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Form Closure For Fully Actuated and Robust
Obstacle-Aided Locomotion in Snake Robots

Jostein Løwer1, Irja Gravdahl1, Damiano Varagnolo1 and Øyvind Stavdahl1

Abstract—In this paper we adapt the theory of form closure
to define the form closed region: The subset of a snake robot’s
configuration space for which the constraints imposed by the
obstacles in its environment render the system fully actuated.
We show that the identification of form closed configurations
is numerically feasible, and introduce the relaxed condition of
form boundedness to achieve robustness in the presence of model
uncertainties. We moreover show an example application where
the concept of form closed region is used to produce predictable
constrained motion in a cluttered environment using lateral
undulation.

Index Terms—Biologically-Inspired Robots, Biomimetics,
Multi-Contact Whole-Body Motion Planning and Control

I. INTRODUCTION

SNAKE robots aspire to inherit the unique abilities of
their biological counterparts. These abilities may include

maneuvering in rugged and complex terrain that is inaccessible
for legged or wheeled robots, move in narrow and enclosed
spaces and possibly climb complex structures [1]. Currently
this is a largely unrealized potential. Like biological snakes,
these robots move using an array of different propulsion
techniques [2]. This paper specifically focuses on one genre
of snake robot locomotion called Obstacle-Aided Locomotion
(OAL) [3]. The overarching goal of OAL is for the snake
robot to propel itself by pushing its body against obstacles in
a cluttered environment as shown in Figure 1.

Control strategies for snake robots are typically complex,
as the joints of the robots may be actuated directly, but the
position and orientation of the snake in its ambient space
generally constitute unactuated degrees of freedom. A snake
robot may also have complex interaction with the obstacles
in its environment, which further complicates the system’s
kinematics by introducing discontinuous contact constraints.
The overall goal of this paper is to identify computationally
feasible regions of the robots’ configuration space in which
the kinematics of the robot can be simplified, in order to make
OAL control strategies more tractable.

To this end we utilize the concept of form closure [4]
to identify the form closed region: a subset of a robots’
configuration space that renders the system fully actuated
by leveraging the constraints imposed by obstacles in its
environment. A robot that is limited in motion to the form
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Fig. 1. An articulated snake robot (orange) seen from above, in a planar
environment cluttered by obstacles. This article deals with the question of
how the robot joints may be actuated to produce robust locomotion leveraging
the obstacles in such environments.

closed region exhibits several properties that are beneficial
in motion planning and OAL, which are covered in this
paper. Subsequently, we identify the form bounded region that
has similar properties as the form closed region under more
relaxed conditions.

Form closure has found diligent use in the field of prehensile
robotic gripping, and is widely used as a method for calcu-
lating suitable grasps for manipulating objects with different
geometries [5], [6]. This paper covers only the case of planar
snake robots, but we show that the findings in this paper can
be generalized to a three-dimensional workspace.

The structure of the paper is as follows: Section II gives a
brief review of the state-of-the art in snake robot modeling
and locomotion. Sections III and IV derive a model of a
planar snake robot with environmental constraints, adapt the
theory of from closure to planar snake robots, and introduce
the concept of form boundedness. The numerical calculation
of form closure is addressed in Section V. In Section VI we
show an application of form closure in a planar case, exploiting
form closure to guarantee constrained locomotion in cluttered
environment using lateral undulation. Section VII discusses
the findings of this paper, identifies potential limitations and
outlines future work. The main contributions of this paper are
covered in Section III through Section VII.

II. RELATED WORKS

The history and application of different locomotion strate-
gies have been thoroughly documented in a recent review on
snake robots [1]. Because of this, we limit this section to works
that have been published since the review, and ones directly
pertaining to OAL or similar concepts.

The term OAL was first introduced in [3] and further
explored in the subsequent works [7]–[9]. The hybrid dy-
namics of a snake robot in contact with obstacles was first
visited in [8], and the modeling of snake robots for Hybrid
Position-Force Control was studied in [10]. In [11], a piece-
wise helical motion is used to produce OAL in a cluttered
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planar environment. More recently, the findings in [12] show
a strategy for locomotion applying theory from geometric
mechanics in a scenario similar to the one studied in this paper.
The work in [13] relates closely to the fundamental ideas of
OAL, where traveling waves are used to propel a snake robot
through virtual ”hoops”. A method for perception-driven path
planning for OAL was proposed in [14].

