Matteo Calabrese

Space Oddity: Space Cybersecurity
Lessons from a Simulated OPS-SAT
Attack

Master’s thesis in Security and Cloud Computing
Supervisor: Prof. Sokratis Katsikas
Co-supervisor: Prof. Gregory Falco, Georgios Kavallieratos

July 2023

2
2
=
2

o
(]
cC

c
o

~

el
cC
©
]
[}
C
2L
(%4

%]

[
o

2
(%]
o
[

=
C

]
cC

R
o
%
o

z

bo
R
£89
082
£ cc
=]
(]
S Er
©
o
=
5
(9]
@
L
o
C
©
o
o
C
N
o}
'_
c
©
S
o
€
—_
L
£
Y—
o
=
(o}
(48]
L

c
2
s}
©
=
c
>
S
IS
o
()
o
C
©
=
35
(9}
(]
%]
c
o
=
©
£
-
L
<
[
o
e
Q.
[
[a)]

@ NTNU

Norwegian University of
Science and Technology

Matteo Calabrese

Space Oddity: Space Cybersecurity
Lessons from a Simulated OPS-SAT
Attack

Master’s thesis in Security and Cloud Computing
Supervisor: Prof. Sokratis Katsikas

Co-supervisor: Prof. Gregory Falco, Georgios Kavallieratos
July 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

@ NTNU

Norwegian University of
Science and Technology

Title: Space Oddity: Space Cybersecurity Lessons from a Simulated OPS-
SAT Attack

Student: Calabrese, Matteo

Problem description:

The space industry is undergoing a major revolution. While recent technological
advancements are making the field accessible to new communities, such as academia
and start-ups, critical public infrastructures increasingly rely on the space segment
to provide vital services. Three main elements leading this radical change are the
concepts of CubeSats, reusable launch vehicles, and ground station as a service. The
CubeSat standard aims at regulating the way small spacecrafts are built. Having
a reference design and precise guidelines allows for ridesharing, i.e., enabling more
CubeSats to be launched simultaneously. Additionally, commercial off-the-shelf
components have become a popular choice for building these kinds of vehicles.
Secondly, improvements in launch vectors translate to significantly lower launch costs.
Finally, networks of distributed ground stations on Earth enable operations teams to
have continuous coverage of the spacecraft, regardless of time and location.

ESA’s latest CubeSat, OPS-SAT, is a prime example of a “faster, better, cheaper”
mission. With its ability to run a full-fledged operating system, and support of
software-defined missions, OPS-SAT represents the state of the art of CubeSat capa-
bilities and showcases future trends for nanosatellites missions. As satellites become
smarter and more connected, however, a whole new class of vulnerabilities arises. In
the IT field, cybersecurity frameworks like ATT&CK and STRIDE have been used
to develop countermeasures based on tactics, techniques, and procedures found in
the wild. Space cybersecurity, however, has been lacking a globally referenceable
language for describing such attacks. The Space Attack Research and Tactic Analysis
(SPARTA) project aims at bridging this gap.

This thesis will delve into the domain of CubeSat cybersecurity by trying to
answer the question: are new CubeSat missions secure enough? Firstly, the state
of the art of CubeSat cybersecurity found in current literature will be presented.
Then, OPS-SAT will be used as a reference model for the analysis of the security of
a state-of-the-art CubeSat mission. For this purpose, an attempt will be made to
apply the SPARTA matrix to the OPS-SAT mission, with the goal of identifying a
realistic and feasible attack path. Should one be found, an attack will be developed
and demonstrated against the system.

Research questions that this work aims to address are:

RQ1: What is the state of the art of CubeSat cybersecurity?

RQ2: Having access to some OPS-SAT mission resources, is it possible to find any
exploitable vulnerabilities?

RQ3: Using threat modelling and cybersecurity frameworks, and leveraging said
vulnerabilities, can a realistic attack path against OPS-SAT be identified?

RQ4: Can this attack be developed and demonstrated?

Approved on: 2023-03-22
Main supervisor: Professor Katsikas, Sokratis, NTNU

Co-supervisors: Professor Falco, Gregory, Johns Hopkins University and
Kavallieratos, Georgios, NTNU

Abstract

The space industry is currently experiencing a rapid transformation,
driven by innovations both in space and on the ground. Lower access
barriers to orbit and the widespread use of commercial off-the-shelf
components have facilitated the rise of CubeSats. These small satellites,
with their modular design and cost-effectiveness, enable smaller teams to
engage in space operations and larger players to conduct groundbreaking
technological demonstrations. Furthermore, decreasing launch costs and
on-demand access to ground station services have encouraged more players
to join the space industry, fostering an agile and diverse environment
for experimentation. However, this growth is accompanied by significant
cybersecurity challenges that demand urgent attention. Historically, the
space industry has relied on security-through-obscurity, but this approach
can no longer be tolerated as the industry opens up to new players
and technologies. This work aims to address the often-dismissed matter
of securing space vehicles, using OPS-SAT, one of the most advanced
CubeSat missions, as a case study. Despite its remarkable capabilities,
OPS-SAT is not immune to the general dismissal of cybersecurity that
plagues the industry. This work will employ a demonstrative approach,
devising and implementing an attack scenario against OPS-SAT. The
chosen attacker model for this scenario is that of a malicious user with
limited to no cybersecurity knowledge, reflecting the reality that attackers
with varying degrees of expertise can pose a threat. While keeping the
attack as simple as possible, the goal is to demonstrate the potential
damage that could be caused. The findings of this work illustrate that the
rapid pace of development in the space industry should be accompanied
by an equally enthusiastic and vigilant security force. The importance of
addressing cybersecurity concerns becomes evident as the industry evolves
and attracts more players, emphasizing the need for a proactive and robust
security posture to safeguard space missions and future infrastructures.

Acknowledgements

I wish to extend my heartfelt thanks to the OPS-SAT team at the
European Space Agency, whose collaboration and instrumental support
made this study possible.

My sincere gratitude goes to my supervisors, who didn’t merely
endorse my choice of this project but provided steadfast expertise and
guidance throughout. I must also acknowledge Johannes Willbold for his
insightful advice on OPS-SAT and invaluable input.

Finally, my deepest thanks to my dear friends Kristine, Julian, Anand,
and Yann. Their camaraderie, encouragement, and unwavering support
have transformed this degree into a pivotal chapter in my life. Without
them, I would be much further from the person I strive to become.

Abstract
Acknowledgements
Contents

List of Figures
List of Acronyms

1 Introduction

1.1 A New Space Era

1.2 Motivation
1.3 Methodology

2 Background

2.1 Space Systems Architecture
2.1.1 The Space Segment
2.1.2 The Ground Segment
2.1.3 The Link Segment

2.2 The New Space
2.2.1 Hosted Payloads
2.2.2 The CubeSat Approach to Space

2.3 Cybersecurity Challenges

2.4 OPS-SAT: Operations Satellite
2.4.1 System Architecture
2.4.2 Satellite Experimental Processing Platform
2.4.3 The NanoSat MO Framework

3 State of the Art

3.1 Threat Modelling
3.1.1 Frameworks & Matrices
3.1.2 Reference Architectures

Contents

iii

vii

L =

0O N o ot

3.1.3 Discussion and Summary

4 Attacking OPS-SAT

4.1 Environment Emulation
4.1.1 Extracting the File System
4.1.2 Emulating the SEPP oL

4.2 A Security Analysis of the SEPP

4.3 Developing the Attack
4.3.1 Defining the Attacker Model
4.3.2 Step 1: Reconnaissance
4.3.3 Step 2: Resource Development
4.3.4 Step 3: Initial Access. oL
4.3.5 Step 4: Execution L.
4.3.6 Step b: Persistence L.
4.3.7 Step 6: Defense Evasion
4.3.8 Step 7: Lateral Movement
4.3.9 Step 8: Exfiltration oL oL
4.3.10 Step 9: Impact

4.4 Visualising the Attack o oo
4.4.1 Using the SPARTA matrix
4.4.2 Using Attack Trees L.

5 Conclusion

5.1 Discussion Lo
5.1.1 Limitationso o
5.1.2 Future Work oo

References

29
30
30
31
38
39
40
41
43
49
49
50
51
51
52
52
53
53
53

57
57
a8
59

61

1.1

2.1

2.2

2.3

24
2.5
2.6

3.1
3.2
3.3

3.4

4.1

4.2

4.3
4.4
4.5
4.6
4.7

4.8

List of Figures

Diagram of the methodology process.

“Dimensions of Change in Space Ecosystem. The quantity of arrows
signifies the magnitude of impact, more arrows signify a greater impact.
A dash signifies no impact. Arrow pointing up means increasing arrow
pointing down means decreasing.” Source [13].
Number of nanosatellites launches per year, including future predictions.
Source [19].

Total number of nanosatellites and CubeSats launched per year (1999-
2024). Source [19]. L

Overview of the experimenter process in the OPS-SAT mission.
Simplified architecture of OPS-SAT. Adapted from [32].
“NanoSat MO Framework diagram for OPS-SAT. Source [32].

The latest ATT&CK matrix for industrial control systems. Source [49].
The lastest SPARTA matrix. Source [51].

An example of attack tree to visualise a DoS attack on a CubeSat. Source
[B2]. .

“Functional Viewpoint of Satellite Reference Architecture” Source [13].

Contents of the uncompressed raw system image and subsequent data
extraction.o

Starting the custom-made container containing the root file system of the
SEPP, on emulated architecture.

Testing the executables of the SEPP file system.
The start-up service responsible for running the NMF.
Detail of the the Dockerfile used to create the SEPP container.
The NMF starting successfully.

The supervisor-specific entry in the sudoers.d directory. Entries in this
path allow to define sudo privileges for specific users or groups.

Simplified architecture of OPS-SAT. Adapted from [32].

10

12
15
16
18

22
24

25
26

30

33
33
34
35
37

40

vii

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Inspecting the dynamically-linked libraries used by the camera payload
executable. In orange, the non-standard library containing functionality
specific to the program.
Inspecting the custom-made shared library object. The output shows
the functions defined in the library, which can then be called by the
executable. In orange, a possible injection point.
Running Fakelib.sh to produce a malicious shared library that contains a
simple “echo” exploit.
Nominal execution of the camera payload binary (minor failure due to
the absence of a camera device). L.
Running the attack by specifying the location of the malicious library for
the linker to load. Success! L.
Detail of the attack payload: first, the working directory of the program
that called the camera binary is identified; then, the code checks for the
presence of a capture file; finally, it replaces it with the spoofed capture.
Resulting command to craft the malicious library with the updated attack
payload using Fuokelib.sh. Escaping special characters is needed to correctly
input the payload.
Visualising the attack using the SPARTA Navigator. Techniques high-
lighted in red are employed by the attack.
Countermeasures to defend against the attack, as generated by the
SPARTA Navigator. i
Attack tree visualising the attack scenario, using the cyber kill-chain model
as a reference for stages. Darkened stages have not been implemented in
thisstudy. L

43

44

45

46

47

47

48

54

55

List of Acronyms

ADCS Attitude Determination and Control System.
AT Artificial Intelligence.
API Application Programming Interface.

APT Advanced Package Tool.

CAN Controller Area Network.

CCSDS Consultative Committee for Space Data Systems.
CFDP CCSDS File Delivery Protocol.

COTS Commercial, Off-The-Shelf.

CTT Consumer Test Tool.
DoS Denial of Service.

ELF Executable and Linkable Format.
EPS Electrical Power Subsystem.

ESA European Space Agency.

FBC Faster, Better, Cheaper.
FDIR Failure Detection, Isolation, and Recovery.
FPGA Field-Programmable Gate Array.

FSW Flight Software.

GNC Guidance, Navigation, and Control.

GPS Global Positioning System.

Xi

GSaaS Ground Station as a Service.

I2C Inter-Integrated Circuit.

IDS Intrusion Detection System.

IEEE Institute of Electrical and Electronics Engineers.
IoT Internet of Things.

IPS Intrusion Prevention System.

ISO International Organization for Standardization.

ISS International Space Station.
LEO Low Earth Orbit.
MCC Mission Control Centre.

NDA Non-Disclosure Agreement.
NIST National Institute of Standards and Technology.

NMEF NanoSat MO Framework.

OBC On-Board Computer.

OBSW On-Board Software.
OPKG Open Package Management.
OS Operating System.

OSINT Open-Source Intelligence.

S2CY Space Systems Cybersecurity.

SDK Software Development Kit.

SDR Software-Defined Radio.

SEPP Satellite Experimental Processing Platform.
SoC System-on-Chip.

SoM System-on-Module.

SPACE-SHIELD Space Attacks and Countermeasures Engineering Shield.

SPARTA Space Attack Research & Tactic Analysis.
SPI Serial Peripheral Interface.

SSH Secure Shell.

TREKS Targeting, Reconnaissance, & Exploitation Kill-Chain for Space Vehicles.

TTP Tactics, Techniques, and Procedures.

USB Universal Serial Bus.

Introduction

1.1 A New Space Era

The space industry is currently undergoing a revolutionary transformation that closely
mirrors the cloud computing era on Earth. What was once an exclusive market
accessible only to government agencies and established private competitors is now
becoming more accessible to smaller entities and communities. This shift is primarily
driven by advancements in technology, entrepreneurial initiatives, and a growing
public interest in space exploration. As deployment and launch costs decrease, more
resources can be allocated towards enhancing spacecraft capabilities [1]. The use of
Commercial, Off-The-Shelf (COTS) components has significantly reduced the time
required for concept development and implementation, saving substantial resources
that would have been spent on specialized solutions [1]. Access to data has also
played a crucial role, fostering new business ideas and supporting existing assets,
aligning with the data-driven paradigm that characterizes the cloud revolution.

One of the core elements driving this evolution is the CubeSat, a standardized and
modular spacecraft design. By publicly distributing specific requirements, numerous
similar satellites can be pooled together and launched in batches through a process
known as ridesharing. This approach is transforming every aspect of space missions,
from hardware and software to design, assembly, launch, and operations. Notably,
ground station networks have also played a vital role in enabling this transformation.
Ground Station as a Service (GSaaS) have emerged as commercial solutions that
provide continuous coverage of spacecraft, making it accessible to the wider public
[1]-[3]. These advancements in technology and infrastructure have given rise to a
more agile, modular, and on-demand approach to space missions.

1.2 Motivation

In this context, while the space industry experiences rapid growth and promising
opportunities, it also faces cybersecurity challenges. Technological, social, and

2 1. INTRODUCTION

economic constraints have hindered the adequate pace of cybersecurity advancements,
leaving the space domain vulnerable [4]. As it stands, focus has been mostly put
on the security of the ground segment and communications, leaving spacecrafts
vulnerable to attacks in which actors are able to gain a foothold in the vehicle.
Moreover, because of their nature, space assets are more expensive and harder to
replace, highlighting how the historical security-through-obscurity approach is far
from enough.

Current trends indicate that CubeSat launches will increase steadily in the near
future [5]. With improved mission capabilities and advancements in subsystems
technologies, it is likely that these type of spacecraft will be used extensively for
scientific experimentation, exploration, and commercial purposes. Space is already a
crucial component in many critical infrastructures that serve Earth. The fact that
CubeSats might represent a considerable part of critical space infrastructures, either
by supplementing or renewing the hybrid one which is already in place, is not far
fetched.

Moreover, Low Earth Orbits (LEOs) have been suffering from a serious problem
of overcrowding and space debris [6]. This means that focus has to be shifted on
maximising the life cycle of missions as well as their sustainability. The disposable,
short-lived mission philosophy that has been the norm in case of CubeSat missions
might soon not be suitable anymore. Thus, reusability and reconfigurability of the
spacecraft can be the key to extending the relevance of a mission over time. The
cybersecurity of vehicles also has direct implications in this regard: a compromised
spacecraft could potentially endanger other neighbouring ones [7].

Addressing this concern is crucial to safeguarding missions and future critical
infrastructure. The OPS-SAT mission stands as a prime example of the advanced
capabilities achieved by CubeSats, encapsulating numerous emerging trends in the
space domain that will be explored in the subsequent section of this study. By
undertaking research and development to construct an attack scenario targeting such
a prominent mission, this work seeks to initiate a discourse on the current state and
significance of cybersecurity in the context of small satellites.

Through an experimental approach, this thesis aims to shed light on the implica-
tions of cybersecurity in space and the lack thereof, while investigating the following
research questions:

RQ1: What is the state of the art of CubeSat cybersecurity?

RQ2: Having access to some OPS-SAT mission resources, is it possible to find any
exploitable vulnerabilities?

1.3. METHODOLOGY 3

RQ3: Using threat modelling and cybersecurity frameworks, and leveraging said
vulnerabilities, can a realistic attack path against OPS-SAT be identified?

RQ4: Can this attack be developed and demonstrated?

1.3 Methodology

This work builds upon prior research conducted for the TTM4502 Specialization
Project Report [8]. However, in light of recent changes in the space industry and
the cybersecurity landscape within it, the background section of this thesis will
incorporate all the necessary and updated information to ensure the independence of
this thesis from previous work.

To begin, the literature review aims to acquaint the reader with space systems,
particularly focusing on CubeSats. It will provide an overview of their general
architecture and delve into the current state of the art in the field of cybersecurity,
highlighting the existing advancements as well as identifying areas that require
further attention. Where relevant, previous instances of space system attacks will be
included as illustrative examples.

Subsequently, a thorough analysis of the OPS-SAT mission will be conducted
to ascertain its fundamental characteristics that render it innovative within the
realm of CubeSats. The examination will focus on exploring the mission’s attack
surface, with particular emphasis on how novel spacecraft capabilities impact its
vulnerability. Within the scope of this study, pertinent portions of the attack surface
will be enumerated.

