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Abstract

This thesis explores the influence of Shell Finite Element Analysis (FEA), in an Algorithms-Aided
Design (AAD) application, on structural optimization. The AAD environment used in this thesis
is Grasshopper, and the developed FEA is a plug-in created for Grasshopper through coding in
Visual Studio.

The goal was to produce an analyzing tool that can calculate the given geometry as quickly and
accurately as possible, and to show that this can be used to improve structural optimization. To
achieve this, the theory of the Finite Element Method (FEM) has been applied and codes have
been streamlined.

The research question aimed to be answered in this thesis is

How can the implementation of Finite Element Analysis in Algorithms-Aided Design
influence structure optimization?

To answer the research question a FEA for triangular shell elements has been developed. These
triangular shell elements consist of a membrane part and a bending part, and through trial and
error, the element to best describe the bending ended up being the Discrete Kirchhoff Triangle
(DKT) element.

The plug-in created in this thesis shows how the implementation of FEA in AAD environments is
greatly beneficial. One of these benefits is to be able to alter the geometry and calculate it in real-
time. This will provide architects and engineers with a basis for assessment, and it has, therefore,
the possibility of improving cooperation and making the conceptual design phase more efficient.
By also using the plug-in together with optimization, it can help architects and engineers find the
optimal geometry of a structure.

From looking at the performance of the plug-in, it works as intended and it shows promising
results. There are however always some things that can be improved. The displacements converge
nicely towards the optimal solution with finer mesh, but the stresses still need some improvements
to be ideal. Decreasing the computational time has been a priority and the plug-in is already quite
fast. This is a necessity for the plug-in to be worth using. Computational time can however always
be improved.

A series of Case Studies have been developed to show how the plug-in can be used together with
optimization. The last Case Study, featuring the tripod, shows the geometry before optimization
and after, and how it goes from over-utilized values to acceptable values.

In regards to the research question, FEA makes it possible to generate optimized designs based
on structural limit values. This means that the structure and material will be better utilized, which
is highly beneficial. The thesis also shows how optimization can work for a real-life structural
problem.
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Sammendrag

Denne masteroppgaven utforsker påvirkningen en Elementanalyse i en Algorithms-Aided Design
(AAD) applikasjon, har på strukturell optimalisering. AAD applikasjonen som er brukt i denne
oppgaven heter Grasshopper, og den utviklede elementanalysen er en programutvidelse laget for
Grasshopper gjennom koding i Visual Studio.

Målet var å lage et analyseringsverktøy som kan beregne gitt geometri så fort og nøyaktig som
mulig, og vise at dette verktøyet kan brukes til å forbedre optimaliseringen av konstruksjoner. For
å oppnå dette har teorien fra Elementmetode blitt anvendt og koder har blitt effektivisert.

Problemstillingen som skal bli forsøkt besvart i denne oppgaven er

Hvordan kan implementeringen av Elementanalyse i Algorithms-Aided Design
påvirke optimaliseringen av konstruksjoner?

For å svare på dette forskningsspørsmålet har det blitt utviklet en elementanalyse for trekantede
skallelementer. Disse trekantede skallelementene består av en membrandel og en bøyningsdel, og
gjennom prøving og feiling kom vi frem til at Discrete Kirchhoff Triangle (DKT) var det mest
hensiktismessige bøyningselementet.

Programutvidelsen, eller pakken, laget i denne masteroppgaven viser hvordan implementering av
elementanalyse i AAD miljøer er høyst fordelaktig. En av disse fordelene er at man har mulighet
til å endre geometrien og beregne den i sanntid. Dette vil gi arkitekter og ingeniører et vurder-
ingsgrunnlag, og det har derfor muligheten til å forbedre samarbeid og gjøre tidlig designfase mer
effektiv. Ved å også bruke pakken sammen med optimalisering, så kan det hjelpe arkitekter og
ingeniører med å finne den optimale geometrien til en konstruksjon.

Ved å se på opptredenen til programutvidelsen, fungerer den som tiltenkt, og den viser lovende
resultater. Det er imidlertid alltid noen ting som kan forbedres. Forskyvningene konvergerer pent
mot den optimale verdien med finere mesh, men spenningene trenger fortsatt none forbedringer
for å være ideelle. Å redusere beregningstiden har vært en prioritet, og pakken er allerede ganske
rask. Dette er en nødvendighet for at pakken skal være verdt å bruke. Beregningstid kan imidlertid
alltid forbedres.

En serie casestudier er utviklet for å vise hvordan programutvidelsen kan brukes sammen med
optimalisering. Det siste casestudiet viser geometrien før og etter optimaliseringen, og hvordan
den går fra overutnyttede verdier til akseptable verdier.

Når det gjelder forskningsspørsmålet, gjør elementanalyse det mulig å generere optimaliserte
design basert på strukturelle grenseverdier. Dette betyr at konstruksjonen og materialet vil bli
bedre utnyttet, noe som er svært gunstig. Denne oppgaven viser også hvordan optimalisering kan
fungere for et konstruksjonsproblem i det virkelige liv.
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Glossary

AAD = Algortihm Aided Design

CAD = Computer-Aided Design

dof = Degrees of Freedom

FEA = Finite Element Analysis

FEM = Finite Element Method

IDE = Integrated Development Environment

LPB = Linearized Prebuckling

MOO = Multi-Objective Optimization

SOO = Single Objective Optimization

TO = Topology Optimization
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1 Introduction

Algorithms-Aided Design (AAD) is becoming increasingly popular, as people are starting to see
the advantages that come with it. AAD uses an algorithmic approach to create geometries in
real time, just by changing some input parameters. The design environment also calculates the
geometries. In an early design process, this can be helpful to generate designs and to do a quick
assessment of the structural behavior. It can therefore improve the interface between engineers
and architects.

By manually changing parameters it is however very hard to find a solution that is the absolute
best. This is where optimization comes in. One benefit of optimization is a more optimized use of
material, in both amount and placement, which is great for the environment and also the costs.
With FEA implemented in the optimization, it is possible to set boundaries for important paramet-
ers such as stresses, deformation, and amount of material. Then the optimization tool automatic-
ally generates designs and runs through a structural analysis for each of them. After some time it
is possible to find the most optimal solution.

The structural analysis is done through the use of packages, designed for the Grasshopper envir-
onment. Most, if not all, of these packages, use an implementation of Finite Element Analysis
(FEA) to perform the calculations. FEA utilizes the Finite Element Method (FEM), which is a
numerical method conceived and developed from the 1950s by engineers for solving differential
equations. FEM divides the model into small pieces, called Finite Elements. There are differ-
ent shapes of elements, with different amounts of nodes and degrees of freedom (dofs), and with
different behavior suitable for different kinds of geometries.

The aim of this thesis is to answer the following research question

How can the implementation of Finite Element Analysis in Algorithms-Aided Design
influence structure optimization?

Through exploring this question, the goal is to produce an FEA plug-in for the AAD environment,
that can quickly calculate the model and provide both architects and engineers with a basis for
assessment. With such a tool the efficiency and workflow in a conceptual design phase can be
highly improved.
The thesis also aims to show that it is possible to merge this goal together with optimization, to
find the best structural solution. This can be very useful in a "pure" engineering problem, such
as a wind turbine, where the architect is not needed. The emphasis will be put on Case Study 4:
Tripod, to show the difference between optimized and non-optimized structure.

Further, it is assumed that the reader has some knowledge of the FEM and the parametric envir-
onment from before. The thesis will, in Chapter 2, go through the background that is deemed
necessary. This is the theory for the FEM, an introduction to the software that is used to create
the plug-in, and the software that is necessary to use the plug-in. Next, in Chapter 3, all the com-
ponents of the plug-in are presented, and a description of how to use them is given. Then the
performance of the triangular element is evaluated before the case studies are presented in Chapter
5. Lastly, there is the discussion and conclusion to summarize the thesis.
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2 Background

2.1 Assumptions

This thesis uses the laws of a simplified world, in which the material is elastic and homogeneous.
Further, the response can be sufficiently calculated using linear theory, which is based on two
assumptions (Bell, 2013)

1. Small displacements - the equilibrium and kinematic compatibility can be based on unde-
formed geometry.

2. Linear elastic material - the relationship between stress and strain is linear and reversible.

2.2 System Stiffness Relation

The System Stiffness Relation
Kr = R (Eq. 2.2.1)

relates the load vector, R, to the displacement vector, r, through the system stiffness matrix, K.

The system stiffness matrix, also called the global stiffness matrix, is constructed from the element
stiffness matrices, while the load vector is a known action, or loading on the structure, derived from
the expression R = Rc −R0. Rc is the part of the external loading that consists of concentrated
nodal forces. R0 is a set of forces applied to the element nodes in order to secure zero end dis-
placements, in the case when the element is subjected to some external action between its end
nodes. In this thesis all external load will be lumped to the corner nodes, and therefore R0 = 0 and
R = Rc.

By inverting Eq.2.2.1 the unknown nodal displacements can be calculated

r = K−1R (Eq. 2.2.2)

2.3 Shape Functions

Shape functions are a set of assumed interpolation functions between the nodal point dofs, through
which the displacements can be interpolated. Hence, the displacements within the element and on
the element borders can be expressed from a set of dofs, v, and an accompanying set of assumed
shape functions, N.

In order to choose fitting shape functions, there are three requirements they should satisfy (Bell,
2013, pp. 161–162)

1. Continuity - The element needs to satisfy Cm−1 continuity along interelement boundaries.
m is the order of differentiation in ∆ in the strain-displacement relation, and the displace-
ments and their derivatives must then be continuous of order up to and including m-1.

2



2. Completeness - Nv must be able to represent arbitrary rigid body motions without producing
stresses in the element. For certain values of the nodal dofs, the shape functions also need to
reproduce a state of constant stress. (This requirement is met if the components of N include
a complete polynomial.)

3. Interpolation requirement

• Ni must yield vi = 1 and v j = 0( j ̸= i) - Valid for all elements

• Ni = 0 for all edges/surfaces in the element that does not contain dof i - Valid only for
2D and 3D, C0 elements

• ∑i Ni = 1 - Valid for all C0 elements

2.4 Thin plate theory

In plate bending, it is distinguished between thick, medium thick, and thin plates. The distinction is
done by looking at the relationship between plate thickness, h, and characteristic length dimension,
L. If h/L > 1/3 it is a thick plate, and it should be treated as a 3D solid. Medium thick plates are
defined between 1/3 > h/L > 1/10. And it is thin plates if h/L < 1/10.

In this thesis, it is assumed that thin plate theory, also known as Kirchhoff theory, is valid. This
means that plane stress applies and shear deformations normal to the plate plane can be neglected,
that is

εs =

[
γyz

γzx

]
= 0 (Eq. 2.4.1)

This is known as Kirchhoff’s hypothesis. Thin plate kinematics can then be written as

ε = εb =

 εx

εy

γxy

=−z

 w,xx

w,yy

2w,xy

=−zcK (Eq. 2.4.2)

where cK is the curvature vector for thin plates

cK =

 w,xx

w,yy

2w,xy

=


∂ 2

∂x2

∂ 2

∂y2

2 ∂ 2

∂x∂y

w = ∆Kw (Eq. 2.4.3)
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2.5 Triangular Shell Elements

2.5.1 Isoparametric formulation

The Cartesian reference system that defines the global coordinates in the model is not suitable
for making shape functions or for numerical integration of irregular shaped elements. The isopa-
rametric formulation makes it possible to map an element with irregular shape in the Cartesian
coordinate system, to an element with straight sides and equal edges in natural coordinates, as
shown in Fig.2.1. Natural coordinates are dimensionless coordinates and are defined from the
following equations.

ξ =
1

2A
[y31x+ x31y+(x3y1 − x1y3)] (Eq. 2.5.1)

η =
1

2A
[y12x+ x21y+(x1y2 − x2y1)] (Eq. 2.5.2)

y

x

1
2

3

(a) Cartesian coordinates

η

ξ

(0,1)

(1,0)(0,0)

1−η

(b) Natural coordinates

Figure 2.1: Coordinates

As an example of a shape function, the shape function of node 3 in a 6-node isoparametric element
is given in Fig.2.2.

N3 = η(2η −1); (Eq. 2.5.3)

1

ξ

η

2

3

6

5

4
η = 0 η = 1

2

1

Figure 2.2: Shape function node 3
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2.5.2 Area Coordinates

Area, or triangular, coordinates are associated with the element shape rather than its size and
orientation in space. They are therefore better suited for the interpolation process and integration
process than cartesian reference coordinates.

The area coordinates can be defined as

ζi =
Ai

A
=

1
2 ziLi
1
2 HiLi

=
zi

Hi
and A =

3

∑
i=1

Ai (Eq. 2.5.4)

with reference to Fig.2.3(a), where i = 1,2,3 is the numbering of the corner nodes, after which the
numbering of the sub-areas and element edges follows.

ζi can be interpreted as the normalized distance between edge i and an arbitrary point. For this to
be valid, the point needs to be within the triangle edges. From the definition, and Fig.2.3(b), it can
be seen that ζi = 0 for edge i and ζi = constant between edge i and node i.

1 2

3

L3

z3

H3

P

A2 A1

A3

edge3

edge1edge2

(a) Definition

y

x
(1,0,0) (0,1,0)

(0,0,1)

(x,y)P(ζ1,ζ2,ζ3)

ζ3 = 0

ζ1 = 0ζ2 = 0
ζ3 = const.

(b) Natural coordinates

Figure 2.3: Area coordinates

It follows from Eq.2.5.4 that
ζ1 +ζ2 +ζ3 = 1 (Eq. 2.5.5)

which means that the three area coordinates correlate to one another, and ζ3 can be expressed from
the other two.

