions 

and energy consumption values for the operational phase, vary greatly in literature. Li et 

al. (2023) classified drone routing literature into different categories mainly heuristic 

methods, which consist of approximations, and vehicle routing problems with optimization.  

As for the specific methods used, analytical approximation with mathematical methods, 

such as continuous approximation, has been widely used (Figliozzi, 2017; Zhang, 2021). 

Another commonly employed approach consists in simulation-based experiments, using 

statistical distributions or randomly generated locations. Further elements such as 

population density or GIS-based modelling have been considered in the modelling. Within 

the analyzed literature, there was no study found that based distance calculations on 

historical data. 
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Author, year Delivery 

vehicles 

Distance 

calculation method 

Drone model Drone energy 

consumption 

model 

Life cycle scope Case study 

or context 

Figliozzi, 2017 UAV, 

Diesel, 

Electric 

tricycle 

Continuous 

Approximation 

Quadcopter 

(MD4-3000) 

D’Andrea 

(2014) 

Production, 

Operation and 

Disposal (GHG-

only) 

U.S. 

Goodchild & 

Toy, 2018 

UAV, 

Diesel 

GIS-based 

modelling, 10 

scenarios 

- - Delivery 

operations 

Los Angeles 

County, 

California 

Koiwanit, 

2018 

UAV - Quadcopter 

(Inventory based 

on DJI models) 

- LCA  

(cradle-to-grave) 

Chiang Mai, 

Thailand 

Stolaroff et. 

al, 2018 

UAV, 

EV, 

Diesel  

(incl. other 

variations) 

- Quadcopter, 

Octocopter 

- Production, 

Delivery 

operations, 

Warehouse 

infrastructure 

San Francisco 

Bay Area 

Chiang et. al, 

2019 

Tandem Green Vehicle 

Routing Problem 

- - Delivery 

operations 

- 

Kirschstein, 

2020 

UAV, 

EV, 

Diesel 

Simulation 

experiments, stat. 

distributions for 

density delivery 

Quadcopter Own model, 

wind speed 

consideration 

Delivery 

operations 

Berlin, 

(urban vs. 

rural area) 

Figliozzi, 2020 UAV, 

SADR, 

RADR, 

EV, 

ICEV 

Continuous 

approximation 

Quadcopter 

(MD4-3000) 

Specifications 

(21.6 Wh/km) 

Delivery 

operations 

Urban 

grocery 

delivery 

Yowtak et al., 

2020 

UAV, 

ICEV, 

BEV 

Ground vehicles 

travel 1.34 km for 

every UAV km 

Quadcopter 

(Harris Aerial 

Carrier HX8 

Power XL) 

Manufacturer 

data 

LCA 

(cradle-to-grave) 

Michigan, 

grocery 

delivery 

Zhang, 2020 UAV, 

Diesel, 

Tandem 

Continuous 

approximation 

Quadcopter 

 

- Delivery 

operations 

- 

Kirschstein, 

2021 

UAV or EV in 

mixed-fleet 

Simulation 

experiments, 

considering 

population density 

Quadcopter Own model, 

wind speed 

consideration 

Delivery 

operations 

New York 

City 

Rodrigues et. 

al, 2022 

Diesel, 

EV, 

UAV, 

E-cargo 

bicycle 

Own assumptions Quadcopter 

(M100, DJI 

Matrice) 

Field 

measurement 

model 

Delivery 

operations 

U.S. 

Table 2. Overview of selected literature regarding sustainability of drone last-mile delivery 
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For instance, one of the foundational works by Goodchild & Toy, (2018) compared a drone-

based system with a truck-based system in the context of Los Angeles California in terms 

of CO2 emissions. GIS-based modeling was done based on 10 proposed scenarios departing 

from a central depot and in which the delivery density, was affected by varying population 

density.  

One of the main differences within the explored literature are the comparison systems 

evaluated. For instance, drone delivery has been compared most often with diesel delivery 

trucks or with battery electric delivery trucks. At the same time, other ground-

transportation types have been used, such as sidewalk autonomous delivery robots 

(SADRs) or with road autonomous delivery robots (RADRs) (Figliozzi, 2020), or e-cargo 

bicycles (Rodrigues et al., 2022).  

Regarding the context of the case studies, different geographical locations have been 

analyzed. Most of the studies are carried out in a U.S. context, whereas to a lesser extent, 

some research has also been carried out in the context of Europe in Berlin (Kirschstein, 

2020) or Asia in Thailand (Koiwanit, 2018). 

As for the simulation of different contexts, mostly parameters such as delivery density and 

delivery distances are used to create different delivery scenarios. For instance, 

(Kirschstein, 2020) compares a drone fleet with both, diesel and electric delivery trucks, 

departing from a central Berlin distribution center, comparing a more rural and an urban 

scenario, through varying delivery density and distances. 

Table 2 shows that most of the research used a quadcopter drone to model energy 

consumption, some of the employed models are the MD4-3000 from Microdrones (Figliozzi, 

2017, 2020) or the M199 from DJI Matrice (Rodrigues et al., 2022). The employed drones 

in literature consist in commercially available drones used for purposes such as aerial 

photography. Even though Figliozzi (2020), used a quadcopter configuration in his 

research, he highlights the potential of fixed-wing VTOL configuration for drone delivery 

due to its higher energy efficiency than multi-copter drones. 

In order to estimate drone energy consumption, some works use theoretical models 

(Figliozzi, 2017; Kirschstein, 2020), while others use a regression approach employing field 

data (Rodrigues et al., 2022) or available manufacturer data (Yowtak et al., 2020). For 

instance, Kirschstein (2020) provided a detailed energy consumption model for the drone, 

considering three separate flight regimes of take-off, hovering and landing, further 

considering wind conditions. In the case of Rodrigues et al. (2022), 188 field 

measurements using a quadcopter drone were used to obtain generalizable coefficients to 

calculate drone energy use. This model distinguished between the three different flight 

regimes. 

Theoretical energy consumption models have mainly been designed for multi-copter 

configurations, nevertheless it is known that energy consumption estimations for drones 

vary quite considerably in literature. Zhang et al. (2021) documented the discrepancies 

between the drone energy consumption models available in literature and standardized the 

nomenclature. Even though the same operating conditions and drone specifications were 

tested using the various drone energy consumption models, the energy per meter and 

operating range fluctuated considerably.  

Other configurations other than drone-only systems have also been explored to a lesser 

extent. Chiang et al. (2019) explored drones delivering in tandem with delivery trucks and 
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determined that the usage of UAVs could reduce vehicles employed and total time for 

delivery, when used in combination with trucks.  

Few works consider further life cycle phases of drone delivery services. In a preliminary 

study, Figliozzi (2017) considered the greenhouse gas (GHG) emissions of production and 

disposal of vehicles, denominated as “vehicle phase emissions”. Furthermore, emissions 

from warehouse infrastructure were considered by Stolaroff et al. (2018). This study 

suggested that drone delivery systems could consume less energy per package than a 

diesel truck system, but that the energy employed in warehouse operations should be 

minimized in order to bring about potential benefits of drone delivery.  

A Life Cycle Analysis (LCA) perspective is considered by a lesser amount of studies. For 

example, Koiwanit (2018) carried out a non-comparative cradle-to-grave LCA in the 

context of online shopping, which provided initial insights into the potential environmental 

impact of drone parts production. Later on, Yowtak et al. (2020) performed a comparative 

LCA comparing a UAV grocery delivery service with a combustion engine vehicle and an 

electric vehicle system. The study suggested that the UAV use phase predominates over 

other life cycle phases in several environmental impact categories. However, Mitchell et al. 

(2023) recently revealed that insufficiently reliable data is usually employed to model the 

drone part production and end-of-life, given that parts and composite materials are not 

generally analyzed in detail. Furthermore, they highlighted the need for comparable and 

more robust LCAs of drone delivery. 

 

1.2.4 Research gaps to be addressed 

 

As identified in the state of knowledge, past research usually bases the drone energy 

consumption on multi-copter configurations. Yet, several technological advancements have 

occurred up to the current time, for instance fixed-wing VTOL configurations, multi-delivery 

and an improved flight range. 

A further relevant observation is that most of the explored literature based the distance 

calculations on analytical approximation or simulation experiments. These methods used 

unique sets of assumptions and can be categorized as employing artificially generated data. 

However, in order to represent large-scale last-mile delivery operations in a more accurate 

manner, there is a need to explore the environmental implications based on realistic 

parameters or historical data. 

In essence, it is worth noting that different studies use varying assumptions both for 

calculating a) traveled distance and b) drone energy consumption. For this reason, given 

the multiplicity of approaches and need to obtain a clearer picture of the implications of 

last-mile drone delivery, it is crucial to address these two aspects.  
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1.3 Objective of the study 

 

1.3.1 Objective and scope 

 

The objective of this master’s thesis is to explore and quantify the environmental 

implications of a potential widespread adoption of drone delivery systems in last-mile home 

delivery.  

For this purpose, scenario modelling is carried out using a first-of-its-kind historical last-

mile delivery dataset from Amazon. This case study considers a set of real-world delivery 

routes carried out in 5 metropolitan cities in the U.S. included in the dataset, therefore 

setting the context within urban last-mile delivery.  

The scope of this master thesis focuses on the environmental performance of the 

operational delivery phase, meaning the transportation phase. Emissions resulting from 

other life cycle phases are out of the scope of this study. 

To evaluate the case of this potential technology transition, drone-based delivery systems 

are compared to ground-based delivery systems in terms of energy consumption and CO2 

emissions in the operational delivery phase (see Figure 2).  

Road-based technologies such as electric or diesel delivery vehicles are used as a 

benchmark system. The chosen drone technology is a fixed-wing VTOL drone configuration, 

in order to reflect the possible future drone delivery operations. The developed drone 

energy consumption model by Prieto Camarillo (2022) is employed.  

Several alternative drone delivery scenarios including multi-delivery and alternative depots 

are proposed and evaluated. 

 

 

Figure 2. Scope and aim of the work, environmental implications of last mile delivery by 

truck and drone. Based on (Borghetti et al., 2022) 
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1.3.2 Research questions 

 

Based on this, two main research questions to be addressed in this thesis have been 

identified:  

 

RQ1: How do widespread drone-delivery systems environmentally perform in 

comparison to current and future ground-based delivery systems, in the context of 

last-mile home package delivery during the operational delivery phase?  

RQ2: Which measures could be implemented to reduce the environmental impact 

of drone-delivery systems in an urban delivery context and how much improvement 

could these potentially bring? 

 

Research question 1, is answered by modelling the drone and ground delivery systems, 

through the base-case scenarios departing from the original depots found in the dataset. 

The environmental aspects considered will be energy consumption and carbon emissions. 

Research question 2, is explored by: a) technical routing measures: which include 

proposing alternative delivery scenarios for drone delivery (multi-delivery or alternative 

distribution centers); and b) technological measures: meaning through the simulation of 

the effects of the decarbonization of the electricity mix. 

In this master’s thesis, current ground delivery systems are defined as diesel-based 

delivery fleets, whereas future ground delivery systems include battery electric delivery 

trucks.  

 

1.3.3 Main contributions of the work 

 

Based on the identified literature research gaps mentioned in sub-section 1.2.4, this 

master’s thesis aims to contribute in three main ways: 

1) Using real-world data to evaluate the environmental operational performance of a 

drone vs. a ground-based last-mile delivery system. 

2) Employing a current fixed-wing VTOL drone configuration to better represent the 

operation of future drone delivery fleets. 

3) Simulating the multi-delivery of drone package delivery considering realistic battery 

and range constraints. 
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This section describes the methods utilized to model the drone and ground delivery 

systems used in the comparative analysis. Firstly, the case study of this master thesis, as 

well as all utilized datasets are described. Secondly, the specifications behind the ground 

vehicle and drone delivery models are provided. Thirdly, the modeled delivery cases are 

exemplified. Lastly, a special section dedicated to providing details of the technical 

implementation of the model in Python is provided, which was a substantial part of this 

master thesis. 

 

2.1 Case study and datasets description 

 

2.1.1 Relevance of real-world data 

 

The objective of this thesis is to model and compare widespread last-mile home delivery 

operations in terms of energy consumption and CO2 emissions, specifically with the focus 

on home package delivery with truck or drone. Taking this into account, the decision to 

model a specific scenario or case study is highly relevant, as this inevitably impacts the 

results obtained. 

The usage of different assumptions in route simulations can lead to results with varying 

degrees of accuracy when it comes to representing realistic last-mile delivery operations. 

Additionally, last-mile operations are highly case-specific as well. For instance, the design 

of the operation network or the traveled distances change in an urban, rural or even a 

time-sensitive setting.  

It is assumed that previous research is mainly based on simulations or assumptions, due 

to the scarcity of publicly available operations data from logistics service providers. Given 

the existence of various logistic service providers within the market, the last-mile delivery 

system operates in a decentralized manner with multiple actors. This poses a challenge to 

obtain insights into the overall operations within the system. Usually LSPs, do not make 

their operations data publicly available. In this way, routing problem research usually 

makes use of so-called benchmark datasets with the purpose of evaluating the 

performance of routing solutions. However, these benchmark datasets are solely based on 

synthetic data (Merchán et al., 2022). 

In order to model routing conditions as realistically as possible, this thesis bases its 

modelling on one of the only publicly available real-world last-mile delivery datasets up to 

this date. This dataset was recently published by the e-commerce company Amazon and 

contains a sample of historical home delivery operations data. 

 

2 Methods 
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In addition, in order to contextualize the Amazon dataset in terms of the demographic 

properties of the regions covered, two other complimenting datasets were used in this 

study.  

In summary, the three main types of data that were used were: delivery data, population 

data and income data. Although the focus of this study primarily lies in the usage of 

historical delivery data, Table 3 provides an overview of the main characteristics and source 

of all datasets used in this study. Each of the datasets will be described in detail in the 

following sections.  

 

 Delivery data Population data Income data 

Dataset Source Amazon WorldPop IPUMS NHGIS 

Type of 

information 

Coordinates from delivery stops 

of historical routes, sequences of 

stops and corresponding route IDs 

Estimated population 

density per grid-cell 

Estimates for per capita income 

in the past 12 Months 

(American Community Survey) 

Year of data 2018 2020 2021 

Geographical 

resolution 

Geographical latitude and 

longitude of stops within routes 

 

Approx. 1 km at the 

equator (30 arc) 

 

5-digit ZIP code areas 

Units Geographical coordinates of 

delivery points and sequence of 

delivery points 

Number of people per km2 Inflation-adjusted USD per 

capita per year 

Format JSON files TIF file 

 

CSV and SHAPEFILE 

Geographical 

extent 

Austin, Boston, Chicago, Seattle 

and Los Angeles 

U.S. wide U.S. wide 

Access to 

dataset 

Amazon Web Services: 

https://registry.opendata.aws/am

azon-last-mile-challenges/ 

WorldPop Hub: 

https://hub.worldpop.org/g

eodata/summary?id=39730 

IPUMS NHGIS data finder: 

https://data2.nhgis.org/main 

 

Table 3. List of datasets used in the study with their main characteristics and sources 

 

2.1.2 Context and relevance of Amazon dataset 

 

The delivery dataset was made available in the context of the Amazon Last Mile Routing 

Research challenge in 2021. This is a research competition, supported by the MIT Center 

for Transportation and Logistics.  

The research challenge of 2021 had the purpose of solving vehicle routing problems with 

real-life data. Specifically, the challenge consisted in leveraging machine learning and other 

data-driven computational approaches, in order to create new routing solutions that learn 

from and include the tacit knowledge of last-mile delivery drivers (Amazon Last-Mile 

Routing Research Challenge, 2021). Even though the original context of the dataset was 

for a logistics optimization challenge, Amazon made the dataset publicly available for 

further research to build upon it. 

This is an unparalleled dataset, given that it is the “first large and publicly available dataset” 

in literature to include historical last-mile delivery routing information that moves away 

from previous synthetic benchmark datasets (Amazon, 2021; Merchán et al., 2022).  

https://data2.nhgis.org/main
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2.1.3 Amazon dataset description 

 

This dataset contains a sample of more than 9,000 historical route sequences from the 

year 2018 in the United States of America. It provides the stop coordinates from delivery 

routes departing from 18 distribution centers (DCs) in five different metropolitan cities. 

The stop coordinates were obfuscated and the “route identifiers were randomly generated” 

in order to ensure the anonymity of the recipients and the drivers (Merchán et al., 2022). 

The cities included are Austin, Boston, Chicago, Los Angeles and Seattle. Figure 3 shows a 

visual representation of the geographical location of the distribution centers (DCs) or 

depots, as well as the amount of depots located in each city. Each DC has an assigned 

identifier including the name of the city, e.g. LA for Los Angeles or SE for Seattle. These 

distribution centers are the departure point, from which the delivery trucks then perform 

the home-delivery routes. A full list with the DC codes and coordinates can be consulted in 

the appendix A.1.    

 

 

Figure 3. Geographical location of the distribution centers included in the dataset 

 

The data are available on the Registry of Open Data on Amazon Web Services (AWS), as 

a S3 bucket resource type, which can be accessed through the AWS CLI here. The resource 

includes several files in a JSON format with a 3.34 GB size. 

The dataset has a complex structure and is divided into three main sub-components: 

transit-level, package-level, and route-level information (Amazon Last-Mile Routing 

Research Challenge, 2021). The transit-level information includes the anonymized 

coordinates for the stops in each route and was therefore a crucial component of the 

employed data for this study. The route-level features included important data such as the 

order of the observed sequences. Finally, package-level information contained data to 

describe the characteristics of the shipments such as dimensions of the packages. This last 

data section was not utilized for this thesis, given to its secondary relevance to the 

modelling. 

https://registry.opendata.aws/amazon-last-mile-challenges/


27 

 

In this way, the relevant information employed in this study consists in the route identifier 

(route ID), station code (DC code), coordinates of each stop made in the route 

(latitude/longitude) and the observed sequence of the stops within each route. An overview 

of each data category with an example value can be seen in Table 4.  

 

Data category Exemplary value 

DC code e.g. DLA8 

Route ID  e.g. RouteID_00ae3f5e-a708-4c37-b9c4-ebd3964dbdac 

Stop ID e.g. NH 

Sequence e.g. 67 

Coordinates e.g. 30.445236, -97.709418 

Table 4. Exemplary values of the relevant information used in this study, contained in the 

Amazon dataset 

 

The data are divided into two separate datasets, each of approximately 3,000 and 6,000 

routes, known as the evaluation and the training datasets (Merchán et al., 2022). This 

division of the data is relevant when evaluating the performance of a routing proposition 

made with machine learning, which would be benchmarked with the evaluation dataset. 

The difference between these two datasets lies in the perceived route quality (Merchán et 

al., 2022). However, for this purpose and since the scope of this thesis excludes routing 

optimization, the division between training and evaluation data is not considered relevant 

for this study. For this reason, the totality of 9,000 routes were used in the modelling.  

For simplification and feasibility purposes in modelling, it is assumed that one stop in the 

dataset is equivalent to one package being delivered. Figure 4 provides a close-up of the 

coordinate stops located in the Los Angeles area.  

 

 

Figure 4. Close-up of the coordinate stops located in the Los Angeles area 

 

During the research project in the fall semester, a small set of routes corresponding to 

about 0.2% of the routes were explored to serve as a small-scale proof of concept of the 

basic delivery model (Prieto Camarillo, 2022). This small sample corresponded to 166 

routes departing from one distribution center in a suburban area named Everett, which is 

located around 40 km to the North of Seattle. The DC code of the explored distribution 

center is DSE4.  
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2.1.4 Contextualizing datasets description 

 

With the purpose of contextualizing the geographical data contained in the Amazon 

dataset, additional demographic information was gathered. In this case, the relevant 

identified demographic factors were population and income. This was done for the purpose 

of exploring the representativeness of the data by obtaining additional information about 

the regions that the Amazon dataset covers. 

As for the dataset containing income data, the geographical resolution corresponds to the 

areas of U.S. ZIP codes, which is one of the best available resolutions for income data in 

the U.S. The data contained is the estimates of per capita income per year, gotten from 

the American Community Survey (ACS) for the year 2021. 

The dataset was obtained from the IPUMS National Historical Geographic Information 

System (Parks et al., 2022). The data is in an CSV file format with the corresponding 

income values per ZIP-code, along with a separate shapefile containing the geodata with 

the borders of the ZIP codes. Which in this case, the two files were merged at a later stage. 

Regarding the population dataset, a dataset from WorldPop was used, which contains the 

population density in the geographical resolution of approximately 1 km at the equator 

(WorldPop & CIESIN Columbia University, 2020). WorldPop is a high-density demographic 

dataset project funded by the Bill and Melinda Gates Foundation and carried out by a 

consortium of universities, among them are the University of Southampton, University of 

Louisville, Universite de Namur and Columbia University.   

The data is contained in two possible formats a CSV or a TIF file. In this study, the TIF file 

format was used. The information contained is classified as raster data, since it is contained 

in a grid structure.  

There is an alternative dataset with the highest geographical resolution available of approx. 

30 meters at the equator from Meta (Data for Good at Meta & Columbia University, 2020). 