Next, the attacker model will be defined, encompassing the selection of objectives
and capabilities specific to this scenario. Prior to embarking on the pursuit of
an attack path against the OPS-SAT mission, existing threat modeling techniques
and frameworks will be reviewed, placing particular emphasis on those specifically
devised for space systems. This review will outline their distinctions, use cases, and
limitations, ultimately leading to the selection of a framework that will serve as a
reference for the OPS-SAT study.

Once a specific target and actor have been identified, threat modeling will be
applied to the mission to explore potential attack vectors and paths. If multiple
options are discerned, they will be compared and considered for further development.
Following a comprehensive evaluation, the final candidate for the attack will be
discussed, and attempts will be made to develop and demonstrate its effectiveness
against the target.

4 1. INTRODUCTION

!

Threat modelling
methodologies

Review and choose

Selected framework

!

OPS-SAT
Study system

Emulated SEPP

Enumerate attack vectors

Identified attack
surface

v

!

Attack scenario

Identify capabilities

Attacker model

\ 4

|
Apply frameworks

Attack presentation

6

Develop attack <

Figure 1.1: Diagram of the methodology process.

Ultimately, the attack will be presented using the modeling techniques discussed
throughout the thesis, including the utilization of attack matrices and attack trees.

The structure of this document is as follows:

Chapter 2: Introduction to space systems, recent trends, and CubeSats, alongside a

description of the OPS-SAT mission.

Chapter 3: Overview of the current state of cybersecurity in the space domain,

encompassing recent frameworks and techniques employed for threat modeling.

Chapter 4: Focuses on the development of the attack against the OPS-SAT missions
and the associated work necessitated by this endeavor.

Chapter 5: Concludes the thesis by providing a discussion and summary of the
presented work, while also identifying potential limitations and future avenues for

further exploration.

Background

Since the historic space race of the 20th century, which culminated with the mon-
umental achievement of sending the first human into space in 1961, the realm of
space missions has undergone a remarkable transformation. These missions have
continually pushed boundaries, relentlessly pursuing unprecedented accomplishments
that have consistently captivated individuals, researchers, and enthusiasts. While
human expeditions to other celestial bodies have not been realized since that time,
significant emphasis has been placed on scientific exploration and experimentation
within Earth’s orbit and beyond.

One notable cornerstone in this pursuit has been the establishment of the Inter-
national Space Station (ISS) in 1998. Serving as a focal point for scientific endeavors,
the ISS has provided an unparalleled environment for astronauts to conduct a wide
array of experiments. Simultaneously, critical infrastructure systems such as telecom-
munications and geolocation have extended their reach into space, rapidly evolving
and capitalizing on advanced satellite constellations, such as Starlink [9] and OneWeb
[10], which operate with increased autonomy and intelligence to cater to the global
population.

A salient feature characterizing recent space missions is the employment of
LEOs, which offer advantageous attributes to the various aspects of a space mission,
including launch capabilities, operational efficiency, and cost-effectiveness. Within
these orbital regions, there has been a notable surge in the presence and utilization of
CubeSats. Initially originating from academic curiosity, the prominence of CubeSats
has expanded into the commercial domain, signifying their growing significance and
applicability in modern space endeavors.

2.1 Space Systems Architecture

The design, implementation, and operation of a space mission are intrinsically linked
to its objectives and requirements. Traditionally, and still prevalent in the majority

6 2. BACKGROUND

of contemporary missions, each component and subsystem of a spacecraft is custom-
designed and developed specifically for the intended mission. However, in recent
times, the philosophy of Faster, Better, Cheaper (FBC) missions [11] has been
gaining momentum in the industry. This approach centers around the principles
of rapid development, component reuse, and cost-effectiveness. Despite this shift,
the fundamental architectural structure of a space mission has largely remained
unchanged. It consists of three primary components, commonly referred to as
segments, that collectively form the foundation of a space mission.

2.1.1 The Space Segment

The space segment encompasses the spacecraft, vehicle, or constellation specifically
designed for operation in space to accomplish the mission objectives. Typically,
it comprises diverse subsystems integrated onto its structural framework. Some
subsystems, essential for the fundamental functionality of the vehicle, are found in
virtually every spacecraft, albeit with varying degrees of complexity. These include:

— Power System: The system responsible for generating and storing electrical
power, which is necessary for operating the spacecraft’s systems and instru-
ments.

— Propulsion System: The system that provides the necessary thrust or
propulsion to maneuver the spacecraft and change its orbit or trajectory.

— Communication System: The system that allows the spacecraft to com-
municate with ground-based stations and other spacecraft, enabling data
transmission and command reception.

— Guidance, Navigation, and Control (GNC) System: The system respon-
sible for guiding and controlling the spacecraft’s movements, maintaining its
orientation, and ensuring accurate positioning (e.g, in orbit).

— Thermal Control System: The system that regulates and manages the
spacecraft’s temperature to protect its components from extreme heat or cold
in the space environment.

— Payload and Instruments: The scientific or operational instruments and
equipment carried by the spacecraft to achieve its mission objectives. These
may include cameras, sensors, or other specialized tools.

— On-Board Computer (OBC): The onboard computer serves as the “brain” of
the spacecraft, executing the necessary software and algorithms to control and
manage the spacecraft’s subsystems, handle data, and respond to commands
and events. It acts as a central hub for processing, decision-making, and

2.1. SPACE SYSTEMS ARCHITECTURE 7

coordination within the spacecraft’s architecture, enabling the spacecraft to
function autonomously or in response to ground control. It is also responsible
for monitoring the health and status of the other subsystems, which is expressed
and recorded via the telemetry, and executing recovery procedures in case of
fault detection.

When considering satellites from a high-level conceptual perspective, the spacecraft
can be divided into two primary components: the satellite bus and the payload.
While this categorization may lack specificity, generally, the satellite bus encompasses
the core subsystems essential for the vehicle’s functionality. On the other hand, the
term “payload” refers to all additional non-vital equipment specifically designed to
enhance the satellite’s functionality in a particular manner [12].

2.1.2 The Ground Segment

The ground segment represents the entirety of infrastructures, facilities and human
resources on Earth that support operation, control, and data processing of the space
segment. Key components include:

— Ground Stations: The facilities which are equipped with antennas and re-
ceivers, responsible for communication with the spacecraft. Sending commands
or receiving data transmissions are typical duties performed by ground stations.

— Mission Control Centre (MCC): The MCC is the central command center
where mission operators and engineers monitor and control the spacecraft’s
operations. They issue commands, receive telemetry data, and perform various
tasks to ensure the spacecraft’s health and functionality.

— Data Processing and Storage: Facilities and systems for processing, analyz-
ing, and storing the data received from the spacecraft. This may involve data
preprocessing, calibration, scientific analysis, and archiving for further use or
distribution.

— Communication Networks: The networks that enable data transmission
between the ground segment and the spacecraft. This includes terrestrial
communication infrastructure, satellite communication links, and deep-space
networks for long-range communication with interplanetary missions.

2.1.3 The Link Segment

The link segment pertains to the communication networks that establish connec-
tivity between the ground segment and the space segment, allowing bidirectional

8 2. BACKGROUND

S
IS A D
- So| 5| 45
Dimension) § S
§8 5 %
§ <
Q =

Satellite-to-satellite

communication ‘ ‘ " ‘ T ’ - ‘

Satellite-to-ground 1

communication T -

Space environment

sensing H - ‘ e ’ - ‘
| Cost of deployment || 1 | =/t W
| Barriers to Entry [1 [W

Applications &

Capabilities H T ‘ e ’ T ‘
| Access to data I 0 | — | M
| Component Reuse || T [A &

Hardware

Specialisation ‘ ‘ + ‘ T ’ + ‘

Changes to mission

o [I

Mean Deployment ! 1

lifetime -

Figure 2.1: “Dimensions of Change in Space Ecosystem. The quantity of arrows
signifies the magnitude of impact, more arrows signify a greater impact. A dash
signifies no impact. Arrow pointing up means increasing arrow pointing down means
decreasing.” Source [13].

communication. Furthermore, it encompasses the networks responsible for intercon-
necting space assets as well as ground assets. This segment covers both lower-level
aspects such as the management of the electromagnetic spectrum and higher-level
considerations related to communication protocols.

Although certain sources may include up to two additional segments in the
architectural framework of a space mission, namely the user segment and the launch
segment, this work adopts a less detailed terminology to avoid excessive complexity
within the already extensive vocabulary of the space domain.

2.2 The New Space

The pace of introducing new concepts and approaches in the space industry has histor-
ically been slow, primarily due to an extremely careful attitude towards technological
experimentation linked to the potentially catastrophic costs associated with mission
failures. Consequently, even major establishments such as government agencies have
typically focused their limited budgets on lower-risk missions, avoiding the pursuit

2.2. THE NEW SPACE 9

of significant paradigm changes [11]. However, in recent times, several factors have

contributed to the reduction of entry barriers in the space domain, allowing smaller
organisations like academia and start-ups to enter the field. This shift has fostered
an entrepreneurial spirit akin to the IT field on Earth. Notably, FBC missions have
emerged as high-risk, high-value opportunities that possess the potential to replace,

supplement, or at least complement traditional, monolithic missions [14].
Several enabling factors drive the success of FBC missions:

— COTS: Unlike the previous approach of designing and developing hardware

components specifically for each mission, the FBC approach promotes the use
of readily available, off-the-shelf technology. This approach typically leads
to improved on-board performance, accelerated mission implementation, and
reduced research and development efforts. However, it is important to note
that the absence of specialized development may compromise the reliability
of hardware components in the demanding space environment, particularly
in terms of susceptibility to radiation and other environmental factors [15].
A key advantage of controlling every phase of the system’s development is
the ability to achieve improved and safer integration among the components,
which may not be achievable when employing parts from different vendors.
Consequently, it becomes crucial to appropriately adjust the risk tolerance
level for these missions. Despite these considerations, there has been a growing
trend of integrating off-the-shelf components into missions of various sizes, with
particular prominence observed in the context of CubeSats [16].

GSaaS: Satellites in LEO have limited visibility with any single ground station
due to their multiple daily revolutions around the Earth, resulting in short
contact durations. To address this, a network of distributed and interconnected
ground stations has been established to ensure continuous spacecraft coverage.
This facilitates more frequent downlink (i.e., download) of data from the satellite,
enhancing the cost efficiency of the mission. Additionally, it enables smaller
teams without access to a dedicated ground station to execute and operate
their missions by leveraging on-demand access to communication resources.
Multiple vendors have entered the GSaaS market, offering services ranging
from simple communications to data storage and processing [2], [3].

New Launch Opportunities: The cost barriers of recent space missions have
been significantly influenced by new launch opportunities. In the past, securing a
launch slot with a provider was a lengthy and cumbersome process accompanied
by high costs. Due to variations in satellite designs and sizes, limited satellites
could be batched together to maximize launch vector utilization. However,
the adoption of the CubeSat standard has categorized satellites based on their
size. This classification allows launch providers to aggregate more spacecraft

10 2. BACKGROUND

Nanosatellite launches www.nanosats.eu

650
[Launched 609
600 I Launch failures
I Announced launch year
Nanosats.eu (2022 June) prediction
550
500
450
o 400
2
® 350
©
(2]
2 300
o]
Pz

N
[$1)
o

200

150

100

50

)

R O PP S P RO R QD a a2 a0 WD A2
A R S I S A R SN S

A |
S r&‘ﬂq,dibq,@ @Qf’%@b@(ﬂ

Figure 2.2: Number of nanosatellites launches per year, including future predictions.
Source [19].

and optimize the utilization of available space on launch vectors. Additionally,
CubeSat-specific launch programs have simplified regulatory aspects [17], [18].
The practice of launching multiple missions on a single launch is referred to as
ridesharing, while launching smaller satellites alongside a primary payload’® is
known as piggybacking.

2.2.1 Hosted Payloads

A noteworthy and contemporary concept is that of hosted payloads, which involves
attaching a separate module to a commercial satellite, allowing it to operate indepen-
dently while sharing the power and communication resources of the main spacecraft.
This approach enables orbital communication without the need for developing and
launching an entire satellite, resulting in significant cost reduction for a mission. In
recent years, the community has shown increasing interest in this approach, prompt-
ing government agencies to consider its feasibility. However, due to programmatic
challenges, there have been limited instances of hosted payload missions to date [20],

1Contrary to the usage seen so far, in the context of launch providers the term payload is used
to indicate the spacecraft that the launch vector is deploying into space.

2.2. THE NEW SPACE 11

[21]. Looking ahead, hosted payloads have the potential to become a valuable option
for space experimentation and exploration.

2.2.2 The CubeSat Approach to Space

A key driver of the New Space era, which relies on various enabling factors discussed
in Section 2.2, is the CubeSat. The CubeSat project originated in the United States
in 1999 through a collaboration between California Polytechnic State University
and Stanford University [22]. Its primary objectives are to establish a standardized
design for small satellites?, thereby reducing cost and development time, increasing
space accessibility, and enabling frequent launches. Moreover, it presents significant
opportunities for education, scientific research, and technology demonstration. Cur-
rently, the CubeSat Project represents an international collaboration involving over
100 universities, high schools, and private firms engaged in the development of small
satellites housing scientific, private, and government payloads [22].

A CubeSat unit (U) is a cubic structure measuring 10cm on each side and can weigh
up to 1.33kg. Additionally, designs that incorporate multiples of a unit, such as 1.5U,
3U, 6U, and 12U, are commonly used. COTS components comprise the majority of
the spacecraft, although some missions incorporate specifically developed instruments
[23]. During launch, CubeSats are grouped together within purpose-built pods, which
ensure the safety of the launch vehicle in the event of component malfunction and
protect the satellites from external factors such as vibrations. This decoupling of
spacecraft design from launch providers facilitates ridesharing opportunities, allowing
teams to share launch costs based solely on size and mass [1].

The number of launched CubeSat missions has been rapidly increasing in recent
years. These missions span a wide range of applications and knowledge domains,
including Earth sciences, physics, astronomy, engineering, and computer science
[5]. While most CubeSats are deployed in LEO, there have been instances of their
utilization for missions beyond the vicinity of Earth [24]. The lifespan of a CubeSat
in orbit typically ranges from months to years, with regulatory guidelines stipulating
a maximum operational period of 25 years. This requirement introduces orbital
constraints as limited propulsion power can present challenges in the de-orbiting
process [1].

Due to their decreasing cost and increasing performance capabilities, CubeSats
have demonstrated considerable potential to serve as space-based laboratories, offering
a valuable alternative to the ISS. Constellations and swarms of small satellites present
the opportunity for scientific missions focused on distributed space infrastructures.

2CubeSats belong to the category of satellites referred to as nanosatellites. Their mass is usually
in the range of 0.1 to 10 Kg.

12 2. BACKGROUND

Total nanosatellites and CubeSats launched wWww.nanosats.eu

2300 2286
2200 =8-Nanosats launched incl. launch failures

CubeSats launched incl. launch failures 2133 2105
2100 CubeSats deployed after reaching orbit
2000 Nanosats with propulsion modules 1977
1900 =8-CubeSats launched to beyond LEO
1800 CubeSats launched in total units 1799, 1838

1559

Figure 2.3: Total number of nanosatellites and CubeSats launched per year (1999-
2024). Source [19].

Hybrid infrastructures, combining larger traditional satellites with sets of CubeSats,
have the potential to enable distributed sensing and measuring. Furthermore, their
versatility and cost-effectiveness make them promising candidates for in-situ explo-
ration of other planets compared to conventional deep space missions. Although
CubeSats are currently in their early stages, with technology demonstration being
the primary focus of development efforts, anticipated breakthroughs and increased
maturity in the near future will further establish this ecosystem as a significant
component of the space industry [14].

2.3 Cybersecurity Challenges

The space environment poses unique challenges compared to its terrestrial counter-
parts, stemming from the collaboration of entities with diverse areas of expertise. In
addition to the technological constraints, the cybersecurity domain of space missions
is influenced by multiple parties involved, including owners, developers, operators,
and users. Moreover, the skillsets required to address security challenges in space
missions do not entirely overlap with those possessed by IT experts. Consequently,
a significant gap exists, necessitating specific education and training. Furthermore,
due to the substantial costs associated with space missions, cybersecurity often falls

2.3. CYBERSECURITY CHALLENGES 13

in priority and is sometimes completely overlooked, leaving the existing workforce
without adequate support in securing assets [4].

From a technological perspective, despite rapid advancements in the technological
landscape, spacecraft, particularly small satellites, have yet to attain computing
performance comparable to Earth-based technology. Size, power, and environmental
constraints significantly impact space component design, leading to security mech-
anisms being deemed unnecessary or incompatible overheads. Consequently, the
implementation of crucial security measures such as authentication and encryption
is often disregarded. Traditional defensive tools like antivirus programs, Intrusion
Detection Systems (IDSs), Intrusion Prevention Systems (IPSs) are unavailable for
securing spacecrafts [4]. Communication is also heavily affected, as protocols designed
for traditional internet use struggle to cope with significant delays and information
loss inherent in space-based communications [25].

Over the years, terrestrial critical infrastructures have extended into space or
increasingly relied on space technology to enhance their services. However, in addition
to the aforementioned challenges, the space ecosystem lacks a globally accepted and
enforced security standard. Traditional infrastructures benefit from established
standards, such as those published by the National Institute of Standards and
Technology (NIST) or the International Organization for Standardization (ISO) [26],
[27]. While the space domain could benefit from adopting these existing standards
to some extent, it is likely that they may not be directly applicable to the specific
technologies employed in space systems. Thankfully, in response to a call for action
signed by experts in the community [28], the Institute of Electrical and Electronics
Engineers (IEEE) has initiated the Space Systems Cybersecurity (S2CY) Working
Group to develop a new globally referenced standard to address this gap [29].

