
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports

A study of dealing class imbalance
problem with machine learning
methods for code smell severity
detection using PCA‑based feature
selection technique
Rajwant Singh Rao 1, Seema Dewangan 1, Alok Mishra 2* & Manjari Gupta 3

Detecting code smells may be highly helpful for reducing maintenance costs and raising source
code quality. Code smells facilitate developers or researchers to understand several types of
design flaws. Code smells with high severity can cause significant problems for the software and
may cause challenges for the system’s maintainability. It is quite essential to assess the severity
of the code smells detected in software, as it prioritizes refactoring efforts. The class imbalance
problem also further enhances the difficulties in code smell severity detection. In this study, four
code smell severity datasets (Data class, God class, Feature envy, and Long method) are selected
to detect code smell severity. In this work, an effort is made to address the issue of class imbalance,
for which, the Synthetic Minority Oversampling Technique (SMOTE) class balancing technique is
applied. Each dataset’s relevant features are chosen using a feature selection technique based on
principal component analysis. The severity of code smells is determined using five machine learning
techniques: K‑nearest neighbor, Random forest, Decision tree, Multi‑layer Perceptron, and Logistic
Regression. This study obtained the 0.99 severity accuracy score with the Random forest and Decision
tree approach with the Long method code smell. The model’s performance is compared based on its
accuracy and three other performance measurements (Precision, Recall, and F‑measure) to estimate
severity classification models. The impact of performance is also compared and presented with and
without applying SMOTE. The results obtained in the study are promising and can be beneficial for
paving the way for further studies in this area.

The proper and efficient maintenance of software has always been a challenge for the industry, researchers, or
software professionals. The maintenance becomes even more challenging if the software developed is complex
one. And nowadays, software’s complexity is rising due to the increased module numbers and their size, com-
plicated requirements, and also due to the significant presence of code smells in the developed software. The
complexities are challenging to evaluate, comprehend, and go beyond developers’ scope, posing obstacles in
development as well as in software maintenance. However, researchers have found methods to avoid complexities
in the developmental stage and hence ultimately, ease the maintenance efforts. One such method is identifying
code smells and fixing them to simplify the software’s interface, precise, uncomplicated to create and maintain1.
Developers must follow the required software quality standards by using functional and nonfunctional concepts
in the software improvement process2. It has been quite evident that developers focus only on functional needs
while ignoring nonfunctional needs, including maintainability, credibility, reprocessability, and accessibility3.
The lack of focus on nonfunctional requirements reduces software quality and ultimately increases the software
maintenance effort and difficulties. The method of software quality assurance includes software inspection as a
fundamental component4. The quality of software is heavily influenced by the quality of the process employed
during its development. The software process can be characterized, controlled, evaluated, and enhanced5.

OPEN

1Department of Computer Science and Information Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur,
India. 2Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway. 3(Computer
Science), DST - Centre for Interdisciplinary Mathematical Sciences, Institute of Science, Banaras Hindu University,
Varanasi, India. *email: alok.mishra@ntnu.no

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43380-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

The code smell severity (CSS) is another significant factor to consider when evaluating the success of code
smell detection is important because it lets refactoring actions be put in order of importance. CSS describes the
degree of code smells that may occur during software development and maintenance. High-severity code smells
might develop into a serious and complicated issue for the software’s maintenance procedure. Another element
of code smell detection which did not acquire much consideration in the research was the notion that distinct
code smell occurrences might vary in size, strength, or severity and should, as a result, be handled differently due
to their differing effects on the quality of software. This study outlined the essential elements of machine learn-
ing (ML) models. We focused on the possibility of classifying the existence or nonexistence of code smells and
the severity of such smells. Every code smell is bad for the software quality in its own way. When determining
the CSS, we estimate how many of these qualities are present. For instance, if a God Class is extremely massive,
complicated, or concentrates a significant proportion of the system’s intellect, it has high severity6.

In our previous studies7–10, and11 we applied binary classification (to classify the code smell’s existence or non-
existence) to four datasets of code smell [God class (GC), Data class (DC), Feature envy (FE), and Long method
(LM)], and got favorable results. The purpose of this research study is to assess the effectiveness of classifying
code smells according to their severity and to determine the most effective method in this regard. A dataset
containing 420 data samples (classes or methods) and code smells taken from 76 open-source Java projects is
used to evaluate the collection of techniques. Good performance in rating the results of code smell detection is
essential for providing software developers with trustworthy information for prioritizing their refactoring and
reengineering efforts, for example, suggesting them to repair only the smells with maximum severity.

To the best of our knowledge, the CSS classification on the same dataset was worked by Fontana et al.6 and
Abdou et al.12. We have observed some limitations of these as follows:

1. The dataset suffers from an issue of class imbalance, which has not been addressed.
2. Class based accuracy was not illustrated.
3. Performance measurements like Recall, F-measure, and Precision was not given.

The followings are our empirical investigation; we identified following strong motivational research queries
(RQ) concerning the need for CSS detection:

• RQ1 Which ML algorithm is the most effective for detecting severities of code smell?
• Motivation Fontana et al.6 and Alazba et al.13 applied various ML algorithms and compared the performances

of ML algorithms. Therefore, we applied five ML algorithms to investigate and observe the performance and
find the best algorithm for CSS detection.

• RQ2 What is the impact of the class balancing method (SMOTE) on the performance of various models on
the CSS detection?

• Motivation To address the issue of class imbalance, Pandey et al.14 applied a random sampling technique.
Therefore, we used the SMOTE method to determine how the class imbalance issue affected the level of code
smell detection.

• RQ3 What is the impact of feature selection technique (FST) on the performance of various models on the
CSS detection?

• Motivation Dewangan et al.7, and Mhawish et al.15,16, investigated the effect of several FSTs on performance
measures. They discovered that using FST improved performance accuracy. So, to examine the impact of the
FST on improving the method’s accuracy and extracting code smell severities, which contributes a substantial
role in the CSS detection process.

To address the above three research questions, our key contributions to this study are as follows:

(1) This study addresses the class imbalance problem and applies SMOTE class balancing technique to the four
CSS datasets.

(2) A principal component analysis (PCA)-based FST is used to show the result of FST on the model perfor-
mance for detecting the severity of code smells.

(3) We have applied five ML models: Logistic Regression (LR), Multi-layer Perceptron (MLP), Random forest
(RF), Decision tree (DT), and K-nearest neighbour (KNN).

(4) We have considered four performance measurements: Precision, Recall, F-measure, and Severity Accuracy
Score for each severity class for the severity dataset of each code smell.

Thus, our study applied the SMOTE method to handle the class imbalance issue and the Principal Compo-
nent Analysis (PCA)-based feature selection technique to improve the model accuracy and achieved a severity
accuracy score of 0.99 using the Random Forest and Decision Tree algorithms in the context of detecting the
Long Method code smell.

The paper is organized as follows: "Background/literature review" section discusses related works and provides
a brief description of CSS detection by applying ML algorithms. “Description of the proposed model and data-
set” section discusses the dataset’s description and proposed models, the experimental results of the proposed
model are described in "Experiment results" and "Discussion and result analysis" section outlines the discussion
and compares our outcomes with other related studies, and finally the last "Conclusion" section concludes with
future research directions.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

Background/literature review
Various research studies6,17–19 on CSS detection and how it affects the model performance have been conducted.
Many techniques (i.e., machine learning, ensemble learning, and class imbalance problem) are presented in the
literature to identify the severity of code smells. Each technique yields a unique set of outcomes. In this section,
we have presented the related work by dividing it into three sub-sections. The first discusses the ML-based, the
second ensemble learning-based, and the third reviews the class imbalance problem for CSS detection.

Code smell severity (CSS) detection based on the machine learning algorithms
Numerous researchers have employed a variety of machine learning (ML) algorithms to detect CSS. Fontana
et al.6 explored a range of ML techniques, including regression, multinomial classification, and a binary classi-
fier for ordinal classification. Their evaluation demonstrated a correlation between predicted and actual sever-
ity, achieving 88–96% accuracy measured by Spearman’s p. Another study by Abdou et al.12 utilized different
ML models, including ordinal, regression, and multinomial classifiers for CSS classification. They also applied
the LIME approach to interpret ML models and rules of prediction, utilizing the PART algorithm to assess
feature efficiency. The highest accuracy they achieved was 92–97% using the Spearman algorithm correlation
measurement.