Recent works pertaining to snake locomotion, but only indi-
rectly to OAL, include a study that shows how concertina-like
locomotion can be used for mobile manipulation [15], a study
on path following using anisotropic friction on planar surfaces
[16] and a study on helical rolling in straight pipes [17]. A
similar approach for locomotion in pipes using trapezoidal-
like waves can be found in [18]. Adaptive control for under-
actuated snake robots has been explored in [19]. We also note
the works [20], [21] that study the interaction of snake robots
with obstacles, but are not included in the review of [1].

Form closure was used to calculate grasps when using the
body of a snake robot as a gripping mechanism in [22].
However, to the best of our knowledge, the present study is
the first to demonstrate the use of form closure and related
concepts for locomotion purposes.

The term ”Form-closed region” was previously used in the
field of mechanical forming processes [23], however, it bears
little resemblance to the concept of the form closed region as
defined in this paper except in name.

III. MODELING OF SNAKE ROBOTS UNDER
ENVIRONMENTAL CONSTRAINTS

Consider a planar snake robot that inhabits a planar
workspace W = R2. We study this system in a compact
timeframe T ⊂ R with t representing a point of time in T .
The robot is comprised of N links connected by N −1 joints,
indexed from tail to head, as shown in Fig. 2. We model these
as an open kinematic chain of N links where the joints are
placed where two consecutive links meet. The joint angles are
given by

ϕ = (ϕ1 . . . ϕN−1) ∈ Qϕ

where ϕi is the relative angle between the two links inter-
connected by joint i and Qϕ = RN−1. The robot’s pose in
relation to its environment can be defined by the vector

qN = (xN ,yN ,θN ) ∈ QN (1)

where (xN ,yN ) ∈ W is the position of the robot’s head in the
workspace and θN is the orientation of the its head relative to
the world frame. As the angle θN is a cyclic coordinate, QN

is diffeomorphic to the Special Euclidean Group SE(2). The
complete configuration of the robot is given by the generalized
coordinate q that is defined as

q = (ϕ, qN ) ∈ Q (2)

where Q = Qϕ×QN is the configurations space of the robot.
Assuming that the joints of the robot are actuated, the subspace
Qϕ contains the actuated dynamics of the system, while the
subspace QN contains the unactuated dynamics of the system.
Any trajectory in the subspace QN represents a rigid motion
of the robot, i.e. one where the joint angles are kept constant.

Fig. 2. A kinematic and geometric model of an articulated planar snake robot
with N = 3 links.

The body of the robot occupies an open, bounded and
simply connected region S(q) : Q 7→ W . We define S as the
set of all points whose distance to the spine is less than w. The
distance 2w is consequently also the width of the robot’s body.
As the configuration q provides a full parametrization of the
robot, any connected trajectory q(t) : T 7→ Q corresponds
to a connected physical motion of the snake robot in the
workspace W . With the additional constraint that q(t) is twice
differentiable with respect to time, the trajectory represents a
physically realizable motion with finite generalized forces in
the absence of obstacles.

The workspace W may be cluttered by a series of obstacles
that occupy a closed, bounded and possibly disconnected set
O ⊂ W . Using the above definitions, we define:

Definition 1: A configuration q ∈ Q is penetrating if the
body of the robot and the obstacles overlap, i.e. that

O ∩ S(q) ̸= ∅.

Intuitively, any penetrating configuration is not physically
realizable, and the presence of obstacles thus constrains the
configuration of the robot. We define the feasible region as
follows:

Definition 2: The feasible region F ⊂ Q is the region of all
non-penetrating configurations such that

F = {q ∈ Q | O ∩ S(q) = ∅}.

The complement to the feasible region, F ′ = Q\F ,
consequently denotes the region of physically infeasible con-
figurations. For each set of joint angles ϕ there exists a
(possibly empty) set of feasible poses FN (ϕ) ⊂ QN that we
define as

FN (ϕ) = {qN ∈ QN | (ϕ, qN ) ∈ F}.

Similarly, we can define a set of physically infeasible poses
F ′

N (ϕ) = QN \FN (ϕ) for a given set of joint angles.