Without rigorous security processes, the space segment of future critical infras-
tructures may become the weakest link in the cybersecurity chain. The ability to
compromise a single space system and potentially impact the entire infrastructure
makes it an appealing target. Therefore, it is crucial to involve all parties involved in
the development, production, and operational processes when securing space missions.
For example, when sourcing components from external vendors, vetting suppliers
to address supply chain attacks becomes vital [4]. Military operations that rely on
commercial space missions also require attention, as private enterprises supporting
state defense operations must be prepared to withstand nation-state-grade attacks
and prevent incidents similar to the recent one affecting ViaSat [30].

The trends driving the concept of New Space also raise significant security
concerns. For instance, in the case of COTS components, their availability on the
market provides opportunities for attackers to closely study them and identify security

14 2. BACKGROUND

vulnerabilities. Compromising one of these components on the ground increases the
likelihood of a successful attack in space. Moreover, commercially available products
are likely to be employed by multiple missions, amplifying the impact of a successful
attack [4].

Another trend that will be explored further in Section 2.4 is the ability to
reprogram spacecraft on the fly to run external software. While this opens up
unlimited possibilities for experimentation and enhances mission cost efficiency by
accommodating dynamic objectives, it introduces a host of vulnerabilities traditionally
associated with the IT domain.

Increased connectivity and autonomy among satellites bridge the gap between
traditional Earth-based infrastructure and space missions. With the capability to
communicate with other spacecrafts in orbit, threats like space malware can replicate
themselves and affect multiple vehicles in a worm-like fashion.

Lastly, orbit overcrowding poses a potential threat to spacecraft security, albeit
indirectly. As satellites fly in close proximity to one another, compromising one
system may enable an attacker to physically damage another spacecraft. By utilizing
the compromised satellite’s propulsion system, an attacker could divert it from its
nominal orbital trajectory and, under specific circumstances, target another vehicle
[7].

In conclusion, relying solely on security-through-obscurity, which has traditionally
been the default security approach in the space industry, is no longer sufficient
(arguably, it has never been). Concerns have been raised by researchers within the
community regarding the detrimental impact of the secretive nature of the industry
on academic research [31]. To foster progress and maximize the potential of the space
realm, it is crucial to embrace and encourage the introduction of new technologies
and players. However, this must be accompanied by the establishment of guidance
in the form of standards and the assurance of mission security through the active
involvement of a specialized security community.

2.4 OPS-SAT: Operations Satellite

OPS-SAT, the inaugural CubeSat mission by the European Space Agency (ESA),
was launched in 2019 with the objective of enabling experimentation on a functional
spacecraft. This mission introduces a groundbreaking opportunity for researchers,
businesses, and space enthusiasts to not only execute their software in orbit but
also gain control over their software by transmitting commands to the spacecraft
via the Internet. This innovative concept ushers in the era of on-demand space
missions, accentuating the potential of the CubeSat ecosystem in conjunction with

2.4. OPS-SAT: OPERATIONS SATELLITE 15

the capabilities discussed in Section 2.2.

The primary goal of ESA with OPS-SAT is to demonstrate the maturity of the
nanosatellite domain and encourage experimentation that was previously hindered
by budgetary and risk concerns. To achieve this, OPS-SAT utilizes cutting-edge
hardware to achieve high communication speeds and computing power despite its
compact design. Additionally, the mission serves as a platform for testing newly
developed protocols and standards, such as the Consultative Committee for Space
Data Systems (CCSDS) File Delivery Protocol (CEDP).

ESA has established a dedicated process to grant access to the OPS-SAT mission,
requiring interested users (i.e., experimenters) to register on the developer platform.
Once access is granted, experimenters gain access to mission resources such as
documentation, code, and example experiments. ESA covers all operational costs
associated with experimenter missions and does not impose any charges for accessing
these resources, making user-defined missions free of charge.

The application submission process for deploying an experiment into space follows
a structured procedure: first, experimenters develop and test their applications
locally using tools provided by ESA, which offer the ability to simulate the satellite
environment. Subsequently, the experiment can be submitted to ESA for further
testing on target hardware in their ground laboratories. Finally, once all requirements
are met and tests are successfully completed, the application is uploaded onto the
spacecraft. At this stage, experimenters have the freedom to control their applications
through an online web-based interface or their own custom mission control software.
Moreover, shell access to the vehicle over Secure Shell (SSH) is permitted.

Develop 'j|> Submit Control
o FlatSat
« NMF SDK tests Eunra e
¢ NanoSat ¢ Package Rpg ;
Simulator build * hecelve
« Upload * Send

Figure 2.4: Overview of the experimenter process in the OPS-SAT mission.

The distinct characteristics outlined above, coupled with the significance of the
OPS-SAT mission in the CubeSat domain and the presence of a familiar Operating
System (OS) environment such as Linux in one of the subsystems, were the determin-
ing factors in selecting this mission for the present study. Leveraging an environment
that has undergone extensive security research and ground-based attacks provides a
solid foundation for the research process.

16 2. BACKGROUND

2.4.1 System Architecture

To achieve its ambitious mission objectives, the 3U CubeSat is equipped with a
variety of COTS components and payloads, some of which are being utilized for the
first time in a nanosatellite context. Figure 2.5 provides an architectural overview of
the spacecraft, highlighting its key elements. Noteworthy components within this
ensemble include a high-speed X-band transmitter, an S-band transceiver, an HD
camera, a Software-Defined Radio (SDR), and an experimental platform capable of
in-flight reconfiguration. The latter represents the pivotal subsystem around which
the present work revolves. While most of these components are made accessible
to users through the Satellite Experimental Processing Platform (SEPP) and the
NanoSat MO Framework (NMF), this thesis specifically focuses on the SEPP and
the camera payload. Section 5.1.2 will delve further into these aspects and present a
discussion on potential future developments.

link link
A\ :

OPS-SAT Bus : Payload
CAN bus .
Ll
{ ; b '
OoBC EPS v
S i .
; SEPP ~SPACWTS, TM/TC Engine
Ll
' App App
GPS FDIR . ‘ ‘
i USB,
i 12C,
' Ism Hs-42TI LVDS
Coarse UHF . = | Ll
ADCS Transceiver E Camera AEI;E)ES S-band X-band
' . Transceiver transmitter
' Peripherals
UHF radio link | :
E SDR rgcp:itzlr Sbandradio X-band radio
; :
Ll
Ll

Figure 2.5: Simplified architecture of OPS-SAT. Adapted from [32].

2.4.2 Satellite Experimental Processing Platform

The SEPP serves as the core component of the payload section of the satellite,
encompassing RAM, CPUs, Field-Programmable Gate Array (FPGA), and mass
memory. Its primary role involves coordinating experiments, including their initia-
tion, termination, and updates, as well as executing the middleware responsible for
exposing payloads and peripherals to the applications (discussed in Section 2.4.3) [33].
Equipped with ample processing power, the SEPP is capable of running an embedded

2.4. OPS-SAT: OPERATIONS SATELLITE 17

Linux OS that supports various programming languages and is accompanied by
common command line interface binaries.

While the SEPP plays a critical role in the spacecraft’s operations, it is not
essential for the fundamental functionality of the satellite. Therefore, in the event of
any issues, it can be reset by the OBC. The security design of OPS-SAT prioritizes
recovery over prevention, and the architecture has been specifically devised to facilitate
safe resets initiated either by the ground segment or the satellite bus itself [34], [35].

During the application submission process for uploading experiments, ESA pack-
ages the applications in .ipk format. Once uploaded, the installation process utilizes
the Open Package Management (OPKG) tool for installation. This process closely
resembles the functionality provided by the Advanced Package Tool (APT) on con-
sumer Linux distributions. Consequently, each experiment is allocated a dedicated
directory within the home folder of the OS, serving as a storage location for code,
configuration files, and data.

However, it should be noted that unlike conventional Linux system configurations,
individual experimenters (and their experiments) are not managed through distinct
system users. Instead, despite each experiment having its reserved home folder, a
single user assumes responsibility for running experiments. The main process of the
NMF operates under this user, named supervisor, alongside the default root user.
These configuration details have implications for the subsequent development of the
attack, as elaborated in Chapter 4.

2.4.3 The NanoSat MO Framework

The OPS-SAT mission has introduced the concept of applications in space by pro-
viding experimenters with the NMF, an open-source framework that offers a com-
prehensive solution for software development, testing, control, and deployment on
OPS-SAT [36], [37]. Users have the flexibility to write their applications in popular
programming languages such as Java, C, and Python. Within the NMF framework,
payloads are easily accessible to applications through high-level Application Program-
ming Interfaces (APIs) in Java. This streamlined approach greatly simplifies the
development of On-Board Software (OBSW), as it eliminates the need for in-depth
knowledge of the underlying system and architecture. Furthermore, future ESA
CubeSat missions will adopt the NMF to facilitate code reuse across missions [38].

The NMF is built upon the service-oriented architecture defined by the Spacecraft
Monitoring & Control Working Group of the CCSDS. The objective of this working
group is to establish a set of standardized, interoperable mission operation services
that enable the efficient construction of cooperative space systems, including both
the Ground Segment and the Space Segment. To achieve this, the working group

18 2. BACKGROUND

[=)

NanoSat MO Framework

STD .| Peripheral
services services

E | Middleware ‘

| Ground l

Figure 2.6: “NanoSat MO Framework diagram for OPS-SAT” Source [32].

'

has devised a layered service framework that allows mission operation services to
be specified in an implementation and communication-agnostic manner. With OPS-
SAT, we witness the first in-orbit demonstration of a spacecraft with fully MO-based
onboard software and ground implementations [32], [39].

The primary design characteristic of the NMF software architecture is the in-
troduction of independence between the application layer (apps or experiments)
and the underlying platform. To achieve this independence, a collection of services
is provided, which can be utilized by the app for interfacing with peripherals and
communicating with the ground. These services are based on the CCSDS Mission
Operations framework and can be categorized into two main sets: the MO Stan-
dardized services (STD services), which are already defined by the CCSDS, and the
Peripheral services, which are defined on a mission-specific basis [32].

State of the Art

Due to a historical reliance on the security-through-obscurity approach in the space do-
main, academic research on space cybersecurity has been impeded by Non-Disclosure
Agreements (NDAs) and a lack of publicly available documentation. As highlighted
in Section 2.3, the absence of a globally accepted standard for secure space mission
development has further compounded the issue.

Although the CCSDS has compiled resources ([40]-[43]) to assist mission designers
in addressing cybersecurity, these resources primarily reference standards from the
IT industry, such as ISO 27001 and NIST SP 800-30 [26], [27]. Moreover, these
documents are merely recommendations, lacking clear enforcement mechanisms for
security measures, which often leads to their deprioritization.

While the complexity of the space environment can act as a deterrent to attackers,
it also renders it more vulnerable. A successful attack targeting any segment of the
infrastructure - the ground segment, the space segment, or the link segment - can have
severe consequences. For instance, Willbold et al. [31] explain how a cascading effect
known as the Kessler Syndrome, triggered by an impact in LEO, could jeopardize
spaceflight activities. This concern is supported by Pavur and Martinovic [44], who
demonstrate through experimental research that such attacks are plausible.

To express this concern in the context of traditional security terminology, the
equation Vulnerability x Threat = Risk can be utilized. The Threat term represents
the attack capabilities of an actor, Vulnerability indicates the technical opportunities
they have to exploit these capabilities, and Risk assesses the likelihood and potential
impact of an attack. It is crucial to recognize that the value of assets in the
space realm can range from tens of thousands to tens of millions of euros for a
single mission. Considering the potential catastrophic impact of a cascading effect
on multiple missions, the magnitude of such an event cannot be underestimated.
While large-scale cybersecurity incidents like the ViaSat case [30] may not occur
frequently, the Space Attacks Open Database demonstrates that cyber attacks on

19

20 3. STATE OF THE ART

space infrastructure have a long history [45], underscoring the unpredictability of
security threats.

In a space mission, every component, system, and software undergoes rigorous
scrutiny, with reliability being a critical consideration. In addition to regulatory and
standardization processes, the space industry heavily relies on testing to ensure the
reliability of components deployed in orbit. This is why cutting-edge technology is
not prevalent in space computer systems, as older and simpler systems with longer
testing periods are preferred. However, as advanced computer systems, such as those
employed in OPS-SAT, are increasingly utilized in space, relying solely on reliability
testing may no longer suffice. In traditional IT systems, it is common practice to
assess the effectiveness of security mechanisms through penetration testing, which
simulates realistic attack scenarios. As future spacecraft incorporate enhanced IT
capabilities, which in turn assume greater responsibilities, penetration testing should
be integrated into their security processes.

A Note on Recent Publications The decision to include this entire chapter
rather than relying solely on the research conducted in the TTM4502 Project Report
[8] stems from the availability of new material related to space cybersecurity. Notably,
the SPARTA matrix, which will be discussed further below, was discovered during a
revision of the toolkit compiled for the TTM4502 Project Report [8]. Without this
addition, a traditional IT framework would have been employed instead. Further-
more, additional academic research has been conducted on cybersecurity taxonomies.
Though they are not within the scope of this thesis, these taxonomies contribute
significantly to the identification, classification, and prevention of threats against
spacecraft. For instance, Willbold et al. [31] developed a taxonomy specifically
dedicated to satellite firmware threats, expanding on the previous work by Falco
and Boschetti [46]. Lastly, the formation of the new S2CY Working Group and the
announcement of the intention to develop the International Technical Standard for
Space System Cybersecurity had not yet occurred at the time of the Project Report.

During the literature review phase of this study, other recent frameworks were
identified, namely the Targeting, Reconnaissance, & Exploitation Kill-Chain for
Space Vehicles (TREKS) [47] developed by Dr. Jacob Oakley, and the Space Attacks
and Countermeasures Engineering Shield (SPACE-SHIELD) [48] released by ESA.
These frameworks, however, were excluded from the upcoming discussion due to
either their lack of detail compared to other frameworks or their limited adoption in
the field.

The inclusion of these updates was deemed crucial to demonstrate the increasing
attention being given to space cybersecurity and the ongoing efforts of a much-needed
specialized security community in addressing the identified shortcomings. Moreover,

3.1. THREAT MODELLING 21

it presented an excellent opportunity to compare traditional I'T security tools with
those specifically tailored for the space domain.

3.1 Threat Modelling

In the realm of information security, threat modelling plays a crucial role as a proactive
process aimed at identifying and evaluating potential threats and vulnerabilities
within a system. It achieves this by considering both the potential adversaries, their
objectives, and capabilities, as well as analyzing the system’s components, their
interactions, and potential weaknesses. By adopting a threat modelling approach,
one can adopt the perspective of an attacker with deep knowledge of the target,
thereby gaining a comprehensive understanding of the risks associated with the
system and making informed decisions regarding risk mitigation strategies.

Over time, various tools have been developed to facilitate the threat modelling
process. These tools, such as attack matrices and frameworks, provide a structured
approach for identifying and categorizing potential threats and attack vectors. While
some tools offer guidance based on general information security principles (e.g.,
STRIDE), others provide a catalog of threats and techniques based on disclosed
attack scenarios (e.g., ATT&CK). Additionally, tools like reference architectures and
attack trees enable a deeper insight into the system by visualizing potential attacks
and illustrating the steps an attacker might take.

While threat modelling is applicable and beneficial across various systems and
technologies, tools like ATT&CK are primarily tailored to traditional IT systems.
This specificity is what makes them highly effective and efficient within their con-
text. However, it limits their applicability to other domains. The space domain,
characterized by distinct technologies, information flow, and operational environ-
ments, poses unique challenges. Consequently, certain aspects of space systems may
remain unprotected due to the lack of coverage for specific scenarios, technologies, or
constraints.

In conclusion, space cybersecurity requires a methodological, structured, and
comprehensive approach that can effectively address the specialized needs arising in
this complex and diverse environment. This approach must be versatile enough to
accommodate the distinct characteristics of space missions, which vary significantly
in terms of objectives and employed systems.

22 3. STATE OF THE ART

3.1.1 Frameworks & Matrices
ATT&CK

The ATT&CK matrix, developed by MITRE, is a widely utilized framework that
classifies Tactics, Techniques, and Proceduress (TTPs) [49]. Its primary purpose is to
offer an extensive and structured catalog of documented adversary behaviors across
different stages of the attack life cycle. The matrix is regularly updated and expanded
to incorporate emerging attack techniques and evolving adversarial behaviors.

The matrix consists of two key components: tactic categories and technique
subcategories. Tactic categories represent the high-level goals or objectives pursued
by adversaries during an attack. Currently, there are 12 tactic categories included in
the matrix, as indicated by the column headers in Figure 3.1. Within each tactic
category, there exist numerous technique subcategories. Techniques delineate specific
methods or actions that adversaries may employ to achieve their objectives within a
given tactic. The matrix provides comprehensive information about each technique,
including a description, illustrative examples, detection methods, and commonly
employed software or tools used by adversaries. Additionally, countermeasures against
these threats are enumerated.

Initial i i Privilegs Evasion Discovery Lateral Collection Command Inhibit Impair Impact
Access Escalation Movement and Control Response Process
Function Control
12techniques 9techniques 6techniques 2techniques 6techniques Stechniques 7techniques 11techniques 3 techniques 14 techniques Stechniques 12 techniques
Drive-by Change Hardcoded Exploitation ~ Change Networ Default Adversary-n- | Commonly Activate Firmware Brute Force /O Damage to
Compromise Operating Credentials forPrivilege | OperatingMode Connection Credentials the-Middle Used Port Update Mode Property
Mode Escalation Enumeration Modify
Exploit Public- Modify Program Exploitation for Exploitation of ~ Automated Connection | Alarm Suppression Parameter Denial of
Facin Command- Hooking Evasion Network Remote Collection Proxy Centrol
Application Line Interface ~ Module Sniffing Services Block Command Module
Firmware Indicator Data from Standard Message Firmware Denial of View
Exploitation of | Execution Removal on Remote Hardcoded Information Application
through APl Project File Host System Credentials Repositories Layer Protocol Block Reporting Spoof
Services Infection Discovery Message Reporting Availability
Graphical Masquerading Lateral Tool Data from Message
External Remote User System Remote Transfer Local System Block Serial COM Loss of
Services Interface Firmware Rootkit stem Unauthorized Control
Information Program Detect Change Credential Command
Intemet Hooking Valid Accounts Spoof Reporting Discovery Download Operating Message Loss of
Accessible Message Mode Data Destruction Productivity
Device Modi Wireless Remote and Revenue
Controller Sniffing Services 1/0 Image Denial of Service
Remote Tasking Loss of
Services Valid Monitor Device Protection
Native API Accounts Process State Restart/Shutdown
Replication Loss of Safety
Through Saripting Point & Tag Manipulate 1/0
Removable Identification Image Loss of View
Media User
Execution Program Modify Alarm Manipulation
Rogue Master Upload ettings of Control
Spearphishing Screen Rootkit Manipulation
Attachment Capture i
Service Stop
Supply Chain Wireless Theft of
Compromise Sniffing System Firmware Operational
Information
Transient Cyber
Asset
Wireless
Compromise

Figure 3.1: The latest ATT&CK matrix for industrial control systems. Source [49)].