Tiwari et al.17 introduced a tool to identify long methods and their severity, emphasizing the significance of
refactoring long methods. Their findings showed that this tool matched expert evaluations for approximately half
of the approaches with a one-level tolerance. Additionally, they identified high severity evaluations that closely
aligned with expert judgments.

For closed-source software bug reports with varying degrees of severity, Baarah et al.18 investigated the
use of eight ML models, including Support Vector Machine, Naive Bayes, Naive Bayes Multinomial, Decision
Rules (JRip), Decision Tree (J48), Logistic Model Trees, K-Nearest Neighbor, and Random Forest. The Decision
Tree (DT) model outperformed the others with 86.31% accuracy, 90% Area under the Curve (AUC), and 91%
F-measure.

Gupta et al.19 introduced a hybrid technique to assess code smell intensity in the Kotlin language and identi-
fied identical code smells in the Java language. Their work involved applying various ML models, with the JRip
algorithm achieving the best outcome at 96% precision and 97% accuracy.

Hejres et al.20 utilized three ML models (J48, SMO, and ANN) to detect CSS from four datasets. The SMO
model yielded the best results for the god class and feature envy datasets, while the ANNE with the SMO model
showed the highest accuracy for the long method dataset.

In their study, Hu et al.21 reexamine the efficacy of ten classification approaches and eleven regression meth-
ods for predicting code severity. The evaluation of these methods is based on two key performance metrics: the
Cumulative Lift Chart (CLC) and Severity@20%. Additionally, Accuracy is considered as a secondary perfor-
mance indicator. The findings indicate that the Gradient Boosting Regression (GBR) technique has superior
performance in relation to these criteria.

Sandouka et al.22 proposed a Large Class and Long Method code smell based Python code smell dataset. They
utilized six ML models for Python code smell detection. They measure the Accuracy and MCC percentage. They
obtained the 0.89 best MCC rate using the DT model.

Zakeri-Nasrabadi et al.23 surveyed 45 pre-existing datasets to examine the factors contributing to a dataset’s
effectiveness in detecting smells. They found that the suitability of a dataset for this purpose is heavily influenced
by various properties, including its size, severity level, project types, number of each type of smell, overall number
of smells, and the proportion of smelly to non-smelly samples within the dataset. Most currently available datasets
support identifying code smells such as God Class, Long Method, and Feature Envy. However, it is worth not-
ing that there are six code smells included in Fowler and Beck’s catalog that do not have corresponding datasets
available for analysis. It may be inferred that the current datasets exhibit imbalanced sample distributions, a
shortage of severity level support, and a limitation to the Java programming language.

Code smell severity (CSS) detection based on the ensemble and deep learning algorithms
Numerous research studies have explored the application of various ensemble learning methods for code smell
detection. Alazba et al.13 conducted experiments with fourteen ML and stacking ensemble learning methods
with six datasets for code smells and reported a remarkable accuracy of 99.24% with LM Dataset using the
Stack-SVM algorithm.

Malathi et al.24 introduced a deep learning approach for detecting class code smells. This approach lever-
ages a diverse set of characteristics specifically designed for different types of code smells. This deep learning
model would effectively detect instances belonging to the single class CS only. Therefore, this paper proposes an
advanced Deep Learning Based many Class type Code Smell detection (DLMCCMD) to automatically detect
many kinds of Code Smells, such as huge class, misplaced class, lazy class, and data clumps. The CNN-LSTM
architecture has been devised for the purpose of classifying a certain feature that encompasses both source code
information and code metrics. The acquired data is consolidated to conduct positive testing of source code
programs with reduced computational time.

Dewangan et al.25 utilized four ML (LR, RF, KNN, DT) and three ensemble models (AdaBoost, XG Boost,
and Gradient Boosting) to detect CSS from four datasets. They used chi-square FST and two-parameter opti-
mization methods (Grid search and Random search). They obtained that the XG Boost model achieved a high
accuracy rate of 99.12% when applied to the Long method code smell dataset, utilizing the Chi-square-based
feature selection strategy.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

Nanda et al.26 employed a hybrid approach that integrated the Synthetic Minority Over-sampling Technique
(SMOTE) with the Stacking model to effectively classify datasets related to the severity of DC, GC, LM, and FE,
achieving performance improvement from 76 to 92%.

Pushpalatha et al.27 proposed a method for predicting bug report severity in closed-source datasets, utilizing
the NASA project dataset (PITS) from the PROMISE Repository. To enhance accuracy, they employed ensem-
ble learning methods and two-dimensional reduction techniques, including information gain and chi-square.

Zhang et al.28 introduced MARS, a brain-inspired method for code smell detection that relies on the Metric-
Attention method. They applied various ML and Deep learning models and found that MARS outperformed
conventional techniques in terms of accuracy.

Liu et al.29 presented a severity prediction approach for bug reports based on FSTs and established a ranking-
based policy to enhance existing FSTs and create an ensemble learning FST by combining them. Among the eight
FST methods applied, the ranking-based approach achieved the highest F1 score of 54.76%.

Abdou et al.30 suggested using ensemble learning techniques to detect software defects. They explored three
ensemble approaches: Bagging, Boosting, and Rotation Forest, which combine re-sampling techniques. The
experiments conducted on seven datasets from the PROMISE repository showed that the ensemble method
outperforms single learning methods, with the rotation forest using the re-sampling approach achieving a maxi-
mum accuracy of 93.40% for the KC1 dataset.

Dewangan et al.11 employed ensemble and deep learning methods to discover code smells. They achieved a
remarkable 100% accuracy for the LM dataset by applying all ensemble methods and using Chi-square FST and
SMOTE class balancing methods.

Code smell severity (CSS) detection dealing with class imbalance problem
Zhang et al.31 proposed a DeleSmell method to identify the code smells using a deep learning model. They
constructed the dataset by collecting data from 24 real-world projects. To address the unbalance in the dataset,
a refactoring technique is intended to automatically change useful source code into smelly code and to gener-
ate positive data using actual cases. They employed the SVM method and found that DeleSmell enhances the
efficiency of brain class code smell detection by up to 4.41% compared to conventional techniques. Pecorelli
et al.32 implemented five imbalance techniques (Class Balancer, SMOTE, Resample, and Cost-Sensitive Clas-
sifier, One Class Classifier) to identify the impact of five code smell detection on the various ML algorithms.
They found that ML models relying on SMOTE obtained the best performance. A random sampling approach
was applied by Pandey et al.14 to address the problem of class imbalance. With the random sampling technique,
they discovered better results.

The related work summarizes that various authors used machine learning techniques (machine learning,
ensemble learning, and deep learning). “Code smell severity (CSS) detection based on the machine learning
algorithms”, “Code smell severity (CSS) detection based on the ensemble and deep learning algorithms”, and
“Code smell severity (CSS) detection dealing with class imbalance problem” sections discussed all related stud-
ies which worked on the CSS datasets. The above literature has some limitations, only some studies have solved
the class imbalance problem in the datasets, but they need to address the dataset’s class-wise accuracy. Also,
only some studies have used the feature selection technique and examined its effect on performance accuracy.

Description of the proposed model and dataset
We followed the following steps to detect the severity, as depicted in Fig. 1. Fontana et al.6 served as the source for
initially deriving four datasets on CSS. The min–max preprocessing technique was used to ensure data compara-
bility, normalizing data values to fall within the range of 0–1. A SMOTE class balancing algorithm is applied to
handle the class imbalance issues. Next, a PCA-based FST technique was used to select the most relevant features
from each dataset. Subsequently, the dataset was into two parts: an 80% training set for model training and a sepa-
rate test set for model evaluation (fivefold cross validation). Finally, machine learning algorithms were applied,
and performance evaluations were conducted. The entire procedure conducted in this study is outlined in Fig. 1.