The feasibility of utilizing this dataset was tested. However, it was found that due to the 

higher resolution, the dataset contained a considerable amount of null population values 

in the coordinates of the Amazon dataset. In addition to this, a higher processing power 

for such a large dataset was required. Since Meta’s dataset exhibited an unnecessarily high 

geographical granularity for this study’s purpose, the resolution of the WorldPop dataset 

was deemed more appropriate for this contextualization. 
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2.2 Delivery system specifications 

 

In this subsection, the specifications used to model the ground-based and the drone-based 

delivery systems will be described in further detail.  

The model makes use of the specifications of certain chosen vehicles. These vehicles were 

chosen with the purpose of serving as an appropriate representation of the transportation 

vehicles that might be used in future or are already being used in last-mile delivery 

systems. In the following sub-sections, the relevant specifications of each vehicle, as well 

as their specific energy consumption and carbon emission conversion factors will be 

mentioned. 

As this master thesis is the continued work of the research project (Prieto Camarillo, 2022), 

there are parts of the model that were previously established. These were already 

described in the context of the research project (Prieto Camarillo, 2022). However, in order 

for this thesis to be a stand-alone document and to fully specify the methods used in this 

study, they will also be explained in this master thesis.  

For this reason, it is important to note that sections 2.2.1, 2.2.2 and 2.2.3, are based on 

sections included in the research project and are therefore identified with extra indent.  

 

2.2.1 Diesel delivery vehicle 

 

To represent current diesel last-mile delivery systems, the Ducato model by Fiat was 

selected. Three main reasons contributed to its selection.  

The first reason is that the online van configurator from Fiat, offers all the required 

specifications regarding dimensions, weight and fuel consumption. As shown with 

other relevant specifications in Table 5, the long base length was chosen, which leads 

to a gross vehicle weight of 3.5 tons and a carrying volume of 15 m3. 

The second reason is that there is an electric equivalent to the Ducato, the E-Ducato, 

which can be used as a direct electric comparison vehicle with the same dimension 

specifications.  

 

NEW DUCATO VAN (35 LH3 140 HP MULTIJET III MY21) 

Characteristic Specification 

Carrying volume 15 m3 

Base long 

Gross vehicle weight 3.5 tons 

Engine Diesel 

CO2 emission Combined  227 g/km 

Fuel consumption (WLTP, combined)  8.6 l/100km or 0.0861 l/km 

Emission Levels EURO6D_FINAL 

Table 5. Specifications for Fiat’s Ducato based on Fiat, 2020 (Prieto Camarillo, 2022) 
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The third reason consists in the comparability of the Ducato to other large vans in 

the same segment. For instance, vans that are widely used in last-mile delivery such 

as the Mercedes Sprinter and the Ford Transit. These are comparable regarding 

carrying capacity and fuel consumption.  

As for the vehicle fuel consumption, the Ducato is estimated to consume 8.6 liters of 

diesel per 100 km (Fiat, 2020). Subsequently, the fuel consumption was translated 

to contained energy, in order to facilitate a comparison with the energy consumption 

of the drone and the electric vehicle.  

To obtain the equivalent of the energy available or energy consumed in a diesel 

engine (McKinsey Energy Insights, n.d.), the lower heating value was employed. 

According to the U.S. Department of Energy, (n.d.) the lower heating value of low 

sulfur diesel, which refers to common diesel, corresponds to 128,488 Btu/gal. This 

is equivalent to 9.9476 kWh/l.  

The vehicle fuel consumption is translated to contained or consumed energy per km 

and per 100 kms with the following formulas below 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑘𝑚 =  9.947
𝑘𝑊ℎ

𝑙
∗ 0.0861

𝑙

𝑘𝑚
=  0.8565 𝑘𝑊ℎ/𝑘𝑚   

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 100 𝑘𝑚 =  9.947
𝑘𝑊ℎ

𝑙
∗ 8.61

𝑙

100 𝑘𝑚
=  85.65 𝑘𝑊ℎ/100𝑘𝑚   

 

Equation 1. Calculations for energy consumption per km and 100 km (Prieto Camarillo, 

2022) 

 

On a last step, the conversion to CO2 emissions is carried out. In this case, the well-

to-tank (WTT) and the tank-to-wheel (TTW) emissions were considered. WWT 

emissions correspond to the emissions originating in the upstream supply chain of 

fuel production (European Commission JEC, 2016), while TTW are equivalent to the 

tailpipe emissions due to the fuel combustion in the utilization phase of the vehicle 

(ANL, n.d.). The emissions resulting from WTT and TTW stages are collectively 

referred to as well-to-wheel (WTW) emissions.  

The 2021 GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in 

Transportation) model was used (ANL, 2021). The GREET model has also been used 

by Figliozzi (2017) and Jang & Song (2015) in past studies. The relevant value for 

the model is the emissions of 0.326 kg of CO2 per kWh contained in a U.S. diesel mix 

(see Table 6). 

 

Phase  GHG Emissions: Diesel US Mix  Unit 

WTT (well-to-tank) 0.056 kg CO2eq /kWh 

TTW (tank-to-wheel) 0.270 kg CO2eq /kWh 

WTW (well-to-wheel) 0.326 kg CO2eq /kWh 

Table 6. GHG emissions along the fuel cycle from GREET WTW Model (Prieto Camarillo, 

2022) 
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2.2.2 Battery electric delivery vehicle 

 

It was necessary to select an electric vehicle that was comparable in terms of 

dimensions and weight to the chosen diesel vehicle. For this reason, the E-Ducato 

from Fiat, the electric counterpart of the diesel Ducato, was chosen with the same 

specifications. On a further note, the E-Ducato was recently announced to be added 

to the last-mile delivery fleet of DHL Express in Europe (DHL, 2021). 

The E-Ducato has an electric consumption of 0.349 kWh per km according to the 

WLTP, combined test (see Table 7). However, there is a difference gap between the 

certification and the real setting values, since factors such as operational mass and 

ambient temperature are difficult to factor into the tests (Fontaras et al., 2017). 

In the simulated context of last-mile package delivery there are two main factors 

that differ compared to a WLTP test. Firstly, since the WLTP test applies for a vehicle 

without loaded cargo, a loaded vehicle with packages would have a higher energy 

consumption rate. Secondly, the package delivery driving behavior is significantly 

different to the behavior of a conventional passenger car. This involves increased 

stopping and accelerating for the package delivery. To compensate for these 

differences in the case of package delivery, a moderate 15% increase on the WLTP 

value was considered. Thus, the energy consumption value used in the model was 

of 0.401 kWh per km. Nonetheless, further data and research would be needed to 

define a more accurate value for package delivery. 

 

E-Ducato (35 LH3 Van 79kWh MY20) 

Characteristic Specification 

Carrying volume 15 m3 

Base long 

Gross vehicle weight 3.5 tons 

Battery  79 kWh 

Electric range (WLTP, combined) 162.8 km 

Electric consumption (WLTP, combined)  34.9 kWh/100 km or 0.349 kWh/km 

Table 7. Specifications for Fiat’s E-Ducato based on Fiat, 2020 (Prieto Camarillo, 2022) 

 

Regarding the CO2 emissions coming from the electricity grid in the U.S., the average value 

for the year 2019 of 0.433 kg of CO2 per kWh was employed (EPA, 2023). This value factors 

in line losses, yet one disadvantage is that it does not account for other greenhouse gases 

other than carbon dioxide emissions. This value was also used for the electricity employed 

to charge the battery of the drone.  
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2.2.3 Drone model 

 

The chosen drone specifications come from the Wingcopter 198, a state-of-the-art 

drone for cargo delivery from the German company Wingcopter.  

A significant reason why this drone was chosen is that it has a fixed-wing VTOL 

configuration. As previously mentioned, this configuration has clear advantages in 

terms of range and energy efficiency compared to copter drone configurations due 

to the lift of the wing. What enables it to fly both modes, hover mode and cruise 

mode, is its tilt-rotor mechanism (Wingcopter, 2021b). 

A further reason is that this drone model has the ability to carry out package multi-

delivery with a triple drop when having a maximum payload of 5 kg, whereas the 

majority of copter drones can usually manage a single payload (see Figure 5).  

Additionally, section 1.2.2 described the trend of current drone delivery programs to 

utilize a fixed-wing VTOL configuration over copter drones, which were more 

prevalent in a previous stage of drone delivery. For this reason, in order to reflect 

drone operations as best as possible, it was relevant to choose a drone specifically 

meant for package delivery purposes, instead of a drone for other applications. 

 

 

Figure 5. Wingcopter 198 Triple Drop (Wingcopter, n.d.) 

 

The specifications of the drone were obtained from a fairly comprehensive technical 

detail specification sheet (Wingcopter, 2021a). As can be seen on Table 8, the 

maximum range of the drone while fully loaded is 65 km.  

In order to get the values for energy consumption, during the fall research project, 

a specific energy model for this drone was developed based on the model of D’Andrea 

(2014). In existing literature, energy consumption models for drones are usually 

designed for copter configurations and the energy per meter values vary highly 

(Zhang et al., 2021). This energy consumption model for a fixed-wing VTOL 

configuration was described in further detail in the research project and can be 

consulted in the supplementary material.  
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D’Andrea’s model was adapted using the specifications of the Wingcopter 198, and 

in addition a lift-to-drag (L/D) ratio suited for such a fixed-wing VTOL drone was 

calculated. 

The L/D ratio was on average around 8 and varied depending on the weight of the 

payload, under the assumption that this influenced the reference area of the drone. 

This L/D ratio is found within the expected value, given that a quadcopter would have 

a L/D ratio of around 3 (D’Andrea, 2014) and a commercial aircraft of about 15 

(Martinez-Val et al., 2005).  

In addition, the developed energy consumption model was validated with the 

specifications of a similar commercially available drone, the CW-15 from JOUAV (see 

supplementary material). 

In the case of the drone, the conversion to CO2 emissions, was carried out analogue 

to the electricity conversion process explained for the electric vehicle.  

 

Wingcopter 198 Delivery Variant 

Characteristic Specification 

Weight empty 10 kg 

Weight with batteries 20 kg 

Payload capacity Max. 5 kg 

Li-Ion Battery (at 80% capacity) 1302.4 Wh 

Max. range estimation with 1x intermediate 
delivery 

65 km (with a 5 kg payload) 

Table 8. Wingcopter 198 Delivery Variant Specifications, based on Wingcopter, 2021 

(Prieto Camarillo, 2022) 
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2.3 Modeled delivery cases  

 

The distance calculation process is highly relevant for this study, considering that the 

energy consumption is based on the distance traveled during the delivery route. In this 

master thesis, different cases were modeled, all of which influenced the traveled distance.  

The simulation of several cases was carried out in order to test different settings for drone 

delivery and to compare them to a baseline case. There is a total of six modeled cases 

which were assigned a case number. To discern the cases, the denominations starting with 

G, refer to the modelling with ground vehicles and D, with drones.  

Firstly, the baseline cases were modeled using the given positions of the distribution 

centers in the Amazon dataset. The baseline cases refer to G1, G2 and D1. However, to 

address RQ2, three additional measures were proposed to explore factors that could 

potentially impact the performance of widespread drone delivery.  

Therefore, in addition to the baseline cases departing from the original depot the following 

three measures in case of the drone were proposed: 

• Alternative DC (D2) 

• Multi-delivery (D3) 

• Combination of alternative DC & multi-delivery (D4) 

Table 9 provides an overview with the most important attributes of each modeled case. 

These attributes include the case number, case name, which distribution center the route 

is departing from, if the scenario was modeled for both truck and drone delivery or only 

for drone delivery and if the case includes drone-multi-delivery. Each of the four cases will 

be described in further detail in the following sections.  

 

Overview of the modeled cases 

Case No. Case name 
Distribution 

Center 

Drone 

multi-

delivery  

Vehicle 

Battery Electric 

Truck 
Diesel Truck Drone 

G1 
Baseline / 

Original DC 
Original  X   

G2 
Baseline / 

Original DC 
Original   X  

D1 
Baseline / 

Original DC 
Original    X 

D2 Alternative DC Alternative    X 

D3 Multi-delivery Original X   X 

D4 
Alternative DC & 

multi-delivery 
Alternative X   X 

G: ground transportation; D: drone 

Table 9. Overview of the different cases modeled in this study 
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2.3.1 Baseline case  

 

The baseline cases (G1, G2, D1) consist in modelling the routes departing from the original 

DC coordinates specified in the Amazon dataset. This is the baseline or reference, to which 

the other cases can be subsequently compared to. The baseline case was modeled both 

for truck delivery and drone.  

In the case of truck delivery, the distances covered by the battery electric vehicle and 

diesel vehicle are identical and therefore the distance calculation was carried out only once 

for both cases. These distance calculations were consecutively translated to energy 

consumption using their different respective specific conversion functions.  

For truck delivery, the route calculation consists of the distance from the original DC to 

each of the given stops in the right sequence, as can be seen on the left side of Figure 6. 

The figure illustrates how a route has 𝑛 intermediate stops and when all deliveries are 

concluded, the truck returns to the original DC. 

 

 

Figure 6. Illustration of difference between truck and drone delivery 

 

For drone delivery, this translates into a point-to-point distance calculation departing from 

the original DC to the delivery stop and thereafter back to the original DC, as can be seen 

on the right side of Figure 6. This process is then done by the drone for every stop, to 

deliver all packages within the designated route. Accordingly, if a route consists of 160 

stops, the drone would undertake 160 individual flights from the distribution center to each 

delivery point and back.  

Figure 7 presents an exemplary calculation of one truck delivery route (right) and the drone 

delivery flights required to cover the packages on that route (left). It can be perceived that 
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there is a single route in the case of the truck delivery, while for the drone delivery there 

are numerous straight-line flights to and from each delivery point in the route.  

 

 

Ground Vehicle Delivery Route 

 

 

Multiple Drone Delivery Flights  

Figure 7. Exemplary delivery route for ground vehicles (left) and drones (right) (Prieto 

Camarillo, 2022) 

 

2.3.2 Alternative DC case 

 

A factor that might influence the performance of widespread drone delivery is the 

distribution hub proximity. Considering this, an alternative distribution center location from 

which drones could carry out deliveries was proposed (D2).  

The proposed alternative depot consisted in the center of gravity of all the stops that 

assigned to a specific distribution center. On the grounds that one delivery coordinate is 

assumed to represent one delivered package, the coordinate of the alternative DC 

corresponds to the average of the stops coordinates. 

Figure 8 illustrates the location of the original and alternative DCs for the DSE4 in Everett, 

located north of Seattle. As can be seen in the figure, the alternative DC is located south 

to the original DC. The reason for that, is that only sparse stop clusters are located in the 

north, in contrast to the more densely distributed stop clusters in the south. In this manner, 

the alternative depot is located closer to where most of the delivery stops are. 

It is important to note that this center of gravity approach is used to decrease the average 

point-to-point distances covered. It does not minimize all individual point-to-point 

distances, as some may increase and others decrease. Nonetheless, this approach is meant 

to lower the overall average distance covered.  
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In this way the drone flights are calculated in the same manner as described in section 

3.3.3.1, with the only modification being the departure point, which is now the alternative 

DC. 

 

 

Figure 8. Illustration of the original and alternative DC in a case study, with the delivery 
stops (blue), the original distribution center DSE4 (red) and alternative drone 

distribution center (orange) (Prieto Camarillo, 2022) 

 

2.3.3 Multi-delivery case 

 

Multi-package delivery could be a further way to increase the efficiency of drone delivery 

(D3). As mentioned before, the selected drone (Wingcopter 198) has the capacity of 

carrying and delivering up to three packages with a triple drop system. This triple delivery 

can be carried out with a total payload of up to 5 kg. Ergo, the proposed scenario is to 

make use of this triple drop system and to model it as realistically as possible. 

To model this multi-delivery case for the drone, a standard individual payload weight of 

1.5 kg was chosen. Meaning that the fully loaded three package payload weight would 

amount to 4.5 kg in total. 

The basic idea of the distance calculation with multi-delivery is illustrated on the right side 

of Figure 9. There is a distinction between double and triple package delivery, but in general 

multi-delivery consists in the following steps:  

• First, the drone travels fully loaded, either with two or three packages, from the DC 

to the first delivery point and delivers the package.  
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• The next step is to travel to the following delivery point(s), however with one less 

package in each flight segment. This is repeated until all packages have been 

delivered to the intermediate stops.   

• Finally, the drone flies back to the DC without any payload.  

It is noteworthy, that the drone energy consumption for each of the flight segments will 

vary depending on the payload weight, having a different value in a fully loaded, half- 

loaded or empty drone. This is included in the energy consumption model of the drone, so 

instead of modelling one single delivery segment and multiplying it by two, the energy 

needed for each distance segment with the corresponding weights is calculated. 

 

 

Figure 9. Illustration of the difference between single and multi-delivery in the drone case 

 

A further relevant factor is the maximum drone range in km. The range is impacted by two 

main factors in this study: 1) by the maximum battery capacity and 2) by the amount of 

intermediate deliveries within one flight. Regarding the first factor, the maximum battery 

capacity of the Wingcopter drone is specified at 80% capacity in this study with 1304 Wh. 

On the other hand, the number of intermediate deliveries is a significant constraint. This 

is because the hover mode, which refers to the descent and ascent when a package delivery 

is carried out, requires considerably more energy than the cruise mode. Due to the lift 
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force generated from the wings that is present in the cruise mode, less energy is needed 

to counteract the force of gravity during the flight. 

Given the finite energy budget of the battery, it could not be assumed that all deliveries 

could be accomplished with triple delivery. For this reason, a variable delivery case was 

modeled, which would decide whether a single, double or triple delivery could be carried 

out. This decision was made depending on the distance that needed to be covered and 

considering the battery size constraint. In certain cases, single delivery was still required 

due to the long-traveled distances.  

This variable delivery scenario was modeled in a sequential manner. Meaning that the 

drone delivers to the next delivery point in the sequenced list, assuming that that point 

would be in close proximity to the previous one. In this way, the coordinate stops within 

one route were assigned into groups of 1, 2 or 3 packages per drone flight.  

For instance, if a truck route served 167 stops, the delivery points were sequentially 

assigned into the individual groups which would represent one drone flight. Each drone 

flight would need to consume less energy than the 1304 Wh, which were deemed as the 

maximum energy consumption available. In this example, this route would have 𝑛 groups 

of 1, 2, or 3 packages.  

 

2.3.4 Combination of alternative DC and multi-delivery case 

 

The last proposed case (D4) combines D2 and D3, which consist in the alternative DC 

location and the multi-delivery. Therefore, the variable delivery model is used, and instead 

of employing the original DC coordinates, the alternative DC coordinates are used. In this 

way, the two proposed distance-reducing measures are combined in one case.  

 

2.3.5 Electricity-mix decarbonization scenario 

 

The three proposed drone cases (D2, D3, D4) consist in the exploration of technical routing 

measures in the delivery system design. However, in order to explore the influence of mere 

technological measures, a future decarbonization scenario of the employed electricity mix 

was suggested. 

A report by the UC Berkley’s Center for Environmental Public Policy, in which a clean 

electricity mix in 2035 is explored, assumed a share of 90% clean electricity case of the 

grid for the United States (Wooley et al., 2020). This study assumed the usage of non-

biomass renewables, mostly wind as well as solar energy. 

Employing this value, the carbon intensity of the electricity-mix decarbonization scenario 

would correspond to 44.3 g of CO2 per kWh (see Table 10). This value is specifically 

relevant for the energy consumption of the EV and the drone and does not affect the 

operational phase of a diesel vehicle.  

It surely can be that the decarbonization is not as prominent as 90%, nevertheless this 

scenario is meant to explore the effect that a possible decarbonization of the electricity 

mix would have in the future.  
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 Original electricity-mix Decarbonization scenario 

Carbon intensity per kWh 443 g CO2 44.3 g CO2 

Source  EPA, national average for 2019  Assumption of a 90% electricity-grid decarbonization  

Table 10. Electricity-mix decarbonization scenario 
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2.4 Implementation of the model in Python 

 

This section provides an overview of the technical implementation of the previously 

explained delivery models in Python. An explanation of the code in overview terms, as well 

as the encountered challenges and the tools or packages used in the model, is found in 

this section. The goal is to provide a technical understanding of the functionality of the 

backend, as the code development constituted a significant component of this master 

thesis. The main sections of the code can be found in the appendix section B. 

The model was developed and programmed on Python (version 3.8). Python is a 

widespread programming language, often used for purposes such as data analysis or 

scientific research. VS code was used as a source-code editor. Additionally, conda 

environments were used to manage Python packages. The list of the packages in the 

employed conda environment is found in appendix section B.5. 

 

 

Figure 10. Outline of the main processes in the Python code, the datasets employed as 

well as the data processing elements 
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The various elements of the model can be summarized in Figure 10. There are three main 

parts to the model:  

• The mainly employed Amazon dataset, which was described in section 2.1. In 

addition, two other datasets were employed to contextualize the delivery data in a 

secondary step. 

• The Data Processing stages, which refer to all the initial cleaning processes as well 

as any intermediate merging or cleaning processes for dataframes. 

• The Model Structure itself, which is divided into three main stages of distance 

calculation, energy consumption calculation and CO2 emissions calculation. 

Additionally, the contextualization with demographic data is included in the last 

step. 

• Moreover, relevant tools or packages employed are shown in gray circles. 

 

2.4.1 Data Processing 

 

Data extraction from the Amazon Dataset 

Firstly, a script to extract the necessary routing data from the Amazon dataset was 

developed. This data includes the route ID, DC code, stop coordinates and observed 

sequence of the stops. The dataset is found in a JSON format that was imported using the 

pandas library in Python. Most of the further processing was carried out with pandas 

dataframes. 