STRIDE

STRIDE, developed by Microsoft, serves as a methodology for identifying and
categorizing potential threats to a system, similar to ATT&CK [50]. However,
STRIDE offers a high-level overview of common attacker goals without providing

3.1. THREAT MODELLING 23

concrete examples of how these goals can be achieved. Each letter in STRIDE
represents a different threat category:

— Spoofing: this threat occurs when an adversary impersonates a legitimate entity
or user, with the aim of deceiving the system or users to gain unauthorized
access.

— Tampering: this threat involves unauthorized modification or alteration of data
or systems.

— Repudiation: this threat pertains to the ability of an attacker to deny their
involvement or responsibility for certain events, undermining accountability
and traceability.

— Information disclosure: this category encompasses threats related to the unau-
thorized disclosure of sensitive or confidential information.

— Denial of Service (DoS): these threats aim to disrupt or degrade the availability
or performance of a system.

— Elevation of privilege: this category involves attempts to gain unauthorized
access or elevate privileges within a system.

Each of these threat categories represents a distinct aspect of system vulnerabilities
and helps in understanding potential risks and developing appropriate mitigation
strategies.

Space Attack Research & Tactic Analysis (SPARTA)

The SPARTA matrix, developed by The Aerospace Corporation, is a valuable addition
to the cybersecurity toolkit for threat modelling purposes [51]. Unlike the ATT&CK
matrix, which is a more general framework, the SPARTA matrix is specifically tailored
to address the unique challenges of defending against spacecraft compromise. It aims
to overcome the barriers associated with identifying and sharing TTPs used against
space systems [51].

Similar to ATT&CK, the SPARTA matrix offers a comprehensive database of
TTPs along with detailed information on attacks and corresponding countermeasures.
It is the first instance of a publicly available collection of threats used against
space systems and will be regularly updated to reflect the evolving landscape of
space cybersecurity. Additionally, the matrix provides references to information
security standards and real-world examples, enhancing its practical applicability and
relevance.

24 3. STATE OF THE ART

Reconnaissance

9 techniques

Gather Spacecraft
Design Information s)

Gather Spacecraft
Descriptors (5

Gather Spacecraft
Communications
Information (5
Gather Launch
Information (;

Eavesdropping ()

Gather FSW
Development
Information (5

Monitor for Safe-Mode
Indicators o)

Gather Supply Chain
Information (s

Gather Mission
Information)

. Capabilities (5

Resource
Development

Stechniques
Acquire
Infrastructure (g
Compromise
Infrastructure 5

Obtain Cyber
Capabiites

Obtain Non-Cyber

Stage Capabilities ;) !
"

" Chain (3

" Secondary/Backup

Initial Access

12 techniques

Compromise Supply

Compromise Software

" Defined Radio (o

Crosslink via
Compromised
Nelghbor (o)
Communication
Channel ¢

Rendezvous & Proximity
Operations s

Compromise Hosted
Payload)

CompromiseGround
System)

Rogue External Entity 5y
Trusted Relationship 5y 1

Exploit Reduced
Protections During Safe-

, Memey)

Execution Persistence

18 techniques 5techniques

Replay) Memory
= — Compromise)
Position, Navigation, and
Timing (PNT) Backdoor ¢
Geofencing (o
Ground System
Presence (o)

Replace
Cryptographic Keys

Valid Credentials (o

Modify Authentication
Process o)

Compromise Boot

Hardware/Firmware
Corruption ()

Disable/Bypass
Encryption (5

Trigger Single Event
Upset ()

‘Time Synchronized
Execuion ¢

Exploit Code Flaws (s

Malicious Code ¢

Defense Evasion

11 techniques

Disable Fault
Management o,

Prevent Downlink (5

Modify On-Board
Values 12)

Masquerading (o
]
Protections During
Safe-Mode (o)
Modify Whitelist (o)
Rootkit)
)
Camoufiage,
Concealment, and
Decoys (CCD) (3
Overflow Audit Log ()
Valid Credentials)

Lateral Movement

7 techniques
Hosted Payload (o)

Exploit Lack of Bus
Segregation)
Constellation
Hopping via
Crosslink (o)
Visiting Vehicle
Interface(s) (o)
Virtualization
Escape o)
Launch Vehicle
Interface (1)

Valid Credentials

Exfiltration Impact

10 techniques 6 techniques
Replay () Deception (or
=~ Misdirection)
Side-Channel Attack 5y
- Disruption ()

Eavesdropping (5 "

Denial ()
Out-of-Band
Communications Degradation (o)
Link)

Destruction (g)

Proximity Operations
Y0P O Theft g

Modify

Communications

Configuration ()

Compromised Ground

System (o)

Compromised

Developer Site (o)

Compromised Partner
Stte g
Payload

Communication
Channel 5

Mode () Exploit Reduced
Protections During Safe-

Auxiliary Device

Compromise (o) =
Modify On-Board

Values 13

Flooding)

Jamming 5

Spoofing (5

Side-Channel Attack (o

Kinetic Physical Attack 3

Assembly, Test, and
Launch Operation

Non-Kinetic Physical o
Attack (5

Figure 3.2: The lastest SPARTA matrix. Source [51].

Attack Trees

Attack trees are a graphical representation and analytical tool used in threat modeling
to visually represent and analyze potential attack scenarios. They are structured
hierarchically, with the main goal situated at the root of the tree, and branching
sub-goals emanating from it. The leaves of the tree represent atomic steps necessary
to accomplish the sub-goals and, ultimately, the main attack objective. Nodes within
the tree can be connected with logical operators such as AND or OR to denote
dependencies or alternative actions. Additionally, nodes can be assigned probabilities,
costs, or other metrics to quantify the likelihood or impact of an attack path.

While attack trees provide a clear and logical framework for illustrating the
components of an attack, their effectiveness is limited in capturing the diverse range
of objectives that an attacker may pursue [52]. This is due to their specificity, which is
tailored to a particular mission and type of attack. Consequently, they may not offer
a comprehensive understanding of the system’s threat landscape and its associated
risks.

3.1.2 Reference Architectures

Another valuable approach in threat modeling is the one proposed by Bradbury et
al. [13]. Reference architectures offer a systematic way to break down a system into
independent components, clearly defining their interactions. This enables the creation
of either an abstract model, when the components do not represent the actual system

3.1. THREAT MODELLING 25

What do Domain name
we know? to attack

Goal:
Denial of Service
N ——

When in the
process?

Where do
you attack?

What is the
action?

Outcome:
Malicious email

Outcome:
Denial-of service

Figure 3.3: An example of attack tree to visualise a DoS attack on a CubeSat.
Source [52].

implementation, or a realistic model, when the reference architecture aligns with
the system’s actual components. One notable advantage of reference architectures
is their ability to present multiple viewpoints of the system. For example, they
can be generated from a physical perspective or an information perspective. When
addressing the security aspect of a system, it is crucial to select the most relevant
viewpoint. The authors recommend using both a communication viewpoint and a
functional viewpoint [13].

A key advantage of reference architectures is their applicability to various types
of systems. In their study, Bradbury et al. apply this methodology to spacecraft,
rovers, and ground station infrastructure. However, reference architectures have
limitations in terms of addressing attacks and countermeasures. They primarily serve
the purpose of modeling systems to facilitate subsequent steps in the threat modeling
process.

3.1.3 Discussion and Summary

While information regarding attacks on spacecraft is rarely disclosed and documented,
a non-academic resource has been discovered that indicated favorable chances of
detecting an attack against OPS-SAT. Didelot [53] recounts his experience with the
satellite during the qualification phase of CYSAT, a space cybersecurity conference
that includes a hackathon segment allowing users to attempt attacks on OPS-SAT

26 3. STATE OF THE ART

Ny = 3
;@' =

\.’ TS, B2
ORONO)]
Terrestrial Maon / Planetary
Ground Surface Base Robot
Segment +
A
*
Satellites
Y v ¥
B Wireless Communications
I
v
< — o =N
Input / Output) [
Ports [« » DataStorage |+ Sensing
Space Station F
ry
Space
z Environment
Power
Management: |« Data Analysis
Generation
¥
Key :
v \ h
Communication N\
« > Power \ Actuator:
Actuator: 0
Management: Cha B Physical
Storage P \ Interactions
Interaction
Environment /
Interaction/Sensing J— d
uator: ’
Fuel Storage o Thermal
1] B Attitude Control
T
-
™
@

Figure 3.4: “Functional Viewpoint of Satellite Reference Architecture”. Source [13].

in collaboration with ESA [54]. Didelot successfully identified various methods of
compromising the spacecraft, specifically focusing, as this study does, on the SEPP
and the NMF developed by ESA. Subsequently, he reported these vulnerabilities
through a responsible disclosure process. His work served as an inspiration and
foundation for this master’s thesis, providing valuable insights into the inner workings
of OPS-SAT, the NMF, and their security mechanisms.

More recently, Willbold et al. [31] conducted a study on satellite firmware,
demonstrating the significant security shortcomings of commercially available CubeSat
bus systems. OPS-SAT was one of the satellites examined, and it was found to
possess insecurities due to multiple vulnerabilities discovered in its OBC. In their
research, Willbold et al. did not utilize any of the frameworks discussed in this
chapter, opting instead to develop their own taxonomy, which allowed for improved
visualization and categorization of the identified threats.

3.1. THREAT MODELLING 27

It should be noted that knowledge-based frameworks such as ATT&CK and
SPARTA emerged well after models like STRIDE. Given their popularity and
widespread use, it appears that the security community favors a detailed, threat-
oriented approach over broader classification models. This preference is not surprising,
considering that cybersecurity has always involved a race where attackers tend to be
ahead of defense measures. Having a knowledge base founded on real, actionable data
significantly enhances the effectiveness of security responses. Although a simplified
classification model like STRIDE may be employed to provide a concise summary
of the security posture of an asset, it lacks the necessary level of detail for in-depth
mitigation processes. Fortunately, the development of tools specifically designed to
support the space operating environment has addressed this gap.

While all the tools discussed in this chapter fall within the framework category,
their efficacy is maximized by utilizing them appropriately and being aware of their
limitations. STRIDE offers a straightforward mnemonic for categorizing threats
during threat modeling, providing a high-level perspective on threat types accessible
to non-technical stakeholders. However, its lack of detail hampers the ability to
effectively defend against specific and evolving threats.

Matrices such as ATT&CK and SPARTA address this shortcoming by offering
comprehensive and up-to-date insights into real-world attacker behaviors. Nev-
ertheless, the flip side of the coin is their potentially overwhelming scope. Full
implementation of the information contained in the matrix may require significant
resources and expertise. Additionally, these matrices primarily focus on adversarial
TTPs, while overlooking internal factors such as vulnerabilities or system-specific
considerations. Clearly, SPARTA surpasses ATT&CK in the space domain as it was
specifically designed for this environment.

Attack trees provide a structured visual representation of attack paths, facilitating
the analysis of attack scenarios. They aid in the identification of vulnerabilities and
critical control points, thus assisting in risk assessment and mitigation planning.
However, they can become unwieldy as the number of attack paths and variations
increases. For instance, attack trees are often unsuitable for protecting large, complex
systems. Another limitation of this methodology is the lack of a standardized method
for creating them, with the results often dependent on the designer and potentially
non-repeatable. One approach to addressing this is to establish clear parameters
that guide the creation of a specific tree, such as utilizing attack matrices to inform
the selection of goals, sub-goals, and steps. Nevertheless, attack trees still fall short
in terms of including specific countermeasures or detailed technical insights.

Lastly, reference architectures can aid the security process during the earlier
phases of a system’s life cycle. They offer guidance during the design phase by

28 3. STATE OF THE ART

shedding light on architectural patterns and the interaction between components.
Security-by-design is currently the best approach to cybersecurity, and reference
architectures contribute to its achievement. They are also versatile enough to support
larger and more complex systems, accommodating different viewpoints and proving
useful for other specialized workforces, not just security teams. However, reference
architectures are unable to address specific threats or attack vectors. While they
may assist in better understanding the attack surface of a system and the potential
paths an attacker could exploit, an analysis of potential threats remains necessary.

In conclusion, all the aforementioned tools play a valuable role in the complex
process of securing a space mission. In the subsequent chapters, reference archi-
tectures, the SPARTA matrix (replacing the ATT&CK matrix), and attack trees
will be utilized to model OPS-SAT, identify an attack vector, and demonstrate an
attack. It is important to note that these tools will only be applied to the vehicle
itself, excluding the broader context of the entire space mission, as only this remains
within the scope of this thesis.

Attacking OPS-SAT

As mentioned in the previous chapters, the presence of a familiar system environment,
namely Linux, played a significant role in motivating and influencing the decision
to develop an attack against OPS-SAT. Upon examining the satellite architecture,
it became evident that the SEPP holds considerable importance within the system.
It bears multiple responsibilities and occupies a challenging position, as it executes
user code while also maintaining connections with critical spacecraft components,
thereby making it an intriguing target for exploitation.

Building upon the research conducted by Didelot [53], an ambitious objective
was set for the attack: either gaining control of the spacecraft or tampering with the
payload systems to undermine the functionality of the satellite. Because one of the
key capabilities of this mission is being able to run multiple experiments at the same
time, sharing the resources of the spacecraft, tampering with payload systems would
mean sabotaging other experimenters’ missions.

The aim of this endeavor is to demonstrate that space cybersecurity is not
unattainable, despite the daunting environment and the intricate web of complex
systems. However, one constraint was imposed on the attack: it should require
as little cybersecurity knowledge as possible. This means that, whenever tools or
advanced steps are necessary during the exploit development phase, existing online
resources will be utilized to the fullest extent possible, while still pursuing the
ambitious goal.

To prepare for the development of the attack, an in-depth investigation and
analysis of the system from an internal perspective were essential. As a result, this
chapter is divided into four main sections. Firstly, the steps taken to establish
an experimental environment are outlined. Secondly, a security analysis of the
environment is presented. Next, the rationale behind selecting an attack candidate
and its subsequent development are discussed. Lastly, the final attack is presented
using attack trees and the SPARTA matrix.

29

30 4. ATTACKING OPS-SAT

DISCLAIMER This study would not have been possible without the cooperation
and support of ESA and the OPS-SAT team. They agreed to collaborate and
provided the production system image of the main payload system, enabling the
experimental work conducted in this thesis. Their team was also instrumental in
providing assistance and additional knowledge whenever required. Therefore, they
have been kept informed about this study, including the early notification of the
results. It is worth noting that future versions of the NMF and SEPP, to be deployed
on ESA’s upcoming CubeSat missions, OPS-SAT-2 and ®-SAT, address the identified
shortcomings.

4.1 Environment Emulation

4.1.1 Extracting the File System

In order to leverage the system image provided by the ESA and conduct an analysis of
the system’s configuration and behavior, it is imperative and advantageous to possess
an emulation or partial replication of the payload environment. The ESA-delivered
image was received in the form of a compressed archive, which, upon extraction,
unveiled two distinct files. The initial file appeared to house the actual data, whereas
the second file served as a partition map for the former. Employing a similar
approach as Didelot [53], the execution of the binwalk tool on the data file yielded
successful results, unveiling various files and directories. Among them, a notably
relevant component named ezt-root resided within this collection. This particular
folder encapsulated the root file system of the SEPP. A cursory examination of the
remaining files and folders did not yield any noteworthy findings.

o o I3 ext-root
T extracted > 77 13800000 > 2 bin
ops-sat-i...blk.direct 7 boot
ops-sat-i...ect.omap 45B7DC 00 etc
195BC1.1z0 2 home
846868 T lib
5 2B7FFCO00.ext 7 sbin
5 3B7FFCO00.ext 7 usr
5 13800000.ext 7 var
T 846868.9z

I 239EF180.xz
T 239F9084.xz

Figure 4.1: Contents of the uncompressed raw system image and subsequent data
extraction.

4.1. ENVIRONMENT EMULATION 31

4.1.2 Emulating the SEPP

The information obtained from the experimenter portal indicates that the SEPP is
based on the MitySOM-5CSx System-on-Module (SoM) board [55], developed by
Critical Link. This board incorporates various features, including a CPU, DRAM,
FPGA fabric, and other components. The board comprises two Cortex-A9 processors,
which belong to the ARMS32v7 architecture family. According to the experimenter
platform, the OS for the board is created using the Yocto toolchain, specifically built
on top of Angstrom Linux. However, it’s important to note that Angstrém Linux has
been discontinued since 2017 and has been replaced by Poky, a reference embedded
distribution maintained by the Yocto Project. The Yocto Project itself is not a Linux
distribution but provides developers with a toolkit and modular model, empowering
them to build their own customized Linux system regardless of the hardware. This
is achieved through the utilization of recipes and layers, which enable modular and
granular software customization [56]. In simpler terms, Yocto’s layers can be likened
to Docker container layers.