Description of the dataset
The four datasets from Fontana et al.6 that are being considered are divided into two class-level datasets (DC, GC)
and two method-level datasets (FE, LM). Visit http:// essere. disco. unimib. it/ rever se/ MLCSD. html to access each
of these datasets. Out of 111 systems, 76 have been selected by Fontana et al.6 and have been computed using a
variety of sizes and a significant amount of object-oriented features. For the system selection, they considered
the systems Qualitas Corpus compiled by Tempero et al.33. These methods included iPlasma (Brain Class, GC),
Anti-pattern Scanner34, PMD35, iPlasma, Fluid Tool36, and Marinescu detection rules37 for determining the
intensity of code smells. Table 1 displays the automatic detection tools.

Code smells severity classification
After manually assessing each instance of a code smell, a severity score is assigned.

• 1: A class or method that is unaffected receives a score of 1 for "No smell”;
• 2: A class or function that is only marginally affected receives a score of 2 for a non-severe smell;
• 3 : A class or method receives a smell score of 3 if it possesses all of the qualities of a smell;
• 4: There is a severe smell, and its size, complexity, and coupling values are extremely high. It receives a score

of 4.

http://essere.disco.unimib.it/reverse/MLCSD.html

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

The datasets are defined below:

• DC It refers to classes that hold fundamental data with essential functionality and are extensively utilized
by other classes. A DC typically exposes numerous features through simple accessor methods, presenting a
straightforward and uncomplicated design6.

• GC It refers to classes that centralize the system’s intelligence, often being considered one of the most complex
code smells. GCs tend to accumulate numerous responsibilities, actions, and tasks, leading to issues related
to code size, coupling, and complexity6.

• FE It pertains to techniques or methods that heavily rely on data from classes other than their own. It shows
a preference for utilizing features exposed through accessor methods in other classes6.

• LM It describes strategies or procedures that concentrate a class’s functionality, frequently leading to long
and complicated code. Because they rely so largely on information from other classes, LMs are difficult to
 understand6.

Dataset structure
Each dataset contains 420 instances (classes or methods). Specifically, 63 instances are selected for the DC and
GC datasets, while 84 instances are chosen for the FE and LM datasets. The dataset configuration, as shown in
Table 2, includes the distribution of instances across severity levels. It is observed that severity level 2 has the

Select Important Features
from each dataset

Four Code Smell Severity Datasets with 4 severity classes

Apply Min-Max Preprocessing

PCA based Feature Selec�on Technique

Apply SMOTE Class Balancing Technique

Severity 1 Severity 2 Severity 3 Severity 4

Machine Learning Models
(KNN, RF, DT, MLP, and LR)

Performance Evalua�on (Precision,
Recall, F-measure, and Accuracy)

Training Set (80%) Tes�ng Set (20%)

Figure 1. Proposed model.

Table 1. Automatic detector tools (advisors)6.

Code smell Reference, tool/detection rules

DC iPlasma, anti-pattern scanner34, fluid tool36,

GC iPlasma (GC, brain class), PMD35

FE iPlasma, fluid tool36

LM iPlasma (brain method), PMD, Marinescu detection rule37

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

least number of occurrences in the datasets. Additionally, the class-based smells (DC and GC) exhibit a different
balance of severity levels 1 and 4 compared to the method-based smells (FE and LM)6.

Preprocessing technique
The datasets encompass a diverse set of features; consequently, it is preferable to normalize the features before
using the ML techniques. In this study, the Min–Max preprocessing method is used to rescale datasets with
feature or observation values ranging from 0 to 138. The min–max formula, as presented in Eq. 1, calculates the
normalized value denoted by X’, based on the original real value represented by X. The feature’s minimum value
(Xmin) is set to "0," and the maximum value (Xmax) is set to "1." All other values are scaled proportionally as
decimals within the range of 0–1.

Class balancing technique
From Table 2, we observed that the dataset (Fontana et al.6) has four types of severity levels (metrics). The dis-
tribution of each severity level of each dataset is different. The class distribution of this dataset is not balanced.
In this research, each class of each dataset was balanced using the SMOTE class balancing approach. SMOTE is
a well-known oversampling method that was developed to improve random oversampling39.

Feature selection technique
Feature selection aims to identify the most relevant features in a dataset, enhancing model performance by better
understanding the instances that contribute to distinguishing parallel roles in features40. In this study, we utilized
the PCA (Principal Component Analysis) feature selection technique to extract the most informative features
from each dataset. PCA is a dimensionality-reduction method commonly employed to reduce the number of
variables in large datasets, creating a smaller set that preserves most of the data’s variability41. The discussion of
the selected best features/instances from each dataset and their impact on performance accuracy is provided in
“Effect of PCA feature selection technique on the model’s severity accuracy score” section.

Machine learning models
Machine learning is a computational approach that encompasses a range of methodologies employed by com-
puters to make predictions, enhance predictive accuracy, and forecast behavior patterns using datasets42. In this
study, we have applied five ML models to detect the CSS from CSS datasets. The five ML models are Logistic
regression, Multi-layer perceptron, Random forest, Decision tree, and K-nearest neighbor. The five ML modes
described in following subsections:

Logistic regression (LR)
To analyze and categorize binary and proportional response data sets, researchers frequently use the LR method,
one of the most significant statistical and data mining approaches. One of its key features is that LR may extend
to multi-class classification problems and automatically generate probability.

Multi‑layer perceptron (MLP)
This classifier is made up of layers of units. Each node in the fully linked network under consideration here com-
prises a layer. In that layer, every other node is connected to every other node in the layer below it. A minimum
of three layers, including an input layer, one or more hidden layers, and an output layer, make up each MLP.
The input layer divides up the inputs among the following levels. Input nodes lack thresholds and have linear
activation functions. There are thresholds connected to the minimum addition to the weights for each hidden
unit node and each output node. The outputs have linear activation functions, while the buried unit nodes have
nonlinear activation functions.

Random forest (RF)
In the proposed model, we employed Random Forest (RF) as the machine learning classifier. In RF, each tree
depends on the values of a random vector sampled randomly, and this sampling is done with the same distri-
bution for all the trees in the forest. With an increasing number of trees in the forest, the generalization error

(1)X ′
=

X − Xmin

Xmax−Xmin

Table 2. Dataset configuration6.

CSS datasets

Severity

1 2 3 4

DC 151 32 113 124

GC 154 29 110 127

FE 280 23 95 22

LM 280 11 95 34

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

asymptotically converges to a limit. The overall generalization error of the forest of tree classifiers is determined
by the quality of each individual tree and the relationships between them.

Decision tree (DT)
In a DT model, each internal branch is connected to a decision, and the leaf node is often connected to a result
or class label. Each internal node tests one or more attribute values that result in two or more links or branches.
Each connection has a potential decision value attached to it. These connections are distinct and comprehensive7.

K‑nearest neighbor (KNN)
The KNN method is a supervised ML technique used for classification prediction issues. Meanwhile, most of its
applications in the industry are for classification prediction issues. The KNN model uses "feature similarity" to
predict the value of a new data point, which also implies that the value will depend on how closely the new data
point resembles the training point7.

Performance evaluations
We employed four performance evaluations—Precision, Recall, F-measure, and Severity Accuracy Score to
determine the performance of five machine learning models. These evaluation indicators are described briefly
in following subsections. Four terms are considered while calculating the performance evaluation: True positive
(TP), False positive (FP), True negative (TN), and False negative (FN). The confusion matrix (CM) calculates
these four terms, which contains the actual and predicted values recognized by CSS models. Figure 2 shows the
confusion matrix prediction.

Precision (P)
Precision (P) is concerned with the accurate identification of code smell severities by the ML model43. To calculate
precision, Eq. (2) is employed, where precision is determined by dividing the number of true positives (TP) by
the sum of TP and false positives (FP).

Recall (R)
Recall (R) pertains to the accurate identification of code smell severities by the ML model43. To calculate recall, we
use Eq. (3), which involves dividing the number of true positives (TP) by the sum of TP and false negatives (FN).

F‑measure (F)
F-measure (F) deals with the harmonic mean of precision and recall, and it’s set for a balance between their
 values43. Its value lies between 0 and 1, 0 is the poorest performance and 1 is the most excellent performance.
Equation (4) is applied to calculate F-measure.