IV. FORM CLOSURE AND FORM BOUNDEDNESS FOR
SNAKE ROBOTS

The overarching goal of form closure analysis in the present
context is to determine if, starting from a given configuration,
any continuous rigid motion of the robot is possible without
causing a penetrating configuration. If this is not the case, the
snake robot is under form closure and its unactuated dynamics
are completely constrained by its contact with the obstacles.
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Fig. 3. A simple articulated snake robot S(q) with N = 3 links in a
workspace W = R2 that is under form closure from the obstacles in its
environment.

A simple example of a robot under form closure is shown in
Fig. 3.

All possible rigid motions of the robot are encoded in the
model by the subspace QN . If, for a given pose qN , all
neighboring points of qN are infeasible, then there exists no
rigid motion that would not cause a penetrating configuration.
We can formalize this as follows:

Definition 3: A snake robot is under form closure in the
configuration q = (ϕ, qN ) if, and only if, qN is an isolated
point of FN (ϕ).

The region of all configurations that are under form closure
can then be defined accordingly:

Definition 4: The form closed region FFC ⊂ F is the region
of all configurations q where the snake robot is under form
closure.

The form closed region is a subset of the boundary of
the free region as one intuitively needs contact with the
environment to be able to achieve form closure. The above
definitions allow us to investigate the properties of the form
closed region. We propose that:

Definition 5: A continuous trajectory q(t) is form closed if
it is embedded in the form closed region, i.e. that q(t) : T 7→
FFC .

Theorem 1: Consider a form closed trajectory qd(t) where
qd(t) =

(
ϕd(t), qd

N (t)
)
. If a snake robot with a configuration

q(t) = (ϕ(t), qN (t)) is placed such that q(0) = qd(0) and
actuated by ϕ(t) = ϕd(t), then it follows that qN (t) = qd

N (t)
for all t ∈ T .

From a geometric perspective, the above states that if a
snake robot is placed in an initial form closed configuration
qd(0) and actuated along a desired form closed trajectory
by the joint angle sequence ϕd(t), its pose is completely
determined by the joint angle sequence for the entirety of
the trajectory. The proof of the above theorem follows from
Definition 3: any departure of the head pose qN (t) from the
desired head pose qd

N (t) would have to enter the infeasible
region F ′

N (ϕ) as qd
N (t) is an isolated point in FN (ϕ). It

follows from Theorem 1 that:

Corollary 1.1: When limited in motion to the form closed
region q ∈ FFC , the representation of system’s configuration
space is constrained from RN−1 × SE(2) to RN−1.

Fig. 4. A tethered robot manipulator in W where W = R2 accompanied
by an untethered block (orange). The system has an identical configuration
space representation to a snake robot.

Corollary 1.2: When limited in motion to the form closed
region q ∈ FFC , the system is fully actuated.

The above statements might best be understood by studying
a similar system parameterized by the same configuration
space. Consider a tethered planar robot manipulator of N − 1
links with a gripper on the end accompanied by an untethered
block, as shown in Fig. 4. Assume that the gripper is capable
of producing a form closed grasp on the block, and that we
disregard the kinematics of the gripper itself. The configuration
space of the system is given by the N − 1 joints of the
manipulator and the free motion of the block. Thus the
system’s configuration space can be represented by the space
RN−1 × SE(2), identical to that of the snake robot.

If the manipulator grips the block, the system is constrained,
and the motion of the block is completely determined by the
motion of the manipulator. In this case, the configuration space
of the constrained system is RN−1. This notion is transferable
to a snake robot where the unactuated motion is that of the
untethered snake robot and form closure is achieved by contact
with fixed obstacles instead of using a gripper.

An important feature of the form closed region is the pos-
sibility for locomotion by slithering. Form closure is strictly a
property of the robots’ contact points with the obstacles and
the geometry of the bodies in the vicinity of these points. The
snake robot can slide along the obstacles while still remaining
in form closure, although this might seem counter-intuitive
given that the goal of form closure is to immobilize the snake
robot. This is made possible by performing motions that do not
change the geometry around the contact points. This feature
is examined further in Section VI.