At this stage, there are multiple paths to establish a functional system that
accurately reflects the payload’s functionality. These paths include reproducing the
exact build used for the SEPP, generating a new build with custom layers, recipes,
and components, or utilizing the extracted file system without creating new builds.
Both the first and second options necessitate familiarization with the Yocto Project
and its build system, as well as identifying a target hardware platform (physical or
virtual) for which the OS will be constructed. While it is feasible to target emulated
virtual devices such as QEMU virtual boards with Yocto builds, the third option
seemed like an appropriate starting point to become acquainted with the environment
present on the SEPP. Additionally, due to time constraints, prioritizing vulnerability
research and attack development took precedence over achieving a perfect system
emulation.

The initial attempt to access the file system and its binaries involved running
a basic, stripped-down Linux kernel and utilizing the payload file system as its
root file system. However, this step presented several challenges since the available
operating environment, macOS with AArch64 architecture, required additional tools
for cross-compilation'. Despite employing these tools, the compilation of the kernel
resulted in numerous warnings and errors. As an alternative approach, it was decided
to utilize an Ubuntu virtual machine. Linux employs a different compiler suite than
macOS and is more commonly used as a development platform for ARM architectures.
With this alternative, the compilation process concluded successfully, generating a
kernel image tailored for a QEMU virtual board.

1Cross compilation refers to the process of compiling source code on a platform that has different
architecture compared to the target platform.

32 4. ATTACKING OPS-SAT

Subsequently, the next task involved attempting to boot the minimalist kernel
with the file system as its root using QEMU. In this process, the generic virtual
platform wvirt was chosen, which is commonly employed as a test and development
platform. Regrettably, despite various configurations in the runtime arguments
provided to QEMU, successful kernel boot-ups were only sporadic. In some instances,
the peripherals did not function as expected, resulting in no visual output, while in
others, critical errors were encountered. Ultimately, the endeavor to boot the kernel
with the file system proved unsuccessful. As the allocated time for the emulation
task was running out, a decision was made to change the approach.

To save time and effort in establishing a functioning Linux kernel, the idea of
utilizing a container was considered. Rather than compiling and configuring a system
from scratch, the goal was to identify a readily available, basic Linux environment
that matched the target architecture. After a brief search, this question was answered.
Upon examining the official Ubuntu container repository, it became apparent that
certain images had been ported to other architectures and were officially supported
by Docker as well. Specifically, the Ubuntu arm32v7? image perfectly suited the
requirements in this case. It is important to note that container images are built
for a specific target architecture and are not compatible with platforms of different
architectures unless compatible images are available. Consequently, running the
Ubuntu arm32v7 image necessitated a host with an ARM32 or ARM64 architecture,
thus impeding the use of the available macOS environment.

However, further research revealed that Docker Desktop is equipped with the
QEMU static emulation tool, enabling the use of container images built for different
architectures compared to that of the host®. Upon testing, it was confirmed that it
was indeed possible to launch an Ubuntu arm32v7 image on macOS. Connecting
the SEPP file system to this setup was as straightforward as either mounting the
root directory within the container or adding a layer and copying all the files into
it. Opting for the latter approach allowed for experimentation on the system files
of the payload while maintaining a backup of the data. As depicted in Figure 4.2,
the executables belonging to the Ubuntu OS executed successfully, and the system
recognized the environment as running on an ARM32v7 architecture. Furthermore,
Figure 4.3 demonstrates the successful execution of binaries from the SEPP file
system4.

Upon exploring the file system, it is evident that the directory structure aligns
with the documentation provided by the experimenter platform. For example, the

2https://hub.docker.com/r/arm32v7/ubuntu/

3https://docs.docker.com/build /building/multi- platform/

4As can be seen from Figure 4.3, the payload file system is under the path /sepp/. Because of
this approach, both Ubuntu’s and the SEPP’s file systems coexist in the system, albeit in different
paths.

https://hub.docker.com/r/arm32v7/ubuntu/
https://docs.docker.com/build/building/multi-platform/

4.1. ENVIRONMENT EMULATION 33

) docker run -it --rm --platform linux/arm/v7 --name sepp sepp:v1l.3

root@9dc15ce9894c:/ uname -m
armv7l

Figure 4.2: Starting the custom-made container containing the root file system of
the SEPP, on emulated architecture.

root@9dc15ce9894c:/ /sepp/bin/busybox.nosuid uname -m
armv7l

root@9dc15ce9894c:/ /sepp/usr/bin/java -version

java version "1.8.0_131"

Java(TM) SE Embedded Runtime Environment (build 1.8.0_131-bl1)
Java HotSpot(TM) Embedded Server VM (build .131-b11, mixed mode)

Figure 4.3: Testing the executables of the SEPP file system.

experiments’ folders are all located in the SEPP’s home directory. Notably, there
are also supervisor-related data present. Building upon Didelot’s suggestion, the
objective now is to execute the framework residing within the SEPP. By successfully
running the supervisor, we can proceed with the development of a custom application.
While the source code of this software is accessible online [37], the SEPP contains
an older production image that has already been deployed into orbit. Additionally,
there exists a mission-specific repository for OPS-SAT, which, although it possesses
fewer development tools compared to the general release, still proves valuable in
understanding the internal mechanisms of the NMF®.

As pointed out by Didelot, one of the system’s startup services (depicted in
Figure 4.4) is responsible for initiating the supervisor process during boot time,
offering insight into the source code folder. An examination of this folder reveals
numerous . jar files that constitute the framework’s modules. An initial attempt

Shttps://github.com/esa/nmf-mission-ops-sat

https://github.com/esa/nmf-mission-ops-sat

34 4. ATTACKING OPS-SAT

to execute the supervisor by invoking the same command found in the startup
service proves unsuccessful. Although the process attempts to start and generates
ample logs, it reports numerous errors. Furthermore, it becomes apparent that the
startup service requires the successful execution of other services prior to its own
initialization, specifically the network and socketcand services. It is important to
remember that the container has not been configured to utilize this file system as
its root file system. Consequently, it remains unaware of these services and solely
executes what is specified in the Ubuntu boot configuration.

root@9dc15ce9894c:/ cat /sepp/lib/systemd/system/nmf.service
[Unt

ion=Nanosat MO Framework for OPS-SAT
ocketcand.service
network.target socketcand.service

[Service]
ry=/home/supervisor/nmf
er=supervisor

ExecStart=/usr/bin/java -classpath "/usr/lib/java/*" esa.mo.nmf.provider.NanoSatMOSupervisorOPSSATImpl

[Install]
WantedBy=multi-user.target

Figure 4.4: The start-up service responsible for running the NMF.

Numerous efforts have been made to address these challenges. Through a process
of trial and error, progress has been made towards achieving successful execution of
the supervisor. Some necessary adjustments include:

— Resolving broken critical symbolic links: As we are not dealing with the final
product of a Yocto build but rather the extracted file system, symbolic links
to libraries, executables, and essential components like dynamic linkers do not
function as intended. A simple script has been developed to identify and repair
all broken symbolic links.

— Locating and replacing missing libraries: Certain crucial shared libraries were
entirely absent. Fortunately, since basic libraries are shared across different
Linux distributions, we were able to substitute the missing libraries with those
provided by a standard Ubuntu environment. Initially, this approach did
not yield positive results. As the older embedded Linux required outdated
versions of shared libraries, errors were encountered when utilizing the newer

4.1. ENVIRONMENT EMULATION 35

versions included with Ubuntu. Fortunately, reverting to an older Ubuntu
image resolved the issue by ensuring compatibility with the shared library
versions.

— Installing additional tools for environment testing.

A comprehensive overview of the configurations can be observed in the final
Dockerfile depicted in Figure 4.5.

o0
FROM arm32v7/ubuntu:bionic

1l a |
RUN apt-get update && apt-get install -y \
file binutils vim net-tools netcat tmux strace build-essential

I m >
COPY ../rootfs/ /sepp/
COPY ../repair_links.sh /

RUN chmod -R +x /sepp
RUN chown root:root repair_links.sh && chmod +x repair_links.sh

RUN /repair_links.sh /sepp/lib

RUN /repair_links.sh /sepp/usr/lib
RUN /repair_links.sh /sepp/usr/libexec/sudo

RUN rm /sepp/lib/ld-linux-armhf.so.3
RUN 1n -s /sepp/lib/1d-2.26.s0 /sepp/lib/ld-linux-armhf.so.3

L tn link
RUN rm /sepp/usr/bin/java
RUN 1n -s /sepp/usr/lib/jvm/java-8-oracle/bin/java /sepp/usr/bin/java

tn thi the te e t he
RUN touch /etc/ld.so.conf.d/sepp.conf
RUN echo " D 1ib" >> /etc/ld.so.conf.d/sepp.conf
RUN echo Lib" >> /etc/ld.so.conf.d/sepp.conf
4 RUN ldconfig

[...]

Figure 4.5: Detail of the the Dockerfile used to create the SEPP container.

After implementing the necessary tweaks, it appeared that the supervisor’s
requirements had been successfully fulfilled. However, a final test revealed that despite
resolving most of the issues, the process still expected the socketcand service to be

36 4. ATTACKING OPS-SAT

operational, which, in turn, relied on a functioning Controller Area Network (CAN)
interface. In order to avoid modifying or interfering with the NMF’s configuration
files or services, we opted to address this challenge by providing the container with a
virtual CAN interface. Linux offers a kernel module called vcan that supports CAN
functionality without the need for specific hardware. Nevertheless, it’s important to
bear in mind that we are running an Ubuntu container on an emulated architecture
within a macOS environment. Since containers are designed to operate without an
underlying operating system (and thus a kernel), they rely on the of the host machine.
Consequently, enabling the vcan kernel module on macOS, which unfortunately does
not provide such functionality, became unfeasible.

To overcome this final obstacle, we made the decision to transition the development
environment to a Raspberry Pi 4. This board not only boasts excellent compatibility
with various Linux distributions but also features a processor that aligns with the
ARMG64 architecture. As a result, the SEPP container can be executed without
emulation, and Linux optional kernel modules can be utilized. As anticipated, the
Raspberry Pi, with its Debian-based OS, provided the vcan module, which could be
enabled with a simple command. Creating a virtual CAN interface was achieved
through the following two commands:

ip link add dev canO type vcan
and
ip link set up canO

Furthermore, the container functioned flawlessly with no additional configuration
requirements. With this final step, the supervisor could finally run as intended.

Emulated NMF and Software Development Kit Previously, it was mentioned
that there are two versions of the NMF': a mission-specific version and a general version.
The general version of the NMF is a comprehensive project that includes the same
supervisor found in the SEPP. Additionally, it provides users with numerous tools,
namely a Software Development Kit (SDK), to facilitate application development and
testing. One noteworthy tool among them is the Consumer Test Tool (CTT). The
CTT acts as a control panel for the NMF, allowing users to retrieve information about
the spacecraft, launch and stop applications, perform upgrades, and send /receive data
from space. In a real mission scenario, the CTT is hosted within ESA’s mission control
center and maintains continuous communication with the spacecraft, while users
connect to it via the Internet. However, during local development, experimenters can
establish a connection between a local instance of the CTT and their local supervisor,
thereby simulating realistic interaction with their application in orbit.

4.1. ENVIRONMENT EMULATION 37

rOOt@Ipl /sepp/home/supervisor/nmf /sepp/usr/bin/java -Xmx2G -classpath
' esa.mo.nmf.provider.NanoSatMOSupervisorOPSSATImpl

Jul 16, 2023 4:05:00 PM esa.mo.helpertools.helpers.HelperMisc loadProperties
INFO: Loading properties file:/sepp/home/supervisor/nmf/provider.properties
Jul 16, 2023 4:05:00 PM esa.mo.helpertools.helpers.HelperMisc loadProperties
INFO: Loading properties file:/sepp/home/supervisor/nmf/settings.properties
Jul 16, 2023 4:05:00 PM esa.mo.helpertools.helpers.HelperMisc loadProperties
INFO: Loading properties file:/sepp/home/supervisor/nmf/transport.properties
Jul 16, 2023 4:05:00 PM esa.mo.com.impl.archive.db.DatabaseBackend
startDatabaseDriver

[...]

INFO: Camera service READY

Jul 16, 2023 4:05:02 PM esa.mo.platform.impl.provider.gen.GPSProviderServiceImpl intit
INFO: GPS service READY

Jul 16, 2023 4:05:02 PM esa.mo.nmf.nanosatmosupervisor.NanoSatMOSupervisor intit

INFO: Loading previous configurations...

Jul 16, 2023 4:05:02 PM esa.mo.transport.can.opssat.CANBusConnector <init>

foool

Jul 16, 2023 4:05:02 PM esa.mo.nmf.nanosatmosupervisor.NanoSatMOSupervisor intit
INFO: NanoSat MO Supervisor initialized in 2.619 seconds!

Figure 4.6: The NMF starting successfully.

Once the supervisor was successfully executed, establishing a connection with the
CTT became the next logical step. Achieving success in this endeavor would provide a
near-perfect emulation of the OPS-SAT payload (excluding peripherals and the space
environment). Furthermore, having a functional connection between the CTT and
the supervisor would greatly assist in the development of attacks. Despite numerous
attempts and some assistance from the ESA OPS-SAT team, we were unable to achieve
this connection. Both components possess a multitude of configuration parameters
and supported protocols. Additionally, the complex networking layers resulting from
the development environment’s configuration complicated matters. Although ESA
developers claim that the connection is indeed possible, time constraints necessitated
abandoning the idea.

Fortunately, an alternative was available. When utilizing the general NMF SDK,
the environment comes pre-configured to function seamlessly. The NMF and CTT
can be successfully connected without requiring additional configuration. This is why,
for the remainder of our work, the SEPP container primarily served for penetration
testing and system analysis, while in case application development and testing were

38 4. ATTACKING OPS-SAT
needed, they were conducted using the SDK NMF.

4.2 A Security Analysis of the SEPP

Once a functional environment was established, a security analysis could be conducted.
To expedite the process, initial tests aimed to verify the validity of the findings
reported by Didelot in our specific environment. After all, ESA had claimed to have
addressed and resolved all reported vulnerabilities.

In addition to conducting experiments, OPS-SAT was designed to provide users
with a high degree of control. In fact, one of the mission’s early achievements
was being the first satellite that could be controlled by users over the internet [32].
Experimenters have various means of accessing the satellite, including through a SSH
session directly with the SEPP Linux OS, ESA’s mission control web platform, a
user-defined mission control platform, or by sending specifically crafted raw packets
(space packets) to the vehicle through ESA’s mission control station. Consequently,
the mission’s attack surface must contend with both external attackers and potential
insider threats. As a result, ESA states that the system is designed with the concept of
a malicious experimenter in mind. Their approach to securing the satellite emphasizes
recoverability rather than strict hardening measures.

This approach becomes apparent when examining the SEPP environment more
closely:

— No user management: Upon the installation of an experiment, no new
user corresponding to the application or the experimenter is created. Every
experiment, regardless of whether they use the NMF for development, runs
under a user named supervisor. This user is the owner of the framework, and all
related activities are executed under its user ID. Aside from this user, only the
standard Linux root user exists. It is evident that this lack of user management
is a poor practice. If an application manages to escape the framework’s isolation
or encounters a bug, every command executed would run with the supervisor’s
privileges.

— Access control: Further analysis of the supervisor user’s capabilities reveals
additional concerning configurations. As illustrated in Figure 4.7, the system
configuration allows the supervisor user to execute commands as any user
on the system, including root, without requiring additional authentication.
This design choice may have been made to avoid permission errors during the
mission and simplify the development process. However, as a consequence, if
an attacker aims to escalate their privileges during an attack, no additional
steps are necessary. When combined with the lack of proper user management

4.3. DEVELOPING THE ATTACK 39

described earlier, it becomes evident that security was not prioritized during
the design phase of the SEPP’s system.

root@bbaca@ba62c3:/ cat /sepp/etc/sudoers.d/supervisor

supervisor ALL = (ALL) NOPASSWD

Figure 4.7: The supervisor-specific entry in the sudoers.d directory. Entries in
this path allow to define sudo privileges for specific users or groups.

It appears that, at least in the production image provided for the study, ESA did
not implement the fixes necessary to mitigate the vulnerabilities identified by Didelot
[53]. ESA asserts that these relaxed security measures will not impact the spacecraft’s
safety, as the SEPP’s behavior is continually monitored by the satellite’s bus. As per
the original design, in the event of anomalous behavior, the SEPP can be reset by both
the bus and the ground segment using a command [32]. However, when considering
the vehicle’s architecture as depicted in Figure 4.8 and the vulnerabilities identified
by Willbold et al. [31], a dangerous scenario emerges. An attacker who successfully
executes any type of attack against the SEPP could establish communication with
any of the peripherals, as well as the satellite bus itself, via the CAN bus. This
enables lateral movement and, under the appropriate circumstances, can lead to
complete takeover of the vehicle and compromise the mission.

4.3 Developing the Attack

As outlined in the introduction section of this chapter, the objective of the attack
is not only to bypass the limited security measures in place but also to sabotage
other experiments running on the SEPP. The development of the attack followed a
result-oriented approach rather than a goal-oriented one. Instead of setting a specific
goal for the attack and working solely towards achieving that goal, various potential
attack vectors were explored as the system was being inspected. This approach
allowed to prioritize attack paths that were more promising or easily accessible, while
being mindful of complexity and resource requirements.