Severity accuracy score (SAS)
Severity accuracy score (SAS) deals with the organization of precision and recall. It illustrates the measurement
of exactly classified instances in the positive and negative classes43. Equation (5) is used to compute accuracy.
SAS is considered as dividing the sum of the TP and TN by the sum of the TP, TN, FP, and FN.

(2)Precision (P) =
TP

TP + FP

(3)Recall (R) =
TP

TP + FN

(4)F −measure (F) = 2×
precision× recall

precision+ recall

 TP FP

 FN TN

Predicted
Values

Positive (1) Negative (0)

Positive 1

Negative 0

Actual Values

Figure 2. Confusion matrix44.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

Experiment results
To address RQ1, five ML models are used. The datasets GC, DC, FE, and LM for the severity of code smells are
chosen. In this study, each dataset has four categories of severity (severity 1, severity 2, severity 3, and severity
4). We have shown individual outcomes for each dataset’s severity level. In addition, the average outcome of all
severity classifications is also presented. The following “Outcomes for data class” to “Outcomes for long method”
sections, display the experimental outcomes of five ML models with fivefold cross validation: LR, MLP, RF, DT,
and KNN, in tabular form for four datasets.

Outcomes for data class
This subsection represents the effect of applying the five ML models to the DC dataset. Table 3 shows the sever-
ity detection outcomes with four measurements (Precision, Recall, F-measure, and Severity Accuracy Score)
for the DC dataset (for each level of severity, with the average of all levels of severity) applying five ML models.
Figure 3 shows the accuracy comparison of the data class dataset for all the classifiers. For the DC dataset, it has
been observed that the DT model detected the highest severity accuracy score (with an average of all the sever-
ity classes) of 0.83, the precision of 0.84, recall of 0.83, and F-measure of 0.84, while the worst severity of 0.40
accuracy was detected by the MLP model.

Outcomes for god class
This subsection represents the effect of applying the five ML models to the GC dataset. Table 4 shows the severity
detection outcomes with four measurements for the GC dataset (for each level of severity, with the average of all
levels of severity) applying five ML models. Figure 4 shows the accuracy comparison of the god class dataset for
all the classifiers. For the GC dataset, it has been observed that the RF model detected (with an average of all the
severity classes) the highest Severity Accuracy Score, precision, recall, and F-measure of 0.85, while the worst
Severity Accuracy Score is 0.43 was detected by the MLP model.

Outcomes for feature envy
This subsection represents the effect of applying the five ML models to the feature envy dataset. Table 5 shows
the severity detection outcomes with four measurements for the feature envy dataset (for each level of severity,

(5)Severity Accuracy Score (SAS) =
TP + TN

TP + TN + FP + FN

Table 3. Outcomes for data class dataset. Significant values are in bold.

Model name Severity classes Precision Recall F-measure Severity accuracy score

LR

Severity 1 0.77 0.89 0.83 0.89

Severity 2 0.51 0.54 0.53 0.54

Severity 3 0.49 0.49 0.49 0.49

Severity 4 0.81 0.64 0.71 0.64

Average of all severity class 0.65 0.64 0.64 0.64

MLP

Severity 1 0.81 0.39 0.53 0.58

Severity 2 0.27 0.92 0.42 0.92

Severity 3 0.33 0.03 0.6 0.74

Severity 4 0.67 0.38 0.48 0.59

Average of all severity class 0.54 0.40 0.37 0.40

RF

Severity 1 0.97 0.88 0.92 0.88

Severity 2 0.83 1.00 0.91 1.00

Severity 3 0.59 0.71 0.65 0.71

Severity 4 0.88 0.66 0.75 0.66

Average of all severity class 0.82 0.80 0.80 0.80

DT

Severity 1 0.97 0.95 0.94 0.95

Severity 2 0.85 0.92 0.88 0.92

Severity 3 0.70 0.74 0.72 0.74

Severity 4 0.83 0.75 0.79 0.75

Average of all severity class 0.84 0.83 0.84 0.83

KNN

Severity 1 0.68 0.54 0.60 0.54

Severity 2 0.65 0.62 0.63 0.62

Severity 3 0.45 0.71 0.56 0.71

Severity 4 0.62 0.48 0.54 0.48

Average of all severity class 0.61 0.58 0.58 0.58

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

with the average of all levels of severity) applying five ML models. Figure 5 shows the accuracy comparison of
the feature envy dataset for all the classifiers. For the feature envy dataset, it has been observed that the MLP and
RF model detected (with an average of all the severity classes) the highest Severity Accuracy Score, precision,
and recall of 0.96 and the F-measure is 0.96 for the RF model and 0.95 for MLP. The worst Severity Accuracy
Score is 0.90, detected by the LR model.

Outcomes for long method
This subsection represents the effect of applying the five ML models to the LM dataset. Table 6 shows the sever-
ity detection outcomes with four measurements for the LM dataset (for each level of severity, with the average
of all levels of severity) applying five ML models. Figure 6 shows the accuracy comparison of the long method
dataset for all the classifiers. For the LM dataset, we observed that the RF and DT both models detected (with an

0

20

40

60

80

100

LR MLP RF DT KNN

Accuracy

Data class dataset

Figure 3. Accuracy comparison of data class dataset for all the classifier.

Table 4. Outcomes for god class dataset. Significant values are in bold.

Model name Severity classes Precision Recall F-measure Severity accuracy score

LR

Severity 1 0.80 0.90 0.84 0.89

Severity 2 0.69 0.56 0.62 0.56

Severity 3 0.51 0.53 0.52 0.53

Severity 4 0.68 0.69 0.68 0.69

Average of all severity class 0.67 0.67 0.67 0.67

MLP

Severity 1 0.43 0.74 0.55 0.74

Severity 2 0.64 0.32 0.42 0.41

Severity 3 0.25 0.24 0.24 0.56

Severity 4 0.58 0.37 0.45 0.37

Average of all severity class 0.46 0.43 0.42 0.43

RF

Severity 1 0.97 0.83 0.89 0.83

Severity 2 0.82 0.96 0.89 0.96

Severity 3 0.83 0.77 0.80 0.77

Severity 4 0.78 0.83 0.81 0.83

Average of all severity class 0.85 0.85 0.85 0.85

DT

Severity 1 0.89 0.71 0.79 0.71

Severity 2 0.77 0.96 0.86 0.96

Severity 3 0.64 0.58 0.61 0.58

Severity 4 0.67 0.73 0.70 0.73

Average of all severity class 0.75 0.74 0.74 0.74

KNN

Severity 1 0.59 0.63 0.61 0.63

Severity 2 0.73 0.79 0.76 0.78

Severity 3 0.44 0.61 0.51 0.62

Severity 4 0.71 0.33 0.45 0.33

Average of all severity class 0.62 0.59 0.58 0.59

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

average of all the severity classes) the highest Severity Accuracy Score, precision, recall, and F-measure of 0.99,
while the worst Severity Accuracy Score is 0.94 detected by the LR model.

The impact of SMOTE’s class‑balancing method on predictive performance
RQ2 was addressed using the SMOTE class balancing method. This experiment is done to observe SMOTE’s
impact on balancing the classes of four severity code smell datasets. Table 7 shows how each model’s performance
Severity Accuracy Score gets affected for four CSS datasets. According to the comparison, the SMOTE class
balancing methodology helps almost all ML techniques improve their Severity Accuracy Score for all datasets,
and it affects each model and each dataset in slightly different ways.

We observed the following points for each dataset:

0

20

40

60

80

100

LR MLP RF DT KNN

Accuracy

God class dataset

Figure 4. Accuracy comparison of god class dataset for all the classifier.

Table 5. Outcomes for feature envy dataset. Significant values are in bold.