The relation between the area coordinates and the Cartesian coordinates can be expressed as

x = x1ζ1 + x2ζ2 + x3ζ3 (Eq. 2.5.6)

y = y1ζ1 + y2ζ2 + y3ζ3 (Eq. 2.5.7)

which in matrix form is equal to x
y
1

=

x1 x2 x3

y1 y2 y3

1 1 1


ζ1

ζ2

ζ3

 (Eq. 2.5.8)
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This relation is valid for any point within the triangle, and also for any position of the Cartesian
origin. It can be shown that the determinant of this 3x3 matrix is equal to twice the triangle area,
which then leaves the inverse asζ1

ζ2

ζ3

=
1

2A

y23 x32 (x2y3 − x3y2)

y31 x13 (x3y1 − x1y3)

y12 x21 (x1y2 − x2y1)


x

y
1

 (Eq. 2.5.9)

where the notation xi j = xi − x j and yi j = yi − y j is used. For the above expressions to be valid it
is important that the numbering of the nodes is done counter clockwise.

2.5.3 CST - Constant Strain Triangle

In the shell element, the constant strain triangle will represent the membrane forces. The CST
element is the simplest plane stress element with only corner nodes and two dofs per node. The
two dofs, u and v, represent translation in x- and y-direction respectively and are described by a
complete linear polynomial. Fig.2.4 shows the CST element, with its dofs.

1
2

3

u1
u2

u3

v1
v2

v3

v =

[
vx

vy

]
=



u1
u2
u3
v1
v2
v3



Figure 2.4: Degrees of freedom for CST element

In matrix form the displacement field is given as

u =

[
u
v

]
=

[
N0 0
0 N0

][
vx

vy

]
= Nv where N0 =

[
N1 N2 N3

]
=
[
ζ1 ζ2 ζ3

]
(Eq. 2.5.10)

The strain-displacement relationship, for plane stress elements, is

ε = ∆u (Eq. 2.5.11)

Substituting for u, found in Eq.2.5.10, this becomes

ε =

 εx

εy

γxy

=


∂u
∂x
∂v
∂y

∂u
∂y +

∂v
∂x

=


∂N0
∂x 0
0 ∂N0

∂y
∂N0
∂y

∂N0
∂x

[
vx

vy

]
= Bmv (Eq. 2.5.12)
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where the components in the strain-displacement matrix, Bm, are obtained from the relation between
the Cartesian and the area coordinates

∂N0

∂x
=
[

∂ζ1
∂x

∂ζ2
∂x

∂ζ3
∂x

]
=

1
2A

[
y23 y31 y12

]
∂N0

∂y
=
[

∂ζ1
∂y

∂ζ2
∂y

∂ζ3
∂y

]
=

1
2A

[
x32 x13 x21

] (Eq. 2.5.13)

Writing out the strain-displacement matrix, results in

Bm =
1

2A

y23 y31 y12 0 0 0
0 0 0 x32 x13 x21

x32 x13 x21 y23 y31 y12

 (Eq. 2.5.14)

The element stiffness matrix is then expressed as

km =
∫

Ve

BT
mCBmdV (Eq. 2.5.15)

where C is the elasticity matrix

C =
E

1−ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (Eq. 2.5.16)

For an element with constant thickness and matrices Bm and C independent from the element area,
the stiffness matrix can be written as

km = tABT
mCBm (Eq. 2.5.17)

Drilling dof

The drilling dof is an additional dof θz, that can be added to each corner node in the CST element,
as seen in Fig.2.6(b). One motivation behind this is the increased performance without adding
mid-side nodes. The other motivation is to have a stiffness relation in all the global rotations. For
the shell element used in this thesis, the rotational degree of freedom has a place in the element
stiffness matrix. Both, for when the drilling dof is implemented and for when it is not. This is
because when the matrix is transformed and the element is not in the XY-plane, the rotation in θx

and/or θy is going to have a component in the rotation θz. When the drilling dof is not in use, the
space for the drilling dof in the element stiffness matrix is filled with a negligible small stiffness
that cancels itself out because of the way it is implemented. This is to avoid the singularity that
would occur with zero stiffness on the diagonal of the stiffness matrix. In Fig.2.5 the problem
with the inter-element compatibility between two elements 90 degrees to each other is shown.
Without the drilling dof, element 2 can only reproduce a linear displacement field in-plane. The
out-of-plane displacement field for element 1 is of cubic order.
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2

1

w1

u2

Figure 2.5: Displacement fields of two elements 90degree on each other

In Fig.2.6 the membrane element is shown with and without the drilling dof.

2

3

1
u1

u2

u3

v1
v2

v3

(a) Dofs in a regular CST element

2

3

1

θz1

θz2

θz3

u1

u2

u3

v1
v2

v3

(b) CST element with a corner drilling dof

Figure 2.6: Degrees of freedom in membrane elements

2.5.4 DKT - Discrete Kirchhoff Triangle / Stri3

The bending forces in the shell element are represented by the Discrete Kirchhoff Theory Element
using Batoz’s interpolation functions derived in (Batoz et al., 1980). The element has corner nodes
only, with 3 dofs per node. One translational dof w, and two rotational dofs θx and θy.

2

3

1

w1

w2

w3

θx1

θx2

θx3

θy1
θy2

θy3

Figure 2.7: Degrees of freedom for DKT element

8



Shape functions for the DKT element is expressed through natural coordinates ξ and η as

N1 = 2(1−ξ −η)

(
1
2
−ξ −η

)
; N2 = ξ (2ξ −1) ; N3 = η (2η −1)

N4 = 4ξ η ; N5 = 4η (1−ξ −η) ; N6 = 4ξ (1−ξ −η)

(Eq. 2.5.18)

The stiffness matrix for the DKT element is based on the expression for the strain energy, which
consists of two parts; Ub and Us. Ub represent the bending contributions, and Us represent the
transverse shear contributions. For thin plates transverse shear strain and also Us can be neglected
because the contribution is small compared to the bending. The strain energy, that kb is based on,
is therefore

U =
1
2

∫
A

κ
T Dbκdxdy (Eq. 2.5.19)

where Db =
t3

12 C and κ is the three-component vector of curvatures

κ =

 βx,x

βy,y

βx,y +βy,x

 (Eq. 2.5.20)

Rotations βx and βy are derived in (Batoz et al., 1980, pp. 9–10) as

βx = HT
x (ξ ,η)U and βy = HT

y (ξ ,η)U (Eq. 2.5.21)

where Hx and Hy are vectors with 9 components, and U is the nodal dofs

UT =
[
w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3

]
(Eq. 2.5.22)

The components in Hx and Hy are functions of the shape functions in Eq.2.5.18, and the expres-
sions for Hx, Hy, and their derivatives with respect to ξ and η , are derived in Appendix A.

The strain-displacement transformation matrix is

B(ξ ,η) =
1

2A

 y31HT
x,ξ + y12HT

x,η

−x31HT
y,ξ − x12HT

y,η

−x31HT
x,ξ − x12HT

x,η + y31HT
y,ξ + y12HT

y,η

 (Eq. 2.5.23)

where 2A = x31y12 − x12y31.

And the expression for the element stiffness matrix becomes

kb = 2A
∫ 1

0

∫ 1−η

0
BT DbBdξ dη (Eq. 2.5.24)

The integral is solved using Symmetric quadrature for the unit triangle

∫ 1

0

∫ 1−r

0
f (r,s)drds =

n

∑
i=1

f (ri,si)Wi (Eq. 2.5.25)
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where the variables r and s are unit coordinates, which in this case is ξ and η , and W is the weight.
These values are tabulated and can be found in (Cook et al., 2001, p. 267).

2.5.5 Morley triangle

The Morley triangle is a 6-dof element with corner- and midside- nodes. The corner nodes have
one dof, w, which represent the translation normal to the element, while the midside nodes have a
rotational degree of freedom, θ , working along the triangle edge. These rotational dofs are defined
with a direction going from the smaller to the bigger x-value. Morley is the simplest plate bending
element.

1 4

2

5

3

6
w1

w2

w3

θ5

θ4

θ6

Figure 2.8: Degrees of freedom for Morley element

Firstly, the general formulation of kb can be edited. The strain-displacement relation, substituted
with the basic assumption of the displacement field, u, is

ε = ∆u = ∆(Nv) = ∆Nv = Bv (Eq. 2.5.26)

From Eq.2.4.2 in the thin plate theory the bending strains are given by

εb =

εb
x

εb
y

γb
xy

=−zBKvb (Eq. 2.5.27)

Putting Eq.2.5.26 = Eq.2.6.7 gives B = −zBK , and the expression for the stiffness matrix can be
derived as

kb =
∫

Ve

BT CBdV =
∫ h/2

−h/2

∫
A
(−zBT

K)C(−zBK)dzdA =
1
12

∫
A

h3BT
KCBKdA (Eq. 2.5.28)

One way to obtain the element stiffness matrix is through area coordinates and indirect interpol-
ation. With six dofs, the shape functions comprise a complete quadratic polynomial in x and y,
which in area coordinates is equivalent to a homogeneous polynomial. Therefore

w =
[
ζ 2

1 ζ 2
2 ζ 2

3 ζ1ζ2 ζ2ζ3 ζ3ζ1

]
q = Nqq (Eq. 2.5.29)
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BK relates the Kirchhoff curvature vector to the nodal displacements v, and by putting the Morley
displacement field, w, in Eq.2.5.29 into Eq.2.4.3, the formulation for BK is found

cK = ∆Kw = ∆KNqq = ∆KNqA−1v ⇒ BK = ∆KNqA−1 (Eq. 2.5.30)

A is the matrix that relates v to q; v = Aq. The procedure of assembling A can be found in (Bell,
2013, pp. 464–467).

There is one last thing to sort out before assembling the stiffness matrix for the Morley element.
In the expression for BK in Eq.2.5.30, the operator ∆K is given in Cartesian coordinates while the
shape functions Nq are given in area coordinates. This is solved through the use of the relation
between area- and Cartesian coordinates

∆K =


∂ 2

∂x2

∂ 2

∂y2

2 ∂ 2

∂x∂y

=
1

4A2

 y2
23 y2

31 2y31y23

x2
32 x2

13 2x13x32

2x32y23 2x13y31 2(x13y23 + x32y31)




∂ 2

∂ζ 2
1

∂ 2

∂ζ 2
2

∂ 2

∂ζ1∂ζ2

= H∆ζ (Eq. 2.5.31)

Matrix BK is then given as

BK = ∆KNqA−1 = H∆ζ NqA−1 = HBqA−1 (Eq. 2.5.32)

where Bq = ∆ζ Nq is easily found to be

Bq =

2 0 2 0 0 −2
0 2 2 0 −2 0
0 0 2 1 −1 −1

 (Eq. 2.5.33)

The expression for the element stiffness matrix finally becomes

kb =
1
12

∫
A

h3BT
KCBKdA =

1
12

∫
A

h3A−T BT
q HT CHBqA−1dA (Eq. 2.5.34)
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2.6 Strains and Stresses

Stresses in the CST element:

Strains in the CST element are expressed as

εm =

εm
x

εm
y

γm
xy

= Bmvm (Eq. 2.6.1)

From the stress-strain relation for plane stress elements

σ =

σ11

σ22

σ12

=

C11 C12 C13

C21 C22 C23

C31 C32 C33


ε11

ε22

ε12

= Cε (Eq. 2.6.2)

the membrane stresses are

σm =

σm
x

σm
y

τm
xy

=
E

1−ν2

1 ν 0
ν 1 0
0 0 1−ν

2


εm

x

εm
y

εm
xy

 (Eq. 2.6.3)

Stresses in the DKT element:

The DKT bending strains, which are linear through the thickness, can be expressed as

εb = zκ (Eq. 2.6.4)

As in thin plate theory, the stresses are defined with the assumption of plane stress. DKT bending
stresses are therefore

σb =

σb
x

σb
y

τb
xy

= zDκ = z

 D11 D12 D13

D22 D23

(sym) D33

κ (Eq. 2.6.5)

where Di j = Ci j −
Ci3−C3 j

C33
and Ci j is the components in the elasticity matrix.

κ can be derived from Eq.2.5.20 and Eq.2.5.21 as

κ = BU (Eq. 2.6.6)

where B is the strain-displacement transformation matrix from Eq.2.5.23 and U are the nodal dofs
from Eq.2.5.22.

Stresses in the Morley element:
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As previously stated, the bending strains in the Morley element are

εb =

εb
x

εb
y

γb
xy

=−zBKvb (Eq. 2.6.7)

With the assumption of thin plates, where plane stress applies, the Morley stresses can be found
from the relation

σb =

σb
x

σb
y

τb
xy

=
E

1−ν2

1 ν 0
ν 1 0
0 0 1−ν

2


εb

x

εb
y

εb
xy

 (Eq. 2.6.8)

Von Mises Stresses

General von Mises stress state is given by:

σv =

√
1
2
[(σx −σy)2 +(σy −σz)2 +(σz −σx)2]+3

(
τ2

xy + τ2
yz + τ2

zx
)

(Eq. 2.6.9)

With the assumptions of plane stress, where σz = 0 and τzx = τyz = 0

σv =
√

σ2
x −σxσy +σ2

y +3τ2
xy (Eq. 2.6.10)

Moments and Axial Force

From plate theory, the stresses, as a function of the curvatures, are given by

σx =− zE
1−ν2

(
∂ 2w
∂x2 +ν

∂ 2w
∂y2

)
σy =− zE

1−ν2

(
∂ 2w
∂y2 +ν

∂ 2w
∂x2

)
τxy =− zE

1−ν2 (1−ν)
∂ 2w
∂x∂y

(Eq. 2.6.11)

If the curvatures are eliminated this gives

σx =
Mx

I
z ; σy =

My

I
z ; τxy =

Mxy

I
z where I =

h3

12
(Eq. 2.6.12)

and the moments can then be written asM11

M22

M12

=

Mx

My

Mxy

=
t2

6
σb (Eq. 2.6.13)
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The axial force, which is constant over the element thickness, is expressed asN11

N22

N12

=

Nx

Ny

Nxy

= tσm (Eq. 2.6.14)

2.7 Transformation of Stiffness Matrix

To be able to use 2D shell elements in 3D space, each element requires a local coordinate system in
the plane of the element. This local coordinate system is used to compute local element stiffness
properties. After the stiffness of the element is calculated in the local system, the directional
stiffness is transformed to the corresponding directions in the global system.