The following section defines the attacker model employed in this study, while
the subsequent sections provide a step-by-step guide to the attack development

40 4. ATTACKING OPS-SAT

A\ : link link

OPS-SAT Bus ' Payload
CAN bus .
1
{ ; } '
oc | | eps | o
S i n
| SEPP P, TMITC Engine
' :
i App App
GPS FDIR ' ‘ ‘
i USB,
i 12C,
: ISF‘I RS-42 LVDS
Coarse UHF ' = |
ADCS Transceiver | | , | Camera AI:I)?:ES S-band X-band
: 3 Transceiver transmitter
! Peripherals
UHF radio link | :
O |
E SDR . etl:j;ir\:r:r S-band radio X-band radio
; :
1
Ll

Figure 4.8: Simplified architecture of OPS-SAT. Adapted from [32].

process, following the taxonomy of the SPARTA matrix®. Each major and minor
step, whenever feasible, will reference the goals and techniques outlined in the matrix.

4.3.1 Defining the Attacker Model

The attacker model for this scenario is formed based on the following considerations:

— Experimenters have access to mission resources, including documentation,
system architecture design, satellite bus details, and production code. This
grants them a significant advantage over an attacker who lacks access to these
resources. However, since the registration process is open to anyone, it is
reasonable to assume that the attacker possesses insider knowledge.

— Both the generic NMF and the OPS-SAT mission-tailored version are open-
source and available on GitHub.

— The possession of the SEPP system image allows for a more efficient and
expedited security analysis of the system. However, an attacker could either
obtain the system image illegitimately (although this aspect is not within the
scope of this work) or gain the same knowledge about the system through
legitimate channels. Therefore, this advantage primarily serves as a starting

6For this purpose, the SPARTA matrix v1.3.1.1 will be used, published on 19/06,/2023.

4.3. DEVELOPING THE ATTACK 41

point for the thesis and does not impact the effectiveness or feasibility of the
attack.

— Every form of access required to interact with the spacecraft is legitimate and
permitted by the mission’s design.

— An attacker with access to better resources, such as a ground station, whether
through legitimate or illegitimate means, would have the ability to target the
spacecraft without relying on legitimate channels. This would enable them to
target other components of the system as well.

Consequently, the selected attacker model for this scenario is that of a malicious
yet authorized user. The attacker models presented by Willbold et al. provide
a suitable categorization of capabilities, aligning with this scenario within their
“Malicious Payload Users” and “Semi-Privileged Insider” models [31]. Despite the
facilitation resulting from our role in this study, our aim is to replicate a real-world
scenario where the attacker does not possess the SEPP image. When relevant, we
will explain how the attacker could achieve a specific goal or step without prior
knowledge contained in this study.

4.3.2 Step 1: Reconnaissance

Tactic ID: ST0001
Goal: Gather information to plan future operations

To gather information about the mission and the satellite, the attacker begins by
signing up as an experimenter, following the process outlined on the OPS-SAT
platform. This involves completing a form and defining an experiment to be run
on the spacecraft. Once granted access to the platform, the user gains access to
wiki pages, documentation, experiment examples, guides, binaries, and executables.
Additionally, development of their application can commence even before platform
access is granted, as the NMF repository is publicly available on GitHub. This
wealth of information provides insights into the available services and functionalities,
which can be used to approximate the system’s design. Furthermore, many diagrams
illustrating the spacecraft’s design and architecture are publicly accessible resources,
enabling Open-Source Intelligence (OSINT) gathering.

At this stage, the attacker can gather extensive information on the mission
and carry out various reconnaissance techniques, including;:

42 4. ATTACKING OPS-SAT

— REC-0001: Gather Spacecraft Design Information and all associated
sub-techniques of IDs REC-0001.01-.09

— REC-0002: Gather Spacecraft Descriptors and all associated sub-
techniques of IDs REC-0002.01-.03

— REC-0003: Gather Spacecraft Communications Information and all
associated sub-technique of IDs REC-0003.01-.04

— REC-0004: Gather Launch Information
— REC-0006: Gather Flight Software (FSW) Development Information
— REC-0007: Monitor for Safe-Mode Indicators

— REC-0008: Gather Supply Chain Information and all associated
sub-techniques of IDs REC-0008.01-.04

— REC-0009: Gather Mission Information

In this thesis, the reconnaissance phase is facilitated by possessing the SEPP
system image, which aids in advancing the analysis. As explained in the chapter’s
introduction, a compelling avenue to pursue is one that leads to payload malfunction
or tampering. To accomplish this, the camera payload becomes an interesting target.
This peripheral is the simplest among those equipped on the satellite, consisting
of a camera board connected to the SEPP via Universal Serial Bus (USB). By
exploring its use on the experimenter platform, it is learned that this payload can
be accessed through the NMF APIs in Java or directly through a command-line
executable. The NMF’s high-level interface offers straightforward functions to adjust
camera parameters, capture pictures, and record videos. However, focusing on the
NMF would require a more comprehensive security analysis and a more extensive
penetration test involving the entire framework. In the investigation, focus is put on
the lower-level binary to identify potential attack vectors.

The binary in question is an Executable and Linkable Format (ELF) executable
originally written in the C programming language. Its invocation and execution are
already documented on the experimenter platform. Given that the camera payload is
widely utilized on the satellite, it is hypothesized that tampering with this executable
may bring the attacker closer to their objective. During brainstorming for ways to
attack this program, a classic attack relevant to both Linux and Windows systems
comes to mind: a library hijacking attack”. This type of attack involves tampering
with the dynamically linked libraries that an executable loads during execution to
achieve user-defined code execution. To succeed with this approach, two requirements
must be met: the executable must utilize dynamically linked libraries, and the user

"The ATT&CK matrix contains extensive information on the attack: https://attack.mitre.org/
techniques/T1574/006/.

https://attack.mitre.org/techniques/T1574/006/
https://attack.mitre.org/techniques/T1574/006/

4.3. DEVELOPING THE ATTACK 43

must have permissions to write to critical directories containing the shared library
binaries or access environment variables to manipulate those directories.

A quick analysis of the camera payload executable confirms its use of shared
libraries. Interestingly, there is one custom-made library that could be exploited to
develop the attack without altering the standard C libraries. Figure 4.9 showcases the
command used to extract this information and its results. Furthermore, as mentioned
earlier, it is known that experiments have supervisor-level privileges due to poor user
management and access control. Consequently, the attacker could attempt to write
to the library’s directory or manipulate environment variables. All the requirements
necessary for considering this attack a promising candidate are met, allowing for
further development of the attack.

root@e7bf7d419488:/ ldd /sepp/usr/bin/ims100_testapp
1ibims100_api.so => /sepp/usr/1lib/1ibims100_api.so (0x3f057000)

libgcc_s.so.1 => /lib/arm-linux-gnueabihf/libgcc_s.so.1 (0x3f02e000)
libc.so0.6 => /lib/arm-linux-gnueabihf/1libc.s0.6 (0x3ef36000)
/1ib/1d-1inux-armhf.so0.3 (0x40000000)

Figure 4.9: Inspecting the dynamically-linked libraries used by the camera payload
executable. In orange, the non-standard library containing functionality specific to
the program.

4.3.3 Step 2: Resource Development

Tactic ID: ST0002
Goal: Establish resources to support operations

To exploit the library hijacking vulnerability, the attacker chooses to use malicious
libraries crafted specifically for this purpose. An efficient tool called Fakelib.sh [57],
designed for developing exploits in library hijacking attacks, is discovered during a
search. This tool can read a shared library binary, extract functions and symbols
defined within it, and create another library resembling the original but containing

44 4. ATTACKING OPS-SAT

a user-defined payload®. Different tactics can then be employed to deceive the
executable into loading the malicious library instead of, or before, the legitimate one.

Before utilizing Fakelib.sh, the shared library 1ibims100_api.so is further ana-
lyzed to enumerate its functionalities and extract function names. For this purpose,
the readelf command can be used, as shown in Figure 4.10. Fakelib.sh allows the
attacker to select one function as the injection point, where the payload code will be
placed. The function bst_ims100_init is identified as a suitable candidate, as it
is likely to be executed early in the program flow and during every execution. The
next step is to determine what the payload should do. Fakelib.sh offers options like
a simple echo to test the attack, executing code in a shell environment, or running
custom shellcode. The attacker decides to begin with the simplest exploit by using
the echo option.

o0
root@e7bf7d419488:/ readelf --dyn-syms --wide /sepp/usr/lib/1ibims100_api.so
Symbol table '.dynsym' contains entries:

Num: Value Size Type Bind Vis Ndx Name
ool

: 0000101 FUNC GLOBAL DEFAULT bst_ims100_get_tele_std

: 000015dd FUNC GLOBAL DEFAULT bst_ims100_set_exp_time

: 0000171d FUNC GLOBAL DEFAULT bst_ims100_set_img_config

: 000022a5 FUNC GLOBAL DEFAULT bst_ims100_start_continuous

8 FUNC GLOBAL DEFAULT bst_ims100_tools_print_img_config
: 0000254c FUNC GLOBAL DEFAULT _fini

: 000011a5 FUNC GLOBAL DEFAULT _Z20bst_ims100_read_linePcjj
: 000016a9 FUNC GLOBAL DEFAULT bst_ims100_reconfigure
: 000012bd FUNC GLOBAL DEFAULT _Z19bst_ims100_send_cmdPKcPcjj
: 0000209d FUNC GLOBAL DEFAULT bst_ims100_usb_open
: 000024e9 FUNC GLOBAL DEFAULT bst_ims100_tools_calc_frame_rate
: 00001401 8 FUNC GLOBAL DEFAULT bst_ims100_init
8 FUNC GLOBAL DEFAULT bst_ims100_massstorage_open
FUNC GLOBAL DEFAULT bst_ims100_set_gain
8 FUNC GLOBAL DEFAULT bst_ims100_stop_continuous
: 0000150d FUNC GLOBAL DEFAULT bst_ims100_done

FUNC GLOBAL DEFAULT bst_ims100_get_new_image

Figure 4.10: Inspecting the custom-made shared library object. The output shows
the functions defined in the library, which can then be called by the executable. In
orange, a possible injection point.

8In the context of cybersecurity, a payload is the malicious part of an attack, usually in the
form of code. As this work contains multiple uses of the term payload, contextual information will
be added for disambiguation.

4.3. DEVELOPING THE ATTACK 45

root@e7bf7d419488:/ fakelib.sh -1 /sepp/usr/lib/1ibims100_api.so -o /sepp/lib
/1ibims100_api.so -m custom -f bst_ims100_init -p echo -v
/*** Fake library source code **x/

nistd.h>

void *fakelib_payload() {

printf("Library hijacked!\n");
}
void __attribute__ ((constructor)) fakelib_init(void);
void fakelib_init() {

unsetenv("LD_PRELOAD");
b
void *_Z16bst_ims100_shootbhhhh() {
¥
void *_Z19bst_ims100_send_cmdPKcPcjj() {

};

void *bst_ims100_init() {
fakelib_payload();

};

[...]

void *bst_ims100_usb_open() {

|

Generating fake library under /sepp/lib/1libims100_api.so

Figure 4.11: Running Fakelib.sh to produce a malicious shared library that contains
a simple “echo” exploit.

However, a challenge arises when running Fakelib.sh, as it is intended to work
on 32 or 64-bit systems of Intel or AMD architecture, while the scenario involves an
ARM32 architecture. Fortunately, a simple fix involves changing the architecture
flag passed to the gcc compiler in the script. After making this modification, the
script successfully generates a malicious library resembling the original one, with a
simple payload attached to the bst_ims100_init function. The result is shown in
Figure 4.11.

To make the attack successful, the program needs to load the malicious library.
One approach is to use the LD_LIBRARY_PATH trick. By setting the LD_LIBRARY_PATH
environment variable before running the camera binary, the linker is instructed to give
higher priority to the malicious library. For instance, if the fake library is generated
under the path /sepp/lib and the original library is located at /sepp/usr/lib,
placing the malicious library in the former path would not raise suspicion, as it is a
common location for shared libraries in a Linux environment. When executing the

46 4. ATTACKING OPS-SAT

o0
root@e7bf7d419488:/ /sepp/usr/bin/ims100_testapp
ctrl port : /dev/ttyACMO

data port : /dev/sdb
exposure time

number of images :
bw img sensor
default conf
video duration

bst_ims100_get_tele_std failed

Figure 4.12: Nominal execution of the camera payload binary (minor failure due
to the absence of a camera device).

binary with the LD_LIBRARY_PATH, the exploit is triggered, and the echo payload
runs, indicating a successful attack. Figure 4.12 shows the nominal execution of the
program and Figure 4.13 shows that calling the binary with the LD_LIBRARY_PATH
triggers the exploit, running the echo payload.

In the example, the LD_LIBRARY_PATH variable is set explicitly. An attacker could
export the LD_LIBRARY_PATH variable either by running commands directly on the
SEPP through SSH or by instructing their experiment application to modify the
dynamic linker’s configuration files, such as the /etc/1d.so.preload file. This way,
every shell environment on the SEPP would unknowingly load the malicious library
at each invocation of the legitimate executable.

Having attained a functional exploit, the objective is to enhance it to enable
camera payload spoofing. The goal is to deceive the program utilizing the camera
payload binary, making it believe that image acquisition proceeds normally, while
allowing the attacker to exert control over the image selection process. To achieve this,
the injection point is relocated from an early-called function to a later one, ensuring
that the manipulated capture remains unaffected by the camera payload program.
An appropriate injection point for this purpose is identified as the bst_ims100_done
function, found on line 21 of Figure 4.10.

Under regular circumstances, the camera binary delivers the captured image
(named “capture.png”) to the experiment’s designated folder. The attack aims to
verify if a legitimate capture has been returned and, if so, replace it with a user-

4.3. DEVELOPING THE ATTACK 47

root@e7bf7d419488:/ LD_LIBRARY_PATH=/sepp/lib/ /sepp/usr/bin/ims100_testapp

ctrl port : /dev/ttyACMO
data port : /dev/sdb
exposure time

number of images :

bw img sensor

default conf

video duration

Library hijacked!
bst_ims100_get_tele_std failed

Figure 4.13: Running the attack by specifying the location of the malicious library
for the linker to load. Success!

readlink -f "/proc/$PPID/cwd")
f $ppid_wd/capture.png
wd/capture.png

touch $ppid_wd/capture.png

Figure 4.14: Detail of the attack payload: first, the working directory of the
program that called the camera binary is identified; then, the code checks for the
presence of a capture file; finally, it replaces it with the spoofed capture.

selected image. The necessary code for executing this manipulation is provided in
Figure 4.14. The resulting command to create the malicious library is outlined in
Figure 4.15.

A realistic scenario is demonstrated through examination of an experiment known
as OPS-SAT SmartCam®, which has been successfully conducted on the spacecraft.
The experiment showcases the application of Artificial Intelligence (AI) to images
captured with the camera payload [58]. The Python program calls the targeted

9https://github.com/georgeslabreche/opssat-smartcam

https://github.com/georgeslabreche/opssat-smartcam

48 4. ATTACKING OPS-SAT

fakelib.sh -1 /sepp/usr/lib/libims i o /sepp/lib/1ibims100_api.so -m custom

f bst 100_done -p system -c "p I adlink -f "/proc/\$PPID/cwd"); if [-f
apture.png]; then rm \$p capture.png; fi; touch
apture.png" -v

Figure 4.15: Resulting command to craft the malicious library with the updated
attack payload using Fakelib.sh. Escaping special characters is needed to correctly
input the payload.

camera payload binary, as observed in the code snippet on line 899'°. The program
verifies the presence of the captured file before proceeding with the execution. If the
attack operates as intended, the program will be deceived into using the manipulated
capture file returned by the malicious library, thereby sabotaging the mission and
effectively spoofing the satellite payload.

In this example, the spoofed capture consists of a simple empty file. This basic
version of the attack demonstrates the feasibility of the concept. Potential upgrades
and enhancements to the attack strategy will be explored in Section 5.1.2.

The final step essential for completing the attack involves finding a method to
deploy the malicious library onto the satellite. The attacker has two available options:
either to compile the library on the ground and conceal it within the experiment, or
to generate the library directly on the satellite. While the latter approach necessitates
access to a compiler, it is reasonable to assume that the SEPP Linux environment
is equipped with one. Furthermore, generating the library on board eliminates the
necessity to conceal it during the submission phase, which could potentially attract
attention during ESA’s screening phase before the upload occurs.

At this stage, the necessary resources to support the attack operations
have been secured, successfully completing the Resource Development
tactic, including:

— RD-0003: Obtain Cyber Capabilities and associated sub-technique
of ID RD-0003.01

Ohttps: / / github.com / georgeslabreche / opssat - smartcam / blob / main / home / exp1000 /
smartcam.py#L899

https://github.com/georgeslabreche/opssat-smartcam/blob/main/home/exp1000/smartcam.py##L899
https://github.com/georgeslabreche/opssat-smartcam/blob/main/home/exp1000/smartcam.py##L899

4.3. DEVELOPING THE ATTACK 49

The technique RD-0004: Stage Capabilities, including sub-techniques of
IDs RD-0004.01-.02, correspond to the uploading step of the experiment,
discussed in the subsequent section.

4.3.4 Step 3: Initial Access

Tactic ID: ST0003
Goal: Get point of presence/command execution on the spacecraft

As per experimenter procedures, outlined in Section 2.4, the initial access to
commanding privileges on the spacecraft is granted following the successful upload
of the experiment onto the SEPP. In our example, with the possession of a system
image, the development of the attack can commence early in the process, and the
upload of the malicious exploit relies on concealing it within an experiment that
appears legitimate.

For an attacker without access to the SEPP system image, the Initial Access
tactic serves as the starting point for reconnaissance possibilities, as outlined in
Section 4.3.2. By uploading and submitting a legitimate, registered experiment, they
can begin gathering information about the system and studying the payload from
within. The attacker can then transmit this data back to Earth through a legitimate
user channel, ultimately achieving the same objectives described in previous sections.

At this stage, the attacker has established a foothold in the spacecraft
as the exploit is deployed and ready to be executed. Since the SPARTA
matrix assumes initial access to be obtained through the compromise of a
legitimate channel, no specific technique aligns directly with this scenario.
OPS-SAT, in fact, allows user code upload by design.