Route sequencing 

There were two parts of the available datasets that needed to be joined. The first dataset 

had the necessary information such as the geographical coordinates of the stops and their 

corresponding route ID and DC code, however these stops were in an unordered sequence. 

The second dataset had the actual observed sequence of the stops e.g. the first delivery 

point had the sequence number 1. Therefore, these two datasets were joined. 

Subsequently, the stops were sorted in the right sequence, before starting the analysis. 

This initial stage of the dataset import and pre-processing was developed during the fall 

research project in order to access a small fraction of the routes (Prieto Camarillo, 2022). 

Intermediate processing steps 

On the left side of the Figure 10, the Amazon dataset is illustrated. As mentioned in section 

3.2.3, the Amazon dataset is divided into two parts. Namely, a dataset with approximately 

3,000 routes and a dataset containing approx. 6,000 routes. These had to be joined and/or 

filtered in later intermediate stages.  
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2.4.2 Model structure 

 

2.4.2.1 Distance calculation  

 

After the initial loading, sorting and cleaning of the data, the distance calculation for the 

original DC case and the alternative DC was programmed. 

This was carried out in a script that looped over a given list of DC codes (see code in 

appendix B.1). To facilitate the distance calculation process and evade the API bottleneck 

for distance calculation that will be explained in the following sub-section, the script 

performed the calculation in parts. This meant that instead of running the script for all DCs, 

they were calculated incrementally in smaller groups.  

In the fall research project, this gradual distance calculation approach was unnecessary as 

it focused on one distribution center with 166 associated routes. However, significant 

modifications of the script were necessary to scale the code for all DCs, given the 

substantial increase to more than 9,000 routes, 18 distribution centers and around 1.3 

million coordinate points. 

 

2.4.2.1.1 Distances truck 

 

In order to calculate the truck driving distances, the API (Application Programming 

Interface) employed was Open Source Routing Machine (OSRM). OSRM is a routing engine 

employed to estimate the most optimal path in road networks. The input for the API request 

were the ordered geographical coordinates of the routes. The result of the API request 

came in a JSON file from which the total distance needed to be extracted from. 

Ground distance calculation bottleneck 

Using the API to calculate routes with over a million stop coordinates in total, resulted in a 

bottleneck in processing time, given the finite OSRM server capacity and traffic levels. For 

this reason, a locally hosted server of OSRM was set up. This meant not relying on the API 

servers, but on a local machine. However, this measure did not significantly speed up the 

request processing time. Therefore, the truck distances were calculated gradually, sending 

the API requests of 2 or 3 distribution centers at a time, as to not overload the API traffic 

with excessive requests.  

Exception handling of distance calculations 

Some routes were not able to be calculated by the API. Presumably some smaller roads 

might have not been registered in the employed road network, leading to some routes 

lacking a distance path from one point to the next one.  

In total seven routes were not able to be calculated with OSRM. These routes were located 

in Los Angeles, departing from the distribution centers DLA7 and DLA4. In terms of stops 

in each route, this was equivalent to 886 stops that were not able to be calculated (see 

Table 11 and appendix A.2).   
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However, this represents a negligible percentage compared to the totality of the stops. 

These exceptional route IDs, for which a full distance of the route was not able to be 

calculated, were removed from all further processing.  

 

 Total contained Exceptions: non-explored Total calculated 

Routes 9,164 7 9,157 

Stops 1,337,758 886 1,336,872 

Table 11. Exception handling in calculating ground distances with OSRM 

 

2.4.2.1.2 Distances drone 

 

The drone distances were calculated as point-to-point distances, however, given the 

spherical surface of the globe, these distances cannot be calculated as a straight line. For 

this reason, the great-circle distance calculation was utilized by the GeopPy package using  

the WGS-84 ellipsoid projection (GeoPy Contributors, n.d.).  

The geodesic distances were calculated departing for the distribution center to each of the 

stops contained in the route and back. As an input, the function employed required the 

two sets of coordinates, the distribution center and the individual stop. This resulting 

distance was then multiplied by two, in order to represent the round trip by the drone.  

For the alternative DC scenario, a different set of departure coordinates was used in place 

of the original DC coordinates. The original as well as the alternative DC coordinates can 

be found in appendix A.1.  

 

2.4.2.2 Calculation of energy consumption and CO2 emissions 

 

After calculating the ground and flight distances, these needed to be expressed in terms 

energy consumption and CO2 emissions.  

Since the translation into energy consumption and CO2 emissions emulates that of a 

formula, this was carried out using functions in Python.  

Functions can be defined as a section of code or set of instructions meant to be utilized 

repeatedly, which return a specific result and that can be called within the code whenever 

needed (Willems, 2020).  

For this reason, there was a function for each conversion. Which took as an input, the 

distance calculation of either the drone or the truck and then converted it into energy 

consumption values depending on the vehicle. Subsequently this energy consumption 

value was converted to CO2 emissions, with another set of functions.  

In total there were five main utilized functions, which can also be found in appendix section 

B.2:  

• Drone energy consumption from distance 

• EV energy function from distance 
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• Diesel vehicle energy contained function from distance 

• CO2 emissions function for diesel vehicle 

• CO2 emissions from electricity mix for drone and electric vehicle 

 

2.4.2.3 Drone multi-delivery 

 

Given that the drone battery constraints needed to be considered, the modelling of the 

multi-delivery scenario required a higher complexity than the initial distance calculation for 

a single drone delivery.  

The multi-delivery script can be found in appendix B.3 and it classifies routes in groups of 

one, two or three deliveries, depending on the use of energy needed to make those 

deliveries.  

Classification into delivery groups 

The main approach to build the groups of deliveries, was to calculate the energy needed 

to make the delivery in a sequential manner. This sequential approach was chosen under 

the assumption that the observed sequences in the Amazon dataset would go to the next 

closest stop. This meant calculating the distance and the energy needed to make the first 

delivery. Subsequently, if there was remaining battery capacity, then the distance and 

energy consumption to go to the next delivery point was calculated. If after the second 

delivery there was remaining battery capacity, the last calculation for the third delivery 

was carried out. If at any point during the sequential calculations, the energy needed 

exceeded 80% of the drone battery capacity, then the previous value in which the upper 

limit was not exceeded, was taken.  

This was implemented through a set of if, elif, and else conditions. In order to determine 

how many deliveries were possible, two exit conditions were defined: 1) if the energy 

expended in the current trip exceeded 80% of the current battery capacity of the drone 

and 2) if already three deliveries were carried out by the drone. 

Additionally, the function needed to calculate the energy needed to be adapted for a 

variable payload and several segments of distances. 

Utilization of a virtual machine  

To optimize long processing times, the script was run in a virtual machine (VM), which had 

a higher computational capacity. Virtual Machines are a virtual representation of a physical 

computer (IBM, n.d.). Cloudio is the VM is available for research within the Industrial 

Ecology Program. Cloudio has 88 virtual central processing units (vCPU) and 1280 GB of 

RAM (Industrial Ecology Digital Lab, 2023).  

Cloudio can be run directly in the Linux terminal and it has an additional interface with 

visual studio code. The same script was run for a group of approximately 3 to 4 distribution 

centers in 5 separate vCPUs.  

 

 



46 

 

2.4.3 Processing of the contextualizing datasets 

 

As described in section 2.1.4, there were two extra contextualizing datasets in order to 

shed a light on the demographic characteristics of the areas covered by the Amazon 

dataset. The employed dataset for population density was from WorldPop, while the 

dataset with information about income per capita was from IPUMS NHGIS.  

Especially for these larger datasets, the usage of cloudio was necessary. A higher 

computational capacity was required, given the 1.3 million coordinates for with the script 

needed to extract data from the two additional datasets.  

Population density dataset 

As for the WorldPop dataset, the processing time in the standard computer was time 

consuming, with 1.5 minutes for 20 coordinates. For this reason, the 1.3 million 

coordinates were divided into five dataframes and the data was extracted for each section 

simultaneously in separate vCPUs in cloudio.  

The format of the WorldPop dataset was a .tif file. A GeoTIFF file contains geodata, in the 

form of a raster or pixel-like structure (Wasser et al., 2018). This geographical data is 

stored in the so-called “bands” of the .tif file. 

Firstly, the .tif file was loaded with the help of the rasterio package. Posteriorly, the 

population density values for the 1.3 million delivery stop coordinates was extracted from 

the corresponding raster in the dataset. The code for the population data extraction can 

be found in appendix B.4.  

Income dataset 

Regarding the income data extraction from IPUMS NHGIS, there was an intermediate 

processing step needed, because of the two data files. Therefore, the first step was to join 

the shapefile that contained the geographical information of the ZIP code areas, together 

with the CSV file that contained the income per capita data.  

This merged information was then exported as a new shapefile, which was used to extract 

the corresponding income values for the 1.3 million geographical coordinates of the 

Amazon dataset. The script for the income data extraction is located in appendix B.4. 
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This section presents the results of the analysis carried out with the ground vehicle and 

drone delivery models.  

Firstly, the dataset is contextualized in terms of demographic characteristics such as 

population and income. Secondly, an overview of the results per simulated case is given in 

terms of the most important measurement criteria: distance, energy consumption and 

carbon emissions. Thirdly, an equivalent-route analysis is given in order to compare the 

performance of the same data points or routes. Furthermore, additional insights are given 

regarding the multi-drop scenario. Lastly, the technological measure of the decarbonization 

of the electricity mix is presented. 

 

3.1 Contextualization of the data 

 

As a part of the contextualization of the Amazon dataset, further demographical data in 

terms of income and population density was obtained. This served as ab assessment of the 

representativeness of the data and to provide information of where the dataset stands in 

comparison to the U.S. average. 

In Figure 11, each blue cross represents the average value corresponding to each of the 

9,157 routes. On the horizontal axis, the average income per capita for the corresponding 

ZIP codes of the route is shown. Along the vertical axis, the average population in people 

per km2 per route ID is depicted.  

The green horizontal line represents the average population value in the U.S., which 

amounts to 36.2 people per km2, this value was calculated based on the area and total 

population values (U.S. Census Bureau, 2022; World Bank, 2023). On the other hand, the 

vertical orange line represents the average income per capita, amounting to 37,638 USD 

according to the 2021 American Community Survey (U.S. Census Bureau, 2022).  

It is apparent from the figure, that the majority of the of the routes can be found above 

the green average population density line. This indicates that the majority of the delivery 

routes included in the Amazon dataset, take place in areas that are more densely populated 

than the U.S. average.  

According to the most recent U.S. Census Bureau definition (2022), an urban area consists, 

among other criteria, mainly in a cluster of more than 2,500 or 5,000 people. For reference, 

the city of Los Angeles possesses an estimated population density of approximately 3,292 

people per km2, while the city of New York approximately of 10,812 people per km2 (U.S. 

Census Bureau as cited in Open Data Network, 2018). As can be observed by the cluster 

of blue crosses a at the bottom of the figure, more routes take place in areas with a 

population density similar to that of Los Angeles rather than New York.  

3 Results & analysis 
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Regarding income per capita on the horizontal axis, it can be observed that some routes 

are found to the left of the average U.S. income line. However, a larger proportion of the 

routes is located to the right of the orange average line. This means that while there is a 

proportion of the routes in the dataset that deliver in areas with a socioeconomic level 

below the average income, the majority of the deliveries are carried out in areas with a 

higher than average income per capita.  

It is necessary to consider these two aspects, when determining for which context the 

results are valid for. In this sense, the results that are presented in the following sub-

sections apply, firstly, in the context of U.S. urban areas. Secondly, it needs to be 

considered that a large proportion of the routes were carried out in areas with an income 

higher than the U.S. average. 

 

 

Figure 11. Scatterplot of the demographic characteristics of the delivery routes in the 

dataset 
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3.2 Results per modeled case  

 

In this subsection, an overview of the results for each modeled case will be given in terms 

of distance, energy consumption and carbon emissions.  

As for the modeled cases, these were explained in detail in section 2.3. Firstly, the baseline 

cases correspond to the ground vehicles departing from the original distribution center 

(G1, G2). Additionally, there are four drone cases: one departing from the original DC 

(D1), another departing from the alternative DC (D2), one implementing the multi-delivery 

of up to three packages (D3) and, lastly, the case combining multi-delivery and the 

alternative DC (D4). This last drone case will be referred to as the “combined” drone case 

(D4).  

To see the complete generated dataset from which the summary statistics were obtained, 

consult the CSV file provided as supplementary material. 

 

3.2.1 Distances (km) 

 

To understand the energy consumption and carbon emissions sections, the distance 

calculation results need to be described first. Table 12 presents an overview of the distance 

and distance ratio for every modeled case. These are the averages for all route IDs in the 

dataset across all cities and distribution centers.  

There is no distinction between EV and diesel vehicles in the table, given that both share 

the same traveled ground distances, which are referred to as “Truck: Original DC” (G1, 

G2). This baseline ground transportation case is shown in blue. Below that, the four 

calculated drone cases can be found (D1, D2, D3, D4).   

On the first column of the table, the average traveled distance in kilometers for each case 

can be found. While on the next column, the distance ratio between drones and ground 

vehicles is provided.  

Regarding the distance per route, the drones execute different flights to deliver each 

package—or in the case of multi-delivery, a cluster of up to three packages. However, to 

achieve the comparability between truck and drone distances in the analysis, the drone 

distances that cover the equivalent number of truck stops per route were aggregated. 

The distance ratio is an important measure to analyze the distances flown by the drone in 

comparison to the distances traveled by the ground vehicle. In this study, the distance 

ratio is defined as the kilometers that a drone is required to fly compared to every kilometer 

driven by the truck to deliver the same amount of packages. In this manner, the original 

DC of the truck is used as the comparison point or baseline. 

In the case of D1, for every km the truck drives, the drone would need to fly 49.6 km on 

average to satisfy the same amount of package deliveries within that established route. 

This corresponds, on average to 5,222.5 km that the drone would need to fly compared to 

the 100.2 km driven by the truck to deliver all the packages within one route ID.  
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Regarding the alternative distribution center case with the drone (D2), there is a reduction 

of the mean distance ratio from 49.6 departing from the original distribution center, to 

42.7 departing from the alternative depot location.  

 

Mean distance per route [km] and  

Mean distance ratio [km drone: km truck] 

Case km  km drone: km truck 

(G1, G2) Truck: Original DC  100.2  - 

(D1) Drone: Original DC  5,222.5  49.6 

(D2) Drone: Alternative DC  4,459.7  42.7 

(D3) Drone: Multi-delivery  3,076.1  26.9 

(D4) Drone: Alternative DC & multi-delivery  2,355.9  21.1 

Table 12. Mean distance per route [km] and Mean distance ratio [km drone: km truck] for 

all modeled cases, baseline case shown in blue 

 

Interestingly, the most significant reduction compared with the original DC drone case, can 

be observed with multi-delivery (D3) where the average distance ratio decreases to around 

26.9. This indicates that multi-delivery is a significant measure to reduce the distances 

flown by the drone in comparison with the original distribution center case. This reduction 

is highly important, since for every extra package the drone delivers it saves one trip back 

and forth from the distribution center. This makes drone delivery considerably more 

effective than with a single delivery. 

In the case of the combined scenario (D4), multi-delivery and alternative DC, a further but 

not so large stepwise reduction can be observed from 26.0 to 21.1 drone km per truck km. 

This was found to be the maximum average reduction. In this case, the average flown 

distance of the drone was ultimately reduced from 5,222.5 km to almost less than half that 

value to 2,355.9 km. This further improvement in distance ratio can be traced to the 

combination with the alternative DC, a closer alternative depot location enables more 

multi-deliveries of two or three packages.  
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3.2.2 Energy consumption (kWh) 

 

Based on the distance calculations, the equivalent energy consumption for each case is 

calculated. The energy consumption models use corresponding conversion factors for each 

vehicle type (see section 2.2).  

On Table 13, the average energy consumption per route (right) and per package (left) are 

shown. To have the distance normalized by the number of packages allows a comparison 

of the same unit. This is because every route is composed of a varying amount of packages, 

implying that different routes are not necessarily directly comparable. Thus, it is important 

to show these two indicators and not only the energy consumption per route.  

On the table, the baseline scenarios departing from the original distribution center for the 

EV and diesel vehicle are shown in blue (G1, G2).  

Focusing on the cases that have an energy consumption that is less than the diesel vehicle 

average consumption (G2), the last two cases fall under this category (D3, D4). These are 

highlighted in green. The diesel vehicle has an average energy consumption of 0.60 kWh 

per package, while the drone multi-delivery and combined case an average consumption 

of 0.55 and 0.48 kWh per package respectively.  

In the case of the drone alternative DC case (D2), a reduction from 0.70 to 0.62 kWh per 

package can be observed compared to the original drone DC case. While the energy 

consumption of 0.62 kWh is relatively close to the diesel average consumption of 0.60 kWh 

per package, this single measure does not suffice to reach lower energy consumption levels 

than the diesel vehicle. 

It becomes apparent that none of the drone cases would be able to contend with the EV 

baseline case (G1), which has an average energy consumption of 0.28 kWh per package. 

In the last drone combined case, the average consumption per package would need to be 

reduced by at least 0.2 kWh in order to reach the EV average consumption levels.  

 

Average energy consumption per route [kWh/route] and 

 Average energy consumption per package [kWh/package] 

Case kWh/route kWh/ package 

(G1) EV: Original DC 40.2  0.28 

(G2) Diesel: Original DC 85.5 0.60 

(D1) Drone: Original DC 101.7  0.70 

(D2) Drone: Alternative DC 91.8 0.62 

(D3) Drone: Multi-delivery 80.0 0.55 

(D4) Drone: Alternative DC & multi-delivery 71.4 0.48 

Table 13. Average energy consumption per route [kWh/route] and Average energy 

consumption per package [kWh/package] for all modeled cases. Baseline cases shown in 

blue, while the cases with an average value less than scenario G2 are shown in green 

 

In order to explore the distribution of the data, a boxplot of the energy consumption can 

be seen in Figure 12. The variation of the data is the largest in the case of the drone cases, 

especially in both the original and the alternative distribution center cases (D1, D2). Of the 
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drone cases, the combined case (D4) is the one with the least variation. It can be observed 

that multi-delivery (D3, D4) tends to reduce the variation in the energy consumption data.  

 

 

Figure 12. Boxplot of the energy consumption in kWh per route ID for each case 
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3.2.3 Carbon emissions (kg of CO2) 

 

Based on the energy consumption values, the corresponding conversion factors were used 

to obtain the carbon emissions for each route (see Table 14). Additionally, carbon 

emissions per package are shown on the right side of the table, given that each route 

varies in amount of packages. 

What is interesting compared to the energy consumption table, is that the last two 

scenarios do not perform better than the average diesel case in terms of carbon emissions, 

whereas the opposite was the case with energy consumption. These two scenarios were 

shown in green on the previous Table 13. 

These diverging results can be traced back to the conversion factors. In the case of diesel, 

the conversion factor of 0.326 kg CO2 /kWh is lower than the carbon intensity of the 

average U.S. electricity mix, which equals to 0.433 kg CO2 /kWh. 

Compared to the employed electricity mix, the diesel vehicle has relatively low values for 

carbon emissions. However, diesel technology possesses a limited potential for 

decarbonization. A leverage of electricity-powered vehicles is the greater probability of 

decarbonization for the electricity mix. A scenario considering the electricity 

decarbonization potential is shown in section 3.5. 

 

Average carbon emissions per route [kg CO2/route] and  

Average energy consumption per package [kg CO2/package] 

Case kg CO2/route kg CO2/package 

(G1) EV: Original DC 17.4 0.12 

(G2) Diesel: Original DC 27.9 0.19 

(D1) Drone: Original DC 44.0 0.30 

(D2) Drone: Alternative DC 39.7 0.27 

(D3) Drone: Multi-delivery 34.7 0.24 

(D4) Drone: Alternative DC & multi-delivery 30.9 0.21 

Table 14. Average carbon emissions per route [kg CO2/route] and Average energy 

consumption per package [kg CO2/package], baseline cases are shown in blue 

 

In order to better visualize the distribution of the CO2 emissions per case, histograms with 

kernel density estimation (KDE) lines are provided for each case in Figure 13. Along the 

horizontal axes, the values are classified into bins according to the level of CO2 emissions. 

In the vertical axes, the frequency of occurrence of that emission bin is shown. 
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Figure 13. Histograms with KDE lines of kg CO2 emissions per route ID. Each drone case 
in each panel (D1, D2, D3, D4) is shown in green. While in all panels, the ground vehicle 

baselines (G1, G2) are shown in blue and orange. 
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Each panel shows one of the modeled drone cases (D1, D2, D3, D4), which are depicted 

in green. As can be observed in all panels, the blue and green lines (G1, G2) stay in the 

same position, since they correspond to the baseline cases.  

It can be observed that the green KDE line of the drone cases shifts closer to the left, 

increasingly overlapping with the EV case in blue. This occurs as the lowest panel is reached 

and more routing measures are implemented for drone delivery. 

This overlap between the green and blue bars means that the performance of some of the 

drone routes could reach the same levels of some of the EV routes. However, it is relevant 

to note that this histogram contains all route IDs. A same-point comparison, analyzing the 

equivalent route IDs is carried out in the subsequent section.  
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3.3 Equivalent-route comparison 

 

In subsection 3.2, an aggregate perspective of all routes in the dataset was presented. 