X

Y

Z

Z′

X ′

Y ′

Figure 2.9: Transformation

The following equations shows the derivation of the transformation matrix:

X ′ = ⃗unitY × Z⃗′, Y ′ = Z⃗′× X⃗ ′ (Eq. 2.7.1)

t =

X ′.X X ′.Y X ′.Z
Y ′.X Y ′.Y Y ′.Z
Z′.X Z′.Y Z′.Z

 (Eq. 2.7.2)

To transform the local stiffness matrix to global we need to assemble a transformation matrix that
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transforms the local degrees of freedom to the global.

[
w1 w2 w3 θx1 ... v3 θz1 θz2 θz3

]T
= a

X ′

Y ′

Z′

 (Eq. 2.7.3)

Parameter a is an 18x3 matrix containing mostly zeros, but filled with the number 1 on the locations
that connects the degrees of freedom in the global system to their direction in the local system.
The transformation matrix that is going to transform the stiffness matrix is made in two parts. One
part for the translations and one for the rotations.

ai,2 = 1, ai+9,0 = 1, ai+12,1 = 1 Tt =
2

∑
i=0

ai ∗ t ∗aT
i (Eq. 2.7.4)

ai+3,0 = 1, ai+6,1 = 1, ai+15,2 = 1 Tr =
2

∑
i=0

ai ∗ t ∗aT
i (Eq. 2.7.5)

This results in an 18x18 T-matrix
T = Tt +Tr (Eq. 2.7.6)

The assembly of T can be viewed in Appendix D. After the element stiffness matrix has been
transformed from local to global coordinates, the global stiffness matrix can be assembled.

K = T T

[
Kb 0
0 Km

]
T (Eq. 2.7.7)

The process of constructing the transformation matrix can be found in Lst.6

1 Matrix<double> T_matrix(List<Point3d> pt, Vector3d n)
2 {
3 Vector3d unitY = new Vector3d(0, 1, 0);
4 Vector3d R1 = Vector3d.CrossProduct(unitY, n);
5 if (n.Z == 0 && n.X == 0)
6 {R1 = new Vector3d(1, 0, 0);}
7 R1.Unitize();
8 Vector3d R2 = Vector3d.CrossProduct(n, R1);
9 R2.Unitize();

10 var T = DenseMatrix.OfArray(new double[,]
11 {{ R1.X,R1.Y,R1.Z},
12 { R2.X,R2.Y,R2.Z},
13 { n.X,n.Y,n.Z}});
14 return T;
15 }

Listing 1: Caption
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2.8 Buckling/LPB stability eigenproblem

For thin plates, buckling can be a problem and needs to be taken into account. In this thesis it is
only used linear analysis and the eigenproblem is then solved through an eigenstability analysis
procedure called linearized prebuckling (LPB). Linearized prebuckling neglects the prebuckling
displacements, and the classical buckling eigenproblem is then derived from nonlinear equilibrium
equations that are partly linearized (Felippa, 2001).

Eigenvalues are then found by solving this global eigenvalue problem

(KM +λKG)v = 0 (Eq. 2.8.1)

KM is the material stiffness matrix, which is assembled through the FEM, and KG is the geometric
stiffness matrix, which is linearly dependent on the eigenvalues λ . Geometric stiffness can be
established from

KG =
1
2
(
FnmG+GT FT

nm
)

(Eq. 2.8.2)

where

Fnm =


Spin(n1)

Spin(m1)
...

Spin(nN)

Spin(mN)

 (Eq. 2.8.3)

Here N is equal to the number of nodes in the element, and n and m represent the translation and
rotation respectively. n and m are derived from the internal forces

fe =


f1
...

f18

= keve (Eq. 2.8.4)

where ve is the 18x1 element displacement vector also seen in Eq.2.7.5

ve =
[
w θx θy u v θz

]T
(Eq. 2.8.5)

Hence, the expressions for n and m are

ni =

n1

n2

n3

=

 fi+9

fi+12

fi

 and mi =

m1

m2

m3

=

 fi+3

fi+6

fi+15

 (Eq. 2.8.6)

which is then used in the Spin-operator, here shown for ni

Spin(ni) =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 (Eq. 2.8.7)
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The rotation gradient matrix G is
G =

[
G1 G2 G3

]
(Eq. 2.8.8)

where Gi, i = 1,2,3, is the contributions from each node, given as

Gi =
1

2A

 0 0 xk j 0 0 0
0 0 yk j 0 0 0

−1
2 xk j −1

2 yk j 0 0 0

 (Eq. 2.8.9)

2.9 Optimization

The purpose of optimization is to find the best possible solution, based on the parameter(s) it
optimizes for. What it optimizes for can be minimum deformation, minimum material, or maximal
utilization. It can also be a combination of these. The difference between this is single- vs.
multi-objective optimization. Single-objective optimization (SOO) chooses one thing it optimizes
towards, while multi-objective optimization (MOO) can optimize for several goals at once. In
order to get a good result in a MOO it is beneficial to have contradictory goals. For example
minimize deformation and material, or minimize deformation and maximize utilization.

In this thesis there are two different types of optimization that are used;

• Genetic Algorithm Optimization

A genetic algorithm is a method for solving optimization problems based on natural selection
(Yang, 2014). A first generation is created, which contains a population of solutions. Just like
evolutionary theory, all these solutions can be mutated and evolved towards better solutions. This
will then constitute the next generation, with a new population, and so it continues until a satis-
factory solution is achieved or the maximum number of generations has been produced.

As well as having parameter(s) it optimizes for, Genetic Optimization has parameter(s) it optim-
izes with. This can be 1 or more input parameter(s), and they control for example the position
of a point along a line or the height of a beam. This is what makes it possible to create different
solutions and alter them to get the optimized solution.

• Topology Optimization

Topology Optimization (TO) can attain any shape within the given geometric boundaries and is
not bound by the restrictions of any input parameters. Rather than creating solutions and evolving
these, Topology Optimization starts with a complete structure and removes parts that have low, or
no utilization. Hence, TO can only be optimized for one parameter, and it achieves an optimized
solution much faster. How this kind of optimization works, can be better seen in the case study in
Sec.5.2.
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2.10 Software

The software that is necessary in order to use the plug-in created in this thesis, is Rhinoceros 7 and
its add-on Grasshopper. To create the plug-in, the programming languages C# and C++ have been
used within the Visual Studio software.

2.10.1 AAD Software

Rhinoceros 7

Rhinoceros 7, also known as Rhino, is a computer-aided design (CAD) application that can make
complex geometry in both 2D and 3D. The geometry can be drawn manually in Rhino, or through
its add-on Grasshopper, or it can be imported from other CAD software. The first possibility makes
it less adaptable to change, whereas the second can be highly parametric. Using Grasshopper also
turns it into an Algorithms-Aided Design (AAD) environment.

Grasshopper

Grasshopper is a visual programming language and environment where different parameters and
components can be connected together to create desired geometry. The parameters, which are
either a number or a Boolean value, can easily be changed and the geometry will then be updated
in real time. Fig.2.10 shows an example of how components and parameters can be wired together
in Grasshopper to create a pipe portrayed in Rhino.

Figure 2.10: Grasshopper and Rhino viewport

The components can either be found by double left-clicking somewhere in the Grasshopper canvas
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and searching for the name of the component, or by looking through the tabs in the top band. Each
tab consists of differently named panels, which again consist of different components.

The software also allows additional packages or plug-ins to be added. These packages can be
downloaded from the website food4rhino, or other external sources and must be placed in the cor-
rect folder. By clicking f ile > SpecialFolders > ComponentsFolder in Grasshopper the correct
folder opens up, from which Grasshopper fetches the package.

Figure 2.11: Components folder - for placing the package

After restarting Rhino and Grasshopper, the plug-in shows up in Grasshopper as its own tab as
seen in Fig.2.12. A similar approach can be done for the ShellFiniteElement plug-in created in
this thesis.

Octopus

Octopus is a genetic Multi-Objective-Optimization tool and is one of the additional packages that
can be downloaded from food4Rhino. It can optimize the geometry for several goals at once, as
explained in Sec.2.9, and produces solutions varying between the extremes of each of these goals.
(‘Octopus’, 2012)

Figure 2.12: Octopus package
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2.10.2 Programming Software

Visual Studio and C#

Visual Studio is an integrated development environment (IDE) used to program and develop dif-
ferent types of computer programs. It supports several programming languages, like C# and C++,
and there are many predefined project templates available to choose from. One of them is the
GrasshopperAssembly f orRhino7(C#), which in this thesis is used to create the ShellFiniteEle-
ment plug-in.

In this template, it is possible to add items such as Empty Grasshopper Component for Rhino 7
(C#) and Class. The former opens a public class setup meant for creating the component script.
The latter opens an internal class where important properties can be prescribed and saved. This
internal class makes it easy for all components to have access to much-used properties.

The classes used in this thesis are ElementClass, ModelClass, LoadClass, and SupportClass. Ele-
mentClass holds information about the material (E-module, Poisson’s ratio, and thickness) and the
element (nodes, area, transformation, and so on). The ModelClass holds the model information,
such as the stiffness matrix, load matrix, and displacements. In the SupportClass the boolean val-
ues of the translation and rotation are saved, and in LoadClass the name, index, points, and vector
are saved.

C++ and libraries

For the linear algebra with dense matrices at the element level, Math.NET numerics is used.
Math.NET is accessible through NuGet packages, is unfriendly, and has thorough documentation.

Therefore, optimized libraries needed to be used to solve the large sparse systems. To solve the
linear system the CSparse package was implemented. This package is made for C# and is available
for download in NuGet packages in Visual Studio.

Most of the coding in this thesis has happened in C#, but to solve the eigenproblem, which is done
in Solver II, C++ has been used. The advantage of C++ is that there are available libraries, like
Spectra, for fast calculation of large sparse eigenvalue problems. To solve the buckling problem it
was then beneficial to implement Spectra in the thesis.
To Use C++ libraries in C# code a wrapper needed to be implemented. A wrapper, implemented
in this thesis, is a class in C++ that makes use of the library Eigen and Spectra and can be accessed
from C#. Eigen is a C++ library for linear algebra and is the foundation of spectra. The wrapper
will be further discussed in Solver II.
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3 Shell Calculation Software

The plug-in created in this thesis is a shell calculation software consisting of 17 components. The
external input that is needed is a meshed geometry and material properties. Then the software will
assign the element properties, do the FEA, and give the results in terms of deformations, stresses,
and forces. Most of the components can be seen in the figure below, and all 17 components are
further explained in the coming subsections.

Figure 3.1: Presentation of some components in the Shell Calculation Software plug-in
(temporary photo)

3.1 ShellElement

Inputs:
Meshed geometry
Shell thickness
E-module
Poisson’s ratio
Tolerance
CleanMesh

Loop mesh
count

Loop mesh
faces count

Takes the material
properties from
the mesh and as-
sign it to the ele-
ment.

Add unique nodes
to a nodes list.

Gives the element
new node indices
based on the new
unique nodes.

Output:
List of Element
Classes

Figure 3.2: Flow Chart of the ShellElement component

The ShellElement component constructs the elements with their connectivity and with material
properties. As input the component takes a triangulated mesh, shell thickness [mm], as well as
material properties E-module [MPa] and Poisson’s ratio []. The three latter expect number values
as input. As does the Tolerance. CleanMesh expects a boolean input value, while the mesh input
expects a mesh. Currently, the software only works for isotropic materials, and for a constant
thickness.

For the meshing components that are used in this thesis meshes that intersect will have a duplicate
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of vertices, and therefore duplicate indices, for the vertices at mutual edges. To account for this
the component makes a new node list of unique nodes, where it assigns new indices to each of the
element classes.

When the Tolerance input is 0 or doesn’t have any value, the component uses a dictionary to
give indices and assign the same index to vertices that have the same location. The dictionary is
later used in AssembleModel to assign load and boundary conditions to the right nodes. When a
tolerance is added, the component loops through all the points and checks if the points are within a
tolerance value distance of each other, and assign the same index if this is the case. This tolerance
is also used to check the index for loads and support conditions in AssembleModel.

CleanMesh is by default true and the tolerance or dictionary is used to assign new indices. When
the mesh is welded and doesn’t have duplicating vertices, the mesh can be used directly. This input
can then be set to false. The component then only assigns the original indices of the mesh to the
elements. This is the fastest approach. To avoid problems with the tolerance of the loaded nodes
and boundary conditions, a combination of both tolerance and setting the input for CleanMesh to
false can be used.

3.2 Support

Inputs:
Points
UX
UY
UZ
RX
RY
RZ

Add points
with support
conditions
to a support-
Points list.

Output:
List of Sup-
port Classes

Figure 3.3: Flow Chart of the Supports component

This component turns the inputted points into support points by giving them a boundary condition.
The first input for this component is all the points that are going to be support points. Then the
translations (UX, UY, UZ) and rotations (RX, RY, RZ) require a boolean value as input so that they
either are locked in that direction or not. This component prescribes the same support condition
to all the points and outputs a list of Support Classes.