4.3.5 Step 4: Execution

Tactic ID: ST0004
Goal: Execute malicious code on the spacecraft

After establishing initial access and acquiring the commanding privileges, the attacker
proceeds to initiate the malicious experiment. This action does not trigger the exploit
directly, but rather configures the malicious library to affect every subsequent use of
the camera payload with the spoofing attack.

50 4. ATTACKING OPS-SAT

In the context of the SPARTA matrix, this stage can be interpreted in
two ways:

— As technique RD-0004: Stage Capabilities, since the exploit is now
deployed and armed, but not yet executed.

— Under the FEzxecution techniques of EX-0012: Modify On-Board
Values, as the attack modifies payload behavior through file use,
and EX-0014: Spoofing, as this represents the ultimate goal of the
attack. Specifically, sub-techniques EX-0012.03 and .06 encompass
the tampering of nominal Linux behavior concerning dynamic linker
reconfiguration, while sub-technique EX-0014.03 covers the primary
objective of the attack: Sensor Data Spoofing.

4.3.6 Step 5: Persistence

Tactic ID: STO0005
Goal: Maintain foothold/access to command/execute code on the
spacecraft

Command capabilities are intentionally allowed in the case of OPS-SAT, ensuring
experimenters maintain their foothold in the system as long as they possess ESA’s
authorization. However, considering persistence from a cybersecurity perspective,
the aim is to establish a lasting presence in the system. In other words, the goal is
to create an attack that remains active even after controlled resets of the payload.

In the attack scenario presented in this study, the attack persists as long as
the SEPP is not restarted. ESA claim they can accomplish this with a simple
command whenever necessary. Nonetheless, due to the attack operating with the
highest privileges possible, an option to consider is infecting the mass storage of the
payload, such as an SD card. This would ensure that the exploit remains unaffected
by system restarts. Although this aspect has not been addressed in this study, it will
be discussed in Section 5.1.2.

Achieving advanced persistence is covered in tactic STO005: Persistence
and the relevant techniques and for this scenario are:

— PER-0001: Memory Compromise

— PER-0002: Backdoor, along with related sub-techniques of IDs
PER-0002.01-.02

4.3. DEVELOPING THE ATTACK 51

4.3.7 Step 6: Defense Evasion

Tactic ID: ST0006
Goal: Avoid being detected

During the study conducted on OPS-SAT, there was no explicit indication of the
spacecraft’s specific cyber defense capabilities. The architecture includes a Failure
Detection, Isolation, and Recovery (FDIR) system [34], designed to identify abnormal
behavior in the system and take appropriate actions, such as isolation or restart,
to ensure survivability of the spacecraft. The FDIR system prioritizes survivability
over availability, and the ground team is responsible for recovering the mission if a
fault is detected. However, the criteria for payload reset decisions are solely based
on “parameters exceeding fault limits” [34], with no mention of specific detection
capabilities for cyber attacks within the payload environment.

As for the NMF framework, it appears that the use of API services is not as
extensively logged as it should be, resulting in a lack of traceability for actions per-
formed by experiments [59]. Consequently, malicious activities like exploit execution
and lateral movement might not be actively detected, unless they produce noticeable
side effects. If a more sophisticated attack, involving exploits for both the payload
and the bus system, were to be developed, it would be interesting to assess whether
the spacecraft’s recoverability could be undermined and entirely compromised.

Tactic ST0006: Defense Evasion covers this type of attack capability in
detail. Multiple techniques which could be relevant in the case of OPS-
SAT are enumerated, including DE-0001: Disable Fault Management.
However, in this study, no specific defense evasion capability has been
implemented, resulting in no available mapping with SPARTA techniques.

4.3.8 Step 7: Lateral Movement

Tactic ID: ST0007
Goal: Move through across sub-systems of the spacecraft

As depicted in Figure 4.8, the SEPP, which is the target of the attack, is intricately
interconnected with all other systems within the spacecraft. Particularly significant
is its connection with the OBC, which plays a vital role. If an attacker intends
to further weaponize the attack and achieve lateral movement, they could explore
vulnerabilities affecting the OPS-SAT’s OBC, as detailed in [31], and potentially
utilize the CAN bus to carry out the attack.

52 4. ATTACKING OPS-SAT

No lateral movement capabilities have been developed for this specific
attack scenario. However, relevant material from the SPARTA matrix
tactic STO007: Lateral Movement includes technique LM-0002: FEzxploit
Lack of Bus Segregation.

4.3.9 Step 8: Exfiltration

Tactic ID: STO008
Goal: Steal information

Within the OPS-SAT experimenter environment, an interesting feature is the ability
to run confidential experiments. By default, information about experiments con-
ducted on the satellite is available in a catalog-like fashion on the experimenter
platform. However, during the sign-up process, users have the option to request
their experiments to be kept confidential. Although there is no explicit explanation
regarding how this option affects the upload or execution of the experiment, it can
be reasonably assumed that a higher level of secrecy is granted to these confidential
experiments.

For instance, confidential experiments might not be listed among the past experi-
ments that are uploaded. While the exact impact on their execution on the SEPP
remains uncertain, in the event of a payload compromise like the one seen in the
attack scenario developed in this study, the attacker could potentially exfiltrate data
related to these confidential experiments. The potential harm resulting from this
data leak would depend on the degree of confidentiality and the significance of the
data contained in the experiment.

No exfiltration capabilities have been considered for this attack scenario.
However, applicable material from the SPARTA matrix tactic ST0008:
Exfiltration includes technique EXF-0010: Payload Communication Chan-
nel.

4.3.10 Step 9: Impact

Tactic ID: ST0009
Goal: Manipulate, interrupt, or destroy the space system(s)
and/or data

The attack developed in this chapter has thus far achieved the disruption of a
legitimate data source within the spacecraft, specifically the camera payload. However,

4.4. VISUALISING THE ATTACK 53

as previously mentioned, a successful compromise of the payload system places the
attacker in a favorable position to launch further attacks on the rest of the subsystems.
While the attack presented in this scenario has not achieved further compromise, the
information presented in this work underscores the lack of cybersecurity measures
on OPS-SAT and other CubeSats that could withstand a serious threat once the
attacker gains a foothold in the spacecraft.

In a realistic scenario, the attacker could penetrate the OBC and take control by
modifying cryptographic material or isolating communication interfaces, effectively
locking out the ground segment. This would place the entire satellite under the
attacker’s control, enabling various other scenarios included in the SPARTA matrix,
such as destruction, denial, disruption, and degradation.

The attack scenario presented in this work accomplishes techniques
IMP-0002: Disruption of the camera payload data and IMP-0003: De-
nial of its legitimate use. In a scenario in which the attack is further
weaponised, other applicable material from the SPARTA matrix tactic
ST0009: Impact includes all techniques IMP-0001-0006.

4.4 Visualising the Attack

4.4.1 Using the SPARTA matrix

The SPARTA matrix offers a tool named Navigator which enables users to chart the
attack steps using the matrix’s techniques. Figure 4.16 shows the tactics, techniques
and sub-techniques achieved by the attack developed in this work. Any steps that
have been discussed but not implemented are not included in the result. Figure 4.17
displays the automatically-generated countermeasures based on the information and
references contained in the matrix.

4.4.2 Using Attack Trees

As highlighted in Section 3.1.3, the design of attack trees is significantly influenced
by the metrics chosen for step selection and the scope’s breadth. In an attempt to
introduce a structured approach to the creation process, the cyber kill-chain model,
originally developed by Lockheed Martin, will be employed. This model is akin to
the approach utilized by the SPARTA matrix, encompassing seven main stages that
logically represent the potential steps an attacker may take. The outcome of this
approach is depicted in Figure 4.18.

54 4. ATTACKING OPS-SAT

Reconnaissance

9 techniques
Software
Firmware
Cryptographic Algorithms
Data Bus
Gather Spacecraft
Design 1 Thermal Control System
Information s)
Maneuver & Control
Payload
Power
Fault Management

Identifiers

Gather Spacecraft |,

Descriptors (3) Organization

Operations

Communications Equipment

Gather Spacecraft Commanding Details

Communications "

Information (e)
Valid Credentials

Gather Launch .
) Flight Termination
Eavesdropping (4)
Gather FSW

Security Testing Tools

Hardware
Gather Supply Software
Chain

Information Known Vulnerabi

Business Relationships

Gather Mission
Information)

Mission-Specific Channel Scanning

Development Environment

Resource Development

5 techniques

Acquire
Infrastructure (g

Compromise
Infrastructure (s)

Exploit/Payload
1
Cryptographic Keys
Obtain Non-
Cyber
Capabilities ()
Identify/Select Delivery Mechanism
!

Upload Exploit/Payload

Initial Access

12 techniques

Compromise
Supply Chain 3)

Compromise
Software Defined
Radio (o)

Crosslink via
Compromised
Neighbor (o)

Secondary/Backup
Communication
Channel ¢

Rendezvous &
Proximity
Operations (3)

Compromise
Hosted Payload (g)

Compromise
Ground System)

Rogue External
Entity (5

Trusted
Relationship 5

Exploit Reduced
Protections During
Safe-Mode (o)

Auxiliary Device
Compromise (o)

Assembly, Test,
and Launch
Operation
Compromise (o)

Execution Persistence

18 techniques 5 techniques
Replay (o) Memory

Compromise (g)
Position, Navigation,

Backdoor (2)
Geofencing (o

Ground System
Modify Presence (o)
Authentication
Process (o) Replace

Cryptographic
Keys o

Valid
Exploit Credentials (o)
Hardware/Firmware

Corruption)

Compromise Boot
Memory ()

Disable/Bypass
Encryption (o)

Trigger Single Event
Upset (o)

Time Synchronized
Execution ()

Exploit Code
Flaws (3)

Malicious Code (s)

Safe-Mode (o)
Registers
Intemal Routing Tables
Memory Write/Loads
App/Subscriber Tables
Scheduling Algorithm

Science/Payload Data

Modify On-Board

Ve Propulsion Subsystem

Attitude Determination & Control Subsystem
Electrical Power Subsystem
Command & Data Handling Subsystem
Watchdog Timer (WDT)
System Clock
Poison Al/ML Training Data

Flooding ()

Jamming (3)
Time Spoof
Bus Traffic

Spoofing (s) ! Sensor Data

Position, Navigation, and Timing (PNT)

Side-Channel
Attack (g)

Kinetic Physical
Attack ()

Non-Kinetic Physical ,,
Attack (3)

Lateral
Movement

Defense
Evasion
11 techniques 7 techniques

Disable Fault Hosted
Management (o) Payload (o)

Prevent Exploit Lack of
Downlink) Bus

Segregation (o)
Modify On-Board

Exfiltration

10 techniques
Replay o)

Side-Channel
Attack 5

Eavesdropping (2)

Impact

6 techniques

Deception (o
Misdirection) ()

Disruption (o)

Denial (o)

Values (12)
Hopping via
Masquerading) Crosslink (o)
Exploit Reduced
Protections
During Safe-

ing Vehicle
Interface(s) (o)

Virtualization
Escape (o)

Launch Vehicle ,,
Interface (1)
Rootkit
Valid
Bootkit Credentials ()
Camouflage,
Concealment,
and Decoys
(cco)

Overflow Audit
Log (o)

Valid
Credentials (o)

Outof-Band
Communications
Link (0)

Proximity
Operations (o)

Modify
Communications
Configuration 3

Compromised
Ground System (g)

Compromised
Developer Site (o)

Compromised
Partner Site (o)

Payload
Communication
Channel ()

©
Destruction (o)

Theft (o

isualising the attack using the SPARTA Navigator. Techniques

Figure 4.16:

~d
Q
]
+
+
o]
<]
<=
+
>
Q
]
<]
>
[®]
—
=y
j=
<]
]
-
o]
=l
@
—
=
=l
<}
+
=
o0
=
=
o0
o=
=

55

4.4. VISUALISING THE ATTACK

Data

TEMPEST

Shared Resource
Leakage

Machine Learning Data
Integrity

On-board Message
Encryption

Development Environment
Security

Software Version Numbers
Update Software

Vulnerability Scanning
Software Bill of Materials
Dependency Confusion
Software Source Control
CWE List

Coding Standard

Dynamic Analysis

Static Analysis

Software Digital Signature
Configuration Management
Session Termination

Least Privilege

Long Duration Testing
Operating System Security
Secure Command Mode(s)

Dummy Process -
Aggregator Node

Process White Listing

Needed Countermeasures
Single Board Computer ____DS/IPS______Cryplography

Secure boot

Disable Physical Ports
Segmentation
Backdoor Commands

Error Detection and Correcting
Memory

Resilient Position, Navigatio
and Timing

Tamper Resistant Body
Power Randomization

Power Consumption
Obfuscation

Secret Shares

Power Masking

Increase Clock Cycles/Timing
Dual Layer Protection

OSAM Dual Authorization

Communication Physical
Medium

Protocol Update / Refactoring

Cloaking Safe-mode

On-board Intrusion Detection
& Prevention

Robust Fault Management
Cyber-safe Mode
Fault Injection Redundancy

Model-based System
Verification

Smart Contracts

Reinforcement Learning

COMSEC TRANSEC
Crypto Key Management

Authentication

Relay Protection

Traffic Flow Analysis Defense

Ground-based Countermeasures

Monitor Critical Telemetry
Points

Protect Authenticators
Physical Security Controls
Data Backup

Alternate Communications
Paths

Prevention

Protect Sensitive Information
Security Testing Results
Threat Intelligence Program
Threat modeling

Criticality Analysis
Anti-counterfeit Hardware
Supplier Re

Original Component
Manufacturer

ASIC/FPGA Manufacturing
Tamper Protection

User Training

Insider Threat Protection
Two-Person Rule
Distributed Constellations
Proliferated Constellations
Diversified Architectures

Space Domain Awareness

Space-Based Radio Frequency
Mapping

Maneuverability
Stealth Technology

Defensive Jamming and
Spoofing

Deception and Decoys

Physical Seizure
Electromagnetic Shielding

Filtering and Shuttering

Defensive Dazzling/Blinding

Figure 4.17: Countermeasures to defend against the attack, as generated by the

SPARTA Navigator.

56 4. ATTACKING OPS-SAT
Main goal

Goal:
Spoof Camera
Payload

EeanE—
v v

Stage Reconnaissance [Weaponization]

MmNt

[camera
Target ‘ SEPP. Spacecraft payload Camera
executable payl
Sub-goal Colectond Produce Deploy Alter camera Spoof captured
e exploit experiment executable image
v N N
/ AND \ / AND \ / AND \ l l
Force ’
Actions’ Reg Generate : T
gister as Read Conceal exploit : executable to
required experimenter || publications dyﬂ’;‘;’;z"l’itfaw in application | | SUPMIt to ESA ||Wait for upload Iol?gr;nr:ﬁ;::s et:e:m:léfe

Figure 4.18: Attack tree visualising the attack scenario, using the cyber kill-chain
model as a reference for stages. Darkened stages have not been implemented in this
study.

Conclusion

5.1 Discussion

The space industry is currently undergoing a transformation similar to the one that
impacted the Internet of Things (IoT) world in the past. Advancements in technology,
services, and approaches are redefining space access, leading to an influx of new
players facilitated by the CubeSat approach and reduced launch costs. However, with
LEOs becoming increasingly crowded, the delicate balance of the orbital environment
is at risk. The safety of this chain of satellites is as strong as its weakest link, and
with the lack of a flourishing security community in the space domain, the secure
development of these technologies and the safety of the orbital environment are
compromised.

As more consumer software and hardware find their way into space, the historic
approach of security-through-obscurity proves inadequate. With more advanced
payloads, including hosted and software-defined payloads, ushering in groundbreaking
capabilities for faster and more cost-effective missions, the attack surface expands
significantly. Complex scenarios, such as mega constellations, further amplifies the
magnitude of the problem. Thus, securing every single component and process within
a space mission becomes imperative, starting from the design phase. Recognizing the
critical nature of the industry, security experts in the aerospace and cybersecurity
sectors are voicing concerns and advocating the creation of international security
standards.

This work aims to shed light on the issue by adopting a demonstrative approach.
Cybersecurity tends to be disregarded until an incident occurs, but this modest attack
scenario demonstrates that space cybersecurity is not confined to science-fiction
movies; it is a real and pressing challenge that demands ongoing attention. OPS-SAT
represents a remarkable milestone in CubeSat technology, inspiring the industry with
its potential for new innovations. Nonetheless, despite its unconventional mission
and specific requirements, it exemplifies the security shortcomings that afflict modern

57

58 5. CONCLUSION

space missions. It is crucial to acknowledge that space-based infrastructures are much
more delicate than their Earth-based counterparts, demanding attention due to cost
constraints and the near-impossibility of replacements. Furthermore, the collective
safety of the orbital environment, which relies on the integrity of every spacecraft,
compels a heightened focus on security. The demonstrated attack scenario, carried
out by an attacker with limited capabilities using ready-made tools from the internet,
underscores the potential risks. Considering this, the threat posed by state actors
with more sophisticated capabilities is a grave concern.

In addition to the scenario presented in this work, another attack against OPS-
SAT, developed by researchers from Thales, was recently demonstrated. The attackers
exploited a Java deserialization vulnerability to compromise the NMF, ultimately
achieving camera payload spoofing and gaining control of the spacecraft. This in-
flight demonstration, conducted with ESA supervision, marked the first cybersecurity
demonstration in space. Both scenarios were presented and showcased live at
CYSAT23!:2, generating considerable attention and fostering positive discussions on
the importance of cybersecurity in space.