That section examined the overall performance of all routes in the dataset; however, it did 

not necessarily compare the same route ID for each of the cases. This subsection compares 

the CO2 performance of the drone routes compared to the diesel and EV baseline cases, 

based on the equivalent route or datapoint. This is relevant, considering that different 

routes have different sets of packages to be delivered and would be different comparison 

points.  

It is to be mentioned, that although the set of stops is the same, the departing distribution 

center might be different when comparing a drone case departing from the alternative DC.  

Table 15 shows the number of drone routes per case with a better performance compared 

to the equivalent routes in the EV and diesel cases (G2, G1), which depart from the original 

depot. This performance refers the carbon emissions in kg of CO2 per route ID. Additionally, 

the proportion of better performing drone routes in comparison with the total 9,157 routes 

is shown.  

 

Better performing drone routes in terms of CO2 per route ID 

Cases Compared with 

Diesel vehicle (G2) 

% of total 

routes 

Compared with EV 

(G1) 

% of total 

routes 

Total routes 

(D1) Drone: Original DC 191 2% 1 0% 9,157 

(D2) Drone: Alternative 

DC 

1,447 16% 71 1% 9,157 

(D3) Drone: Multi-

delivery 

1,582 17% 19 0% 9,157 

(D4) Drone: Alternative 

DC & multi-delivery 

3,546 39% 269 3% 9,157 

Table 15. Better performing drone routes in terms of CO2 per route ID (equivalent-route 

ID comparison) 

 

For instance, in the case of the original distribution center (D1), only 191 drone routes or 

2% of the total routes, perform better when compared to the emissions of the diesel case 

(G2) for the same route ID. When considering the comparison with the EV case (G1), even 

fewer drone routes perform better, with only one route emitting less carbon emissions. 

For the comparison with the diesel case, it can be observed, that the alternative DC 

measure (D2) brings a similar improvement as does the multi-delivery case (D3). Meaning 

that around 1,500 routes would perform better with the drone compared to the diesel 

vehicle. Further, the most improvement can be seen with the alternative DC multi-delivery 

case (D4) with 3,546 routes performing better, which are equivalent to a significant share 

of 39% of the total 9,157 routes. 

As to be expected from the aggregate analysis, there are very few drone routes that 

perform better compared to its EV route counterpart (G1). However, as the measure of 

alternative DC is implemented with multi-delivery this number increases to 269 better 

performing routes. Compared to the total routes, the better performing drone routes are 

still few compared to the EV routes. This is due to the low distance that a ground vehicle 
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needs to travel in comparison with the drones, therefore ending up with low carbon 

emissions compared to the drone counterparts. 

 

3.3.1 Equivalent-route comparison of D4 with G2 

 

Given that the D4 case had the most available best performing drone routes compared 

with the diesel baseline case (shown in green in Table 15), a more in-depth analysis was 

carried out for this case. The aim of this section is to explore the general characteristics of 

these 3,546 better performing drone routes. A set of summary statistics comparing the 

better and worse performing routes can be found in appendix C.2. 

 

 

Figure 14. Stacked histogram of average group size per flight in the alternative DC multi-

delivery (D4) case. In blue are the worse performing routes and in orange the better 

performing routes compared to the G2 case. 

 

Firstly, the group size attribute was explored. Figure 14 presents a stacked histogram of 

the average group size for the alternative DC & multi-delivery drone case (D4). Group size 

refers to the amount of intermediate deliveries carried out within one single drone flight. 

The blue fragment of the bar represents the worse performing routes, while the orange is 

equivalent to the better performing routes compared to the diesel case for the equivalent 

route IDs. 

It can be observed that the better performing drone routes (orange), tend to have 2 or 3 

packages per flight. A larger proportion of routes tend to perform better than their diesel 

counterpart when 3 deliveries are made.  

Since there are also other routes with either 2 or 3 package deliveries that are not within 

the better performers (blue), it can be concluded that group size is not the only determining 

factor to determine whether a route could perform better or not than the diesel baseline 

case. However, none of the routes with single-package delivery, performed better than the 
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diesel baseline scenario. Therefore, it is apparent that multi-delivery is a key factor to 

improve drone performance in terms of CO2 emissions. 

Looking for further factors that might be related to the performance of the drone routes, 

various variables were plotted against one another. This was done with so-called pairplots 

of variables, which serve to visualize pair-wise relationships. The most relevant pairplots 

are shown in this section, for the complete set of pairplots consult appendix C.3.  

 

 

Figure 15. Scatterplots of average group size and km flown per package in the case of D4, 

alternative DC & multi-delivery, (left) and the average round-trip distance from the 

alternative DC to the delivery stops (right) 

 

Figure 15 shows two scatterplots of the relationship between average group size and two 

different types of distances: km flown per package in the case of alternative DC & multi-

delivery (D4) and the average distance from the alternative DC to the delivery stops. Both 

panels show that most of the better performing drone routes, tend to have 2 or 3 delivery 

stops per flight, as discussed in the previous Figure 14. However, these scatterplots 

indicate that there is an additional relevant parameter other than the group size, namely 

the distance flown per package and the distance between the DC and the respective stops.  

In the case of the left panel, drone flights with two stops or more have a distance per 

package of around less than 30 or 40 km. It can also be observed that the better 

performing routes (orange) are mostly found within this range of higher group size and 

lower distance per package.  

Turning to the right panel, the average distance from the alternative DC to each of the 

stops can be observed on the horizontal axis. The right panel shows that shorter distances 

from the DC to the delivery points, allows more double and triple deliveries. This in turn, 

leads to better performing drone routes.  

It can be observed that most of the better performing routes are found below a maximum 

round trip distance of 60 km in a single-delivery scenario, which would be equivalent to 30 

km straight-point distance between the alternative DC to the delivery stop. 

From these panels it can be concluded that a further influential factor apart from group 

size in multi-delivery, is the distance from the distribution center to the delivery points.  
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3.4 Multi-drop insights 

 

Multi-drop has proven to be a highly relevant routing measure in the previous result 

sections. Firstly, this measure in combination with a closer departure depot enables better 

performing routes and has the biggest potential to reduce energy consumption and carbon 

emissions on average when comparing the drone cases. Additionally, as multi-drop was 

one of the novel aspects of this thesis, this section provides further insights on multi-

delivery. 

 

Group formation 

Within the 9,157 routes, their 1.3 million coordinates were clustered into multi-delivery 

groups with varying group sizes depending on whether the trip could be completed with 

the determined 80% of the drone battery capacity. At the end, 659,620 multi-delivery 

groups were able to be formed. Of the formed groups the majority (44 %) of the drone 

flights were able to carry out double deliveries. On the other hand, 28% would have been 

able to perform a triple delivery, while 27% would have only been able to perform a single 

delivery.  

 

Group Size Amount of groups Proportion (%) 

Single delivery         179,233  27% 

Double delivery         293,355  44% 

Trible delivery         187,032  28% 

Total         659,620  100% 

Table 16. Group size of the drone flights in the multi-delivery scenario from the original 

DC (D3) 

 

Insights from exemplary triple-drop calculation 

To provide further insights into multi-drop, an exemplary calculation is described in this 

section. This example calculates the energy consumption for each flight segment, assuming 

the maximum of three deliveries. In Figure 16, the straight-line distance from the 

distribution center DAU1 in Austin and the cluster of three deliveries, corresponding to 27.7 

km, is shown in black. Figure 17 shows a close-up of the distances between the three 

deliveries carried out by the drone. It can be observed that the distances between each 

intermediate stop is not so significant compared to the distance to the distribution center.  

For a triple delivery, there are 4 segments in the trip:  

• Segment 1: is the flight from the distribution center to the first stop coordinate. 

• Segment 2: corresponds to the short distance traveled from the first stop coordinate 

to the next delivery point. 

• Segment 3: corresponds to the distance between the second stop and the third. 

• Segment 4: is the final flight back to the distribution center. 

 

There are three intermediate landings, which have a different rate of energy consumption 

than the hovering flight mode in the previously described segments. During these 



60 

 

segments, as seen in Table 17, the payload weight varies as packages are delivered in 

each intermediate landing. The difference in payload weight leads to the variation of the 

L/D ratio in the drone energy consumption model. 

 

 

Figure 16. Straight-line trajectory between the distribution center in Austin and the 

cluster for triple deliveries (black line corresponds to a distance of 27.8 km) 

 

 

Figure 17. Close-up of the location of the three intermediate deliveries in the exemplary 

calculation 

 

As can be seen in Table 17, the distances flown between intermediate deliveries are 

relatively small, in this exemplary case corresponding to 0.32 and 0.34 km. This implies, 

that if the total route distances between a single, double and triple delivery flight were to 

be compared, there would not be a significant difference. Delivering double or triple the 

amount of packages, almost doubles or triples the efficiency of drone delivery per package. 

 

Exemplary triple drop delivery calculation by trip segment 

Trip segments Distance km Payload weight at 

segment [kg] 

Total weight at 

segment [kg] 

LD ratio 

[unitless] 

Distance 

energy [kWh] 

Intermediate 

landing energy 

[kWh] 

Segment 1 27.8 4.5 24.5 7.87 0.47 0.34 

Segment 2 0.32 3 23 8.21 0.00 0.28 

Segment 3 0.34 1.5 21.5 8.54 0.00 0.23 

Segment 4 27.9 0 20 8.88 0.34 - 

Total 56.4 - - - 0.82 0.85 

Table 17. Exemplary triple drop calculation broken down to trip segments 
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As can be observed in Table 18, the energy required for an intermediate landing is greater 

than the energy required to fly the 56.4 km. Since the energy required for intermediate 

landings is substantial, distance flown is a limiting factor in determining whether a further 

delivery can be realized or not. 

As can be seen in Table 18, this exemplary case would have had a maximum delivery 

capacity of two deliveries and not three. This is given that the 1.67 kWh exceed the 

maximum battery capacity of 1.3 kWh. 

In short, this is what the model did for all the 1.3 million coordinates, in terms of assigning 

them into groups according to the maximum allowed energy consumption.  

 

Breakdown of energy consumption [kWh] 

Phase 
 

kWh 

Energy distance 0.82 

Energy intermediate landing 0.85 

Total energy 1.67 

Table 18. Breakdown of energy consumption per phase [kWh] 

 

  



62 

 

3.5 90% decarbonizartion scenario of the electricity mix 

 

In addition to the technical routing measures explained in the previous subsections, the 

scenario of a decarbonization of the electricity mix in the U.S. was explored. This falls 

under the category of a technological measure, rather than a routing measure. In this 

scenario, the values for a decarbonization of the grid of 90% as explained in section 2.3.5 

were used. 

Figure 18 shows several histograms of operational carbon emissions employing two 

different electricity mix scenarios. The left column uses the values for the current electricity 

mix in the U.S., whereas the right column employs the values of a 90% decarbonized 

electricity grid. 

The horizontal axes show the CO2 emissions in kg normalized by packages per route. The 

hues represent the three different delivery vehicles: EV (blue), diesel (orange) and drone 

(green). The original DC case is shown in all graphs for the EV and the diesel vehicles, in 

order to serve as a comparison baseline. In contrast, the 4 different drone cases are shown 

in each row.  

In the histograms, the values of carbon emissions are clustered into bins on the horizontal 

axis, while the vertical axes show the frequency of occurrence for each bin. Meaning, that 

the vertical axes show the count of routes, falling within a specific CO2 emissions bin.  

Firstly, a shift of the drone (green) and EV (blue) cases to the left of the plots can be 

observed for all 4 drone cases when employing the decarbonized electricity mix. As the 

carbon emission values become smaller, it can be seen that more routes fall into the same 

bin. However, this is a mere scaling effect, since the same distances are used for the 

calculation of the CO2 emission values. 

On the contrary, as can be seen in the orange bars from Figure 18, the diesel values stay 

constant. This is because the emissions coming from diesel in the delivery phase do not 

depend on the electricity mix and therefore are not affected by a decarbonization of the 

electricity mix.  

The difference between the right and left column highlights that changing the electricity 

mix to a less-carbon intensive one, favors vehicles powered by batteries. As for the current 

package delivery system, when comparing drones (green) and diesel delivery vehicles 

(orange), a clear advantage can be seen in the case of drone delivery in terms of CO2 

emissions. 

On the other hand, when looking at future delivery systems comparing drones (green) and 

EVs (blue), the histograms suggest that EVs would be favored, even if it is by a lesser 

order of magnitude than in the original electricity mix scenario. Even though EVs would be 

better in the decarbonized electricity scenario, the impact of both drones and EVs would 

be substantially smaller, when compared to the diesel case. 

It can still be observed that multi-delivery is the drone case with the most potential for 

reduction in CO2. 
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Figure 18. Histogram of carbon emissions for two electricity mixes, including all drone 
cases in each row, compared to the baseline EV (blue) and diesel (orange) cases. The 

left column refers to the current electricity mix and the right one to the decarbonized 

scenario. 
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The aim of this study was achieved by evaluating and quantifying the operational 

environmental impact of widespread adoption of a drone versus a ground delivery system, 

in the context of last-mile home delivery. 

The goal of this section is to discuss the results by a) providing an answer to the proposed 

research questions, while reflecting on the further implications of this research, b) setting 

the results of this study in the context of other works, c) analyzing and reflecting on the 

contributions and limitations of this study, and d) finally, giving pointers for future 

research. 

 

4.1 Main findings and implications for drone delivery 

 

Revisiting the research questions posed in section 1.3.2, RQ1 referred to the environmental 

operational performance of drone delivery systems compared to current & future ground-

based delivery systems. RQ1 was analyzed by the modelling of the delivery systems 

themselves, specifically by the baseline cases (G1, G2, D1) departing from the original 

distribution center.  

RQ2 addressed possible measures to improve the performance of drone delivery systems, 

referring to the decarbonization of the delivery operation/transportation phase. RQ2 was 

explored by analyzing two possible types of measures 1) the three further proposed drone 

cases on the technical side (D2, D3, D4) and 2) additionally, through the future 

decarbonization scenario of the electricity sector on the technological side. 

The analyzed dataset contains a sample of urban home package last-mile deliveries carried 

out in the U.S. e-commerce sector in five main metropolitan cities. Within this context, the 

results provide valuable insights regarding RQ2. These insights will be discussed in the 

form of six key findings. Additionally, general implications and recommendations are 

mentioned conjointly with each of the six main findings. The main findings read as follows:  

 

1. The results show that a closer distribution center to the delivery points would 

be beneficial in terms of a reduction in average flight distances, in the case of 

widespread urban drone delivery.  

In order to reduce the average distances, the approach would consist in placing the 

distribution center in a location closer to the delivery stops. In the case of this study, 

it was placed in the center of gravity of all stops served from each distribution center, 

assuming a single delivery per stop coordinate. In this study this was referred to as the 

alternative distribution center (DC). 

In the context of an urban case, this would likely imply that the distribution center 

would be located closer to or in the center of a metropolitan area, in contrast to the 

current DC locations which tend to be located in the peripheries of cities. 

As for the implications of this measure, there are unique challenges when it comes to 

locating a distribution center closer to an urban area. Given that large unused surfaces 

4 Discussion 
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tend to usually be scarce and/or expensive in metropolitan areas, there would be an 

incentive to build warehouses that occupy as less surface area as possible.  

On the one hand, a ground vehicle depot would require a large surface intended for 

parking and warehouse storage for bulky packages, which would not be the most viable 

option for a central truck depot. On the other hand, the compact drone size and focus 

on small lightweight packages means that a centrally located DC would be more feasible 

for drones than for trucks. These drone distribution hubs could be built vertically, in a 

beehive manner to save space and be built in concurred areas. 

Regarding how this concept could be implemented, Amazon has filed a patent for the 

concept of “multi-level fulfillment centers” (Curlander et al., 2017). This fulfillment 

center concept consists in a beehive shaped drone port, with multiple levels from which 

unmanned aerial vehicles can take-off for the purpose of package delivery in a densely 

populated area (see Figure 19). Even though this is still in the concept phase, this could 

be a future measure to be implemented in a package delivery system that includes 

drones.  

 

 

Figure 19. Multi-level Fulfillment Center, sourced from the Patent Application Publication 

US-20170175413-A1 filed by Amazon (Curlander et al., 2017) 

 

Another implication of urban package delivery in the future is that as there is more 

congestion and traffic in metropolitan cities, other means of delivery will become more 

relevant. For truck delivery this could mean that routes could take longer to drive. Here 

lies a potential advantage of drones over ground delivery, given that drones would not 

contribute to ground-traffic congestion.  

A further implication of widespread drone usage is the increased congestion of air space 

(Li et al., 2023). For instance, an effort to integrate drones in existing logistic chains 

while enabling the coexistence of other aircraft traffic, is the UK’s “Skyway” project to 

establish an air corridor for drones. This project could connect cities such as Cambridge, 

Oxford and Reading with an 265 km corridor which would open other channels for 

supply chain operations (Tyrrell, 2023).  
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2. Multi-delivery of packages is a relevant measure to improve the performance 

of a drone delivery system.  

This is mainly because the drone would not need to return to the departing depot every 

time one package is delivered, but rather only after the multiple loaded packages are 

delivered. This considerably reduces the total flight distance to be traveled by the drone 

per each package. 

A limitation for multi-delivery found in the context of the chosen drone specifications, 

was the large amount of energy consumption needed for an intermediate delivery in 

the hover mode. This considerably decreases the flight range of the drone. 

Thus, the multi-delivery case could reach its full efficiency potential if the energy 

density of the drone battery were to increase in the future. In this way, distance flown 

would not be a significant limiting factor and the efficiency of drone multi-delivery would 

be further increased by allowing more packages to be delivered within the same flight, 

leading to less energy and CO2 emitted during delivery operations.  

However, further research is needed to determine the maximum technical limitations 

or future developments of drone technology. Regardless of that, considering the limits 

of current battery-powered drone technology, closer distances from the package 

delivery stations are needed for multi-delivery to work, which introduces the next key 

point. 

 

3. The results suggest that a combination of the two previous measures, a closer 

distribution center and multi-delivery, would be beneficial for urban drone 

delivery systems.  

Even though the combined effect is smaller than the summed individual effects of both 

measures, having closer distances to the delivery stops allows for a higher grouping of 

deliveries.  

The less range the drone needs to fly to the cluster of multi-deliveries, the more energy 

it has available for the energy-intensive intermediate deliveries. As a result, the drone 

can perform more intermediate deliveries and there is an even further reduction of 

distance flown per package.  

 

4. Compared with the current delivery system, drones could perform better than 

diesel truck delivery fleets in certain cases in terms of delivery carbon 

emissions.  

In this kind of urban context, certain drone cases were found to be competitive 

compared to diesel trucks when comparing the equivalent set of stops to be served. 

Mainly, drones perform better than a diesel truck when the distances between the 

distribution center and the delivery stops are short, allowing for a double or triple 

delivery and lowering the distance flown per package. 

However, it is expected that with increased electrification of delivery truck fleets, 

drones will not be able to keep pace in the future, which leads to the next finding.  
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5. Regarding the future ground-based delivery systems, drones were not found 

to be competitive with electric vehicle fleets in the simulated cases of this 

study.  

Even though drones are relatively small and energy efficient vehicles, there is a big 

disparity in the distances covered when comparing truck and drone delivery in this 

urban case. Meaning that the drone distance needed in order to cover the same set of 

stops is considerably higher than for ground transportation.  

In the context of this dataset, multi-delivery drones would require almost twice the 

energy consumption on average than the baseline EV case and would fly almost 27 

times the ground distance of the EV. Meaning, that even multi-delivery is not enough 

to make drones contentious with EVs, since the drone remains at a considerable 

distance disadvantage or distance penalty.  

In terms of a breakeven point in the multi-delivery and alternative DC case, in order to 

be competitive with electric ground vehicles, drones would on average need to become 

43.7% more energy efficient. This energy efficiency needed could be implemented 

through further routing measures or in technical efficiency measures for the drone.  

As for possible measures to increase the drone energy efficiency, a higher lift-to-drag 

ratio would be needed. Having a drone with longer and narrower wings leads to a better 

aspect ratio. A better aspect ratio means more lift, which would lead to less energy 

needed when in cruise mode. Nonetheless carrying out deliveries with a bigger drone 

could also lead to difficulties, especially in an urban context where landing space might 

be limited.  

 

6. A possible decarbonization of the grid, would give vehicles powered by 

batteries, a considerable advantage over a diesel vehicle fleet, in this case it 

would favor the drone and the BEV.  

As grid decarbonization would gradually exclude diesel vehicle fleets, ergo it is expected 

that in the future there will be more cases where drones have an advantage over diesel 

vehicles.  

In this case, the BEVs would still stay the most competitive, nonetheless the difference 

between the impact caused by the drone and the EV would be of a lesser magnitude. 

Additionally, the rates of electricity-mix decarbonization need to be considered 

depending on the geographical context, for instance they might differ between the U.S. 

and Europe. 

As an implication of minimizing the operational impact of the delivery phase, the non-

operational phase is expected to become more significant in terms of environmental 

impact. Therefore, other life cycle stages would need to be considered, for instance 

vehicle production, warehouse energy consumption or impact of infrastructure. 

 

In general, it can be concluded that drones possess the advantage of being energy efficient 

and the main disadvantage of distance disparity and package carrying capacity. Drones 

were found to be competitive with diesel vehicles in select specific cases with multi-

delivery. Nonetheless, electric delivery vehicles proved to be the best-performer in terms 

of energy consumption and CO2 emissions. 