It is possible to have different support conditions in the same geometry by adding more Support
components and prescribing wanted conditions to wanted points. Then the output from all the
Support components can be merged into one list.
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3.3 Point Loads

Inputs:
Points
Vector

Loop points

Assigns load
to point and
adds it to
loads list

Output:
List of Load
Classes

Figure 3.4: Flow Chart of the PointLoads component

The point load component input is a list of points and a scaled vector [kN]. The vector input
expects a number value. A negative value will give a load pointing downward, and the opposite
for a positive value. The component loops through the points and assigns the load and its location
to load classes.

3.4 Constant Line Load

Inputs:
Points
Vector

Loop points
count

Assign the right
load value to the
right point and adds
it to the loads list.

Output:
List of Load
Classes

Figure 3.5: Flow Chart of the LineLoad component

Input for the ConstantLineLoad component is a list of points and a scaled vector [kN/m]. To get
the correct distribution of the loads, the points need to be sorted along the line they lay on, with
the first point at the start of the line and the last point at the end of the line. The component then
loops through all the points and calculates the load for each node. This calculation is done by
multiplying the distributed load with half of the distance from the previous node plus half of the
distance to the next node. The loads and their location are then assigned to load classes which are
then outputted through a list.

3.5 Varying Line Load

Inputs:
Points
Vector
q1
q2
q3

Measure dis-
tance between
the first and
the last point
on the line.

Loop points
count

Assign the right load
value to the right point
and adds it to the
loads list.

Output:
List of Load
Classes

Figure 3.6: Flow Chart of the VarLineLoad component

The input in the VarLineLoad component is a list of points, a unit vector, and three magnitudes q1,
q2, and q3 [kN/m]. Each of the magnitudes corresponds to the value at the start, middle, and end
of the line load respectively. The component then loops through all the points and calculates the
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total distance between the nodes. Same as in the previous component, the points need to be sorted
along the line they lay on. The variation along the line load is given by quadratic interpolation.
This interpolation formula is shown in Appendix C. The load is assigned to the nodes with the
average magnitude of half the distance to the previous node plus half the distance to the next,
multiplied by the load-carrying distance of the node. This load-carrying area is marked with red
in Fig.3.7. The loads and their location are then assigned to load classes which are then outputted
through a list.

q1

q3

q2 Load area

Node

Figure 3.7: How the varying line load is distributed in the nodes

3.6 Surface Load

Inputs:
Mesh
Vector
Projection

Loop
elements

Assigns load
to nodes and
adds it to
loads list

Output:
List of Load
Classes

Figure 3.8: Flow Chart of the SurfaceLoad component

SurfaceLoad component’s input is a mesh, one scaled vector [kN/m2], and a text parameter that
defines the projection. Projection needs the input "Global", "Local" or "Projected". The "Global"
projection uses the whole area of the element and the load direction assigned by the vector. By
choosing "Projected" the projected area is used to calculate the load. This projected area is the
projection in global Z. The last option, "Local" projection uses the magnitude of the input vector,
multiplies it with the whole area of the element, and applies it normally to each element’s surface.
The component then loops through all the elements of the mesh and lumps load to the nodes based
on the surface area. Each node carries 1/3 of the element’s surface load.
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3.7 AssembleModel

Inputs:
Element Classes
Support Classes
Loads Classes
Scale

Add the global index of the
loaded nodes and the sup-
ported nodes to LoadClass
and SupportClass respect-
ively

Assemble global stiff-
ness matrix - by using
the following loop:

Loop
elements

Establish membrane
stiffness relation in
Eq.2.5.17

Establish bending
stiffness relation in
Eq.2.5.24

Establish the trans-
formation matrix

Transform the element stiffness
to the global system

Place element stiffness
matrix in global K

Establish load matrix
R

Make pinned display (spheres) for
the supports, and load display (lines)
for the loads

Output:
Model Classes

Figure 3.9: Flow Chart of the AssembleModel component

AssembleModel is a component with a lot of tasks, calculating most of the FEM equations. The
component input is element classes, support classes, load classes, and scale. The element classes
come from the ShellElement output, the support classes come from the Support output, and the
load classes is taken from the output of either of the load components. The scale expects a number
value and changes the visual output of the load, but not the load value itself. This is further
elaborated on in DeconstructModel.

The element classes are used to establish all the stiffness relations. Membrane stiffness matrix,
Km, and bending stiffness, Kb, are calculated before they are transformed to the global system.
Then the global stiffness matrix, K, for the whole structure is assembled. The code for this can be
seen in Lst.2.

Relation to support conditions are established and the spheres that indicate supports are made and
written into the model class. These can be extracted with the DeconstructModel component. The
last operation is a loop to extract the load and its index from LoadClass, in order to establish the
load matrix, R. The load matrix, as well as the load symbols, are then written to the ModelClass.
The method for creating the load matrix can be seen in Lst.3.
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1 // Method
2 void PlaceInGlobalK(Matrix<double> K, ElementClass element, List<int> supportIndex,

CoordinateStorage<double> coo)↪→

3 {
4 for (int i = 0; i < element.nodeVertices.Count; i++)
5 {
6 if (!supportIndex.Contains(element.nodeVertices[i]))
7 {for (int j = 0; j < element.nodeVertices.Count; j++)
8 {
9 if (!supportIndex.Contains(element.nodeVertices[j]))

10 {coo.At(element.nodeVertices[i], element.nodeVertices[j], K[i, j]);}
11 }}
12 else
13 {coo.At(element.nodeVertices[i], element.nodeVertices[i], 1);}
14 }
15 }

Listing 2: Assembling the global stiffness matrix

1 void makeR(Matrix<double> R, List<LoadClass> loadclasses, ModelClass model)
2 {
3 int n = model.indexOfXDisp;
4 int h = model.indexOfYDisp;
5 int k = elms[0].allNodes.Count;
6 for (int i = 0; i < loadclasses.Count; i++)
7 {
8 double xLoad = loadclasses[i].loadVec.X;
9 double yLoad = loadclasses[i].loadVec.Y;

10 double zLoad = loadclasses[i].loadVec.Z;
11 int index = loadclasses[i].index;
12 if (!model.supportIndexX.Contains(index + n))
13 { R[index+n, 0] = R[index+n, 0]+ xLoad;}
14 if (!model.supportIndexY.Contains(index + h))
15 { R[index+k+n, 0] = R[index + k +n, 0]+ yLoad;}
16 if (!model.supportIndexZ.Contains(index))
17 { R[index, 0] = R[index, 0] + zLoad;}
18 }
19 }

Listing 3: Constructing the load matrix
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3.8 Solver

Inputs:
Model Class

Solve the System Stiffness
Relation.

Output:
Model Class

Figure 3.10: Flow Chart of the Solver component

The Solver has the task of solving the System Stiffness Relation in Eq.2.2.2. The input required
is the Model Class output from the AssembleModel component, which provides all the system
information. The Solver output is the same Model Class but also includes the nodal displacements.

In the listing below, the linear solver used is Cholesky decomposition from the CSparse library.
The method placeInList() in line 13 is a method that writes the deformations into the model class.

1 // SolveInstance
2 ModelClass model = new ModelClass();
3 DA.GetData(0,ref model);
4

5 var R_S = model.R_S;
6 var coo = model.coo;
7 var A = SparseMatrix.OfIndexed(coo);
8 var Chol = SparseCholesky.Create(A, ColumnOrdering.MinimumDegreeAtPlusA);
9 var CS_u = Vector.Create(R_S.RowCount, 0.0);

10 var CS_R = R_S.Column(0).ToArray();
11 Chol.Solve(CS_R, CS_u);
12 var def = LA.Double.DenseMatrix.OfColumnArrays(CS_u);
13 placeInList(model, def);
14

15 DA.SetData(0, model);

Listing 4: Solving the system stiffness relation

3.9 DeconstructModel

Inputs:
Model Class

Deconstruct
model class

Output:
Support
Load
Nodes
SizeOfK

Figure 3.11: Flow Chart of the DeconstructModel component

DeconstructModel takes in a Model Class and deconstructs the information in order to easily
visualize where the supports are and how the load is applied. The component also outputs the
nodes and the size of the global stiffness matrix. As mentioned in AssembleModel the supports
are indicated with spheres around the nodes. By connecting a "brep" component to the Support
output, the spheres will show up. The load output can be connected to a "line" component and will
then show up as lines in the nodes. The Scale input in AssembleModel decides how long these
lines are. If the Nodes output is connected to a "Point List" component this will show all the mesh
vertices.
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3.10 Deconstruct

Inputs:
Element Class

Assign list off
all nodes to
output

Output:
List of unique
nodes

Figure 3.12: Flow Chart of the Deconstruct component

This component deconstructs Element Class from the ShellElement component. It then outputs
the list with all the nodes. This gives the possibility to get a list of the unique nodes before
AssambleModel.

3.11 DeconstructLoad

Inputs:
List of Load
Classes

Separate the
load vectors
and the points

Output:
Points
LoadVector

Figure 3.13: Flow Chart of the Deconstruct component

The input of this component is a list of Load Classes from any of the load components. It then
deconstructs this list into two; one list with the loaded nodes and one list with the load vectors.

3.12 DeformedModel

Inputs:
Model Class
Scale
Def

Reads Def
input

Loop points
count

Adds the deformed
points to a list
Gives mesh new ver-
tices and faces

Puts the wanted
output into a
mesh list

Gives the mesh col-
our based on the
values in the list

Output:
DeformedModel
Colours
Tag

Figure 3.14: Flow Chart of the DeformedModel component

DeformedModel component sorts the nodal displacements into u-, v-, and w-deformations and
outputs a deformed mesh. Model Class takes the input from the Solver output to get all the model
information. Scale needs a number value as input and scales the deformed shape to show zero or
more deformations. The last input Def needs a string input "magnitude", "u", "v" or "w", which
chooses what the output is. "Magnitude" gives the length of the global deformation. In other
words, the length of the vector u+v+w. "u" gives the deformations in the u-direction, equal to the
global x-direction. And similarly for "v" (global y) and "w" (global z).

Output DeformedModel gives a mesh with colours that vary depending on the value in the element.
Colours outputs a list of five ARGB colours and Tag outputs a list of five values, varying between
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the smallest and the biggest value. The two latter outputs can be connected to an already exist-
ing Grasshopper component, Legend. This component displays what value the different colours
represent, making it easier to read the coloured mesh.

3.13 Stresses

Inputs:
Model Class
Section
Type
Method

Reads Section
input

Loop
elements

Calculates moments,
axial forces and
stresses

Reads Type
input

Puts the wanted
output into an
outputlist

Gives the mesh
colour based on
the values in the
outputlist

Outputs:
Values
Plot
Colours
Tag
Model Class

Figure 3.15: Flow Chart of the Stresses component

Stresses, moments, and axial forces can be calculated in the Stresses component. The component
has four input parameters, where the Model Class input is the same as the output from the Solver.
Section require text input "top", "middle", "bottom" or "max", Type require text input "S" (von
Mises stress), "S11", "S22", "S12" "M11", "M22", "M12", "N11", "N22" or "N12", and Method
require a boolean value.

The boolean value inputted into Method decides how the stresses are sampled. By default the
input is true and the stress is given by a linear interpolation inside the element. For node 3 this
is displayed with the red line in Fig.3.16. The value is given by the average value of the two
closest stress sampling points plus the difference between that average value and the value in the
last sampling point. By changing the input to false the average value of the two closest sampling
points is lumped to the node.

1

ξ

η

2

3

6

5

4

Stress field
Stress value in node 3 for linear stress

Stress value in node 3 for lumping stress

Node
Stress sampling point

Figure 3.16: Stress output

Section input chooses where in the cross-section the component calculates the stress values. Input
"max" is only connected to the von Mises stress, "S", meaning it asks for the maximum value of
these stresses. To find the max value the component loops through all the elements and checks if
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the max value is in the top or the bottom of the cross-section/plate thickness. The max value for
each element is then added to a vonMisesMax list, which is then the outputted values.

The strings that can be inputted into Type, are the possible data outputs of the component. Values
output a list with the values in each element. Plot outputs a mesh with colours that vary depend-
ing on the value in the element. Colours and Tag are the same outputs as in DeformedModel
component.

Stresses are calculated from the equations 2.6.3 and 2.6.5. The value for the stress is calculated at
the middle of the element’s sides, indicated with triangles in Fig.3.16.

Moments and axial forces are calculated from Eq.2.6.13 and Eq.2.6.14 respectively. The numbers
11 represent x, 22 represent y, and 12 represent xy. For the stresses, S12 equals the shear stresses
τxy.

3.14 AverageStress

Inputs:
Model Class
Values

Calculates the average
stress

Output:
Average value

Figure 3.17: Flow Chart of the AverageStress component

This component calculates the weighted, average stress for the geometry. Model Class is obtained
from the Solver, and the Values are from the Stresses output with the same name. The calculation
is done using the equation:

σ =
∑

n
i=1 σi ∗Ai

∑
n
i=1 Ai

(Eq. 3.14.1)

The summations happens over the number of elements, and the component output is them the
average stress.

3.15 TopolpogyOptimization

Inputs:
Model Class
Preserve
Rate

Sort list and removes
the elements with the
lowes stress

Clean Mesh
Output:
Mesh

Figure 3.18: Flow Chart of the Optimization component

This component is a simple topology optimization algorithm. ModelClass input comes from the
Solver output. The Rate is an integer parameter that decides how many elements that are going to
be removed each time the component runs, and Preserve input is a list of integers that correspond
to the index of the elements that are going to be preserved by the algorithm.