Model name Severity classes Precision Recall F-measure Severity accuracy score

LR

Severity 1 0.96 0.92 0.94 0.91

Severity 2 0.90 0.90 0.90 0.90

Severity 3 0.83 0.79 0.81 0.79

Severity 4 0.93 1.00 0.96 1.00

Average of all severity class 0.90 0.90 0.90 0.90

MLP

Severity 1 1.00 0.96 0.92 0.96

Severity 2 0.95 0.98 0.97 0.98

Severity 3 0.91 0.96 0.93 0.96

Severity 4 0.97 1.00 0.98 1.00

Average of all severity class 0.96 0.96 0.95 0.96

RF

Severity 1 1.00 0.88 0.94 0.88

Severity 2 0.90 1.00 0.95 1.00

Severity 3 0.94 0.94 0.94 0.94

Severity 4 1.0 0.98 0.99 0.98

Average of all severity class 0.96 0.96 0.96 0.96

DT

Severity 1 1.00 0.92 0.96 0.92

Severity 2 0.95 0.95 0.95 0.95

Severity 3 0.83 0.96 0.89 0.96

Severity 4 1.00 0.93 0.97 0.93

Average of all severity class 0.95 0.94 0.94 0.94

KNN

Severity 1 1.00 0.72 0.84 0.72

Severity 2 0.85 0.98 0.91 0.98

Severity 3 0.85 0.77 0.81 0.77

Severity 4 0.86 0.98 0.92 0.98

Average of all severity class 0.88 0.88 0.87 0.88

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

(1) For the DC dataset, MLP, RF, DT, and KNN models provided higher Severity Accuracy Scores when we
used SMOTE technique, while the LR model achieved a better Severity Accuracy Score without using
SMOTE technique. The DT model achieved the highest Severity Accuracy Score of 0.83 using the SMOTE
balancing technique.

(2) For the GC dataset, RF, DT, and KNN models provided higher Severity Accuracy Scores when we applied
SMOTE technique, while the LR model achieved a better Severity Accuracy Score without using SMOTE
technique, and the MLP model presented the same results for both with and without applied SMOTE bal-
ancing technique. The RF model achieved the highest Severity Accuracy Score of 0.85 using the SMOTE
balancing technique.

(3) For the FE dataset, all five models presented higher Severity Accuracy Score when we applied SMOTE
technique. The highest Severity Accuracy Score of 0.96 was achieved by the MLP and RF model using
SMOTE balancing technique.

(4) For the LM dataset, all five models provided higher Severity Accuracy Score when we SMOTE technique.
The RF and DT model obtained the highest Severity Accuracy Score of 0.99 using the SMOTE balancing
technique.

80

85

90

95

100

LR MLP RF DT KNN

Accuracy

Feature envy dataset

Figure 5. Accuracy comparison of feature envy dataset for all the classifier.

Table 6. Outcomes for long method dataset. Significant values are in bold.

Model Name Severity classes Precision Recall F-measure Severity accuracy score

LR

Severity 1 1.00 0.97 0.98 0.97

Severity 2 0.94 1.00 0.97 1.00

Severity 3 0.92 0.85 0.88 0.85

Severity 4 0.91 0.93 0.91 0.93

Average of all severity class 0.94 0.94 0.94 0.94

MLP

Severity 1 0.96 1.00 0.98 1.00

Severity 2 0.97 0.97 0.97 0.97

Severity 3 0.96 0.88 0.92 0.88

Severity 4 0.96 1.00 0.98 1.00

Average of all severity class 0.96 0.96 0.96 0.96

RF

Severity 1 1.00 0.99 0.99 0.99

Severity 2 1.00 1.00 1.00 1.00

Severity 3 0.97 1.00 0.98 1.00

Severity 4 1.00 0.98 0.99 0.98

Average of all severity class 0.99 0.99 0.99 0.99

DT

Severity 1 1.00 0.99 0.99 0.99

Severity 2 1.00 1.00 1.00 1.00

Severity 3 0.97 0.99 0.98 0.99

Severity 4 0.99 0.99 0.99 0.99

Average of all severity class 0.99 0.99 0.99 0.99

KNN

Severity 1 1.00 0.96 0.98 0.96

Severity 2 0.91 0.98 0.95 0.98

Severity 3 0.96 0.91 0.93 0.91

Severity 4 0.98 0.98 0.98 0.98

Average of ALL SEVERITY CLASS 0.96 0.96 0.96 0.96

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

Effect of PCA feature selection technique on the model’s severity accuracy score
In this study, we have applied the PCA-based FST to select the best features from the severity dataset. The PCA
selects the DC dataset with eight components, the GC dataset with nine components, the FE dataset with nine
components, and the LM dataset with ten components. Table 8 shows the best-selected features from each dataset
using PCA. All selected feature descriptions are provided in the appendix section of Table 12.

90

92

94

96

98

100

LR MLP RF DT KNN

Accuracy

Long method dataset

Figure 6. Accuracy comparison of long method dataset for all the classifier.

Table 7. Result Comparison between with and without applied SMOTE. Significant values are in bold.

Dataset Model name Severity accuracy score with applied SMOTE Severity accuracy score without applied SMOTE

DC

LR 0.64 0.73

MLP 0.40 0.39

RF 0.80 0.79

DT 0.83 0.70

KNN 0.58 0.48

GC

LR 0.67 0.68

MLP 0.43 0.43

RF 0.85 0.76

DT 0.74 0.70

KNN 0.59 0.40

FE

LR 0.90 0.89

MLP 0.96 0.79

RF 0.96 0.89

DT 0.94 0.89

KNN 0.88 0.65

LM

LR 0.94 0.91

MLP 0.96 0.89

RF 0.99 0.98

DT 0.99 0.97

KNN 0.96 0.94

Table 8. PCA-selected features from each dataset.

Dataset No. of components Components selected by PCA

DC 08 NOMNAMM_project, LOC_project, LOCNAMM_type, LOC_package, LOC_type, NOCS_project,
NOCS_package, NOMNAMM_package

GC 09 NOMNAMM_project, LOC_project, LOC_type, LOC_package, LOCNAMM_type, NOMNAMM_pack-
age, NOCS_project, Complextype, NOCS_package

FE 09 Method, ATFD_type, Project, AMW_type, package, AMWNAMM_type, complextype, CBO_type,
LOC_method

LM 10 Project, Method, CYCLO_method, ATFD_type, complextype, package, LOC_method, NOAV_method,
CBO_type, CINT_method

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

Table 9 shows the result comparison with and without the applied PCA based FST in each dataset with five
ML algorithms. We observed the following points for each dataset:

(1) For the DC dataset, RF, DT, and KNN models provided higher Severity Accuracy Scores when applied the
PCA feature selection technique, while the LR and MLP models achieved better Severity Accuracy Scores
without applying PCA. The highest Severity Accuracy Score of 0.83 was achieved by the DT model using
the PCA feature selection technique.

(2) For the GC dataset, LR, RF, and DT models resulted higher Severity Accuracy Score when applied the PCA
feature selection technique. The highest Severity Accuracy Score of 0.85 was achieved by the RF model
using the PCA feature selection technique. At the same time, the MLP and KNN models achieved better
Severity Accuracy Scores without applying PCA.

(3) For the Feature envy dataset, MLP and RF models provided higher Severity Accuracy Scores when applied
the PCA feature selection technique, while the LR and KNN models achieved better Severity Accuracy
Scores without applying PCA. The highest Severity Accuracy Score of 0.96 was achieved by the MLP and
RF model using the PCA feature selection technique. The DT model achieved the same result with and
without applied PCA.

(4) For the LM dataset, LR, MLP, RF, and DT models resulted higher Severity Accuracy Scores when applied
the PCA feature selection technique, while the KNN model achieved a better Severity Accuracy Score
without applying PCA. The highest Severity Accuracy Score of 0.99 was achieved by the RF and DT model
using the PCA feature selection technique.

Discussion and result analysis
In this study, three research questions are presented in "Introduction" section. To address the RQ1, we applied
five ML algorithms (LR, MLP, RF, DT, and KNN) to the four CSS datasets, and their results are discussed in
"Outcomes for data class" to "Outcomes for long method" sections. The achieved results answer RQ1 and found
that the RF model is most helpful in detecting the highest Severity Accuracy Score from GC, FE, and LM datasets,
and the DT model is most helpful in detecting the highest Severity Accuracy Score from DC and LM datasets.