This clearly implies that the advantage of truck delivery lies in the capacity to deliver a 

higher amount of packages, thereby reducing the distance driven per package. To contend 



68 

 

with this, drones would need to become much more efficient by routing or technical 

measures, or would be more suitable in single-package and remote delivery cases. 

The results suggests that multi-delivery is a crucial routing measure to improve the 

performance of drone delivery compared to the base case (D1). Triple delivery was 

observed to be feasible in cases were lower distances needed to be traveled. A significant 

limitation regarding multi-delivery is the limited drone battery range. In spite of this, 

technological advancements are expected to allow longer-range operations for drones (Li 

et al., 2023)  

As an energy efficient technology, drones could surely be a constituent of a sustainable 

last-mile delivery system. However, the delivery system design would need to change to 

consider the specific cases where a drone could be advantageous. This includes exploring 

different ways of integrating drones in the delivery system in a more efficient way, such 

as tandem configurations or other delivery scenarios, which is mentioned as a point for 

further research in sub-section 4.4.  
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4.2 Findings in the context of literature 

 

Regarding the relationship of this study with other research, it is important to highlight 

that not all available papers are comparable with this study. This is due to the multiplicity 

of approaches in drone last-mile delivery literature, specifically from the sustainability 

perspective.  

The approaches in literature differ, to name a few aspects, with respect to:  

- the comparison systems,  

- distance calculation methods,  

- energy consumption estimation methods,  

- considered life cycle phases, and  

- modeled scenarios or contexts. 

Worth mentioning, is that last-mile delivery and routing is extremely case specific. 

Depending on whether the case is located in a rather metropolitan or a rural area, and 

depending on the assumed delivery density, last-mile operations could differ greatly. 

Similarly, depending on the modeled situation and comparison point, the result could favor 

drone or ground transportation more. For instance, if the case is to deliver one package at 

a higher distance, then it is highly likely that the drone would be more beneficial than 

driving a single package with a ground vehicle. This could for instance be the case in the 

context of food delivery.  

This “reference scenario” dilemma that complicates comparison between studies is 

observed in Rodrigues et al.'s (2022) study. The results of this master thesis would not be 

in line with the findings of that study, given that it suggests that drones could have up to 

94% less energy consumption per package than other delivery modes. Such an optimal 

value for drone delivery is attributed to the fact that the study was carried out under a 

very specific set of assumptions. For instance, the specific values for stops per km for 

drones and trucks that were chosen by the authors, which might not correspond to the 

context of this study focusing on widespread urban operations.  

As for more comparable literature, the results of this study align with the general findings 

of Goodchild & Toy (2018), in the sense that drones tend to perform better when the 

service zones are closer to the distribution center and that a truck has advantage when 

the recipients are located far from the depot and there is a high delivery density.  

Similarly, the results  align with the conclusions of Kirschstein (2020) with regards that 

electric trucks tend to be the most efficient and that drones could be advantageous when 

parcel delivery density is not that high. This study is interesting to compare to this 

Kirschstein’s, since it is simulated in the context of a metropolitan area, although in a 

European city in Berlin.  

In the context of grocery delivery, Yowtak et al. (2020) suggested in the same way, that 

drones could potentially perform better than ICEV systems, however they could not 

outperform EVs. 

When it comes to determining the sustainability of last-mile drone delivery, the comparison 

systems play a crucial role. The decision of whether last-mile drone delivery is sustainable 
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or not, would therefore benefit from a careful case-by-case assessment and an evaluation 

of the underlying assumptions.  

 

4.3 Methodological contributions and limitations 

 

4.3.1 Contributions 

 

On the subject of the employed methodology, this study makes three main contributions.  

Firstly, this study employs real-world last-mile delivery data for the modelling of the 

system. As mentioned in section 2.1, there is a limited availability of historical last-mile 

delivery routing data that is publicly available. For this reason, the majority of previously 

published works use alternative methods for distance calculations such as continuous 

approximation or simulation experiments based on chosen assumptions or considering 

population density. 

Depending on the employed method, the assumptions used to determine the drone flight 

distances in comparison with ground vehicles distances may differ greatly. Therefore, also 

the results of the studies vary. At the same time, as the carbon emissions from delivery 

are highly dependent on the distance calculations, this poses the question of to which 

extent each type of modelling reflects a realistic last-mile package delivery situation. 

Consequently, by using a historical last-mile delivery sample dataset this uncertainty is no 

longer a major concern, considering that the modelling is directly built on a sample of real-

world data. To the author’s knowledge, this is the first study in this context, that employed 

real-world last-mile package delivery coordinates to explore the environmental 

performance of the operation of drone delivery systems.  

Secondly, this study based the drone energy consumption calculations on a fixed-wing 

VTOL drone configuration specifically made for drone delivery, rather than on a 

commercially available copter drone.  

Most of existing works employ a commercially available quadcopter configuration to 

calculate energy consumption. It is likely that this copter configuration was chosen due to 

the lack of data availability, concerning drone specifications and drone energy consumption 

models, at the time when the studies were carried out. In spite of this, the critique that 

commercially available quadcopter drones might not representative of future delivery 

systems has also been raised by Zhang et al. (2021).  

Drone energy consumption values greatly differ in literature, even within the quadcopter 

category, for this reason it was important to choose a drone that would represent the 

operations of the modeled future drone delivery system more accurately. 

With this in mind, the drone energy consumption model was specifically tailored for a state-

of-the-art drone model, used specifically for package delivery as opposed to a commercial 

drone for other applications. This comprised a methodical challenge since most of the drone 

energy consumption models are not developed for this type of configuration. 

The fixed-wing VTOL drone configuration was chosen because of the expectation of 

widespread adoption of this design in future drone delivery systems. Being that it 
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possesses an advantage in terms of energy efficiency, most logistic service providers have 

shifted to this kind of configuration. 

Thirdly, a key strength of this study is the modelling of multi-delivery packages by drone 

in a realistic setting, which took into consideration the drone battery capacity and range 

constraints.  

For traditional quadcopter drone configurations in existing literature, deliveries were 

usually modeled for a single package. However, from the technical perspective, multi-

delivery of packages is a relatively new capability for drones and reflect the state-of-the-

art in last-mile drone delivery (Salama & Srinivas, 2022). In this way, a further measure 

to increase the efficiency of drone deliveries was able to be explored in this study.  

 

4.3.2 Limitations 

 

While significant contributions were made, it is equally relevant to recognize the limitations 

and areas of opportunity in this study that could be addressed in future research.  

Firstly, it is pertinent to consider the context in which the employed data was collected and 

therefore for which types of scenarios the results of this study could provide insights. As 

previously mentioned, the Amazon dataset contained historical routes primarily driven in 

five big metropolitan cities in the United States. The general findings of this study are 

therefore meaningful when discussing an urban context in the U.S. and do not necessarily 

make a statement regarding other scenarios.  

For instance, the results in this study are not applicable for scenarios in an increasingly 

rural or suburban context, in which deliveries tends to be fewer and further away. The 

proposed routing solutions in this study, such as a closer distribution center, might 

therefore not have been the most fitting measures in a rural context.  

Depending on the premises of the modeled case, which include different assumptions 

regarding depot proximity and delivery density, the drone’s performance might have been 

more favorable than in the results of this study without the implementation of additional 

measures. For instance, in cases when only few packages are delivered by the ground 

vehicle, drone delivery tends to be more favorable. One example for this might be the case 

of food delivery, where the ground vehicle would deliver few orders or even a single order. 

The sample data employed was collected in the year 2018 and for 18 specific distribution 

centers. It is possible that the last-mile operations have changed from that point in time, 

considering that it corresponds to the pre-pandemic period. Additionally, in the case of 

online delivery there might be effects of seasonality in high peak events, such as leading 

up to Christmas or Black Friday, which modify the normal package delivery patterns. This 

was a factor that was not considered in this study. In addition, some of the Amazon 

distribution centers in the dataset have been ceased operations for reasons of excess 

warehouse capacity.  

The previous points emphasized that last-mile delivery is highly case-specific, hence these 

results cannot be considered to represent the totality of drone and ground last-mile 

delivery scenarios. However, this case study type of research can provide general pointers 

or indicators for this context. 
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Secondly, this study employed the simplified assumption that a delivery point in the route 

corresponds to one package delivery. This is an assumption that many other studies have 

employed as well, however this might not always hold true. Especially in a scenario with a 

high package delivery density. Nonetheless, this study could be improved by also 

considering several package deliveries per stop.  

Thirdly, it is also important to acknowledge that the results, in addition to the distance 

calculations, also depend on the assumed energy consumption values. Even though the 

best-available estimations and vehicles were taken into consideration, there will likely still 

be a difference compared with real operations.  

As for the drone energy consumption model, it is simplified in two main ways. The first 

improvement that could be implemented is the consideration of separate flight regimes for 

the initial takeoff and final landing. Given of the attainable specifications of the Wingcopter 

198, no separate regimes could be modeled other than for the intermediate delivery and 

steady flight phases. In order to include this in the energy consumption model, 

disaggregated data for takeoff and landing would be needed, such as the specific energy 

consumption or average height and time needed for those two phases.  

The second limitation is the simplified calculation of the L/D ratio. Since the chosen energy 

consumption model was adapted to the fixed-wing VTOL drone, a reverse calculation of 

the L/D ratio was carried out. In this case, the L/D was dependent on mass, which was 

assumed to be correlated with projected area. Nonetheless, a more sophisticated way of 

calculating the L/D ratio, which could probably be directly based on projected area or speed 

would be an improvement. 

The scope of this study was limited to the environmental impact of the delivery or 

transportation phase in terms of carbon emissions. This means that the study did not 

consider emissions coming from other life-cycle phases, nor other environmental impact 

category indicators. 

In addition, route optimization was outside of the scope of this thesis, as it constitutes a 

separate field of study. Meaning, that the prescribed route sequences were utilized. 
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4.4 Reccomendations for future work 

 

Further work is necessary to explore in which other cases drones could be a part of a 

sustainable transportation system. In this section three main lines of research that can 

enrich this field are proposed. 

 

4.4.1 Combinatory drone-truck systems 

 

The results of this study show that delivery done completely by drone could in some specific 

cases be competitive with diesel truck delivery. However, with an increased ground vehicle 

fleet electrification in the future, all-drone fleets are not likely to be competitive with 

electric vehicles. Given that an all or nothing solution such as the one explored in this study 

might not be the most suitable, it is relevant to explore hybrid truck-drone solutions. 

For this reason, future research should definitely address how drones and trucks might be 

used in combination to achieve a lower overall operational footprint in package delivery. 

Such combinatory systems are a novel and complex field of research, in which increasingly 

new variants in routing models are being researched. It would be worthwhile to evaluate 

these higher-complexity combinatory systems in the context of historical data and in terms 

of environmental performance. 

These could include for instance: 

1) Tandem drone-truck delivery configurations, in which a drone collaborates with a truck, 

which is serving as a recharging station and depot (Salama & Srinivas, 2022). In this 

case, factors such as truck design or capacity constraints, and the operation of such 

tandem systems by a driver would be interesting to consider. In addition, aspects such 

as flexible stop locations for the truck and the comparison of the turnover time of 

tandem systems would be worthwhile to explore.  

 

2) Cases where a proportion of deliveries made by drone and a proportion by truck, which 

would involve identifying the cases where drone delivery is the most beneficial in terms 

of emissions and energy efficiency. For instance, if drones would be used for the further 

away and single deliveries, while trucks for the multiple clustered high-density 

deliveries.  

 

3) A case with intermediate urban depots from which drones could deliver from. The 

packages that the drone then needs to deliver, could be brought by a ground vehicle 

to the intermediate depot in the context of urban delivery. 

 

Essentially, exploring new frontiers of combinatory systems would be a valuable 

contribution to this line of research. 
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4.4.2 Comparison & evaluation of different case studies 

 

Future research might also consider evaluating different home-package delivery scenarios 

against each other in a comparable manner.  

This could on the one hand mean proposing cases with different delivery densities and 

distances, which could, for instance, entail comparing a rural and an urban scenario. This 

would probably imply considering factors such as population density and consumer 

behavior depending on the geographical location.  

On the other hand, this could include evaluating other case propositions other than online 

package delivery, for instance food delivery or time-sensitive deliveries. This would provide 

further insights to determine whether drones could adopt a widespread or a niche role in 

home package delivery. 

 

4.4.3 Life cycle impact of delivery fleet 

 

A highly relevant aspect to consider when studying the environmental impact of last-mile 

drone package delivery, and something that this study explored merely a fraction of, are 

the emissions throughout the lifecycle of the delivery fleet.  

Relatively few studies have been able to consider more aspects of fleet sizing and lifecycle 

impact of last-mile delivery. Yet, as the non-operational impact of transportation becomes 

smaller with fleet electrification, other life cycle phases will become more relevant.  

Going beyond the operational transportation phase, would imply additionally considering 

factors such as the extraction of raw materials needed for the vehicles, the vehicle 

production phase, warehouse operations, end-of-life of the vehicles and warehouse facility 

demolition.  

On the other hand, each vehicle has a different environmental footprint and therefore, fleet 

sizing needs to be considered. The size of a drone fleet will be different to a ground vehicle 

fleet, since one ground vehicle would not be substituted by one drone, but probably by 

more.  

In addition to fleet sizing, the different vehicle life cycle lengths need to be regarded. For 

instance, it is plausible that the production impact of a drone is less than that for a ground 

vehicle. However, it could be that more drones are needed than ground vehicles in the 

fleet.  

Exploring the possible impacts and trade-offs of drone vs. truck delivery systems, 

considering more aspects of the lifecycle & fleet sizing, would allow for a more 

comprehensive analysis of drone last-mile delivery. 

As recently identified by Mitchell et al. (2023), there is a lack of robust data for drone part 

production and end-of-life, nonetheless in order to holistically evaluate the sustainability 

of drone delivery services the complete product’s life cycle needs to be considered.  
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The main aim of this master thesis was to quantify the environmental impacts of the 

operational delivery phase of a widespread drone-based home delivery system, by 

comparing it to a ground-based delivery system.  

The analysis was carried out using available real-world U.S. package delivery data in an 

urban last-mile logistic context. At the same time, the implementation of the model in 

Python was a major component of this master’s thesis. 

For this study, baseline-cases of the delivery systems were modeled based on a diesel 

delivery truck, an electric delivery truck and a fixed-wing VTOL drone (G1, G2, D1). The 

base-case included the original distribution centers and delivery points included in the 

dataset. In addition, three drone delivery cases including different technical routing 

measures (D2, D3, D4) and one decarbonization scenario were evaluated. The operational 

environmental performance was analyzed in terms of distance, carbon emissions and 

energy consumption.  

For this urban context of widespread home delivery in last-mile operations in the U.S., the 

main findings of this case study can be summarized with the following points: 

1. The results of this study suggest that a closer distribution center (D2) would be 

beneficial for drone delivery in an urban context, resulting in an overall reduction 

in distances to be flown. 

2. Multi-delivery of packages (D3) was found to be a highly relevant measure to 

improve the performance of a drone delivery system. However, a significant 

limitation regarding multi-delivery is the limited battery range of drones. 

3. A combination of both measures (D4), a closer distribution center and multi-

delivery, would be beneficial, given the additional energy available for the energy-

intensive intermediate deliveries through the reduction of flown distances. 

4. Compared with the current delivery system, drones could perform better than diesel 

truck delivery fleets in certain cases, in terms of carbon emissions during delivery. 

These cases included the usage of drone package multi-delivery.  

5. Regarding the future ground-based delivery systems, drones were not found to be 

competitive with electric vehicle fleets in the simulated cases of this study. This is 

mainly due to the significant distance disparity in the case of drone delivery. 

6. Transitioning to a less-carbon intensive electricity mix, would considerably favor 

vehicles powered by batteries, EVs and drones, over diesel fleets. This would 

however draw the focus to other stages of the delivery life cycle.  

The results suggests that the main advantage of ground vehicle delivery lies in the 

ability to deliver more of packages, hence reducing the distance traveled per package. 

For this reason, drones would need to become significantly more efficient by routing or 

technical means or would be more appropriate in single-package and distant delivery. 

 

5 Conclusion 
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Regarding the methodology, this study contributes in three main aspects: 1) this is one of 

the pioneering works employing real-world data to evaluate the environmental impacts of 

last-mile drone and ground-based delivery systems, 2) a more efficient and state-of-the-

art fixed-wing VTOL drone configuration was employed in the modelling of the system to 

reflect the operations of a future drone delivery fleet and, lastly, 3) the multi-delivery of 

up to three packages with an UAV was modeled considering realistic constraints for range 

and maximum battery capacity, which represents a shift from the existing modeling 

considering solely single deliveries. 

While this study provided relevant insights into the widespread use of drone delivery 

systems, the findings of this study are subject to some limitations. These limitations include 

the specific context of the evaluated case study, the scope limited to the operational phase 

and the assumptions employed in the modelling of the delivery systems.  

Lastly, as lightweight and energy efficient vehicles, drones could be a valuable component 

of a sustainable last-mile delivery system in the future. Nonetheless, to determine an 

optimal and more efficient role for drones in existing logistic systems, the potential of 

combinatory systems should be further researched. In addition, with a sinking operational 

footprint, a focus on other life cycle phases should be increasingly considered. 
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Appendix A.1. DC codes with geographical coordinates for the 

alternative and the original cases 

 

DC code City Original DC Alternative DC 

latitude longitude latitude longitude 

DAU1 Austin 30.445236 -97.709418 30.320506 -97.798549 

DBO1 Boston 42.394375 -71.055555 42.4393756 -71.09921 

DBO2 Boston 42.233353 -71.141617 42.2611008 -71.086707 

DBO3 Boston 42.139891 -71.494346 42.2120441 -71.409523 

DBO6 Boston 42.791897 -71.529552 42.8693812 -71.512646 

DCH1 Chicago 41.840375 -87.683736 41.8532971 -87.748323 

DCH2 Chicago 42.031368 -87.776596 41.980439 -87.788413 

DCH3 Chicago 41.803295 -88.097259 41.8099891 -88.152812 

DCH4 Chicago 42.254346 -87.985697 42.1858242 -88.051792 

DLA3 Los Angeles 34.007369 -118.14393 34.0477919 -118.26369 

DLA4 Los Angeles 34.23485 -118.58421 34.208539 -118.49661 

DLA5 Los Angeles 33.937865 -117.29738 33.9438584 -117.22814 

DLA7 Los Angeles 33.965477 -117.6533 33.9822395 -117.71938 

DLA8 Los Angeles 33.918699 -118.32484 33.9208332 -118.32953 

DLA9 Los Angeles 33.688122 -117.84718 33.6675966 -117.82574 

DSE2 Seattle 47.54217 -122.32805 47.6114342 -122.31832 

DSE4 Seattle 47.937344 -122.24495 47.7676674 -122.24296 

DSE5 Seattle 47.464945 -122.23107 47.3197238 -122.28783 
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Appendix A.2. Detailed breakdown of OSMR route exception 

handling 

 

Parts of Dataset A (3,000) B (6,000) Total 

Routes  3,052 6,112 9,164 

Stops  433,231 904,527 1,337,758 

Calculated routes 3,051 6,106 9,157 

Non-calculated routes 1 6 7 

Non-calculated stops 121 765 886 

Calculated stops 433,110 903,762 1,336,872 
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Below are the most important code segments for the carried-out research referred to in 

section 2.4. These codes exclude intermediate processing steps such as cleaning, joining 

or merging. 