The algorithm works by iteratively removing the least utilized elements in the model after each
analysis. To avoid numerical problems all the meshes with less than 10 faces are removed.
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The component works together with a looping component called Anemone, as seen in Fig.3.19.
Anemone takes care of the storing of the meshes for each iteration and runs the Solver and ??
component the desired amount of times.

Fig.3.19 shows how the green group with anemone components is connected to the purple group
of the Shell Calculation Components with the Optimization component in the middle. The first
input to Anemone’s "Loop Start" component is the original mesh. The second is the iteration
count.

Figure 3.19: Overview

3.16 Solver II

Inputs:
Model Class

Solve the eigen-
problem

Assign eigenvalues and
eigenvectors to ModelClass

Output:
Model Class
List with ei-
genvalues

Figure 3.20: Flow Chart of the Solver II component

Solver II solves the eigenproblem from Eq.2.8.1. It takes its input from the Solver output and
outputs an updated ModelClass, as well as a list of eigenvalues.

The listing under is to show how the C++ wrapper class is used in the C# code. Before this listing,
coordinate storage is used to assemble the global K and KG is written inn into three arrays each,
to be able to transfer it to C++. One array for the Row Indices, one for Column Indices, and the
last for the values. "Unsafe", seen at the top of the listing, is used to assign a pointer to each of the
arrays that can be read in C++. "Eig.getEigenvalues()" needs to be called to be able to access the
return arrays. The loop afterwords, is used to convert from the pointer back to a list that is used
later in the BucklingMode component.
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1 unsafe
2 {
3 fixed (int* KRowIndice = &KRowIndices[0], KColumnIndice = &KColumnIndices[0],

KGRowIndice = &KGRowIndices[0], KGColumnIndice = &KGColumnIndices[0])↪→

4 fixed (double* KGValue = &KGValues[0], KValue = &KValues[0])
5 {
6 CppWrapperSpectra.CppWrapperSpectraClass Eig = new

CppWrapperSpectra.CppWrapperSpectraClass(KRowIndice, KColumnIndice, KValue,
KValues.Count(),

↪→

↪→

7 KGRowIndice, KGColumnIndice, KGValue, KGValues.Count(), k, 3, 10);
8 Eig.getEigenValues();
9 for (int i = 0; i < 3; i++)

10 {
11 firstmodes.Add(Eig.eigenValues[2-i]);
12 }
13 for (int i = 0; i < k; i++)
14 {
15 Eigenvec1.Add(Eig.eigenVector3[i]);
16 Eigenvec2.Add(Eig.eigenVector2[i]);
17 Eigenvec3.Add(Eig.eigenVector1[i]);
18 }
19 }
20 }

Listing 5: Using the C++ wrapper

The following listing shows how the CppWrapper assembles the Eigen Sparse matrices from ar-
rays and solves the Eigenvalue problem using Spectra (‘Class Template Reference’, n.d.). The
solver used is the Spectra SymGeigsShiftSolver with Buckling mode. The advantage of this solver
is that it allows for a specified number of eigenvalues to be computed. The advantage of the buck-
ling mode is that KG does not need to be positive definite, which it actually isn’t for most of the
buckling problems calculated in this thesis. Buckling mode requests the lowest buckling factor of
interest. In this case, it is set to 0.0001 and it will exclude buckling factors under this. If this value
is set too low, the solver extracts noise as the first buckling factors.
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1 CppWrapperSpectra::CppWrapperSpectraClass::CppWrapperSpectraClass(int* KRowIndices,
int*KColumnIndeces, double* KValues, int KValueCount, int* KGRowIndeces, int*
KGColumnIndices, double* KGValues, int KGValueCount, int KCount, int Eigenvalues, int
ncv)

↪→

↪→

↪→

2 {
3 int n = KCount;
4 typedef Eigen::Triplet<double> T;
5 typedef Eigen::Triplet<double> TG;
6 std::vector<T> tripletList;
7 std::vector<T> tripletListG;
8 Eigen::SparseMatrix<double> K(n, n);
9 Eigen::SparseMatrix<double> KG(n, n);

10 for (int i = 0; i < KValueCount; i++)
11 {tripletList.push_back(T(KRowIndices[i], KColumnIndeces[i], KValues[i]));}
12 for (int i = 0; i < KGValueCount; i++)
13 {tripletListG.push_back(TG(KGRowIndeces[i], KGColumnIndices[i], KGValues[i])); }
14 K.setFromTriplets(tripletList.begin(), tripletList.end());
15 KG.setFromTriplets(tripletListG.begin(), tripletListG.end());
16 using OpType = Spectra::SymShiftInvert<double, Eigen::Sparse, Eigen::Sparse>;
17 using BOpType = Spectra::SparseSymMatProd<double>;
18 OpType op(K, KG);
19 BOpType Bop(K);
20 Spectra::SymGEigsShiftSolver<OpType, BOpType, Spectra::GEigsMode::Buckling>
21 geigs(op, Bop, Eigenvalues, ncv, 0.0001);
22 geigs.init();
23 int nconv = geigs.compute(Spectra::SortRule::LargestAlge);
24 //write Matrix of eigenvectors and Vector of buclingfactors to array's
25 }

Listing 6: C++ Wrapper

3.17 BucklingMode

Inputs:
Model Class
Mode number
Scale

Extract the eigenvalues
and eigenvectors from
model class

Make deformed mesh
from the selected ei-
genvector

Output:
Olist
Mesh

Figure 3.21: Flow Chart of the BucklingMode component

The BucklingMode component sorts all the buckling modes and turns them into a mesh that can
be outputted and viewed. As input, it needs the ModelClass output from Solver II, an integer that
chooses which buckling mode should be viewed, and a scale input to scale the deformed mesh.

Mesh output can be connected to an already existing Grasshopper component, which will then
show the different meshes for the different modes.
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4 Shell Performance

The performance of the Shell calculation software, developed in this thesis, is compared to values
from Abaqus throughout all of these benchmarks. Some of the benchmarks also showcase different
element types that have been implemented throughout this thesis.

4.1 Flat shell

The first benchmark is a square 2x2m surface that is simply supported along all edges, and sub-
jected to an evenly distributed surface load of 1 kN/m2. The thickness is 10mm, E-module 210
000MPa, and Poisson’s ratio is 0.3. As it is possible to see in Fig.4.1, the mesh is double sym-
metric, displayed with 512 triangular elements, and the colour plot on the surface is von Mises
stresses. The lumped surface load is indicated with lines in each of the nodes, and the supports are
visualized with spheres.

Figure 4.1: Flat shell with support points and load, and von Mises colour-plot.

Fig.4.2 shows the convergence of the displacements with the increasing number of elements. The
correct values used in Fig.4.2 and Fig.4.3 are given in (Bell, 2013, p. 493). The other reference
is Abaqus’s implementation of Stri3. As it is possible to see in Fig.4.2, the results from the Stri3
element, implemented in this thesis, are almost identical to the Stri3 element from Abaqus. In the
Abaqus documentation, it appears that they also used Batoz implementation of the DKT element
(‘Triangular facet shell elements’, n.d.).
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Figure 4.2: Convergence of displacements for
the flat shell.

#elems #1 #2 #3 #4
8 7.503 3.56188 3.562 3.37987
32 4.2569 3.400383 3.4000
128 3.5912 3.385295 3.385
512 3.4320 3.381393 -
2048 3.3929 3.380274 3.380
8192 3.379978 3.379978 3.380
32768 3.379903 3.379903 -

Table 4.1: Tabulated values.

In Fig.4.3 you can see the convergence of Mx. The correct value used is 191.545 Nmm/mm. The
Stri3-linear is a linear interpolation between the optimal stress locations. Stri3-Avg is an average
of the closest stress locations. Abaqus seems to have a different implementation of stresses, as the
results differ the results from the software created in this thesis.
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Figure 4.3: Convergence of Mx for flat shell.

#elems #1 #2 #3 #4
8 1 0.637 0.604 0.864
32 - 0.906 0.902 0.970
128 - 0.975 0.977 0.991
512 - 0.993 0.994 0.997
2048 - 0.998 0.998 0.9989
8192 - - - 0.9998

Table 4.2: Tabulated values.
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4.2 Single curved shell

The second benchmark is a 2x3m Arc with a height of 1m. In Fig.4.4 you can see a 30x29
triangulated mesh with 1740 elements. The color plot on the surface is Mises stress. A global
surface load of 1000kN/m2 is applied, and the thickness is 30mm, E-module 210 000N/mm2, and
Poisson’s ratio is 0.3. The boundary condition along the straight edges is pinned and indicated
white spheres.

Figure 4.4: Arc with support points and load, and von Mises colour-plot.

The deformed shape, colour plot, can be seen in Fig.4.5.

Figure 4.5: Deformed arc.

In Fig.4.6 you can see Arc performance. Both Abaqus Stri65 and Stri3 are used for comparison.
Stri65 is a suitable and efficient element to accurately calculate curved surfaces and the most
converged value, 6.191, is used as the optimal solution when plotting the correctness. In this case
is it also hard to tell the difference between Abaqus Stri3 and the Stri3 element implemented in
this thesis. The convergence on Stri3 is slower and converges to a value with an error of 1% with
6960 elements. A further refinement to 19600 gives an error of 0.7%. As the Stri3 element is a
flat element, a slow convergence for a curved problem is to be expected. "In ABAQUS/Standard
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curved elements (STRI65, S8R5, S9R5) are preferable for modeling bending of a thin curved shell.
Element type STRI3 is a flat facet element. If this element is used to model bending of a curved
shell, a dense mesh may be required to obtain accurate results." (‘Choosing a shell element’, n.d.)

103 104
0.8

0.85

0.9

0.95

1

1.05

Number of elements

C
or

re
ct

ne
ss

of
D

ef
or

m
at

io
n

[m
m

]

#1 Abaqus Stri65
#2 Morley
#3 Stri3

#4 new-Stri3-drill-gamma=0.5
#5 Abaqus Stri3

Figure 4.6: Deformation plot for the Arc.

#elems #1 #2 #3 #4 #5
180 - 0.847 0.830 0.888 0.826
264 - 0.880 0.904 0.949 0.902
420 - 0.944 0.915 0.946 0.918
760 - 0.975 0.947 0.966 0.946
1740 - 0.996 0.969 0.979 0.970
3120 - 0.9995 0.981 0.986 0.981
4900 - 0.999 - - -
6960 - - 0.990 0.993 0.990
8580 - - - 0.992 0.990
19600 1 - 0.993 - -

Table 4.3: Tabulated values.

Arc Mises stress is plotted in Fig.4.7. Stress by linear interpolation overshoots the stress of the
Stri65 but has a faster convergence rate than the Abaqus Stri3. With 6960 elements the error in
Mises stress between Stri3 and Abaqus Stri65 is 0.7%.
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Figure 4.7: von Mises stress plot for the Arc.

#elems #1 #2 #3 #4
180 - 0.955 0.877 0.901
264 - 0.991 0.899 0.935
420 - 0.971 0.926 0.943
760 - 0.988 0.951 0.960
1740 - 0.999 0.972 0.978
3120 - 0.996 0.982 0.989
6960 - 0.995 0.993 0.997
8580 - - 0.994 0.998
10950 - 0.996 0.996 0.999
19600 1 0.995 - 0.9995

Table 4.4: Tabulated values.

Fig.4.8 shows the first buckling mode created by the software developed in this thesis, vs. the first
buckling mode from Abaqus. The mesh is made of 1740 Stri3 elements.
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(a) First buckling mode plug-in λ=1.8483. (b) First buckling mode Abaqus λ=1.8482

Figure 4.8: First buckling mode of plug-in, and Abaqus.
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4.3 H-Beam

The third benchmark is an H-Beam. All nodes on the left side are constrained in UX, UY, and UZ.
A surface load with a magnitude of 100kN/m2 is applied to the upper flange. The supports are
displayed with spheres, in Fig.4.9, the surface load with lines, and the colour plot shows the Mises
stresses.

Figure 4.9: H-Beam with support points and load, and von Mises colour-plot.

In the plot in Fig.4.10 the results are compared to the Euler-Bernoulli Beam theory without shear
deformation and Timoshenko beam theory with shear deformation. These calculations can be
found in Appendix B, and the values from the plot are tabulated in Tab.4.5 The deformation is
measured in the middle of the H-cross section, marked in Fig.4.11. All three elements converge
to a deformation between the two beam solutions. The element with the drilling dof has a faster
convergence, but it does have some noise for a coarser distorted mesh when the beam is oriented
along the y-axis.
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Figure 4.10: Deformation plot for the H-Beam.

#elems #1 #2 #3
350 8.98072 8.665189 8.5066
544 - 8.859655 8.6223
1400 - 8.739098 8.7068
2680 - 8.756795 8.7378
5600 - 8.777016 8.7649

#4 #5 #6
350 8.16598 8.163895 8.428
544 8.42261 8.423045 -
1400 8.62409 8.624281 -
2680 8.69924 8.699443 -
5600 8.753364 8.753364 -

Table 4.5: Tabulated values.
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In Fig.4.11 it is a visualization of the deformed H-Beam.

Figure 4.11: Deformation in the H-Beam.
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4.4 Double curved shell

The next benchmark is a double-curved surface, with a thickness of 30mm, an E-module equal
to 210000N/mm2, Poisson’s ratio of 0.3, and supports on all the edges. These supports can be
seen as spheres in Fig.4.12 and are constrained in UX, UY, and UZ. The geometry is subjected to
a surface load of 1000kN/m2, pointing downwards, seen as red lines in the figure. Fig.4.12 also
portrays the Mises stress colour plot, with a mesh consisting of 2048 elements.

(a) Mises
Legend

(b) Mises plot

Figure 4.12: Double curved surface with support points and load, and von Mises colour-plot.