To address the RQ2, the SMOTE class balancing method is applied to the four CSS datasets discussed in "The
impact of SMOTE’s Class-balancing method on predictive performance" section. All datasets have four types
of severity classes: severity1, severity2, severity3, and severity4, and all classes had a high imbalance among the
values. The dataset configuration with severity class is shown in Table 2. Table 7 presents the results of applying
SMOTE technique on the CSS datasets with five ML models. The results confirm that most of the models detected
the better Severity Accuracy Score for all the datasets when the SMOTE class balancing method is applied.

To address the RQ3, we have applied the PCA technique to the four CSS datasets discussed in "Effect of PCA
feature selection technique on the model’s severity accuracy score" section. Table 8 shows the important features
selected from each dataset, and Table 9 shows the result comparison between with and without the applied PCA

Table 9. Result comparison between with and without applied PCA based FST. Significant values are in bold.

Dataset Model name Severity accuracy score with applied PCA Severity accuracy score without applied PCA

DC

LR 0.64 0.66

MLP 0.40 0.42

RF 0.80 0.76

DT 0.83 0.80

KNN 0.58 0.53

GC

LR 0.67 0.66

MLP 0.43 0.48

RF 0.85 0.78

DT 0.74 0.72

KNN 0.59 0.61

FE

LR 0.90 0.92

MLP 0.96 0.95

RF 0.96 0.91

DT 0.94 0.94

KNN 0.88 0.90

LM

LR 0.94 0.92

MLP 0.96 0.95

RF 0.99 0.98

DT 0.99 0.98

KNN 0.96 0.97

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

based FST. After comparison, we observed that the PCA is useful for improving the Severity Accuracy Score of
all the ML models for all the datasets.

Evaluation of our results with relevant research studies
This section constructs a comparative summary of proposed approach’s result with other relevant research studies.
To the best of our knowledge and available literature on CSS detection, only three authors (Fontana et al.6; Abdou
et al.12; Dewangan et al.25) have studied the severity dataset. They applied different methodologies, which are
shown in Table 10. Table 10 compares our outcomes with Fontana et al.6, Abdou et al.12, and Dewangan et al.25.
Fontana et al.6 applied eighteen ML models and implemented binary classification, multinomial classification, and
regression technique with linear co-relation filter method. Abdou et al.12 applied forty binary and multinomial
classification techniques with a ranking correlation algorithm. Dewangan et al.25 applied seven ML and ensemble
methods. Our approach applied five ML models (LR, MLP, RF, DT, and KNN) with PCA-based Feature selection
and SMOTE class balancing techniques.

The comparison for each dataset is shown in the following points:

 (1) For the DC dataset, in our approach, DT model detected the highest Severity Accuracy Score of 0.83, while
the Fontana et al.6 detected a Severity Accuracy Score of 0.77 applying the O-RF method and Abdou et al.12
detected a Severity Accuracy Score of 0.93 applying the O-R-SMO method. Dewangan et al.25 detected a
Severity Accuracy Score of 0.88 using gradient boosting model. Therefore, the Abdou et al.12 approach is
good.

 (2) For the GC dataset, in our approach, the RF model detected the highest Severity Accuracy Score, 0.85,
while the Fontana et al.6 detected a Severity Accuracy Score of 0.74 by O-DT approach and Abdou et al.12
detected a Severity Accuracy Score of 0.92 by R-B-RF approach. Dewangan et al.25 detected a Severity
Accuracy Score of 0.86 using DT model. Therefore, the Abdou et al.12 approach is good.

 (3) For the FE dataset, in the proposed approach, the MLP and RF model detected the highest Severity
Accuracy Score, 0.96, while the Fontana et al.6 detected a Severity Accuracy Score of 0.93 applying the
J48-Pruned method and Abdou et al.12 detected a Severity Accuracy Score of 0.97 applying the R-B-JRIP
and O-R-SMO methods. Dewangan et al.25 detected a Severity Accuracy Score of 0.96 using DT model.
Therefore, the Abdou et al.12 approach is good.

 (iv) For the LM dataset, in the proposed approach, the RF and DT model detected the highest Severity
Accuracy Score of 0.99, while the Fontana et al.6 detected a Severity Accuracy Score of 0.92 applying
the B-Random Forest algorithm and Abdou et al.12 detected a Severity Accuracy Score of 0.97 applying
the R-B-JRIP, O-B-RF, and O-R-JRip algorithms. Dewangan et al.25 detected a Severity Accuracy Score
of 0.99 using XG boosting model. So, the Dewangan et al.25 and our proposed approach is best the LM
dataset.

Comparing machine learning models statistically
From Tables 7 and 9, it is observed that the same types of results are obtained after applying different models to
the same dataset. Therefore, the best model out of the two must be chosen in this scenario where two different
models produce similar results. To select the best model from the given five ML models, we applied a Paired
t-test statistical analysis to see whether there was a statistically substantial distinction between the two ML mod-
els, allowing us to use only the best one. N distinct test sets are needed to generate each classifier in this paired
t-test. For N test sets, we employed tenfold cross-validation. The statistical analysis was performed to tenfold
cross-validation using a Paired t-test. The mean accuracy and standard deviation for each ML model for each
dataset were computed in this study.

• Mean accuracy For a dataset, a model with a greater mean accuracy performs better than one with a lower
mean accuracy.

Table 10. Evaluation of our findings with relevant research.

Year Author name

Datasets

DC GC FE LM

Best algorithm
Severity
accuracy score Best algorithm

Severity
accuracy score Best algorithm

Severity
accuracy score Best algorithm

Severity
accuracy score

2017 Fontana et al.6 O-Random
Forest 0.77 O-Decision Tree 0.74 J48-Pruned 0.93 B-RandomForest 0.92

2022 Abdou et al.12 O-R-SMO 0.93 R-B-RF 0.92 R-B-JRIP,O-R-
SMO 0.97 R-B-JRIP, O-B-

RF, O-R-JRip 0.97

2023 Dewangan et al.25 Gradient Boost-
ing 0.88 DT 0.86 DT 0.96 XG Boost 0.99

Proposed
approach DT 0. 83 RF 0.85 MLP, RF 0.96 RF, DT 0.99

15

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

• Standard Deviation A high standard deviation indicates that most of the values in the dataset are spread out
over a wide range. And a low standard deviation indicates that most of the values in the dataset are close to
the mean. As a result, the model with the lowest standard deviation is the best choice.

We used tenfold cross-validation and a significance value of 0.05 to calculate the statistical analysis. Table 11
shows the mean accuracy and standard deviation of each classification model across each code-smell dataset.
Table 11 shows that the LR model had a 0.01 standard deviation and 0.99 mean accuracy scores for the DC data-
set. The LR model achieved the highest 1.00 mean accuracy score for the GC and LM datasets with a 0.00 standard
deviation. Additionally, the LR model had a 0.02 standard deviation and a highest mean accuracy score of 0.97
for the FE dataset. As a result, the LR model is determined to be the best model for the severity detection of the
four code smell datasets because it has a high mean accuracy and a low standard deviation across all datasets.

Conclusion
Class imbalance issues are significant primary challenges in the CSS dataset. We have considered four CSS data-
sets: GC, DC, LM, and FE. Five ML models were applied over four CSS datasets. SMOTE method was applied
to avoid the class imbalance problem. We also compared performances without using SMOTE techniques. We
have also applied the PCA-based FST technique and compared performances without using PCA techniques.
The conclusions, obtained from study are presented below.

(1) From the Data class dataset highest Severity Accuracy Score of 0.83 was detected by the DT model using
eight features selected by the PCA feature selection technique.

(2) From the God class dataset highest Severity Accuracy Score of 0.85 was detected by the RF model using
nine features selected by the PCA feature selection technique.

(3) From the Feature envy dataset highest Severity Accuracy Score of 0.96 was detected by the MLP and RF
model using nine features selected by the PCA feature selection technique.

(4) From the Long Method dataset highest Severity Accuracy Score of 0.99 was detected by the RF and DT
model using ten features selected by the PCA feature selection technique.