 

Appendix B.1. Data import and distance calculation 

 

# %% 

""" DESCRIPTION:  

 

    - this code calculates the distances for drone and truck for a given list of DCs  

        modify => DC_trial_list=["DSE4","DLA8"] 

 

    - the bottleneck is the API OSRM, there are two options:  

        a) getting data from API (depends on the traffic, should not be of excessive use) 

        b) getting data from locally hosted server 

 

    - OUTPUT OF THIS CODE are 2 excel files:  

        1) csv with drone distances per stop, stop coordinates 

        2) csv with truck + drone distances per route ID 

 

    - This uses the conda environment: GISenv 

""" 

 

#%% 

# ------------------------------ import packages ----------------------------- # 

# * import packages for data extraction 

import pandas as pd  

import numpy as np 

import json  

import requests # import requests for the API's get request 

import pathlib 

import os  

from IPython.display import display  

from pyproj import Geod #for drone distances 

 

# -------------------------------define paths--------------------------------------------- # 

 

# * define project path 

project_folder_path = pathlib.Path("../../../") 

Appendix B  
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# goes to the folder where the Amazon dataset is contained 

dataset_folder_path = "…" 

interim_data_folder_path = "…” 

 

# navigate inside the data folders 

# NOTE: these folder paths do not change 

    # these two paths correspond to the locations corresponding to the files corresponding to the 3,000 or the 6,000 routes 

routes_path_3000 = str(dataset_folder_path) + "/data/almrrc2021-data-evaluation/model_apply_inputs/eval_route_data.json" 

sequence_path_3000 = str(dataset_folder_path) + "/data/almrrc2021-data-evaluation/model_score_inputs/eval_actual_sequences.json" 

 

routes_path_6000 = str(dataset_folder_path) + "/data/almrrc2021-data-training/model_build_inputs/route_data.json" 

sequence_path_6000 = str(dataset_folder_path) + "/data/almrrc2021-data-training/model_build_inputs/actual_sequences.json" 

 

dc_coord_path = str(interim_data_folder_path) + "/DC COORDINATES/dc_coordinates.csv" 

 

 

# -------------------------------- import DC coordinates  ------------------------------- # 

 

dc_coord = pd.read_csv(dc_coord_path) 

display(dc_coord) 

 

# -------------------------------- JSON import ------------------------------- # 

# * import the json into a pandas dataframe or table 

 

# * 1) ROUTES DATASET (r) 

    # with pandas, get a table 

    # columns contain the individual route IDs 

    # the stops row contains dictionary with all the stops & their data 

dfr = pd.read_json(routes_path_6000) 

 

# drop the excess rows such as  

    # departure time, executor capacity, ... 

dfr.drop(["date_YYYY_MM_DD", "departure_time_utc", "executor_capacity_cm3"], axis=0, inplace=True) 

display(dfr.head()) 

 

# dataframe transposed for a column overview 

dfr_Vertical = dfr.T 

display(dfr_Vertical.head()) 

 

# drop the extra columns to just keep route ID + DC code 

dfr_DC= dfr_Vertical["station_code"].to_frame() 

dfr_DC.reset_index(inplace=True) 

dfr_DC.columns= ["route ID", "DC code"] 

display(dfr_DC) 

 

# * 2) ACTUAL SEQUENCES DATASET (s) 

# dfs: dataframe cointaining sequences 
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dfs = pd.read_json(sequence_path_6000).T 

display(dfs.head()) 

 

# %% 

# --------------------- get a list of the unique stations -------------------- # 

stationlist = sorted(dfr.loc["station_code"].unique()) 

print(stationlist) 

 

# %% # create a list of the DCs, to explore now 

# ---------------------------------------------------------------------------- # 

#                            list of DCs to explore                             

# ---------------------------------------------------------------------------- # 

 

# NOTE: later on replace by the list of all DCs or a certain part of the DCs 

 

DC_trial_list= ['DSE4', 'DSE5'] 

 

# TODO: Run each DC cluster 

# ['DAU1','DBO1', 'DBO2', 'DBO3']  

# ['DLA3', 'DLA4', 'DLA5', 'DLA7'] 

# ['DLA8', 'DLA9','DCH1', 'DCH2']  

# ['DCH3', 'DCH4','DSE2']  

# ['DSE4', 'DSE5']  

 

# %% 

# -------------------- create lists to store the loop dfs -------------------- # 

 

# created two lists where the dfrs are gonna be saved to 

dfr1_drone_stops_coordinates_distances_list= [] 

dfr2_both_routeID_distances_list= [] 

 

# %% 

# ------------------- FUNCTION TO CALCULATE DRONE DISTANCES ------------------ # 

 

# defined a function for the drone distances 

def drone_dist_calculator(lon1,lat1,coordinate_table) ->list: 

    """ Args: 

        lon1 (_type_): DC/ departure coordinate longitude 

        lat1 (_type_): DC/ departure coordinate latitude 

            a) ORIGINAL: 

                lon1_origDC  

                lat1_origDC 

            b) ALTERNATIVE: 

                avg_lat = lat1_altDC 

                avg_long = lon1_altDC 

 

        coordinate_table (_type_): where to fetch the coordinates from 

            a) ORIGINAL:  dfr_routesDC_sorted 
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            b) ALTERNATIVE: dfr_routesDC_sorted_modDC 

    """ 

    drone_dist_list=[] 

    lat_lon_list=[] 

 

    # Calculate drone distances 

    for idx in routeIDlist :  

        sorted_routeID_coords = coordinate_table[coordinate_table["route ID"]== idx] 

        sorted_routeID_coords.sort_values(by="sequence", inplace=True) 

        for _ ,waypoint in sorted_routeID_coords.iterrows():  

            lon2 = waypoint["longitude"]  

            lat2 = waypoint["latitude"] 

            lat_lon_list.append([lon2,lat2]) 

            # function to calculate the distances 

            angle1, angle2, dist1 = wgs84_geod.inv(lon1, lat1, lon2, lat2)  

            #append in a list of drone distances 

            drone_dist_list.append(dist1) 

 

    return drone_dist_list 

    print(lat_lon_list) 

 

# ---------------------------------------------------------------------------- # 

#                               LOOP for each DC                               # 

# ---------------------------------------------------------------------------- # 

for dcx in DC_trial_list: 

    # * Get the routeID list for the currect dcx 

    subset2DC= dfr_DC[dfr_DC["DC code"].isin([str(dcx)])] 

    # pass the route IDs to a list, that will be used by later for loops 

    routeIDlist = subset2DC["route ID"].to_list() 

    routeIDlist.sort() 

 

# ------------- 1) Extract lat/longs of all stops of current dcx ------------- # 

    all_listlatlong= [] 

    # for each route ID in the list "..." 

    for idx in routeIDlist :  

        # for each stop in the column of that route ID 

        for stopids in dfr.loc["stops",idx].keys() : 

            td = dfr.loc["stops",idx][stopids] 

            all_listlatlong.append({"route ID":idx,"stop ID": stopids, "latitude": td["lat"], "longitude": td["lng"]}) 

     

    dfr_routesDC_unsorted_noDC = pd.DataFrame.from_dict(all_listlatlong) 

    dfr_routesDC_unsorted = dfr_routesDC_unsorted_noDC.merge(dfr_DC, on= "route ID", how="left") 

    # set multilevel index for better visualization, first by routeID, then by stop no. 

    dfr__routesDC_unsorted_mindex =dfr_routesDC_unsorted.set_index(["DC code","route ID","stop ID"]) 

# ---------------------- 2) extract the sequences (for) ---------------------- # 

    all_listsequence=[] 

 

    # for every route ID in the selected list 
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    for idx in routeIDlist : 

        # go into each of the keys for that specific route ID 

        for stopids2 in dfs.loc[idx, "actual"].keys() : 

            # go into the content of the key, in this case the observed sequence 

            #dfs: dataframe where the sequences were initially extracted to 

            td2 = dfs.loc[idx, "actual"][stopids2] 

            all_listsequence.append({ "route ID": idx, "stop ID": stopids2, "sequence": td2}) 

 

    # Result: Create table with actual sequences for each route ID from the DC 

    dfr_routesDC_sequences = pd.DataFrame.from_dict(all_listsequence) 

    # multilevel index: Route ID -> then stop ID 

    dfr_routesDC_sequences_mindex = dfr_routesDC_sequences.set_index(["route ID", "stop ID"]) 

 

# ---------------- 3) sort route IDs (for that DC) by sequence --------------- # 

    ## * OUTPUT: merge the two tables (sequence + stops lat/longs) 

    dfr_routesDC_merged = dfr_routesDC_sequences.merge(dfr_routesDC_unsorted, on=["route ID","stop ID"], how="outer") 

 

    ## * OUTPUT: SORT table by sequence 

    dfr_routesDC_sorted = dfr_routesDC_merged.sort_values(by=["route ID","sequence"]) 

    dfr_routesDC_sorted = dfr_routesDC_sorted.reset_index(drop=True) 

    # multilevel index for better visualization 

    dfr_routesDC_sorted_mindex = dfr_routesDC_sorted.set_index(["route ID","stop ID"]) 

     

# -------------------- 4) distances ground vehicles (OSMR) ------------------- # 

    """ USE OSRM: 

    Open Sourced Routing Machine 

        - it's a http API 

        - f string to fill in 

        - the result of the get request is in a json file 

 

    * API format: lon, lat 

    """ 

    ## * extract the DC coordinate 

    subset1 = dc_coord[dc_coord["DC code"]== str(dcx)].copy() 

    # need to reset index, so that index =0 always works 

    subset1.reset_index(inplace= True) 

    display(subset1) 

    DClon_exact = lon_exact = subset1.longitude[0] 

    print(DClon_exact) 

    DClat_exact= lat_exact = subset1.latitude[0] 

    print(DClat_exact) 

     

    ## * loop to create API request 

    # first part of the http request => add the first coordinate of the warehouse 

    # create empty distance list 

    url_list=[] 

    distance_list= [] 

    exception_counter = 0 
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    # idx refers to each route ID in our route list 

    for idx in routeIDlist : 

        #SERVER OF LOCAL MACHINE:  

        #urlrequest= (f"http://187.192.4.216:8080/route/v1/car/{DClon_exact},{DClat_exact}") 

 

        #API:  

        #urlrequest= (f"http://router.project-osrm.org/route/v1/car/{DClon_exact},{DClat_exact}") 

        coords_sorted_per_routeID = dfr_routesDC_sorted[dfr_routesDC_sorted["route ID"] == str(idx)] 

        coords_sorted_per_routeID.sort_values(by="sequence", inplace=True) 

        urlrequest= (f"http://router.project-osrm.org/route/v1/car/{DClon_exact},{DClat_exact}") 

        # "_" refers to each rows index, its another variable => this is how iterrows works 

        for _, waypoint in coords_sorted_per_routeID.iterrows(): 

            #for _, waypoint in dfr_routesDC_sorted[dfr_routesDC_sorted["route ID"] == str(idx)].iterrows(): 

            urlrequest+=(f';{waypoint["longitude"]},{waypoint["latitude"]}') 

 

        # add the DC return once more at the end! 

        urlrequest+= f";{DClon_exact},{DClat_exact}""" 

        urlrequest+="?overview=false""" 

 

        # save url request result 

        apirequest = requests.get(urlrequest) 

        # convert to dict from json 

        json_request = json.loads(apirequest.content) 

        # append to the list, with exception handling 

        url_list.append(str(urlrequest)) # TODO how tosave the urls (per DC?) 

 

        try: 

            distance_list.append(json_request["routes"][0]["distance"]) 

        except:  

            distance_list.append(0) 

            exception_counter+= 1 

 

        # distance is given in meters 

    print(str(dcx)+"exception counter:"+str(exception_counter)) 

    #list of distances for each route from the DC 

    print(distance_list) 

    len(distance_list) 

 

# ---------------------------- 5) drone distances ---------------------------- # 

    """  

    FOR DRONE DISTANCES:  pyproj package 

        from pyproj import Geod 

 

    geod = Geod(ellps="WGS84") 

    angle1, angle2, dist1 = geod.inv(lon1, lat1, lon2, lat2, *args, **kwargs) 

 

    # this returns distance in m 
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    """ 

 

    #  Have two alternatives to calculate drone distances:  

    # a) original DC 

    # b) average of the points (similar to center of gravity assuming 1 delivery per stop) 

 

    # get the mean of the column 

    mean_coord= dfr_routesDC_sorted_mindex[["latitude","longitude"]].mean() 

    # save the means 

    avg_lat = mean_coord["latitude"] 

    avg_long = mean_coord["longitude"] 

 

    ## * REPLACE ORIGINAL DC WITH AVERAGE OF ALL STOPS (CENTER OF GRAVITY SIMILAR, ASSUMING 1 PACKAGE PER 

STOP) 

    # Approach: create a new table and modify the sequence 0 (DC coordinates) to the new one 

    dfr_routesDC_sorted_modDC= dfr_routesDC_sorted.copy() 

 

    # INDEXING SEQUENCE COLUMN 

    # to be able to locate the 0's with .loc 

    dfr_routesDC_sorted_modDC.set_index("sequence",inplace=True) 

    # locate, when the row index has a value of 0 (sequence=0) 

    # and the column name is "latitude" & equal it to our averages 

    dfr_routesDC_sorted_modDC.loc[0,"latitude"]=avg_lat 

    dfr_routesDC_sorted_modDC.loc[0,"longitude"]=avg_long 

    dfr_routesDC_sorted_modDC.reset_index(inplace=True) 

 

    column_order_modDC= ['route ID', 'stop ID', 'sequence', 'latitude', 'longitude', "DC code"] 

    dfr_routesDC_sorted_modDC=dfr_routesDC_sorted_modDC.reindex(columns=column_order_modDC) 

 

    # ------------------------ 5b) distance calculation drone ------------------------ # 

 

    #  projection used 

    wgs84_geod = Geod(ellps="WGS84") 

    # use Geod.inv (to calculate distance) 

    # angles are azimuths 

    # NOTE: first value should be distance 0, since they're the same coordinates 

 

    # * ORIGINAL DC COORDINATE 

    lon1_origDC = DClon_exact 

    lat1_origDC = DClat_exact 

    # * ALTERNATIVE AVERAGE: center of gravity of all the stops served by that DC 

    lon1_altDC = avg_long 

    lat1_altDC = avg_lat 

    # create new dataframe with drone distances 

    # here the distances of the drone will be appended 

    dfr_dist_drone_bystop = dfr_routesDC_sorted.copy() 

 

    # create a new list for drone distances 
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    drone_dist_list_ORIG = [] 

    # create a new list for the distances => from the alternative DC 

    drone_dist_list_ALT = [] 

 

    # run function for the original DC 

    drone_dist_list_ORIG = drone_dist_calculator(lon1=lon1_origDC , lat1=lat1_origDC , coordinate_table= dfr_routesDC_sorted) #call 

fucntion 

 

    # run function for the alternative DC 

    drone_dist_list_ALT = drone_dist_calculator(lon1= lon1_altDC , lat1=lat1_altDC , coordinate_table= dfr_routesDC_sorted_modDC) 

     

    ## * append to the columns of df 

 

    # * original DC 

    # create a new column for drone distances in df, which includes the content of our distance list 

    dfr_dist_drone_bystop["drone distance one way"] = drone_dist_list_ORIG 

    # create a new column for round trip distances, multiply the original distances times 2 

    dfr_dist_drone_bystop["drone distance x2"] = dfr_dist_drone_bystop["drone distance one way"]*2  

 

    # * alternative DC 

    # create a new column for drone distances in df, which includes the content of our distance list 

    dfr_dist_drone_bystop["drone distance one way (alt DC)"] = drone_dist_list_ALT 

    # create a new column for round trip distances, multiply the original distances times 2 

    dfr_dist_drone_bystop["drone distance x2 (alt DC)"] = dfr_dist_drone_bystop["drone distance one way (alt DC)"]*2  

 

    # EXPORT 

    dfr1_drone_stops_coordinates_distances_list.append(dfr_dist_drone_bystop) 

 

    # * sum drone distances, by routeID 

    dfr_dist_drone_byrouteID = dfr_dist_drone_bystop.groupby("route ID")[["drone distance x2","drone distance x2 (alt DC)"]].sum() 

    # add back the DC code (it got lost because of groupby sum) 

    dfr_dist_drone_byrouteID["DC code"]= str(dcx) 

    # reset index & reindex with both, so that later the columns can be converted to kms 

    dfr_dist_drone_byrouteID.reset_index(inplace=True) 

    dfr_dist_drone_byrouteID.set_index(["DC code", "route ID"], inplace=True) 

     

    display(dfr_dist_drone_byrouteID) 

    print(type(dfr_dist_drone_byrouteID)) 

 

    # ------------- 6) create table for both drone & truck distances ------------- # 

    # * create new df for distances per route ID (drone + truck) 

 

    # create a new colum for the truck distances 

    dfr_dist_both_byrouteID = dfr_dist_drone_byrouteID.copy() 

    dfr_dist_both_byrouteID["truck distance round trip"] = distance_list 

    #dfr_dist_both_byrouteID["truck route url"] = url_list # is this the error? 

    display(dfr_dist_both_byrouteID) 
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    # convert drone distances to km 

    dfr_dist_both_byrouteID_km = dfr_dist_both_byrouteID/1000 

 

    # create the distance ratio column 

        # divides the drone distance / truck distance 

        # how many km the drone has to travel, per km of ground vehicle 

    dfr_dist_both_byrouteID_km["distance ratio (km drone: km truck)"]=( 

        dfr_dist_both_byrouteID_km["drone distance x2"]/dfr_dist_both_byrouteID_km["truck distance round trip"]) 

 

    # ---------------------- get amount of stops per routeID --------------------- # 

    ## use group by and then count 

    ### convert from series to dataframe 

    stops_in_route = dfr_routesDC_sorted.groupby("route ID")["stop ID"].count().to_frame() 

    ### rename column to stops in route 

    stops_in_route = stops_in_route.rename(columns ={"stop ID":"stops in route"}) 

    # reset index, in order to index DC code & route ID 

    stops_in_route.reset_index(inplace=True) 

    stops_in_route["DC code"]= str(dcx) 

    stops_in_route.set_index(["DC code", "route ID"], inplace=True) 

 

    # * merge it in your final table 

    display(stops_in_route) 

    print(stops_in_route.index.name) 

    print(stops_in_route.columns.values) 

 

    # * get total stops per DC (sum stops of each route) 

    total_stops_DC= stops_in_route["stops in route"].sum() 

    print(type(total_stops_DC)) 

    print(total_stops_DC) 

 

    # * add the number of stops to the dataframe: using MERGE 

    dfr2_dist_both_byrouteID_stops_km = dfr_dist_both_byrouteID_km.merge(stops_in_route, on= ["DC code","route ID"], how= "left") 

    display(dfr2_dist_both_byrouteID_stops_km) 

    # the number of stops are found in the following df:  

    ## stops_in_route 

    display(dfr2_dist_both_byrouteID_stops_km) 

 

    # append to list  

    dfr2_both_routeID_distances_list.append(dfr2_dist_both_byrouteID_stops_km) 
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Appendix B.2. Energy and CO2 conversion functions 

 

Drone energy function (single delivery) 

# this function can be generalized to the sum of a distance and an amount of stops 

## would take 1/2 the distance with payload and 1/2 without payload 

## would also consider the energy needed for x amount of stops 

 

def e_model_drone_round_several_stops(me:float, mp:float, dkm: float, stops: float) -> float:  

    """Calculates energy consumption of X amount of drone round trips 

        => includes energy consumption of 1x intermediate delivery 

 

    Args: 

        me (float): mass of the drone empty[kg] => without a payload, with battery   

e.g. 14 kg for JOUAV, 20 kg for Wingcopter 

        mp (float):mass of the payload [kg] 

        dkm (float): distance of total trip [km] => initial trip + return trip 

        stops (float): amount of intermediate deliveries 

 

    Returns: 

        float: Energy per round trip with 1x intermediate delivery of X km is: X Wh 

    """ 

    # * Define constants  

    # gravitational acceleration constant 

    g = 9.8 

    # energy transfer efficiency 

    eta= 0.5 

 

    # * Define further variables 

    #distance of trip in m 

    dm=dkm*1000 

    #mass total (with payload) 

    mt= mp+me 

    # half trip distance 

    dhalf= dm/2 

 

    # * Define L/D ratio & energy required for landing 

    # L/D depending on payload  

    ## L/D with payload 

    rt= -0.2242*(mp) + 8.8773  

    ## L/D without payload 

    re=-0.2242*(0) + 8.8773  

 

    # le (landing energy) depending on payload in Wh 

    l_e= 34.77*(mt) - 515.77 # based on total weight with payload (mt) 

 

    # * Calulate energy per trip (with intermediate landing) 
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    EnergypertripJ= ((mt*g*dhalf)/(rt*eta)) + ((me*g*dhalf)/(re*eta)) + stops*(l_e*3600) 

    EnergypertripWh=EnergypertripJ/3600 

    EnergypertripkWh= EnergypertripWh/1000  

     

    return EnergypertripkWh # returns energy per roundtrip with 1x intermediate delivery, for all stops grouped in that route ID [in kWh] 

 

EV energy function 

def e_model_EV(total_dist: float)-> float: 

    """this function calculates the energy consumption of an EV, based on the specifications of the E-Ducato from Fiat 

 

    Args: 

        total_dist (float): give the total distance of the route in km 

 

    Returns: 

        float: returns energy consumption in kWh/km 

    """ 

    # energy consumption WLTP combined + a 15% premium given that the delivery van  

    # is gonna have a different driving behavior with a higher energy consumption 

    # (conservative assumption) 

    energy_EV= total_dist*0.349*1.15  

    return energy_EV # kWh/km 

 

 

Diesel energy contained function 

def e_model_diesel(total_dist: float)-> float: 

    """This function returns the energy consumption of a diesel vehicle 

    based on a per km input 

 

    Args: 

        total_dist (float): give the total distance of the route in km 

 

    Returns: 

        float: returns energy consumption in kWh/km 

    """ 

    energy_diesel_pkm= total_dist*0.8565  

    return energy_diesel_pkm   # kWh/km 

 

 

CO2 diesel function 

Based of GREET WTW model 

 

def co2_model_diesel_GREET(energy_cont:float) -> float: 

    """ This function calculates the CO2 emissions of a diesel vehicle,  

    when given an energy value (kwh) for a certain quantity of diesel 
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    Args: 

        energy_cont (float): insert total kWh in the quantity of diesel consumed in that trip 

 

    Returns: 

        float: kg of CO2 emissions (for that specified distance) 

    """  

    # * DEFINE PARAMETERS 

    # to consider well to wheel emissions 

    well_to_wheel_co2_emissions_GREET= 0.325699758 

 

    # * DEFINE FUNCTION 

    co2_emissions_per_route_GREET= energy_cont* well_to_wheel_co2_emissions_GREET 

 

    return co2_emissions_per_route_GREET 

 

 

CO2 electricity function 

def co2_model_electricity(kwh:float) -> float: 

""" This function calculates the average CO2 emissions based  

on electricity consumption in the U.S. 