Fig.4.13 shows the deformed model, and is built up by the same amount of elements as the model
in Fig.4.12.

(a) Deformation
Legend

(b) Deformation plot

Figure 4.13: Deformed model and colour-plot of double curved surface.
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The convergence of the maximum deformation is plotted in Fig.4.14, and the corresponding tabu-
lated values can be seen in Tab.4.6. As explained in Sec.4.2, one of the standard curved elements
is preferred when modeling the bending of a thin curved shell. The maximum deformation in a
Stri65 element, with a 128x128 mesh and an element count of 32768, is therefore used as the
optimal value. This optimal value is equal to 2.403mm. It is possible to see that the max dis-
placement of the Stri3 element created in this thesis, converges nicely towards the optimal value.
For 32768 elements the error of the Stri3 element with regards to the Abaqus-Stri65 is 0.8%, and
compared with the Abaqus-Stri3 element the error is 0%.
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Figure 4.14: Deformation plot for Double
curved surface.

#elems #1 #2 #3
32 - 0.339 0.230
128 - 0.696 0.669
512 - 0.867 0.894
2048 - 0.968 0.966
8192 - 0.987 0.986
32768 1 0.992 0.992

Table 4.6: Tabulated values.

For the stresses, however, the results are quite different. In Fig.4.15 the maximum values of the
von Mises stresses are plotted, and the values can be seen in 4.7. The area where the maximum
stresses are found is marked in Fig.4.12.
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Figure 4.15: von Mises stress plot for Double
curved surface.

#elems #1 #2 #3 #4
32 - 55.922 53.935 61.51
128 - 116.633 107.239 121.2
512 - 215.545 177.884 136.7
2048 - 252.946 208.472 140.8
8192 - 223.911 215.916 140.9
32768 139.9 219.986 218.233 203.5

Table 4.7: Tabulated values.

As described in the Stresses component it is possible to look at both "linear" and "lumping"
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stresses, which give slightly different values. Compared to Abaqus-Stri65 the linear stresses has
an error of 57.2% for 32768 elements, while the error in the lumping stresses for the same amount
of elements is 56%. Both of them are too high. The Stri3 element in Abaqus has a big jump from
8192 to 32768 elements, which is caused by a stress concentration.
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4.5 Cylinder

The fifth benchmark is a cylinder with two different types of mesh; structured and unstructured.
The goal of this benchmark is to display how important the mesh is for members in compression.
In Fig.4.16 the Mises colour plot with a structured mesh of 3840 elements is shown. Fig.4.17
shows a Mises colour plot with an unstructured mesh of 2468 elements. In the plotting of the
displacement- and stress values, in Fig.4.18 and Fig.4.19 respectively, the structured mesh with
6000 elements is considered the optimal value for the problem. Because of the change in surface
normal between the elements, the force between the elements has a component that is taken up as
moment and not only as pure compression in the unstructured mesh.

(a) Mises
Legend

(b) Mises plot

Figure 4.16: Mises stress of the structured mesh.

(a) Mises
Legend

(b) Mises plot

Figure 4.17: Mises-linear stress of the unstructured mesh.
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Fig.4.18 shows a plot of the difference in displacement for the two meshing options. The values
are also tabulated in Tab.4.8.
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Figure 4.18: Displacement plot for the Cylinder.

#elems #1 #2
60 0 1.883878772
120 - 0.742322425
226 - 0.201532155
618 - 0.05638062
1340 - 0.019084739
2468 - 0.00950877
9488 - 0.001192796
21370 - 0.000352799
33242 - 0.000268799
59040 - 0.0001008

133010 -
1.67999E-
05

Table 4.8: Tabulated values.

The following figure, Fig.4.19, shows a plot of the difference in von Mises stress for the two
meshing options. The unstructured mesh is also plotted for the two types of stress calculation
methods, linear and lumping. Tab.4.9 shows the tabulated values.
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Figure 4.19: von Mises stress plot for the
Cylinder.

#elems #1 #2 #3
60 0 3.634704 2.225796
120 - 1.989348 1.145714
226 - 0.767334 0.724542
618 - 0.504694 0.267032
1340 - 0.369136 0.181862
2468 - 0.387152 0.164108
9488 - 0.151414 0.08273
21370 - 0.077506 0.041026
33242 - 0.05822 0.032098
59040 - 0.049934 0.024774
133010 - 0.033384 0.015548

Table 4.9: Tabulated values.
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4.6 Computational time

The last benchmark is a check of the computational time of the main calculation components in
the plug-in. A more complex structure will be examined, namely a tripod which will be further
presented in Sec.5.4. Below, in Fig.4.20, the tripod is shown for 4669 elements.

Figure 4.20: The tripod with 4669 elements.

In Fig.4.21 the plug-in components, for the different amount of elements, are presented on the x-
axis, and the computational time for each of these components can be read off on the y-axis. The
data from the last simulation of 143095 elements have much higher values than the simulations
with less amount of elements. To be able to see any of the information in the figure the y-axis is
therefore cut at 11 seconds. The values from the plot have also been placed into Tab.4.10 so they
can be evaluated more easily.
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Figure 4.21: Computational time for different components in the plug-in.
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Number of elements 4669 6896 9134 15650 33552 143095

ShellElement 0.307 0.597 0.964 2.4 10.3 216

AssembleModel 0.324 0.445 0.594 1.1 2.7 15.9

Solver 0.257 0.495 0.89 1.9 7.2 78

DeformedModel 0 0 0 0 0.007 0.033

Stresses 0.35 0.482 0.676 1.2 2.4 10.2

Table 4.10: Tabulated values for the Computational Time [s].

With 4669 elements the total computational time is 1.233 seconds for these five components.
The computational time for 143095 elements is 320.133 seconds which is equal to around 5.34
minutes.
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5 Case Studies

Chapter 5 contains 4 case studies that show how optimization works. The first is an optimization
done in Octopus, to find the optimal stiffeners out of a given set of plates. Case study 2 is a
topology optimization performed with the ?? component created for the plug-in. The third case
study is an optimization of a cantilever, also the first case study in this thesis with a buckling
analysis. The final case study is an analysis of a tripod, where 1/6 of the structure has been
optimized. All of the case studies try to minimize the area. In reality, this is equivalent to the
volume of material, but since the thickness is constant, "area" is used. A conservative buckling
factor of 10 was chosen as the lowest limit to optimize for.

5.1 Case Study 1: Optimization of stiffeners

The first study case is a 5x3x1m cantilever that is divided into 89 plates with a thickness of 30mm.
The cantilever is subjected to a tip load of 1000kN. Octopus has a gene pool that consists of 88
numbers sliders that can be set to either 0 or 1. These 88 number sliders represent the 88 plates
that can either be included, =1, or excluded, =0. The only plate that is preserved, is the vertical
plate directly underneath the load. Because of the computational time, buckling is not taken into
account in this case study.

The original geometry in Fig.5.1(a) has a surface area of 93m2, a deformation of 1.36mm, and
maximum Mises stress of 32.6MPa. One of the best trade-offs in the multi-oriented optimization
can be seen in Fig.5.1(b).

(a) Geometry before optimization (b) Optimized Geometry

Figure 5.1: Cantilever of stiffeners.

This solution was found after 516 generations with a population size of 100. The surface area
of the steel plates is reduced to 33m2 at the cost of an increase in deformation to 2.22mm and
an increase in Mises stress to 34.96MPa. The preferred solution is marked in the scatter plot in
Fig.5.2. The figure also has a color bar on the right, that shows the variation in the z-value of the
plot. In this case the Mises stress.
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Figure 5.2: The possible solutions, taken from Octopus. The preferred geometry is marked.
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5.2 Case Study 2: Topology optimization

In the following three figures, the TopolpogyOptimization component created in this thesis is used.
Topology optimization works in the way that it removes the least utilized elements through several
iterations.

Both Fig.5.3 and Fig.5.5 show geometries that are 5x3m and have a thickness of 30mm. In Fig.5.3,
the line load applied in the preserved circle sums up to a force of 941kN. Fig.5.3(a) is the original
geometry that has a Surface area of 14.7m2 a deformation of 3.3mm and a Mises stress of 159MPa.
The optimization component ran for 220 iterations and removed the 40 least utilized elements after
each iteration. This reduced the surface area to 6.2m2. With the optimization, the deformation
increases to 6.2mm and the maximum Mises stress to 96MPa. Optimized geometry is shown in
Fig.5.3(b).

(a) Original geometry (b) Optimized geometry

Figure 5.3: Cantilever plate with constant line load applied to a preserved circle. Von Mises
stress colour plot.

The next geometry is a 1x1m plate with a thickness of 30mm that has a cutout with the dimen-
sions 0.55x0.55m in the upper right corner. The line load on the tip sums up to a force of 50kN.
Fig.5.4(a) shows the geometry before optimization and has a surface area of 0.70m2, a maximum
displacement of 0.67mm, and a maximum Mises stress of 96MPa. The ?? component ran for
90 iterations, and removed 20 elements each iteration. Fig.5.4(b) shows the optimized geometry
with a surface area of 0.41m2, maximum deformation of 0.74mm, and maximum Mises Stress of
99MPa.
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(a) Original geometry (b) Optimized geometry

Figure 5.4: Bracket after 90 iterations, with von Mises stress colour-plot.

The last geometry is subjected to a line load that sums up to a force of 500kN. Under the load is a
preserved area of 500x300mm. Fig.5.5(a) shows the original geometry that has a surface area of
15m2, a maximum deformation of 2mm, and a maximum Mises stress of 80MPa. Fig.5.5(b) is the
optimized geometry after 120 iterations, that removes the 30 least utilized elements each iteration.
After the optimization, the surface area is reduced to 5m2, the maximum displacement is 3.6mm,
and the maximum Mises stress is 145MPa.

(a) Original geometry (b) Optimized geometry

Figure 5.5: Cantiliver after 120 iterations, with Mises stress colour-plot.
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5.3 Case Study 3: Buckling stiffeners

The structure in Fig.5.6 is the first structure that is optimized with bucking as one of the optimiz-
ation goals. The goal is to maximize the buckling factor, with a punishment for a buckling factor
below 10, and maximize the utilization towards 1. A punishment is also put in place for the util-
izations going above 1. The other goals are to minimize the area of the steel plates and minimize
the deformation. The algorithm then works to find the best trade-off between deformation, area,
and buckling factor with a utilization below, but close to 1.

The dimensions are 5x3x1m, and the thickness of the plates is 30mm in the whole structure. Two
line loads are applied to the tip of the structure. One on the top and one on the bottom. Each of
the line loads sums up to a force of 2500kN. The stiffeners are made by an array of planes that
intersect with the outer shell. The original stiffener array is vertical and goes in both directions
from the middle of the structure. Octopus has three sliders. One moves the origin of rotation, that
by default is in the lower left corner, one changes the distance between the stiffeners, and the last
rotates the stiffeners. The rotation goes from -60 to 60 degrees, the spacing from 200 to 2000mm,
and the origin of rotation can be moved 500mm in the positive z-direction.

The optimal solution is when one of the stiffeners is the diagonal of the square, and the spacing
between the stiffeners is 1m. The origin of rotation is moved upwards 85mm to make the middle
stiffener intersect in the corners.

Figure 5.6: Optimized geometry, shown with the support points and loads.

In Fig.5.7(a) the first buckling mode of the optimized solution is displayed. The buckling factor
of this mode is 11.5. Fig.5.7(b) shows the callout in (a).
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(a) The first buckling mode (b) Callout from fig. (a)

Figure 5.7: The first buckling mode of the cantilever.

Fig.5.8 shows the stresses that appear in the structure.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.8: Mises stress

Fig.5.9 is a plot, similar to the one inside Octopus, of all the solutions. The preferred solution is
marked. The utilization is the occurring stress compared with S355. The preferred solution has a
utilization of 0.58. As maximized utilization is wanted in this optimization the simplest way, since
Octopus is set to minimize, is to make the utilization negative. Because of this, the utilization goes
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from 0 to -1 in the 3d plot.
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Figure 5.9: The possible solutions, taken from Octopus. The preferred geometry is marked.
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5.4 Case Study 4: Tripod

The last Case Study involves an actual structure that a company called Prodtex is producing with
their laser-welding robotic arm. The structure is a transition piece in an offshore wind turbine, as
seen in Fig.5.11. This transition piece, or tripod, is built up of flat steel plates with a thickness
of 30mm. The rest of the wind turbine consists of the trusses at the bottom, which anchor the
structure to the sea bottom, and the cylindrical part of the wind turbine at the top. This geometry
can be seen in Fig.5.10.

The load is the tower base moment taken from a reference wind turbine with different dimensions
and design, and it is roughly estimated. To apply the tower base moment to the tripod, two varying
line loads with opposite signs are applied. These are applied on one half of the cylinder each,
where the tower would have been mounted on the tripod. The self-load of the wind turbine is
applied as a constant line load. The varying line load has the values q1=q3=0 and q2=1.133 ∗
104kN/m, referencing Sec.3.5, and the constant line load q=759 kN/m. The applied loads can be
seen in Fig.5.14. The calculation of the line loads is shown in Appendix E.

For production purposes, it is necessary with a structure that weighs as little as possible, and it is
also advantageous with a light structure in terms of saving material.

(a) Side view of the wind
turbine structure

(b) The tripod mounted between the turbine shell and the foundation

Figure 5.10: Side view and closer look of the wind turbine.
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Figure 5.11: Top view of the tripod/transition piece. The dimension is given in mm.