Ensemble learning has a good scope to be applied in the CSS dataset. Deep learning-based models are still
not possible because of the small number of instances in a dataset; however, by using data augmentation, we
may increase the size of our training set so that deep learning-based models can be effectively applied. The deep
learning methods and other FST techniques can be used in future studies.

Data availability
All these datasets are accessible at http:// essere. disco. unimib. it/ rever se/ MLCSD. html, Fontana et al.6.

Appendix
See Table 12.

Table 11. Statistical analysis.

ML models
Mean accuracy
for DC

Standard
deviation for DC

Mean accuracy
for GC

Standard
deviation for GC

Mean accuracy
for FE

Standard
deviation for FE

Mean accuracy
for LM

Standard
deviation for LM

LR 0.99 0.01 1.00 0.00 0.97 0.02 1.00 0.00

MLP 0.79 0.17 0.77 0.28 0.82 0.01 0.77 0.28

RF 0.98 0.02 0.98 0.02 0.93 0.02 0.98 0.02

DT 0.98 0.02 0.97 0.02 0.92 0.02 0.96 0.02

KNN 0.82 0.06 0.95 0.01 0.89 0.01 0.95 0.01

http://essere.disco.unimib.it/reverse/MLCSD.html

16

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

Received: 1 August 2023; Accepted: 22 September 2023

References
 1. Ogheneovo, E. On the relationship between software complexity and maintenance costs. J. Comput. Commun. 2, 1–16. https:// doi.

org/ 10. 4236/ jcc. 2014. 214001 (2014).
 2. Wiegers, K. & Beatty, J. Software Requirements (Pearson Education, London, 2013).
 3. Chung, L. & do, P. L. J. C. S. On non-functional requirements in software engineering. in Conceptual Modeling: Foundations and

Applications (Lecture Notes in Computer Science) (eds. Borgida, A. T., Chaudhri, V., Giorgini, P. & YuE, E. S.) 363–379 (Springer,
Cham, 2009).

 4. Mishra, D. & Mishra, A. Simplified software inspection process in compliance with international standards. Comput. Stand.
Interfaces 31(4), 763–771 (2009).

 5. Yu, L. & Mishra, A. Risk analysis of global software development and proposed solutions. Automatika 51(1), 89–98 (2010).
 6. Fontana, F. A. & Zanoni, M. Code smell severity classification using machine learning techniques. Knowl.‑Based Syst. https:// doi.

org/ 10. 1016/j. knosys. 2017. 04. 014 (2017).
 7. Dewangan, S., Rao, R. S., Mishra, A. & Gupta, M. A novel approach for code smell detection: An empirical study. IEEE Access 9,

162869–162883. https:// doi. org/ 10. 1109/ ACCESS. 2021. 31338 10 (2021).
 8. Yadav, P. S., Dewangan, S. & Rao, R. S. Extraction of prediction rules of code smell using decision tree algorithm. in 2021 10th

International Conference on Internet of Everything, Microwave Engineering, Communication and Networks (IEMECON) 1–5 (2021).
https:// doi. org/ 10. 1109/ IEMEC ON538 09. 2021. 96891 74.

 9. Dewangan, S. & Rao, R. S. Code smell detection using classification approaches. In Intelligent Systems. Lecture Notes in Networks
and Systems Vol. 431 (eds Udgata, S. K. et al.) (Springer, Singapore, 2022). https:// doi. org/ 10. 1007/ 978- 981- 19- 0901-6_ 25.

 10. Dewangan, S., Rao, R. S. & Yadav, P. S. Dimensionally reduction based machine learning approaches for code smells detection. in
2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) 1–4 (2022). https:// doi. org/ 10.
1109/ ICICC SP535 32. 2022. 98620 30.

 11. Dewangan, S., Rao, R. S., Mishra, A. & Gupta, M. Code smell detection using ensemble machine learning algorithms. Appl. Sci.
12(20), 10321. https:// doi. org/ 10. 3390/ app12 20103 21 (2022).

 12. Abdou, A. & Darwish, N. Severity classification of software code smells using machine learning techniques: A comparative study.
J. Softw. Evol. Proc. https:// doi. org/ 10. 1002/ smr. 2454 (2022).

 13. Alazba, A. & Aljamaan, H. I. Code smell detection using feature selection and stacking ensemble: An empirical investigation. Inf.
Softw. Technol. 138, 106648 (2021).

 14. Sushant Kumar, P. & Tripathi, A. K. An empirical study towards dealing with noise and class imbalance issues in software defect
prediction. PREPRINT (Version 1) available at Research Square (2021). https:// doi. org/ 10. 21203/ rs.3. rs- 549406/ v1.

 15. Mhawish, M. Y. & Gupta, M. Generating code-smell prediction rules using decision tree algorithm and software metrics. Int. J.
Comput. Sci. Eng. (IJCSE) 7(5), 41–48 (2019).

 16. Mhawish, M. Y. & Gupta, M. Predicting code smells and analysis of predictions: Using machine learning techniques and software
metrics. J. Comput. Sci. Technol. 35(6), 1428–1445. https:// doi. org/ 10. 1007/ s11390- 020- 0323-7 (2020).

 17. Tiwari, O. & Joshi, R. Functionality based code smell detection and severity classification. in ISEC 2020: 13th Innovations in Software
Engineering Conference 1–5 (2020). https:// doi. org/ 10. 1145/ 33850 32. 33850 48.

 18. Baarah, A., Aloqaily, A., Salah, Z., Zamzeer, M. & Sallam, M. Machine learning approaches for predicting the severity level of
software bug reports in closed source projects. Int. J. Adv. Comput. Sci. Appl. 10(8) (2019).

 19. Gupta, A. & Chauhan, N. K. A severity-based classification assessment of code smells in Kotlin and Java application. Arab. J. Sci.
Eng. 47, 1831–1848. https:// doi. org/ 10. 1007/ s13369- 021- 06077-6 (2022).

Table 12. Selected metrics description6.

Quality measure Selected metric Metric name Granularity

Size LOC_project Lines of code Project, class, package

LOC_package

LOC_type

NOMNAMM_project Number of not accessor or mutator methods Project, class, package

NOMNAMM_package

LOCNAMM_type Lines of code without accessor or mutator methods Class

NOCS_project Number of classes Project, package

NOCS_package

– Complextype – Class

– Method – –

Complexity ATFD_type Access to foreign data Method

– Project – –

Size AMW_type Average methods weight Class

– Package – –

Complexity AMWNAMM_type Average methods weight of not accessor or mutator methods Class

– complextype – Method

Coupling CBO_type Coupling between objects classes Class

Size LOC_method Lines of code Method

CYCLO_method Cyclomatic complexity

Complexity NOAV_method Number of accessed variables

Coupling CINT_method Coupling intensity

https://doi.org/10.4236/jcc.2014.214001
https://doi.org/10.4236/jcc.2014.214001
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1109/ACCESS.2021.3133810
https://doi.org/10.1109/IEMECON53809.2021.9689174
https://doi.org/10.1007/978-981-19-0901-6_25
https://doi.org/10.1109/ICICCSP53532.2022.9862030
https://doi.org/10.1109/ICICCSP53532.2022.9862030
https://doi.org/10.3390/app122010321
https://doi.org/10.1002/smr.2454
https://doi.org/10.21203/rs.3.rs-549406/v1
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1145/3385032.3385048
https://doi.org/10.1007/s13369-021-06077-6

17

Vol.:(0123456789)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

 20. Hejres, S. & Hammad, M. Code smell severity detection using machine learning. in 4th Smart Cities Symposium (SCS 2021) 89–96
(2021). https:// doi. org/ 10. 1049/ icp. 2022. 0320.

 21. Hu, W. et al. Revisiting "code smell severity classification using machine learning techniques". in 2023 IEEE 47th Annual Comput‑
ers, Software, and Applications Conference (COMPSAC), Torino, Italy 840–849 (2023). https:// doi. org/ 10. 1109/ COMPS AC577 00.
2023. 00113.

 22. Sandouka, R. & Aljamaan, H. Python code smells detection using conventional machine learning models. PeerJ Comput. Sci. 9,
e1370. https:// doi. org/ 10. 7717/ peerj- cs. 1370 (2023).