 

    Args: 

        kWh (float): input kWh  

 

    Returns: 

        float: returns CO2 consumption, from the kWh of electricity consumed 

    """ 

    co2_per_kwh= 0.433  

    # kg CO2/kWh (national average 2019) 

    # source: https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references 

 

    co2_per_elec_consump= kwh*co2_per_kwh 

    return co2_per_elec_consump 
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Appendix B.3. Multi-delivery: distances and energy 

consumption 

 

This script was run in cloudio due to the required computational capacity. 

 

""" 

This script attempts to classify routes in groups of 1,2 or 3 

    depending on the use of energy needed to make 1,2 or 3 deliveries 

 

CUTT-OFF CRITERIA: 

    if it doesnt exceed 80% of the current battery capacity of the drone 

    if it's already 3 deliveries 

 

Sequential: check point by point if we can go to the next one (if battery capacity is enough) 

 

""" 

 

# import needed packages 

import pandas as pd 

from IPython.display import display 

import pyproj # for distances 

geod = pyproj.Geod(ellps='WGS84') 

import sys # for the arguments 

 

# -------------------------------- IMPORT DFS -------------------------------- # 

# import dataframe with all coordinates 

path_coordinates_cloudio = "…" 

df_coordinates = pd.read_csv(path_coordinates_cloudio) 

# import dataframe with the DC coordinates 

interim_data_folder_path = "…" 

dc_coord_path = str(interim_data_folder_path) + "/DC COORDINATES/dc_coordinates.csv" 

dc_coord_path_cloudio = "/home/karlalp/0_DC_coordinates/dc_coordinates.csv" 

df_dc_coord = pd.read_csv(dc_coord_path_cloudio) 

 

# ----------------------------- COORD DATA PRE-PROCESS ----------------------------- # 

 

# delete ineccesary columns 

df_coordinates_clean_1 = df_coordinates[["DC code","route ID","stop ID", "sequence", "latitude", "longitude"]].copy() 

# sort alphabeticaly DCs, routes ID, => then sequence  

df_coordinates_sorted_1 = df_coordinates_clean_1.sort_values(by=["DC code", "route ID","sequence"]) 

df_coordinates_sorted_1.reset_index(drop=True, inplace=True) 

display(df_coordinates_sorted_1) 

 

#  drop when sequence =0, given that sequence = 0 are the DC coordinates 

df_coordinates_sorted_1 = df_coordinates_sorted_1[df_coordinates_sorted_1.sequence != 0] 

df_coordinates_sorted_1.reset_index(inplace=True, drop=True) 
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display(df_coordinates_sorted_1) 

 

# %% 

# * SUBSET DATAFRAME BY THE DC in the arguments 

df_subset_DC = df_coordinates_sorted_1[df_coordinates_sorted_1["DC code"].isin(sys.argv[1:])].copy() 

display(df_subset_DC) 

 

# example 

# ['DAU1', 'DLA7', 'DBO2', 'DSE4'] 

# !How to run on terminal: python file.py DC1 DC2 DC3 DC4 

 

# %% 

# * merge df with DC coordinates 

stops= df_subset_DC.copy()  

dcs = df_dc_coord.copy() 

dcs.columns=['dc_latitude', 'dc_longitude', 'DC code'] 

display(dcs) 

display(stops) 

 

merged = pd.merge(stops, dcs, on=['DC code']) 

merged.groupby(["DC code", "route ID"]).count() 

 

# %% 

# ----------------------------- ENERGY CALC. FUNCTION ----------------------------- # 

# define function to calculate energy 

def e_model_drone_triple_drop(me:float, mp:float, dist_list_km: list) -> float:  

    # INPUTS 

    #- mass of individual payload 

    #- mas sof the empty drone 

    #- distances list (however long) 

 

    # * PRE-PROCESS DISTANCES (for making decision with len & converting to meters) 

    # multiply by *1000 each element # inline for loop 

    dist_list_m = [x*1000 for x in dist_list_km] 

    # filter out 0s 

    distances_filtered_m = [x for x in dist_list_m if x !=0] 

    #distance of trip in m 

    dm_list = distances_filtered_m 

    # * Define constants  

    # gravitational acceleration constant 

    g = 9.8 

    # energy transfer efficiency (n) 

    eta= 0.5 

 

    # * Define energy for a flying distance (dependent on L/D ratio) & energy required for landing 

        # * component 1: flying distance (dependent on L/D ratio) 

    def energy_distance(mass_total:float, distance_m: float, mass_payloads: float): 

        # distance_m: must be in meter  
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        def LD_ratio(mass_payload:float): 

            rt= -0.2242*(mass_payload) + 8.8773  

            return rt # LD ratio 

        d_e =( 

            (mass_total * g * distance_m) / (LD_ratio(mass_payload= mass_payloads) * eta) ) 

        return d_e #(distance energy) [in Joules] 

     

        # * component 2: energy required for (intermediate) landing 

    def energy_landing(mass_payloads: float): 

        l_e= (34.77*mass_payloads +179.63) * 3600 

        return l_e #landing energy [in Joules] 

     

# ------------------------- ENERGY CALC. WITH VARIABLE PAYLOADS AND DIST.  ------------------------- # 

 

    # * IFs: CALCULATE CORRESPONDING DISTANCES 

     # now use len to make a decision 

    if len(distances_filtered_m) == 4: # 3 stops(payloads), 4 distances 

        payload_no =3 

        # * DEFINE MASSES 

        m_s1= mp*payload_no+me # ! MASS TOTAL: mass payload*3 + mass empty (drone weight + battery) 

        m_s2= m_s1 -mp 

        m_s3= m_s2 -mp 

        m_s4= me 

        # * Calulate energy per trip (with intermediate landing) 

            # call funtion for (intermediate landing energy and for the other one) 

        Energy_total_J =((energy_distance(mass_total=m_s1, distance_m=dm_list[0], mass_payloads = payload_no*mp))+ # dist_1: 3 

payloads 

                        (energy_landing(mass_payloads=payload_no*mp))+ # int landing 1 

                        (energy_distance(mass_total=m_s2, distance_m=dm_list[1], mass_payloads = (payload_no-1)*mp))+ #  dist_2: 2 payloads 

                        (energy_landing(mass_payloads=(payload_no-1)*mp))+ # int landing 2 

                        (energy_distance(mass_total=m_s3, distance_m=dm_list[2], mass_payloads = (payload_no-2)*mp))+ #  dist_3: 1 payload 

                        (energy_landing(mass_payloads=(payload_no-2)*mp))+ # int landing 3 

                        (energy_distance(mass_total=m_s4, distance_m=dm_list[3], mass_payloads = (payload_no-3)*mp)) #  dist_4: 0 payloads 

                        ) 

        # STRUCTURE:  

        # = dist 1 + dist2_dist3 + dist 4 + 3 stops (varying weights) 

 

        EnergypertripWh=Energy_total_J/3600 

 

        EnergypertripkWh= EnergypertripWh/1000  

 

    elif len(distances_filtered_m) == 3: # 2 stops(payloads), 3 distances 

        payload_no =2 

        m_s1= mp*2+me # ! MASS TOTAL 

        m_s2= m_s1 - mp 

        m_s3= me 
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        Energy_total_J =((energy_distance(mass_total=m_s1, distance_m=dm_list[0], mass_payloads = payload_no*mp))+ # dist_1: 2 

payloads 

                        (energy_landing(mass_payloads=payload_no*mp))+ # int landing 1 

                        (energy_distance(mass_total=m_s2, distance_m=dm_list[1], mass_payloads = (payload_no-1)*mp))+ #  dist_2: 1 payloads 

                        (energy_landing(mass_payloads=(payload_no-1)*mp))+ # int landing 2 

                        (energy_distance(mass_total=m_s3, distance_m=dm_list[2], mass_payloads = (payload_no-2)*mp)) #  dist_3: 0 payload 

                        ) 

        # STRUCTURE:  

        # = dist 1 + dist2 + dist3 + 2 stops (varying weights) 

 

        EnergypertripWh=Energy_total_J/3600 

 

        EnergypertripkWh= EnergypertripWh/1000  

 

    else: # its equal to 2 

        payload_no =1 

        m_s1= mp+me # ! MASS TOTAL 

        m_s2= me 

        Energy_total_J =((energy_distance(mass_total=m_s1, distance_m=dm_list[0], mass_payloads = payload_no*mp))+ # dist_1: 1 

payloads 

                        (energy_landing(mass_payloads=payload_no*mp))+ # int landing 1 

                        (energy_distance(mass_total=m_s2, distance_m=dm_list[1], mass_payloads = (payload_no-1)*mp)) #  dist_2: 1 payloads 

                        ) 

        # STRUCTURE:  

        # = dist 1 + dist2 + 1 stops (varying weights) 

 

        EnergypertripWh=Energy_total_J/3600 

 

        EnergypertripkWh= EnergypertripWh/1000 

 

    return EnergypertripkWh 

 

# %% 

# ------------------------- CLASSIFICATION IN DELIVERY GROUPS ------------------------- # 

 

#* this function classifies the coordinates within one route ID, into the groups of 1,2, or 3  

 

def energy_groups (route_sequence): 

    result =[]  

    exception_counter = 0 

 

    distance_sequence = []  

    group_count = 1 # to know current group 

    previous_energy = 0  

    group_member_count = 0 # how many members within the current group (max 3) 

    previous_point = None  

    previous_distance_sequence = [] 

    previous_energy = 0 
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    for _, point in route_sequence.iterrows(): # for each point in each row, inside that section 

        dc_longitude = route_sequence.dc_longitude[0]  

        dc_latitude = route_sequence.dc_latitude[0] 

        if group_member_count == 0:  

            # * DISTANCES 

            distance_sequence.append(geod.inv(dc_longitude, dc_latitude, point["longitude"], point["latitude"])[2]/1000)  

            distance_sequence.append(geod.inv(dc_longitude, dc_latitude, point["longitude"], point["latitude"])[2]/1000)  

 

            group_member_count+=1  

 

        else: 

            distance_sequence.pop() # eliminates last element 

            # dist: A=>B 

            distance_sequence.append(geod.inv(previous_point["longitude"], previous_point["latitude"], point["longitude"], 

point["latitude"])[2]/1000)  

            # B => DC 

            distance_sequence.append(geod.inv(point["longitude"], point["latitude"],dc_longitude, dc_latitude)[2]/1000)  

            group_member_count+=1   

        # * ENERGY 

        energy = e_model_drone_triple_drop(me=20, mp=1.5, dist_list_km=distance_sequence) 

         

        if energy >= 1.3024 : # if its more 

            if group_member_count ==1: # !special case:  exception case if one stop would give us a higher energy  

                result.extend([{"MD_group": group_count, "MD_energy":energy, "MD_distances_segments":distance_sequence, 

"MD_distance_per_trip": sum(distance_sequence), "group size": group_member_count }]*1) 

                exception_counter +=1 

                group_count+=1 # NOTE: we changed groups 

                group_member_count = 0 

                distance_sequence= [] 

 

            else: # you have 2 or 3 stops or coordinates 

                result.extend([{"MD_group": group_count, "MD_energy":previous_energy, 

"MD_distances_segments":previous_distance_sequence, "MD_distance_per_trip": sum(previous_distance_sequence), "group size": 

previous_group_member_count }]*previous_group_member_count)  

                distance_sequence= []  

                # group_no 

                group_count+=1 # NOTE: we changed groups 

                group_member_count = 1  

                distance_sequence.append(geod.inv(dc_longitude, dc_latitude, point["longitude"], point["latitude"])[2]/1000)  

                distance_sequence.append(geod.inv(dc_longitude, dc_latitude, point["longitude"], point["latitude"])[2]/1000)  

                energy = e_model_drone_triple_drop(me=20, mp=1.5, dist_list_km=distance_sequence) 

 

        elif group_member_count == 3:  

            result.extend([{"MD_group": group_count, "MD_energy":energy, "MD_distances_segments":distance_sequence, 

"MD_distance_per_trip": sum(distance_sequence), "group size": group_member_count }]*3) 

            distance_sequence= [] 

            group_count+=1 # NOTE: we changed groups 
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            # when converting to dataframe if will have the dimensions of the coordinates 

            group_member_count = 0 

         

        # * back to the past 

        previous_point= point # to save the last point (dataframe) 

        previous_energy = energy 

        previous_group_member_count = group_member_count   

        previous_distance_sequence = distance_sequence.copy() 

 

    if group_member_count < 3 and group_member_count > 0:  

        result.extend([{"MD_group": group_count, "MD_energy":previous_energy, "MD_distances_segments":previous_distance_sequence, 

"MD_distance_per_trip": sum(previous_distance_sequence), "group size": previous_group_member_count 

}]*previous_group_member_count)  

 

 

    return result  

 

# * for loop 

# get list of route IDS  

routeID_list = merged["route ID"].unique().tolist() 

 

list_dfs_energy =[] 

total_routes = len(routeID_list) 

route_counter = 1 

 

for routeidx in routeID_list: 

    #subset 

    subset_route = merged[merged["route ID"]== routeidx].copy().reset_index(drop=True ) 

    dcx = subset_route["DC code"][0] 

     

    # function 

    list_energy_route = energy_groups(subset_route) # list of energy per route 

    df_energy_route = pd.DataFrame.from_dict(list_energy_route).reset_index(drop=True) 

 

    # merge energy  with subset_route 

    df_concated = pd.concat(objs=[subset_route,df_energy_route], axis=1) # ignore_index=True 

    list_dfs_energy.append(df_concated) 

    print("route ", route_counter, " of ", total_routes) 

    route_counter+=1 

 

final_df_energy = pd.concat(list_dfs_energy) # with all route IDs in our list 

display(final_df_energy) 

 

# Save as csv 

# with a variable name 

list_of_DCs = str(sys.argv[1:]) 

final_df_energy.to_csv(f"{list_of_DCs}_energy_intermediate_multidrop.csv") 
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Appendix B.4. Contextualizing dataset processing 

 

WorldPop data extraction 

# %% 

import rasterio 

import pandas 

import geopandas as gpd 

import numpy as np 

from osgeo import gdal 

 

# %% 

# import the coordinate/stops dataframe 

base_path= "/home/karlalp/" 

path_stops = "/home/karlalp/1_WorldPop_slices/1_of_5_stops.csv" 

 

stops_df= pandas.read_csv(path_stops) 

 

# define .tiff path 

path_tiff= (base_path + "/usa_pd_2020_1km.tiff") 

 

# %% 

# -------------------------open the tiff file--------------------------------------------------- # 

tiff_file = rasterio.open(path_tiff) 

 

# %% 

# ------------------------------- get meta data ------------------------------ # 

 

print(tiff_file.meta) 

# {'driver': 'GTiff', 'dtype': 'float32', 'nodata': -99999.0, 'width': 43072, 'height': 6298, 'count': 1, 'crs': CRS.from_epsg(4326),  

# 'transform': Affine(0.0083333333, 0.0, -179.15124930330558, 

#        0.0, -0.0083333333, 71.39124988994655)} 

 

print('No. of bands:',(tiff_file.count)) 

# No. of bands: 1 

 

print('bounds: ',(tiff_file.bounds)) 

 

col = tiff_file.width # 43,072 

rows= tiff_file.height # 6,298 

 

# read tiff file 

worldpop_raster = tiff_file.read(1) 

worldpop_raster[worldpop_raster<0] = None 

 

 

# # METHOD for extraction: direct from raster. Extract without polygonizing. 
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population_list= [] 

stop_counter = 1 

 

for lat,lon in zip(stops_df.latitude, stops_df.longitude): 

    #print(lat,lon) 

    # for every coordinate / stop 

    x = lon 

    y = lat 

    # get the row and column corresponding in pixel format 

    row, col = tiff_file.index(x,y) 

    # get the corresponding population value 

    pop_value= tiff_file.read(1)[row,col] 

    #print(pop_value) 

    # append to the list 

    population_list.append(pop_value) 

    print("Coordinate: %d of 267,217"% stop_counter) # d is to print an integer 

    stop_counter+=1 

 

 

stops_df["population (km sq)"]=population_list 

 

stops_df.to_csv("CORRECTED_RESULT_1_of_5_population_stop_level.csv",index=False, encoding='utf-8-sig') 

 

# %% 

tiff_file.close() 

 

 

 

IPUMS NHGIS shapefile merging 

"""  

This script joins the csv and shapefile components from NHGIS, for further processing 

 

STEPS:  

1. import the shapefile contianing the geometries of the ZIP codes 

2. join with the csv file of NHGIS (containing income and population data per ZIP code) 

3. export the merged file  

 

""" 

 

# %% 

import geopandas as gpd 

 

# ----------------------------- import shapefile ----------------------------- # 

us_shapefile_path= "/…/nhgis0003_shapefile_tl2021_us_zcta_2021/US_zcta_2021.shp" 

# read ass a gpd df 

us_shapefile = gpd.read_file(us_shapefile_path) 
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# know the CRS: coordinate reference system 

us_shapefile.geometry.crs 

    # <Derived Projected CRS: ESRI:102003> 

    # Name: USA_Contiguous_Albers_Equal_Area_Conic 

 

# reproject to our wished CRS 

us_shapefile= us_shapefile.to_crs('EPSG:4326') 

print(us_shapefile.head(2)) 

    # 0  POLYGON ((-66.66195 18.17755, -66.66191 18.177...   

 

# clean shapefile 

us_shapefile = us_shapefile[["GISJOIN", "Shape_Area","geometry", "ZCTA5CE20"]] 

print(us_shapefile.head(2)) 

 

# -------------------------------- import csv income -------------------------------- # 

import pandas as pd 

 

# * income csv NHGIS 

path_income = ("…/nhgis0003_ds254_20215_zcta.csv") 

df_income = pd.read_csv(path_income,sep=",") 

display(df_income) 

 

# clean dataframe 

df_income = df_income[["GISJOIN", "ZCTA5A", "NAME_E", "AON4E001", "AORME001"]] 

df_income.rename( 

    columns={"ZCTA5A":"ZIP Code",'NAME_E': 'Geographic Area', 'AON4E001': 'Total population', "AORME001": "Per Capita Income in 

the Past 12 Months (in 2021 Inflation-Adjusted Dollars)"}, inplace=True) 

display(df_income) 

 

# -------------------------- merge shapefile and csv ------------------------- # 

 

# Perform the join on the "GISJOIN" column 

merged_df = us_shapefile.merge(df_income, on='GISJOIN') 

display(merged_df) 

 

# Save the merged GeoDataFrame to a new shapefile 

merged_df.to_file('…/income_merged_shapefile.shp') 

 

IPUMS NHGIS data extraction 

"""  

This script gets the corresponding income values per ZIP code, given the coordinate list 

 

STEPS:  

1. import the income information with geometries 

2. join with the coordinate dataframe, uses an sindex () 
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""" 

 

# %% 

import geopandas as gpd 

import pandas as pd 

from shapely.geometry import Point 

from tqdm import tqdm # progress bar 

from IPython.display import display 

 

# %% 

# ----------------------------- import dataframes ---------------------------- # 

# * shapefile with income data 

base_path= "/home/karlalp/2 income and ZIP codes" 

path_shapefile = (base_path+ 

                  "/income_merged_shapefile.shp") 

income_shapefile = gpd.read_file(path_shapefile) 

 

print(income_shapefile.head(2)) 

 

# * 9000 subset cooridnates import 

path_stops = "/home/karlalp/0_corrected coordinates/CORRECTED90001_stops_combined_csv_excluding_exceptions.csv"  

df_stops = pd.read_csv(path_stops) 

display (df_stops) 

# 1336872 rows × 10 columns 

 

# ------------------------- geometry from lat & long ------------------------- # 

# convert lat and long to points 

geometry = [Point(xy) for xy in zip(df_stops['longitude'], df_stops['latitude'])] 

 

# Convert the Pandas dataframe to a GeoDataFrame by creating a new column called 'geometry' with Point objects 

df_stops = gpd.GeoDataFrame(df_stops, geometry=geometry, crs=income_shapefile.crs) 

display(df_stops) 

 

# ----------------------------- merge with sjoin ----------------------------- # 

 

# Create a spatial index for the merged GeoDataFrame 

# R-tree algorithm: to improve the performance of the spatial join for large datasets 

income_shapefile.sindex 

 

# Perform the spatial join using the sjoin() function with 'op='intersects'' to use the spatial index 

joined = gpd.sjoin(df_stops, income_shapefile, predicate='intersects', how="left") # TODO try how="left" 

display(joined) 

 

# Create a progress bar for the sjoin operation 

tqdm.pandas(desc="Joining data") 

 

# Apply the progress bar to the sjoin operation 

joined.progress_apply(lambda x: x, axis=1) 
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# rename columns 

clean_joined = joined.drop(["index_right", "geometry"], axis=1) 

clean_joined.rename( 

    columns={"Per Capita":"Per Capita Income in ZIP code", "Total popu":"Population in ZIP code"}, inplace=True) 

display(clean_joined) 

clean_joined.to_csv("LEFT_CORRECTED_1RESULTS_income_stop_level.csv",index=False, encoding='utf-8-sig') 

 

# find NaN values 

clean_joined['Per Capita Income'].isnull().values.any() 

clean_joined[clean_joined['Per Capita Income'].isna()] 

# 69 rows dont have income values 

# small ZIP codes 

# comes from the dataset 

clean_joined[clean_joined['Per Capita Income'].isnull()] 

clean_joined[clean_joined['Population in ZIP code'].isnull()] 

# 7 coordinates that were not found a corresponding ZIP code 

# in SEATTLE (DSE2) 
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Appendix B.5. Packages utilized in conda environment  