The idea is to optimize the shape of the tripod to minimize the steel usage, get as little amount of
welds as possible, have as low deformations as possible, and have a reasonably low utilization of
stresses to avoid fatigue problems.
To concretize what kind of changes is allowed to happen to the geometry, it is to minimize the
number of stiffeners and find their optimal inclination, and to optimize the top plate inclination of
the three protrusions of the tripod.
Running an optimization with these goals would remove all the stiffeners that don’t have a large
influence on the stress and deformation. Stiffeners, which are necessary to prevent the plates from
buckling. It is therefore imperative to also be able to run a buckling analysis, to optimize for a safe
design. This will be the fifth and last optimization parameter.

Before any optimization is done, an analysis is executed on a geometry based on the one that
was provided by Prodtex. It will be referred to as the geometry before optimization. Fig.5.12
show a model of this geometry, and the deformations and stresses for this geometry can be seen in
Fig.5.13 and Fig.5.14.

Figure 5.12: Analysed geometry before optimization.
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(a) Deformation
Legend (mm)

(b) Deformation plot

Figure 5.13: Deformation before optimization.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.14: Mises stress before optimization.

Fig.5.15 gives a closer look of Fig.5.14. It is sectioned to be able to see the inner stiffeners.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.15: A section of the tripod, with Mises stress colour-plot.
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The next two figures, Fig.5.16 and Fig.5.17, are the callouts from the two previous figures. They
show the stress concentrations that can appear when two structural components meet.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.16: Callout, from Fig.5.15, that shows the Mises stress concentrations.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.17: Callout, from Fig.5.14, showing maximum Mises stress, and stress concentrations.

The results before the optimization show that the maximum stress in the structure is 872MPa and
that the maximum deformation is 36mm. The total area for the tripod before the optimization is
1.5668e+9mm2 and the buckling factor, found for 1/6 of this tripod, is 1.14.

To be able to get close to an optimized solution, because of the computational time, the geometry
of the tripod is divided into 1/6, using symmetry. For this case, the load is applied as an upwards
line load in the bottom right of the geometry, seen in Fig.5.23, where the truss, in reality, is piercing
through. The tripod is fixed in the transition to the turbine shell and is free on the loaded tip. There
are also symmetry conditions used to reduce the tripod down to 1/6 of its original geometry. The
tripod is rotated so that the symmetry plane is in the global XZ-plane. All of the plates that are cut
by the symmetry condition are fixed for displacement in the y-direction, and RX- and RZ-rotation.

The optimization tool Octopus was used, and ran for 24 generations, with a population of 30, and
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with the five parameters, described earlier, to optimize for.
The 3d scatter plot with the marked preferred solution can be seen in Fig.5.18, Fig.5.19 and
Fig.5.20. In Fig.5.18 all the solutions from the optimization are displayed. Many of them have a
buckling factor that is too low and in Fig.5.19 all the solutions with too low buckling factor are
removed.
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Figure 5.18: All the solutions visualized in terms of area, deformations, and stress. The preferred
solution is marked.
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Figure 5.19: All the solutions from Fig.5.18 with a buckling factor above 10. The preferred
solution is marked.

Fig.5.20 also shows all the solutions above 10. The difference between this plot and the plot in
Fig.5.19, is that one of the axes is swapped from showing the deformation to showing the welding
length.
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Figure 5.20: The solutions visualized in terms of area, welding length, and stress. The preferred
solution is marked.

The following four figures show the optimized geometry, the first buckling mode, the stresses, and
the deformations. The optimized geometry in Fig.5.21 shows how the stiffeners have been rotated
to lay at an angle. Fig.5.22 shows the first buckling mode of the solution, and how the top plate
is what buckles first. The buckling factor is 11.19, and the colour-plot is used to easily show the
buckling mode displacement.

Figure 5.21: Optimized geometry.
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(a) The first buckling mode, calculated
from 1/6 of the structure. Here seen for

1/3 to get a better understanding

(b) Closer look at the buckling mode. Here seen for 1/6

Figure 5.22: First buckling mode.

Fig.5.23 shows the stresses acting in the structure. The preferred solution reaches a maximum
stress value of around 260 MPa, located in the bottom right of the figure, where the load is applied.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.23: Von Mises stress in 1/6 of the tripod.

In Fig.5.24 the deformations in the structure are shown. Maximum deformation is 12.35mm, also
located in the same area as maximum stress.
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(a) Deformation
Legend (mm)

(b) Deformation plot

Figure 5.24: Deformations in 1/6 of the tripod.

Assembling the full tripod using the optimized shape from above, has generated the following fig-
ures. Fig.5.25 shows the optimized geometry, while Fig.5.26 and Fig.5.27 show the deformations
and stresses in the optimized structure.

Figure 5.25: Optimized geometry assembled as a whole tripod.

(a) Deformation
Legend (mm)

(b) Deformation plot

Figure 5.26: Deformations in the optimized tripod.
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(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.27: Mises stress in the optimized tripod.

Fig.5.28 shows a section from Fig.5.27. The section shows how the inner stiffeners, after optim-
ization, have been rotated.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.28: Section of the full optimized tripod, with von Mises colour-plot.

Fig.5.29 shows the location of the maximum stress in the optimized, full tripod geometry, and how
this maximum is a stress concentration happening in the transition between the stiffener and the
foundation truss.
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(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.29: Maximum Mises stress as stress concentration, in the full optimized tripod.

Fig.5.30 also shows some stress concentrations that appear, but it also shows how the location of
these is not the location of the max stresses. Like it is for the tripod before optimization.

(a) Mises
Legend (MPa)

(b) Mises plot

Figure 5.30: Mises stress concentrations in the full optimized tripod.

The results after the optimization show that the maximum stress in the structure is 777MPa and
that the maximum deformation is 19mm. The same applies to the optimized geometry, as it did to
the non-optimized geometry; the structure experiences some stress concentrations due to the large
load. The total area for the tripod after optimization is 2.1604e+9mm2.

All the values from before and after the optimization can be found in the table below.
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Before optimization After optimization

Buckling factor in 1/6 1.14 11.29

Complete area [mm2] 1.5668e+9 2.1604e+9

Max stress [MPa] 872 777

Max stress in 1/6 [MPa] - 260

Max deformation [mm] 36.2 18.9

Max deformation in 1/6 [mm] - 12.35

Table 5.1: Resulting values in the geometry before and after optimization. Also some values
from 1/6 of the geometry.
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6 Discussion

This chapter will be divided into two parts. One part will discuss the performance of the triangular
shell FEA and how the software can influence structural design. The other will discuss the optim-
ization of the structures in the case studies and how optimization affects structural design. Through
these two sections, this chapter will answer the research question described in the introduction.

6.1 Shell FEM in AAD

Efficiency and accuracy are the two key factors in an FEA. The choice of elements affects the
accuracy of the calculation software and is therefore chosen carefully. The reason for going with
a triangular element is that the element can be used in all shapes. For any mesh, the 3-noded
triangular element will never be warped and with an unstructured mesh, it is possible to mesh
almost any geometry without too large distortions. Further, triangular elements are a simpler
choice when it comes to meshing.

After some trial and error, the DKT element ended up being the most trustworthy bending element.
The Morley element, which was the first bending element implemented, turned out to be difficult
and inefficient to implement in 3D space. The most time-consuming part of the ShellElement
component is to find the index of the nodes correctly, and adding a mid-side node only makes
this problem greater. Further, the buckling implementation in this thesis is for a 3-node element
with rotational degrees of freedom in the nodes. A different buckling analysis would need to be
implemented to use the Morley element.

The Shell calculation software developed in this thesis scores quite well in performance compared
to Abaqus. For the flat shell and the arc, we managed to recreate the mesh, made in Grasshopper,
almost perfectly in Abaqus, and we got deformation results that were hard to tell apart from each
other in the deformation plot. For the double-curved shell, the meshing in Abaqus and Grasshopper
has different smoothing of the element size. So even though the number of elements is equal, the
mesh size at the points of interest is different. This would be the reason for the different results.
When it comes to the stress it seems like Abaqus is extracting the results in a different way. The
stresses in a coarse mesh are different, but it converges to the same values for the flat shell and the
arc when the mesh is refined.

Efficiency is highly affected by the programming of the components in the Shell Finite Element
software. If the computational time of the plug-in was too long, it would not be worth using it.
Decreasing the computational time has therefore been a priority, and the plug-in is already quite
fast even for a large amount of elements. As of now, the most amount of elements the software has
calculated is 143095 elements. This equals to a matrix size of a little over 400000x400000, that
the Solver has been able to calculate. This took a little over 7 seconds, so it is possible to calculate
larger matrices, at least in regards to time. The total computational time for the five components
in Fig.4.21 was equal to around 320 seconds for 143095 elements. For checking some design
outcomes, this calculation time is not too long, but for running a full genetic optimization, this
needs to be further optimized.
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Computational time can always be improved and is one of the things that should be explored in
further work. Some concrete examples of what can be done further, are given below.
Both ShellElement and AssembleModel perform the operation of searching through the nodes
to find the indices that the load and boundary condition is assigned to. This is relatively time-
consuming. By finding another way for this operation, and by removing the different methods for
indexing in ShellElement component, it is possible to make the components faster.
The Stresses component has not been prioritized in terms of lowering the computational time,
and as of now it calculates all the stresses, moments, and axial forces, no matter what the output
is asked to be. The computational time will therefore decrease by making the component only
calculate the type of stresses or forces it was asked to output.

Solver II was one of the last components made, and it is a time-consuming component. It would be
beneficial to do a further study about the time consummations for the different eigenvalue-solvers,
and how this could be implemented. But to implement a faster solver than spectra is out of the
scope for this theses.

Another thing that should be prioritized in further work, which should be straightforward, is to
make the ShellElement work with different thicknesses. This was something that we tried to
implement, but due to poor performance and no time to fix it, it was left as it is. This affected the
tripod optimization in the way that the stiffeners should have been 16mm thick, but instead, were
set to the same thickness as the outer plate; 30mm.

6.2 Optimization of Steel Shell Structures

To see how FEA influences optimization, a series of optimizations were done, as seen in Ch.5. This
section will discuss the results from each of the case studies and what we would do differently if
we could. The emphasis will be on the last case study.

Case Study 1: Optimization of stiffeners

Fig.5.2 shows the preferred solution in a 3d scatter plot. This solution was chosen as the optimal
one because it is one of the solutions with little deformations, as well as having low stresses and a
low total area of steel plates. Of the surrounding solutions with quite equal stresses, this was one
of the solutions that gave more sense structurally. By choosing one of the solutions with even less
area, the stress rapidly increases and the buckling problem would be even greater.

The optimization was allowed to run for a long time, and running it for longer would most likely
not lead to a better solution. Although this can never be said for certain. If computational time
wasn’t an issue, it would have been preferable to run this analysis with the buckling factor as an
optimization parameter. The reason why it would take too much time to optimize this structure,
with regard to buckling, is because of the genetic pool size of 88 sliders. These 88 sliders can all
be turned on or off, which gives a large number of possibilities for structural design. When it is a
necessity that the plates are connected to make a force path, and the optimization is run with a low
population size, it would most likely struggle to find an optimal solution.
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Case Study 2: Topology optimization

Sec.5.2 shows a series of optimized structures using topology optimization. As described in this
section, the least utilized elements are removed. How many it removes in each iteration is decided
by the user. If it is allowed to, the looping component Anemone will run until all the elements,
except the ones that are chosen to be preserved, are removed. It is therefore important to choose
the iteration count so it doesn’t run out of elements to remove. When the loop is stopped, Anemone
has the option to save the mesh from each iteration. This makes it possible to go through all the
geometries and choose the one you see fit.

The final result depends on the support condition, the loads that are applied, how many elements
we choose to remove in each iteration, and for how long it runs. Choosing different support
conditions, loads, or amount of iterations, or letting it run for longer, would give different results.
However, if it is set to remove too many elements at once, it could very fast end up with an
unusable structure. It is therefore more advantageous to remove fewer elements at once and run it
for more iterations.

The topology optimizations that we have performed could have been run for longer, which could
have resulted in an even larger reduction of area. But, with less area, it would also give increased
stresses and deformations. For further work, it would have been interesting to plot the area, de-
formation, and stress, and choose a solution from a 3d scatter plot. These were instead chosen
based on what seemed reasonable.

Case Study 3: Buckling of stiffeners

Fig.5.9 shows the preferred solution for this case study. The reason for choosing this as the pre-
ferred solution is that the trade-off between stress, deformation, and surface area looked prom-
ising. Because the buckling factor started to influence the solution before the utilization was at 1,
the preferable solution only has utilization of 0.58. There are some designs that have a utilization
closer to 1 and with, about, the same area and deformation. The reason for the higher utilization
is, however, because of stress concentrations that appear when the diagonal stiffener does not in-
tersect perfectly with the corner. In the preferred solution the stiffeners have a nice inclination,
and make a perfect diagonal to contribute to carrying the load.

Case Study 4: Tripod

The preferred solution of the tripod is marked in Fig.5.18, Fig.5.19 and Fig.5.20. To choose the
optimal solution we quickly compared the buckling factors and the displacement of the solutions
in the Octopus viewport.
The chosen preferred solution has a buckling factor of 11.19 and is located the closest to the origin,
out of the solutions with a buckling factor above 10. This means that it has the best compromise
of area, deformation, and stress.
For comparison, 1/6 of the geometry before the optimization, which is the geometry based on the
one from Prodtex, has a buckling factor of 1.14. With the conservative buckling factor limit we
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set, this is too low and the comparison to the optimized geometry is not that straightforward.

After the optimized geometry was developed, we assembled the whole tripod geometry based on
the optimal solution. This was done to see how the whole tripod behaved with the optimized
solution and to be able to compare it with the geometry before optimization. One of the main
changes is that the transition to the foundation is not as constrained in 1/6 of the geometry as it
is in the analysis of the whole tripod. Therefore the stress concentration is greatly increased. The
real stress would likely be somewhere between the two, because the tripod boundary condition is
too stiff when it is fixed, compared to the stiffness the foundation truss would give.