 23. Zakeri-Nasrabadi, M., Parsa, S., Esmaili, E. & Palomba, F. A systematic literature review on the code smells datasets and validation
mechanisms. ACM Comput. Surv. 55(13s), 1–48. https:// doi. org/ 10. 1145/ 35969 08 (2023).

 24. Malathi, J. & Jabez, J. Class code smells detection using deep learning approach. AIP Conf. Proc. 2618(1), 020004. https:// doi. org/
10. 1063/5. 01427 70 (2023).

 25. Dewangan, S., Rao, R. S., Chowdhuri, S. R. & Gupta, M. Severity classification of code smells using machine-learning methods.
SN Comput. Sci. https:// doi. org/ 10. 1007/ s42979- 023- 01979-8 (2023).

 26. Nanda, J. & Chhabra, J. K. SSHM: SMOTE-stacked hybrid model for improving severity classification of code smell. Int. J. Inf.
Technol. https:// doi. org/ 10. 1007/ s41870- 022- 00943-8 (2022).

 27. Pushpalatha, M. N. & Mrunalini, M. Predicting the severity of closed source bug reports using ensemble methods. In Smart
Intelligent Computing and Applications. Smart Innovation, Systems and Technologies Vol. 105 (eds Satapathy, S. et al.) (Springer,
Singapore, 2019). https:// doi. org/ 10. 1007/ 978- 981- 13- 1927-3_ 62.

 28. Zhang, Y. & Dong, C. MARS: Detecting brain class/method code smell based on metric-attention mechanism and residual network.
J. Softw. Evol. Process E2403, 1–15. https:// doi. org/ 10. 1002/ smr. 2403 (2021).

 29. Liu, W., Wang, S., Chen, X. & Jiang, H. Predicting the severity of bug reports based on feature selection. Int. J. Softw. Eng. Knowl.
Eng. 28(04), 537–558. https:// doi. org/ 10. 1142/ S0218 19401 85001 58 (2018).

 30. Abdou, A. S. & Darwish, N. R. Early prediction of software defect using ensemble learning: A comparative study. Int. J. Comput.
Appl. 179(46), 29–40. https:// doi. org/ 10. 5120/ ijca2 01891 7185 (2018).

 31. Zhang, Y. et al. DeleSmell: Code smell detection based on deep learning and latent semantic analysis. Knowl.‑Based Syst. 255,
109737. https:// doi. org/ 10. 1016/j. knosys. 2022. 109737 (2022).

 32. Pecorelli, F., Di Nucci, C., De Roover, C. & De Lucia, A. On the role of data balancing for machine learning-based code smell
detection. in Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE 2019) 19–24 (Association for Computing Machinery, New York, NY, USA, 2019). https:// doi. org/ 10. 1145/
33404 82. 33427 44.

 33. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H. & Noble, J. The qualitas corpus: A curated collection
of java code for empirical studies. in Proceedings of the 17th Asia Pacific Software Engineering Conference (APSEC 2010) 336–345
(IEEE Computer Society) (2010). https:// doi. org/ 10. 1109/ APSEC. 2010. 46.

 34. Olbrich, S., Cruzes, D. & Sjoberg, D. I. K. Are all code smells harmful? A study of god classes and brain classes in the evolution of
three open source systems. in Proceedings of the IEEE International Conference on Software Maintenance (ICSM 2010), Timisoara,
Romania 1–10 (2010). https:// doi. org/ 10. 1109/ ICSM. 2010. 56095 64.

 35. Marinescu, C., Marinescu, R., Mihancea, P., Ratiu, D. & Wettel, R. iPlasma: An integrated platform for quality assessment of
object-oriented design. in Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM 2005) (Industrial
& Tool Proceedings), Tool Demonstration Track 77–80 (IEEE, Budapest, Hungary, 2005).

 36. Nongpong, K. Integrating "code smell" detection with refactoring tool support. Ph.D. thesis, University of Wisconsin Milwaukee
(2012).

 37. Marinescu, R. Measurement and quality in object oriented design. Ph.D. thesis, Department of Computer Science. "Polytechnic"
University of Timisoara (2002).

 38. Ali, P. J. M. & Faraj, R. H. Data normalization and standardization : A technical report. Mach. Learn. Tech. Rep. 1(1), 1–6 (2014).
 39. Blagus, R. & Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 14, 106. https:// doi. org/ 10. 1186/

1471- 2105- 14- 106 (2013).
 40. Romero, E. & Sopena, J. M. Performing feature selection with multilayer perceptrons. IEEE Trans. Neural Netw. 19(3), 431–441

(2008).
 41. https:// built in. com/ data- scien ce/ step- step- expla nation- princ ipal- compo nent- analy sis.
 42. Singh, L. K., Garg, H., Khanna, M. & Bhadoria, R. S. An analytical study on machine learning techniques. in Multidisciplinary

Functions of Blockchain Technology in AI and IoT Applications 137–157 (IGI Global, Hershey, PA, USA, 2021).
 43. https:// www. tutor ialsp oint. com/ machi ne_ learn ing_ with_ python/ machi ne_ learn ing_ algor ithms_ perfo rmance_ metri cs. html.
 44. https:// towar dsdat ascie nce. com/ under stand ing- confu sion- matrix- a9ad4 2dcfd 62.

Author contributions
Conceptualization, S.D., and R.S.R.; data curation, S.D.; formal analysis, R.S.R., S.D., and A.M.; investigation,
S.D., and R.S.R.; methodology, S.D., and R.S.R.; supervision, R.S.R., M.G., and A.M.; validation, R.S.R., S.D, and
A. M.; visualization, S.D., A.M., and R.S.R.; writing, S.D, and R.S.R.; review and editing, R.S.R., M.G., and A.M.

Funding
Open access funding provided by Norwegian University of Science and Technology. No other sources were used
to support this study.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1049/icp.2022.0320
https://doi.org/10.1109/COMPSAC57700.2023.00113
https://doi.org/10.1109/COMPSAC57700.2023.00113
https://doi.org/10.7717/peerj-cs.1370
https://doi.org/10.1145/3596908
https://doi.org/10.1063/5.0142770
https://doi.org/10.1063/5.0142770
https://doi.org/10.1007/s42979-023-01979-8
https://doi.org/10.1007/s41870-022-00943-8
https://doi.org/10.1007/978-981-13-1927-3_62
https://doi.org/10.1002/smr.2403
https://doi.org/10.1142/S0218194018500158
https://doi.org/10.5120/ijca2018917185
https://doi.org/10.1016/j.knosys.2022.109737
https://doi.org/10.1145/3340482.3342744
https://doi.org/10.1145/3340482.3342744
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/10.1186/1471-2105-14-106
https://doi.org/10.1186/1471-2105-14-106
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_algorithms_performance_metrics.html
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
www.nature.com/reprints

18

Vol:.(1234567890)

Scientific Reports | (2023) 13:16245 | https://doi.org/10.1038/s41598-023-43380-8

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/

	A study of dealing class imbalance problem with machine learning methods for code smell severity detection using PCA-based feature selection technique
	Backgroundliterature review
	Code smell severity (CSS) detection based on the machine learning algorithms
	Code smell severity (CSS) detection based on the ensemble and deep learning algorithms
	Code smell severity (CSS) detection dealing with class imbalance problem

	Description of the proposed model and dataset
	Description of the dataset
	Code smells severity classification
	Dataset structure
	Preprocessing technique
	Class balancing technique
	Feature selection technique
	Machine learning models
	Logistic regression (LR)
	Multi-layer perceptron (MLP)
	Random forest (RF)
	Decision tree (DT)
	K-nearest neighbor (KNN)

	Performance evaluations
	Precision (P)
	Recall (R)
	F-measure (F)
	Severity accuracy score (SAS)

	Experiment results
	Outcomes for data class
	Outcomes for god class
	Outcomes for feature envy
	Outcomes for long method
	The impact of SMOTE’s class-balancing method on predictive performance
	Effect of PCA feature selection technique on the model’s severity accuracy score

	Discussion and result analysis
	Evaluation of our results with relevant research studies
	Comparing machine learning models statistically

	Conclusion
	Appendix
	References