5.1.1 Limitations

Obtaining approval for the project and familiarizing oneself with the specific con-
text of OPS-SAT consumed a significant amount of time during the thesis project.
Consequently, some aspects that proved to be challenging did not receive sufficient
attention and could benefit from additional experimentation and research. While
these limitations did not impede the development of a successful attack, addressing
them could enhance the overall quality of the work. The limitations encountered in
Chapter 4 are as follows:

— Incomplete emulation: Achieving a comprehensive emulation of the satellite was
not within the scope of the thesis, as it would require extensive knowledge of
all the spacecraft’s subsystems and the use of various communication protocols.
Although the goal of providing a similar Linux environment was accomplished,
improvements could be made to enhance the emulation. For example, a
more realistic reproduction of the SEPP payload, its Linux environment, and
potentially some basic peripherals. Additionally, having a running supervisor
and successfully connecting the CTT to it would create an environment that
more closely resembles that of the satellite, facilitating development and testing.

— Concealing the attack: Section 4.3 focused on the development of the exploit
but did not delve into the details of how a malicious payload would be uploaded

IThe Thales attack demo can be watched at: https://youtu.be/sXGQWLJ8904
2The presentation of this thesis work can watched at: https://youtu.be/CSDz_ fctrHg

https://youtu.be/sXGQWLJ8904
https://youtu.be/CSDz_fctrHg

5.1. DISCUSSION 59

within an experiment. Researching this topic would involve understanding the
type of checks and tests conducted on experiments before upload. However, such
information might not be disclosed by ESA. Despite this limitation, different
concealment scenarios could be presented to demonstrate the feasibility of such
an attack.

— Defense evasion: Due to the lack of available information regarding the satellite’s
cyber defense capabilities, investigating potential defense evasion techniques
was not possible. Delving deeper into the design details of the satellite might
not be accessible to users, making this aspect challenging to explore further.

— Persistence of the attack: Section 4.3 did not provide detailed insight into
achieving persistence for the exploit. As mentioned, the SEPP can be reset on
demand, starting the Linux environment with a clean boot of the build image.
In the event of an attack, the side effects would be visible almost immediately,
allowing ESA to trace the problem to the camera payload executable and reset
the SEPP to fix the issue. However, tampering with the mass storage of the
SEPP could enable an attacker to make the fix more challenging, obstructing
the availability of the camera payload for a longer duration. Further research
and exploration of techniques to achieve persistence in the presence of resets
would be valuable.

5.1.2 Future Work

Indeed, there are several aspects that could be further investigated to enhance the
study and contribute to the improvement of space cybersecurity. Some of these areas
include:

— Conducting a security analysis of the NMF: Performing a thorough security
analysis of the NMF with a penetration testing approach would help identify
vulnerabilities and bolster the security and safety of future CubeSat missions.
Given that the NMF will be a constant component of these missions and
potentially part of larger satellite constellations, addressing its security is
crucial to prevent potential attacks that exploit its weaknesses.

— Exploring bus system exploitation: A comprehensive study of the potential
consequences of a combined SEPP compromise and bus system compromise
would be valuable. Investigating the vulnerabilities in on-board computers, such
as the lack of cybersecurity application, could reveal potential disaster scenarios.
One alarming possibility is that an attacker gains advanced capabilities, like
compromising the bus system, using it to take over the entire satellite. In such a
scenario, the satellite could be directed towards other spacecrafts, transforming
it into an anti-satellite weapon. This not only poses a serious threat to the

60 5. CONCLUSION

targeted satellites but also raises concerns about the broader implications of
compromised satellites being used as weapons against other critical space assets.

— Evaluating different attack models: Considering alternative attack paths into
OPS-SAT, such as scenarios where the attacker is an outsider and not a
registered experimenter, would offer a broader perspective on potential vulner-
abilities and their implications. Willbold et al. already provide the foundation
of such a study, having devised attacker models relevant to this scenario.

— Improving system emulation: In their study, Willbold et al. successfully pro-
duced an emulated environment of the NanoMind instruction set architecture,
enabling them to simulate the command handling functionality of the OBC.
This achievement represents a significant step towards a more comprehensive
emulation of the entire satellite system. By complementing the OBC emulation
with an improved SEPP emulation, we would be closer to achieving a full
system emulation. Creating a digital twin of the entire satellite, with both the
OBC and SEPP emulated, would provide a powerful testing and research tool.

— Exploring exfiltration of confidential data: Investigating techniques for ex-
filtrating data from confidential experiments covertly, leveraging weak user
management and loose access control in the SEPP, would highlight potential
risks to sensitive information.

— Addressing attack persistence: Investigating techniques to achieve attack per-
sistence, such as infecting the SEPP’s mass storage or concealing the attack
within NMF services, would provide a deeper understanding of the challenges
in maintaining a long-term presence within the satellite’s systems.

(1]

2]

3]

(4]

5]

(6]

(7l

(8]

(9]
(10]

(11]

(12]

(13]

References

A. Toorian, K. Diaz, and S. Lee, «The CubeSat approach to space access», in 2008
IEEE Aerospace Conference, Mar. 2008, pp. 1-14.

«AWS Ground Station». (2023), [Online]. Available: https://aws.amazon.com/groun
d-station/ (last visited: Nov. 12, 2022).

«Azure Orbital Ground Station». (2023), [Online]. Available: https://azure.microsoft
.com/en-us/products/orbital/ (last visited: Nov. 12, 2022).

G. Falco, «The vacuum of space cyber security», in 2018 AIAA SPACE and Astro-
nautics Forum and Fxposition, Sep. 17, 2018.

T. Villela, C. A. Costa, et al., «Towards the thousandth CubeSat: A statistical
overviewy, International Journal of Aerospace Engineering, vol. 2019, Jan. 10, 2019.

B. Virgili and H. Krag, «Small satellites and the future space debris environment»,
in 80th International Symposium on Space Technology and Science, Jul. 7, 2015.

G. Falco, « When satellites attack: Satellite-to-satellite cyber attack, defense and
resiliencey, in 2020 AIAA ASCEND, Nov. 16, 2020.

M. Calabrese, «A Cybersecurity Assessment of HYPSO-1», Department of Information
Security and Communication Technology, NTNU — Norwegian University of Science
and Technology, Project report in TTM4502, Nov. 2022.

«SpaceX - Starlink». (2023), [Online]. Available: https://www.starlink.com/ (last
visited: Jun. 12, 2023).

«OneWeby. (2023), [Online]. Available: https://oneweb.net/ (last visited: Jun. 12,
2023).

M. Pate-Cornell and R. Dillon, «Success factors and future challenges in the manage-
ment of faster-better-cheaper projects: Lessons learned from NASA», IEEE Transac-
tions on Engineering Management, vol. 48, no. 1, pp. 25-35, Feb. 2001.

M. Macdonald and V. Badescu, The International Handbook of Space Technology
(Springer Praxis Books). Springer, 2014.

M. Bradbury, C. Maple, et al., «Identifying attack surfaces in the evolving space
industry using reference architecturesy, in 2020 IEEE Aerospace Conference, Mar. 1,
2020, pp. 1-20.

61

https://aws.amazon.com/ground-station/
https://aws.amazon.com/ground-station/
https://azure.microsoft.com/en-us/products/orbital/
https://azure.microsoft.com/en-us/products/orbital/
https://www.starlink.com/
https://oneweb.net/

62 REFERENCES

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

22]
(23]

24]

(25]

(26]

27]

(28]

29]

A. Poghosyan and A. Golkar, «CubeSat evolution: Analyzing CubeSat capabilities
for conducting science missions», Progress in Aerospace Sciences, vol. 88, pp. 59-83,
Jan. 1, 2017.

D. Selva and D. Krejci, «A survey and assessment of the capabilities of cubesats for
earth observation», Acta Astronautica, vol. 74, pp. 50-68, May 1, 2012.

R. Sandau, «Status and trends of small satellite missions for earth observation», Acta
Astronautica, vol. 66, no. 1, pp. 1-12; Jan. 1, 2010.

National Aeronautics and Space Administration - NASA. «NASA - CubeSat Launch
Initiative». (2023), [Online]. Available: https://www.nasa.gov/content/about-cubesat
-launch-initiative (last visited: Jun. 23, 2023).

European Space Agency - ESA. «ESA - Fly Your Satellite! Programme». (2023),
[Online]. Available: https://www.esa.int/Education/CubeSats - Fly Your Satellit
e/About_ Fly_Your_ Satellite! (last visited: Jun. 23, 2023).

E. Kulu. «NanoSat Database». (2023), [Online]. Available: https://www.nanosats.eu/
(last visited: Jun. 23, 2023).

M. Andraschko, J. Antol, et al., «Commercially hosted government payloads: Lessons
from recent programsy, in 2011 IEEE Aerospace Conference, Mar. 2011, pp. 1-15.

M. Andraschko, J. Antol, et al., «The potential for hosted payloads at NASA», in
2012 IEEFE Aerospace Conference, Mar. 2012, pp. 1-12.

CubeSat Design Specification, Cal Poly SLO - The CubeSat Program, Feb. 2014.

S. Bakken, E. Honore-Livermore, et al., «Software development and integration of
a hyperspectral imaging payload for HYPSO-1», in 2022 IEEE/SICE International
Symposium on System Integration (SII), Narvik, Norway: IEEE, Jan. 9, 2022, pp. 183—
189.

S. W. Asmar and S. Matousek, «Mars cube one (MarCO) shifting the paradigm in
relay deep space operationy, in SpaceOps 2016 Conference, Daejeon, Korea: American
Institute of Aeronautics and Astronautics, May 16, 2016.

A. Roy-Chowdhury, J. Baras, et al., «Security issues in hybrid networks with a satellite
componenty, IEEE Wireless Communications, vol. 12, no. 6, pp. 50-61, Dec. 2005.

Special Publication 800-30: Guide for Conducting Risk Assessments. Rev. 1, National
Institute of Standards and Technology (NIST), 2012.

ISO/IEC 27001 - Information security, cybersecurity and privacy protection — Infor-
mation security management systems — Requirements, International Organization for
Standardization (ISO), 2018.

G. Falco, W. Henry, et al., «An international technical standard for commercial space
system cybersecurity - a call to actiony», in ASCEND 2022, American Institute of
Aeronautics and Astronautics, Oct. 2022.

IEEE. «International Technical Standard for Space System Cybersecurity - IEEE
P3349 Working Group (WG)». (2023), [Online]. Available: https://sagroups.ieee.org
/3349/ (last visited: Jun. 23, 2023).

https://www.nasa.gov/content/about-cubesat-launch-initiative
https://www.nasa.gov/content/about-cubesat-launch-initiative
https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite/About_Fly_Your_Satellite!
https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite/About_Fly_Your_Satellite!
https://www.nanosats.eu/
https://sagroups.ieee.org/3349/
https://sagroups.ieee.org/3349/

30]

31]

32]

33]

34]

(35]

(36]

37]

(38]

39]

(40]

[41]

42]

(43]

(4]

[45]

[46]

REFERENCES 63

N. Boschetti, N. Gordon, and G. Falco, «Space cybersecurity lessons learned from the
ViaSat cyberattacky», in ATAA Ascend 2022, Oct. 24, 2022.

J. Willbold, M. Schloegel, et al., «Space odyssey: An experimental software security
analysis of satellites», in 2023 IEEE Symposium on Security and Privacy (SP), IEEE
Computer Society, May 26, 2023, pp. 1-19.

European Space Agency. «The OPS-SAT mission». (Oct. 2015), [Online]. Available:
https://www.eoportal.org/satellite-missions/ops-sat (last visited: May 20, 2023).
D. Evans and M. Merri, «OPS-SAT: A ESA nanosatellite for accelerating innovation
in satellite controly, in SpaceOps 2014 Conference, Pasadena, CA: American Institute
of Aeronautics and Astronautics, May 5, 2014.

D. J. Evans, «OPS-SAT: FDIR design on a mission that expects bugs - and lots of
themy, in SpaceOps 2016 Conference, ser. SpaceOps Conferences, American Institute
of Aeronautics and Astronautics, May 13, 2016.

R. Zeif, M. Henkel, et al., «The redundancy and fail-safe concept of the OPS-SAT
payload processing platformy, in 2018 International Astronautical Congress (IAC),
Oct. 1, 2018.

C. Coelho, O. Koudelka, and M. Merri, «NanoSat MO framework: When OBSW
turns into apps», in 2017 IEEE Aerospace Conference, Mar. 2017, pp. 1-8.

C. Coelho, D. Marszk, et al. «NanoSat MO Frameworky. (2023), [Online]. Available:
https://github.com/esa/nanosat-mo-framework,/ (last visited: Jun. 23, 2023).

C. Coelho, A. Marin, et al., «NanoSat MO framework: Enabling AI apps for earth
observationy, Small Satellite Conference, Aug. 7, 2021.

S. Cooper, «CCSDS mission operations services in space», in SpaceOps 2012 Confer-

ence, ser. SpaceOps Conferences, American Institute of Aeronautics and Astronautics,
Jun. 11, 2012.

The Consultative Committee for Space Data Systems, Security guide for mission
planners, Apr. 2019.

The Consultative Committee for Space Data Systems, Security threats against space
massions, Feb. 2022.

The Consultative Committee for Space Data Systems, Security architecture for space
data systems, Nov. 2012.

The Consultative Committee for Space Data Systems, The application of security to
CCSDS protocols, Mar. 2019.

J. Pavur and I. Martinovic, «The cyber-ASAT: On the impact of cyber weapons
in outer spacey, in 2019 11th International Conference on Cyber Conflict (CyCon),
vol. 900, May 2019, pp. 1-18.

SpaceSecurity.info. «Space Attack Open Database». (2023), [Online]. Available: https:
/ /www.spacesecurity.info/en/space-attacks-open-database/ (last visited: Jun. 23,
2023).

G. Falco and N. Boschetti, «A security risk taxonomy for commercial space missionsy,
in ATAA Ascend 2021, Nov. 2021.

https://www.eoportal.org/satellite-missions/ops-sat
https://github.com/esa/nanosat-mo-framework/
https://www.spacesecurity.info/en/space-attacks-open-database/
https://www.spacesecurity.info/en/space-attacks-open-database/

64 REFERENCES

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. Oakley. «Targeting, Reconnaissance, & Exploitation Kill-Chain for Space Vehicles
- TREKS». (2023), [Online]. Available: https://treksframework.org/the-framework
(last visited: Jun. 23, 2023).

European Space Agency - ESA. «Space Attacks and Countermeasures Engineering
Shield - SPACE-SHIELD». (2023), [Online]. Available: https://spaceshield.esa.int/
(last visited: Jun. 23, 2023).

The MITRE Corporation. «MITRE ATT&CK: Design and Philosophy». (2023),
[Online]. Available: https://attack.mitre.org/docs/ATTACK_Design and_ Philosop
hy March_2020.pdf (last visited: Nov. 12, 2022).

Microsoft. «STRIDE model». (2023), [Online]. Available: https://learn.microsoft.com
/en-us/azure/security /develop/threat-modeling-tool-threats (last visited: Nov. 12,
2022).

The Aerospace Corporation. « SPARTA: Space Attack Research and Tactic Analysisy.
(2023), [Online]. Available: https://aerospace.org/sparta (last visited: Jun. 23, 2023).

G. Falco, A. Viswanathan, and A. Santangelo, «CubeSat security attack tree anal-
ysisy, in 2021 IEEE 8th International Conference on Space Mission Challenges for
Information Technology (SMC-IT), Jul. 27, 2021, pp. 68-76.

M.-M. Didelot. «How I hacked an ESA’s experimental satellite». (2021), [Online].
Available: https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satelli
te.html (last visited: Jun. 23, 2023).

CYSEC. «CYSAT». (2023), [Online]. Available: https://cysat.eu/ (last visited:
Jun. 23, 2023).

«MitySOM-5CSx System on Moduley, Critical Link LLC. (2023), [Online]. Available:
https://www.criticallink.com/product /mitysom-5csx/.

The Linux Foundation. «Yocto Project». (2023), [Online]. Available: https://www.yo
ctoproject.org/ (last visited: Jun. 23, 2023).

Eduardo Bldzquez. «Fakelib.sh». (2021), [Online]. Available: https://github.com/ebla
zquez/fakelib.sh (last visited: Apr. 25, 2023).

G. Labreche, D. Evans, et al., «OPS-SAT Spacecraft Autonomy with TensorFlow
Lite, Unsupervised Learning, and Online Machine Learning», 2022 IEEE Aerospace
Conference, 2022.

NanoSat MO Framework developers, private communication, Apr. 21, 2023.

https://treksframework.org/the-framework
https://spaceshield.esa.int/
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://aerospace.org/sparta
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html
https://www.deadf00d.com/post/how-to-hack-an-esa-experimental-satellite.html
https://cysat.eu/
https://www.criticallink.com/product/mitysom-5csx/
https://www.yoctoproject.org/
https://www.yoctoproject.org/
https://github.com/eblazquez/fakelib.sh
https://github.com/eblazquez/fakelib.sh

@ NTNU

Norwegian University of
Science and Technology

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Acronyms
	Introduction
	A New Space Era
	Motivation
	Methodology

	Background
	Space Systems Architecture
	The Space Segment
	The Ground Segment
	The Link Segment

	The New Space
	Hosted Payloads
	The CubeSat Approach to Space

	Cybersecurity Challenges
	OPS-SAT: Operations Satellite
	System Architecture
	Satellite Experimental Processing Platform
	The NanoSat MO Framework

	State of the Art
	Threat Modelling
	Frameworks & Matrices
	Reference Architectures
	Discussion and Summary

	Attacking OPS-SAT
	Environment Emulation
	Extracting the File System
	Emulating the SEPP

	A Security Analysis of the SEPP
	Developing the Attack
	Defining the Attacker Model
	Step 1: Reconnaissance
	Step 2: Resource Development
	Step 3: Initial Access
	Step 4: Execution
	Step 5: Persistence
	Step 6: Defense Evasion
	Step 7: Lateral Movement
	Step 8: Exfiltration
	Step 9: Impact

	Visualising the Attack
	Using the SPARTA matrix
	Using Attack Trees

	Conclusion
	Discussion
	Limitations
	Future Work

	References