Even though one of the optimization goals was to get as low surface area as possible, the area of the
geometry after the optimization is, as seen in Tab.5.1, larger than the area of the geometry before
optimization. This is a consequence of the conservative buckling factor we chose to optimize for,
and the applied load. The load we used was moment loads acting in a monopile wind turbine with
a 10m diameter. It is therefore safe to say that this load is bigger than what might be the case for
our structure, which has a diameter of 7m.

From the same table, Tab.5.1, it is possible to see that the maximum amount of stresses acting in
the structure, before the optimization, is 872MPa. After the optimization it is 777MPa. The op-
timization did try to maximize the utilization of stresses, and for the optimized 1/6 of the structure,
the maximum stresses became 260MPa.
If we try to look at the overall maximum value, not including the value of the stress concentrations
that occur between two structural components, it is around 500MPa for the non-optimized solution
and 400MPa for the optimized solution. This is still a little high, with the maximum allowed stress
being 355MPa. An option for decreasing the stresses is to make the plates thicker, or if the load
was lower and more realistic, the stresses might actually be low enough.

For further work, given that the computational time of the plug-in is improved, it would have been
interesting and advantageous to optimize the tripod with its entire geometry. Then all the stresses,
with the stress concentrations, would be included in the optimization.

In hindsight, we might have set the lowest limit of the buckling factor, a little too high and 10 is
not a theoretically correct value. Lowering this would have created other solutions. We also chose
the loading very roughly and for further work, the load should be investigated and chosen with a
bit more thought. With a lower, more realistic load, the optimal solution could have been different.

What we see from the results of this optimization, is that the optimal solution has tilted stiffeners
that make a structural contribution to transfer the force more evenly to the foundation and turbine
shell. Further, the tilted stiffeners make force diagonals that stiffen the three tripod protrusions.
The force concentration in the optimized solution is smaller and by a closer examination of how
the forces actually are distributed in the area, the problem might not be as severe as it looks at first
sight.

It is therefore possible to say that FEA in AAD works well with structural optimization, and the
benefits regarding this are many.
AAD can generate geometries quickly, and together with our FEA software it can give architects
and engineers a good idea of how a shell structure will work and perform. The results have
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proven to be good, and the Shell FEA will give a good indication of the structural properties and
performance. The last case study shows that our FEA software can be used to optimize real-life
structures. This can be very helpful for engineers, as it can generate designs for pure engineering
problems. It can be helpful for architects, to show the optimal structural design, which they then
can work from to generate their designs. It can also help the interface between the two.

.
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7 Conclusion

Through this thesis, a Finite Element Analysis (FEA) software package has been created. It has
been implemented into an Algorithms-Aided Design (AAD) environment, Grasshopper, and has
been used to carry out structural optimizations. All of this is done to answer the research question

How can the implementation of Finite Element Analysis in Algorithms-Aided Design
influence structure optimization?

The goal of producing a tool to analyze shell structures quickly and accurately has been reached
to some extent. Our plug-in currently gives a good indication of the forces and deformations that
appear in the structure compared with Abaqus, at least for most structures.
Although the software already shows good results in computational time and can handle complex
geometry, it could always benefit from further development in this area. As of right now, the
plug-in only works for a constant mesh thickness and material. For further work, it would also be
preferable to change this.
However, the plug-in can in its current state be used in the conceptual design phase to quickly
generate and calculate new designs, and give architects and engineers a basis for assessment for
simple structures.

Additionally, we have been able to show through four case studies how FEA can improve structural
optimization. The plug-in created in this thesis made it possible to optimize the designs based on
structural limit values, which again generated several possible designs. From these designs, we
could pick the preferred solution.

During the scope of this thesis, we have been faced with several problems. The biggest ones have
been to be able to find the best fit of element types and to produce efficient components. We also
stood at a crossroads where we either implemented buckling at the last minute or left it and in that
way lacked the ability to check and optimize for buckling. We chose the former and ended up with
two case studies that included buckling optimization. The most enlightening of these two is the
tripod.

The optimization of the tripod shows how our software has the potential to optimize real-life struc-
tures and generate solutions that can be used in the next, more thorough design phase. Having this
option can fast-track the conceptual design phase, or just give architects, designers, and engineers
a starting point from which they can work and develop their own designs. Optimization also makes
it possible to better utilize structures to possibly save material. Hence, the influence of FEA in the
AAD on structure optimization is very beneficial!
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Appendix

A Derivatives of Hx and Hy

From (Batoz et al., 1980), the derivatives of the functions Hx and Hy with respect to ξ and η are

Hx,ξ =



P6(1−2ξ )+(P5 −P6)η

q6(1−2ξ )− (q5 +q6)η

−4+6(ξ +η)+ r6(1−2ξ )−η(r5 + r6)

−P6(1−2ξ )+η(P4 +P6)

q6(1−2ξ )−η(q6 −q4)

−2+6ξ + r6(1−2ξ )+η(r4 − r6)

−η(P5 +P4)

η(q4 −q5)

−η(r5 − r4)



Hy,ξ =



t6(1−2ξ )+η(t5 − t6)
1+ r6(1−2ξ )−η(r5 + r6)

−q6(1−2ξ )+η(q5 +q6)

−t6(1−2ξ )+η(t4 + t6)
−1+ r6(1−2ξ )+η(r4 − r6)

−q6(1−2ξ )−η(q4 −q6)

−η(t4 + t5)
η(r4 − r5)

−η(q4 −q5)



Hx,η =



−P5(1−2η)−ξ (P6 −P5)

q5(1−2η)−ξ (q5 +q6)

−4+6(ξ +η)+ r5(1−2η)−ξ (r5 + r6)

ξ (P4 +P6)

ξ (q4 −q6)

−ξ (r6 − r4)

P5(1−2η)−ξ (P4 +P5)

q5(1−2η)+ξ (q4 −q5)

−2+6η + r5(1−2η)+ξ (r4 − r5)



Hy,η =



−t5(1−2η)−ξ (t6 − t5)
1+ r5(1−2η)−ξ (r5 + r6)

−q5(1−2η)+ξ (q5 +q6)

ξ (t4 + t6)
ξ (r4 − r6)

−ξ (q4 −q6)

t5(1−2η)−ξ (t4 + t5)
−1+ r5(1−2η)+ξ (r4 − r5)

−q5(1−2η)−ξ (q4 −q5)



(Eq. .1)
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where Pk =−6xi j/l2
i j ; tk =−6yi j/l2

i j ; qk = 3xi jyi j/l2
i j ; rk = 3y2

i j/l2
i j and k=4,5,6

for ij=23,31,12 respectively.
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Timoshenko beam theory
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⎠

⋅―――
⋅⋅q x2 l2

⋅⋅24 E I

⎛
⎜
⎝

+-6 ⋅4 ―
x
l

―
x2

l2
⎞
⎟
⎠

=w ((l)) 8.989 mm
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Load function in VarLineLoad

≔y q1 ≔x 0

＝y ++⋅a x2 ⋅b x c

≔c ――→＝y ++⋅a x2 ⋅b x c
,solve c

q1

≔y q2 ≔x ―
l
2

＝y ++⋅a x2 ⋅b x c

≔b ―――→＝y ++⋅a x2 ⋅b x c
,solve b

―――――――
-⋅4 q2 ⎛⎝ +⋅4 q1 ⋅a l2 ⎞⎠

⋅2 l

≔y q3 ≔x l

＝y ++⋅a x2 ⋅b x c

≔a ―――→＝y ++⋅a x2 ⋅b x c
,solve a

―――――――
+⋅2 q3 (( -⋅2 q1 ⋅4 q2))

l2

≔b ―――――――
-⋅4 q2 ⎛⎝ +⋅4 q1 ⋅a l2 ⎞⎠

⋅2 l

clear ((x))

≔f ((x)) →++⋅a x2 ⋅b x c ++―――――――――
⋅x2 (( +⋅2 q3 (( -⋅2 q1 ⋅4 q2))))

l2
―――――――
⋅x (( --⋅4 q2 ⋅3 q1 q3))

l
q1

≔a 0

≔f ((x)) →++⋅a x2 ⋅b x c +――――――――
⋅x (( +-q3 (( -⋅4 q2 ⋅3 q1))))

l
q1

C VarLineLoad load function
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≔q1 0 ≔q2 1 ≔q3 0 ≔l 1

≔f ((x)) ++―――――――――
⋅x2 (( +⋅2 q3 (( -⋅2 q1 ⋅4 q2))))

l2
―――――――
⋅x (( --⋅4 q2 ⋅3 q1 q3))

l
q1
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0.7

0.8

0.9

0

0.1

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90 0.1 1

x

f ((x))
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≔R
X'.X X'.Y X'.Z
Y'.X Y'.Y Y'.Z
Z'.X Z'.Y Z'.Z

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔at ((i))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|
|
|
|

k 17
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|

j 2
‖
‖‖

←a
,k j

0

‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|

←a
,i 2

1

←a
,+i 9 0

1

←a
,+i 12 1

1

a

≔ar ((i))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|
|
|
|

k 17
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|

j 2
‖
‖‖

←a
,k j

0

‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|

←a
,+i 3 0

1

←a
,+i 6 1

1

←a
,+i 15 2

1

a

≔Tt ++⋅⋅at ((0)) R
T

at ((0)) ⋅⋅at ((1)) R
T

at ((1)) ⋅⋅at ((2)) R
T

at ((2))

≔Tr ++⋅⋅ar ((0)) R
T

ar ((0)) ⋅⋅ar ((1)) R
T

ar ((1)) ⋅⋅ar ((2)) R
T

ar ((2))

―→+Tt Tr

Z'.Z 0 0 0 0 0 0 0 0 Z'.X 0 0 Z'.Y 0 0 0 0 0
0 Z'.Z 0 0 0 0 0 0 0 0 Z'.X 0 0 Z'.Y 0 0 0 0
0 0 Z'.Z 0 0 0 0 0 0 0 0 Z'.X 0 0 Z'.Y 0 0 0
0 0 0 X'.X 0 0 X'.Y 0 0 0 0 0 0 0 0 X'.Z 0 0
0 0 0 0 X'.X 0 0 X'.Y 0 0 0 0 0 0 0 0 X'.Z 0
0 0 0 0 0 X'.X 0 0 X'.Y 0 0 0 0 0 0 0 0 X'.Z
0 0 0 Y'.X 0 0 Y'.Y 0 0 0 0 0 0 0 0 Y'.Z 0 0
0 0 0 0 Y'.X 0 0 Y'.Y 0 0 0 0 0 0 0 0 Y'.Z 0
0 0 0 0 0 Y'.X 0 0 Y'.Y 0 0 0 0 0 0 0 0 Y'.Z

X'.Z 0 0 0 0 0 0 0 0 X'.X 0 0 X'.Y 0 0 0 0 0
0 X'.Z 0 0 0 0 0 0 0 0 X'.X 0 0 X'.Y 0 0 0 0
0 0 X'.Z 0 0 0 0 0 0 0 0 X'.X 0 0 X'.Y 0 0 0

Y'.Z 0 0 0 0 0 0 0 0 Y'.X 0 0 Y'.Y 0 0 0 0 0
0 Y'.Z 0 0 0 0 0 0 0 0 Y'.X 0 0 Y'.Y 0 0 0 0
0 0 Y'.Z 0 0 0 0 0 0 0 0 Y'.X 0 0 Y'.Y 0 0 0
0 0 0 Z'.X 0 0 Z'.Y 0 0 0 0 0 0 0 0 Z'.Z 0 0
0 0 0 0 Z'.X 0 0 Z'.Y 0 0 0 0 0 0 0 0 Z'.Z 0
0 0 0 0 0 Z'.X 0 0 Z'.Y 0 0 0 0 0 0 0 0 Z'.Z

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

D Assembling the TransformationMatrix
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Tower base moment

≔M ⋅430 MN m

≔r 3500 mm ≔r2 3450 mm ≔r1 3500 mm

≔w =⋅――
π
⋅4 r1

⎛⎝ -r14 r24 ⎞⎠ ⎛⎝ ⋅1.883 109 ⎞⎠ mm 3

≔I =⋅―
π
4

⎛⎝ -r14 r24 ⎞⎠ ⎛⎝ ⋅6.592 1012⎞⎠ mm 4

=―
M
w

228.313 MPa

=⋅―
M
w

(( -r1 r2)) ⎛⎝ ⋅1.142 104 ⎞⎠ ――
kN
m

≔σ =⋅―
M
I

―――
(( +r1 r2))

2
226.682 MPa

Max intensity of q:

≔q2 =⋅σ (( -r1 r2)) ⎛⎝ ⋅1.133 104 ⎞⎠ ――
kN
m

Self weight of wind turbine 

≔O =⋅⋅2 π r 21.991 m

≔BladeMass ⋅41 103 kg

≔RotorAssemblyMass ⋅674 103 kg

≔TowerMass ⋅987 103 kg

≔TotalMass =++BladeMass RotorAssemblyMass TowerMass ⎛⎝ ⋅1.702 106 ⎞⎠ kg

≔Force =⋅TotalMass g 16.691 MN

≔q =――
Force
O

758.983 ――
kN
m

E Calculating Loads of the Tripod
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F ZIP-folder

File name Description

CppWrapperSpectra-master Repositori for C++ wrapper

ShellFiniteElement-Morley Repositori for morley element

ShellFiniteElement-Stri3 Repositori for Stri3

Arc buckling Video to show the plugin in Grasshopper

Tripod
Video that shows Case Study 4, with the use
of the plug-in in Grasshopper

Table F.1: Videos showing the plug-in.
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