 

name: GISenv 

channels: 

  - conda-forge 

  - defaults 

dependencies: 

  - affine=2.4.0=pyhd8ed1ab_0 

  - anyio=3.6.2=pyhd8ed1ab_0 

  - appdirs=1.4.4=pyh9f0ad1d_0 

  - appnope=0.1.3=pyhd8ed1ab_0 

  - argon2-cffi=21.3.0=pyhd8ed1ab_0 

  - argon2-cffi-bindings=21.2.0=py38hef030d1_3 

  - asttokens=2.2.1=pyhd8ed1ab_0 

  - attrs=22.2.0=pyh71513ae_0 

  - babel=2.11.0=pyhd8ed1ab_0 

  - backcall=0.2.0=pyh9f0ad1d_0 

  - backports=1.0=pyhd8ed1ab_3 

  -backports.functools_lru_cache=1.6.4 

=pyhd8ed1ab_0 

  - beautifulsoup4=4.11.1=pyha770c72_0 

  - bleach=6.0.0=pyhd8ed1ab_0 

  - blosc=1.21.2=hebb52c4_0 

  - boost-cpp=1.78.0=h8b082ac_1 

  - branca=0.6.0=pyhd8ed1ab_0 

  - brotli=1.0.9=hb7f2c08_8 

  - brotli-bin=1.0.9=hb7f2c08_8 

  - brotlipy=0.7.0=py38hef030d1_1005 

  - bzip2=1.0.8=h0d85af4_4 

  - c-ares=1.18.1=h0d85af4_0 

  - ca-certificates=2022.12.7=h033912b_0 

  - cairo=1.16.0=h904041c_1014 

  - certifi=2022.12.7=pyhd8ed1ab_0 

  - cffi=1.15.1=py38hb368cf1_3 

  - cfitsio=4.2.0=hd56cc12_0 

  - charset-normalizer=2.1.1=pyhd8ed1ab_0 

  - click=8.1.3=unix_pyhd8ed1ab_2 

  - click-plugins=1.1.1=py_0 

  - cligj=0.7.2=pyhd8ed1ab_1 

  - colorama=0.4.6=pyhd8ed1ab_0 

  - country_converter=0.7.7=pyhd8ed1ab_0 

  - cryptography=39.0.0=py38h4257468_0 

  - curl=7.87.0=h6df9250_0 

  - cycler=0.11.0=pyhd8ed1ab_0 

  - debugpy=1.6.6=py38h4cd09af_0 

  - decorator=5.1.1=pyhd8ed1ab_0 

  - defusedxml=0.7.1=pyhd8ed1ab_0 

  - entrypoints=0.4=pyhd8ed1ab_0 

  - et_xmlfile=1.1.0=pyhd8ed1ab_0 

  - executing=1.2.0=pyhd8ed1ab_0 

  - expat=2.5.0=hf0c8a7f_0 

  - fiona=1.9.0=py38h4a1972a_0 

  - flit-core=3.8.0=pyhd8ed1ab_0 

  - folium=0.14.0=pyhd8ed1ab_0 

  - font-ttf-dejavu-sans-mono=2.37=hab24e00_0 

  - font-ttf-inconsolata=3.000=h77eed37_0 

  - font-ttf-source-code-pro=2.038=h77eed37_0 

  - font-ttf-ubuntu=0.83=hab24e00_0 

  - fontconfig=2.14.2=h5bb23bf_0 

  - fonts-conda-ecosystem=1=0 

  - fonts-conda-forge=1=0 

  - fonttools=4.38.0=py38hef030d1_1 

  - freetype=2.12.1=h3f81eb7_1 

  - freexl=1.0.6=hb7f2c08_1 

  - gdal=3.6.2=py38h86a93f0_3 

  - geopandas=0.11.0=pyhd8ed1ab_0 

  - geopandas-base=0.11.0=pyha770c72_0 

  - geos=3.11.1=hf0c8a7f_0 

  - geotiff=1.7.1=h2039a76_5 

  - gettext=0.21.1=h8a4c099_0 

  - giflib=5.2.1=hbcb3906_2 

  - hdf4=4.2.15=h7aa5921_5 

  - hdf5=1.12.2=nompi_h48135f9_101 

  - icu=70.1=h96cf925_0 

  - idna=3.4=pyhd8ed1ab_0 

  - importlib-metadata=6.0.0=pyha770c72_0 

  - importlib_metadata=6.0.0=hd8ed1ab_0 

  - importlib_resources=5.10.2=pyhd8ed1ab_0 

  - ipykernel=6.13.0=py38h60dac5d_0 

  - ipython=8.4.0=pyhd1c38e8_1 

  - ipython_genutils=0.2.0=py_1 

  - jedi=0.18.2=pyhd8ed1ab_0 

  - jinja2=3.1.2=pyhd8ed1ab_1 

  - joblib=1.2.0=pyhd8ed1ab_0 

  - jpeg=9e=hac89ed1_2 

  - json-c=0.16=h01d06f9_0 

  - json5=0.9.5=pyh9f0ad1d_0 

  - jsonschema=4.17.3=pyhd8ed1ab_0 

  - jupyter_client=8.0.2=pyhd8ed1ab_0 

  - jupyter_core=5.2.0=py38h50d1736_0 

  - jupyter_server=1.23.5=pyhd8ed1ab_0 

  - jupyterlab=3.3.4=pyhd8ed1ab_0 
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  - jupyterlab_pygments=0.2.2=pyhd8ed1ab_0 

  - jupyterlab_server=2.19.0=pyhd8ed1ab_0 

  - kaleido-core=0.2.1=h0d85af4_0 

  - kealib=1.5.0=h5c1f988_0 

  - kiwisolver=1.4.4=py38h98b9b1b_1 

  - krb5=1.20.1=h049b76e_0 

  - lcms2=2.14=h29502cd_1 

  - lerc=4.0.0=hb486fe8_0 

  - libaec=1.0.6=hf0c8a7f_1 

  - libblas=3.9.0=16_osx64_openblas 

  - libbrotlicommon=1.0.9=hb7f2c08_8 

  - libbrotlidec=1.0.9=hb7f2c08_8 

  - libbrotlienc=1.0.9=hb7f2c08_8 

  - libcblas=3.9.0=16_osx64_openblas 

  - libcurl=7.87.0=h6df9250_0 

  - libcxx=14.0.6=hccf4f1f_0 

  - libdeflate=1.17=hac1461d_0 

  - libedit=3.1.20191231=h0678c8f_2 

  - libev=4.33=haf1e3a3_1 

  - libffi=3.4.2=h0d85af4_5 

  - libgdal=3.6.2=h623d8b8_3 

  - libgfortran=5.0.0=11_3_0_h97931a8_27 

  - libgfortran5=11.3.0=h082f757_27 

  - libglib=2.74.1=h4c723e1_1 

  - libiconv=1.17=hac89ed1_0 

  - libjpeg-turbo=2.1.4=hb7f2c08_0 

  - libkml=1.3.0=haeb80ef_1015 

  - liblapack=3.9.0=16_osx64_openblas 

  - libnetcdf=4.8.1=nompi_hc61b76e_106 

  - libnghttp2=1.51.0=he2ab024_0 

  - libopenblas=0.3.21=openmp_h429af6e_3 

  - libpng=1.6.39=ha978bb4_0 

  - libpq=15.1=h3640bf0_3 

  - librttopo=1.1.0=h9461dca_12 

  - libsodium=1.0.18=hbcb3906_1 

  - libspatialindex=1.9.3=he49afe7_4 

  - libspatialite=5.0.1=hc1c2c66_22 

  - libsqlite=3.40.0=ha978bb4_0 

  - libssh2=1.10.0=h47af595_3 

  - libtiff=4.5.0=hee9004a_2 

  - libwebp-base=1.2.4=h775f41a_0 

  - libxcb=1.13=h0d85af4_1004 

  - libxml2=2.10.3=hb9e07b5_0 

  - libzip=1.9.2=h6db710c_1 

  - libzlib=1.2.13=hfd90126_4 

  - llvm-openmp=15.0.7=h61d9ccf_0 

  - lz4-c=1.9.4=hf0c8a7f_0 

  - mapclassify=2.5.0=pyhd8ed1ab_1 

  - markupsafe=2.1.2=py38hef030d1_0 

  - mathjax=2.7.7=h694c41f_3 

  - matplotlib=3.5.3=py38h50d1736_2 

  - matplotlib-base=3.5.3=py38hae485fc_2 

  - matplotlib-inline=0.1.6=pyhd8ed1ab_0 

  - mistune=2.0.4=pyhd8ed1ab_0 

  - munch=2.5.0=py_0 

  - munkres=1.1.4=pyh9f0ad1d_0 

  - nbclassic=0.4.8=pyhd8ed1ab_0 

  - nbclient=0.7.2=pyhd8ed1ab_0 

  - nbconvert=7.2.9=pyhd8ed1ab_0 

  - nbconvert-core=7.2.9=pyhd8ed1ab_0 

  - nbconvert-pandoc=7.2.9=pyhd8ed1ab_0 

  - nbformat=5.7.3=pyhd8ed1ab_0 

  - ncurses=6.3=h96cf925_1 

  - nest-asyncio=1.5.6=pyhd8ed1ab_0 

  - networkx=3.0=pyhd8ed1ab_0 

  - notebook-shim=0.2.2=pyhd8ed1ab_0 

  - nspr=4.35=hea0b92c_0 

  - nss=3.78=ha8197d3_0 

  - numpy=1.22.3=py38h7eae8df_2 

  - openjpeg=2.5.0=h13ac156_2 

  - openpyxl=3.0.9=pyhd8ed1ab_0 

  - openssl=3.0.7=hfd90126_2 

  - packaging=23.0=pyhd8ed1ab_0 

  - pandas=1.4.2=py38h2b30649_2 

  - pandoc=2.19.2=h694c41f_1 

  - pandocfilters=1.5.0=pyhd8ed1ab_0 

  - parso=0.8.3=pyhd8ed1ab_0 

  - patsy=0.5.3=pyhd8ed1ab_0 

  - pcre2=10.40=h1c4e4bc_0 

  - pexpect=4.8.0=pyh1a96a4e_2 

  - pickleshare=0.7.5=py_1003 

  - pillow=9.4.0=py38h48932a6_0 

  - pip=22.0.4=pyhd8ed1ab_0 

  - pixman=0.40.0=hbcb3906_0 

  - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_0 

  - platformdirs=2.6.2=pyhd8ed1ab_0 

  - plotly=5.9.0=pyhd8ed1ab_0 

  - pooch=1.6.0=pyhd8ed1ab_0 

  - poppler=22.12.0=h6e9091c_1 

  - poppler-data=0.4.11=hd8ed1ab_0 

  - postgresql=15.1=hbea33b9_3 

  - proj=9.1.0=hf909084_1 

  - prometheus_client=0.16.0=pyhd8ed1ab_0 

  - prompt-toolkit=3.0.36=pyha770c72_0 

  - psutil=5.9.4=py38hef030d1_0 

  - pthread-stubs=0.4=hc929b4f_1001 
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  - ptyprocess=0.7.0=pyhd3deb0d_0 

  - pure_eval=0.2.2=pyhd8ed1ab_0 

  - pycparser=2.21=pyhd8ed1ab_0 

  - pygments=2.14.0=pyhd8ed1ab_0 

  - pyopenssl=23.0.0=pyhd8ed1ab_0 

  - pyparsing=3.0.9=pyhd8ed1ab_0 

  - pyproj=3.4.1=py38hb2f5155_0 

  - pyrsistent=0.19.3=py38hef030d1_0 

  - pysocks=1.7.1=pyha2e5f31_6 

  - python=3.8.15=hf9b03c3_1_cpython 

  - python-dateutil=2.8.2=pyhd8ed1ab_0 

  - python-fastjsonschema=2.16.2=pyhd8ed1ab_0 

  - python_abi=3.8=3_cp38 

  - pytz=2022.7.1=pyhd8ed1ab_0 

  - pyxlsb=1.0.9=pyhd8ed1ab_0 

  - pyzmq=25.0.0=py38h0b711fd_0 

  - rasterio=1.3.4=py38h028a342_0 

  - rasterstats=0.17.0=pyhd8ed1ab_0 

  - readline=8.1.2=h3899abd_0 

  - requests=2.28.2=pyhd8ed1ab_0 

  - rioxarray=0.13.3=pyhd8ed1ab_0 

  - rtree=1.0.1=py38hc59ffc2_1 

  - scikit-learn=1.2.1=py38h573ff9c_0 

  - scipy=1.10.0=py38hfb8b963_0 

  - seaborn=0.12.0=hd8ed1ab_0 

  - seaborn-base=0.12.0=pyhd8ed1ab_0 

  - send2trash=1.8.0=pyhd8ed1ab_0 

  - setuptools=66.1.1=pyhd8ed1ab_0 

  - shapely=1.8.5=py38h4d28eb3_2 

  - simplejson=3.18.1=py38hef030d1_0 

  - six=1.16.0=pyh6c4a22f_0 

  - snappy=1.1.9=h225ccf5_2 

  - sniffio=1.3.0=pyhd8ed1ab_0 

  - snuggs=1.4.7=py_0 

  - soupsieve=2.3.2.post1=pyhd8ed1ab_0 

  - sqlite=3.40.0=h9ae0607_0 

  - stack_data=0.6.2=pyhd8ed1ab_0 

  - statsmodels=0.13.5=py38hbd87e4b_2 

  - tenacity=8.1.0=pyhd8ed1ab_0 

  - terminado=0.17.1=pyhd1c38e8_0 

  - threadpoolctl=3.1.0=pyh8a188c0_0 

  - tiledb=2.13.2=h8b9cbf0_0 

  - tinycss2=1.2.1=pyhd8ed1ab_0 

  - tk=8.6.12=h5dbffcc_0 

  - tornado=6.2=py38hef030d1_1 

  - tqdm=4.64.0=pyhd8ed1ab_0 

  - traitlets=5.9.0=pyhd8ed1ab_0 

  - typing-extensions=4.4.0=hd8ed1ab_0 

  - typing_extensions=4.4.0=pyha770c72_0 

  - tzcode=2022g=hb7f2c08_0 

  - tzdata=2022g=h191b570_0 

  - unicodedata2=15.0.0=py38hef030d1_0 

  - urllib3=1.26.14=pyhd8ed1ab_0 

  - wcwidth=0.2.6=pyhd8ed1ab_0 

  - webencodings=0.5.1=py_1 

  - websocket-client=1.5.0=pyhd8ed1ab_0 

  - wheel=0.38.4=pyhd8ed1ab_0 

  - xarray=2023.1.0=pyhd8ed1ab_0 

  - xerces-c=3.2.4=h2007e90_1 

  - xlrd=2.0.1=pyhd8ed1ab_3 

  - xorg-libxau=1.0.9=h35c211d_0 

  - xorg-libxdmcp=1.1.3=h35c211d_0 

  - xyzservices=2022.9.0=pyhd8ed1ab_0 

  - xz=5.2.6=h775f41a_0 

  - zeromq=4.3.4=he49afe7_1 

  - zipp=3.12.0=pyhd8ed1ab_0 

  - zlib=1.2.13=hfd90126_4 

  - zstd=1.5.2=hbc0c0cd_6 
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Appendix C 

Appendix C.1. Header of the final generated dataframe 

provided in the supplementary material  

 

Column name Exemplary value 

DC code DAU1 

route ID RouteID_00ae3f5e-a708-4c37-b9c4-ebd3964dbdac 

Drone (orig DC) [km] 3891.815505 

Drone (alt DC) [km] 1388.187933 

Dist. ratio (orig DC) [km drone: km truck] 49.15447647 

stops in route 134 

Drone (orig DC) [kWh per route ID] 81.5966064 

Drone (orig DC) [kWh per package] 0.608929898 

EV (orig DC) [kWh per route ID] 31.77696652 

EV (orig DC) [kWh per package] 0.237141541 

Diesel (orig DC) [kWh per route ID] 67.8135588 

Diesel (orig DC) [kWh per package] 0.506071334 

Drone (orig DC) [kg of CO2 per route ID] 35.33133057 

Drone (orig DC) [kg of CO2 per package] 0.263666646 

EV (orig DC) [kg of CO2 per route ID] 13.7594265 

EV (orig DC) [kg of CO2 per package] 0.102682287 

Diesel (orig DC) [kg of CO2 per route ID] 22.08685969 

Diesel (orig DC) [kg of CO2 per package] 0.164827311 

Dist ratio (alt DC) [km drone: km truck] 17.53311558 

Drone (alt DC) [kWh per route ID] 49.0855922 

Drone (alt DC) [kWh per package] 0.36631039 

Drone (alt DC) [kg of CO2 per route ID] 21.25406142 

Drone (alt DC) [kg of CO2 per package] 0.158612399 

Drone (multi-delivery) [km] 1545.759924 

Drone (multi-delivery) [kWh per route ID] 58.59804128 

Drone (multi-delivery) [kg of CO2 per route ID] 25.37295187 

Drone (multi-delivery) [kWh per package] 0.437298816 

Drone (multi-delivery) [kg of CO2 per package] 0.189350387 

Dist ratio (multi-delivery) [km drone: km truck] 19.52328411 

Drone (alt DC multi-delivery) [km] 697.3707318 
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Drone (alt DC multi-delivery) [kWh per route ID] 47.8683626 

Drone (alt DC multi-delivery) [kg of CO2 per route ID] 20.72700101 

Drone (alt DC multi-delivery) [kWh per package] 0.357226587 

Drone (alt DC multi-delivery) [kg of CO2 per package] 0.154679112 

Dist ratio (alt DC multi-delivery) [km drone: km truck] 8.807944051 

EV (orig DC) [km] 79.1752 

Diesel (orig DC) [km] 79.1752 

population (km sq) 2575.800111 

ZIP Code 78751.05224 

Population in ZIP code 15633.99254 

Per Capita Income in ZIP code 51746.79851 

population (1 arc-second) 2.645743506 

City Austin 

Drone (orig DC)-EV [kWh per route ID] 49.81963988 

Drone (multi-delivery)-EV [kWh per route ID] 26.82107476 

Drone (alt DC)-EV [kWh per route ID] 17.30862568 

Drone (alt DC multi-delivery)-EV [kWh per route ID] 16.09139608 

Drone (orig DC)-Diesel [kg of CO2 per route ID] 13.24447088 

Drone (multi-delivery)-Diesel [kg of CO2 per route ID] 3.286092183 

Drone (alt DC)-Diesel [kg of CO2 per route ID] -0.832798268 

Drone (alt DC multi-delivery)-Diesel [kg of CO2 per route ID] -1.359858683 

Drone (alt DC multi-delivery)-EV [kg of CO2 per route ID] 6.967574504 

Drone (alt DC multi-delivery) better than diesel TRUE 

EV (orig DC) [km per package] 0.590859701 

Diesel (orig DC) [km per package] 0.590859701 

avg group size (alt DC multi-delivery) 2.955555556 

Drone (alt DC multi-delivery) better than EV FALSE 

Drone (orig DC) [kg of CO2 per route ID] (alt elec mix) 3.533133057 

Drone (orig DC) [kg of CO2 per package] (alt elec mix) 0.026366665 

EV (orig DC) [kg of CO2 per route ID] (alt elec mix) 1.37594265 

EV (orig DC) [kg of CO2 per package] (alt elec mix) 0.010268229 

Diesel (orig DC) [kg of CO2 per route ID] (alt elec mix) 2.208685969 

Diesel (orig DC) [kg of CO2 per package] (alt elec mix) 0.016482731 

Drone (alt DC) [kg of CO2 per route ID] (alt elec mix) 2.125406142 

Drone (alt DC) [kg of CO2 per package] (alt elec mix) 0.01586124 

Drone (multi-delivery) [kg of CO2 per route ID] (alt elec mix) 2.537295187 
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Drone (multi-delivery) [kg of CO2 per package] (alt elec mix) 0.018935039 

Drone (alt DC multi-delivery) [kg of CO2 per route ID] (alt elec mix) 2.072700101 

Drone (alt DC multi-delivery) [kg of CO2 per package] (alt elec mix) 0.015467911 

 

 

 

Appendix C.2. Equivalent route comparison summary 

statistics 

 

D4 and G2 equivalent-route comparison: set of summary statistics comparing the better 

and worse performing routes  

 

Drone (alt DC multi-delivery) & 

Diesel (orig DC) 

Worse 

performing 

Better 

performing 

Drone (alt DC 

multi-delivery) [km 

per package] 

mean 10.93 18.79 

std 7.64 18.33 

median 8.09 14.86 

Avg. group size (alt 

DC multi-delivery)  

mean 2.64 2.34 

std 0.45 0.64 

median 2.95 2.17 

Drone (alt DC) [km 

per package] 

mean 25.08 33.03 

std 12.87 17.67 

median 23.55 31.48s 

Dist. ratio (alt DC 

multi-delivery) [km 

drone: km truck] 

mean 12.55 26.58 

std 6.75 18.60 

median 10.54 24.17 

Drone (alt DC 

multi-delivery) [kg 

of CO2 per 

package] 

mean 0.18 0.23 

std 0.04 0.10 

median 0.17 0.20 

Drone (alt DC 

multi-delivery) 

[kWh per package] 

mean 0.43 0.52 

std 0.09 0.22 

median 0.40 0.47 
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Appendix C.3. Complete pairplot sets 
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