While the kinematic constraints on the snake robot in
general are non-holonomic due to discontinuous contact with
obstacles, we can make some assumptions on the constraints
when limiting our motion to the form closed region. In the
general case, the dynamics of the pose qN is highly non-linear.
Its dynamics are unactuated, and is determined by the internal
dynamics of the robot, in conjunction with the external forces
acting on the robot from the obstacles [9]. Consequentially, it
is difficult to determine whether a given actuation may cause
the robot to lose any of its current contact points with its
environment. We propose that

Theorem 2: When under form closure, no motion in the
unactuated subspace QN can cause a snake robot to depart
from a contact point.

Theorem 2 implies that it is impossible to ”accidentally”
lose contact with an obstacle due to the unactuated dynamics
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Fig. 5. An articulated snake robot S(q) with N = 3 links in a workspace
W = R2 that is form bounded by the obstacles in its environment. The lightly
shaded geometry shows an alternative pose of the robot reachable through a
rigid motion.

of the robot. Whether or not the snake robot departs from
an obstacle is given entirely by its actuated dynamics. The
proof of the theorem follows directly from Definition 3, as
any motion in QN when under form closure would cause the
robot to enter the physically infeasible region F ′

N (ϕ). Form
closure is a strict condition requiring the head pose qN to
be completely enclosed by F ′

N (ϕ), which in theory would
require perfect knowledge of the geometry of the snake robot’s
environment and of the robot itself. In a real-life scenario, the
joint angles might deviate slightly from their desired values,
the body of the snake might deform under load, the estimated
position of the obstacles might be inaccurate or the obstacles
might shift under interaction. As such, form closure in its
strictest mathematical sense is nearly impossible to achieve,
making a control strategy based on strict form closure fragile.
To address this problem we introduce the relaxed condition of
form boundedness and define:

Definition 6: A snake robot is form bounded in the config-
uration q = (ϕ, qN ) if the connected component of qN in
FN (ϕ) is bounded.

One such configuration is shown in Fig. 5. A robot that
is form bounded, as opposed to form closed, is allowed
some “wiggle room” around its current pose, but cannot leave
a certain neighborhood of its current configuration without
causing a penetration. Form closure is indeed a special case
of form boundedness where the connected component contains
only qN . This allows us to define a region of form bounded
configurations and trajectories:

Definition 7: The form bounded region FFB ⊂ F is the set
of all configurations q that are form bounded.

Definition 8: A trajectory q(t) is form bounded if it is em-
bedded in the form bounded region such that q(t) : T 7→ FFB

The above definition allows us to restate Theorem 1 in terms
of form boundedness as:

Theorem 3: Consider a form bounded trajectory qd(t), where
qd(t) = (ϕd(t), qd

N (t)). If a snake robot with a configuration
q(t) = (ϕ(t), qN (t)) is placed such that q(0) = qd(0) and
actuated by ϕ(t) = ϕd(t), then it follows that qN (t) remains
in the connected component of qd

N (t) for all t in T .

This implies that, when form bounded, the robot will remain
within some bounded neighborhood of its desired trajectory,
although it may not track the desired path perfectly. The proof
is conceptually similar to that of Theorem 1, as any qN (t)

Fig. 6. A visual representation of three different head poses in c-space. The
pose qN,1 is under form closure as it is an isolated point of FN (ϕ). The
pose qN,2 is form bounded as its connected component is bounded. Finally,
qN,3 has neither form closure nor form boundedness.

leaving the connected component of qd
N (t) would require qN

to enter F ′
N (ϕ), as the connected component is bounded by

F ′
N (ϕ).
A visual representation of the different forms of bounded-

ness is shown in Fig. 6. Unlike form closure, form bounded-
ness does not guarantee that the constrained system is fully
actuated.

V. COMPUTATION OF FORM CLOSURE

The form closure problem is complex, as the obstacles
may have complex geometries. Because of this, there is no
general method for determining whether a configuration is
form closed. This again implies that there exists no general
method for analytically determining the form closed region.
Methods exist that allows for form closure computation for a
large subset of scenarios using approximations of the involved
geometries, which will be studied further in the following
subsection.

These methods rely on an approximation of the geometry
of the robot and the obstacles in the vicinity of their contact
points. The methods can be structured into a hierarchy based
on the order of the approximation that is used, and are thus
called nth order form closure. As the order of the approxima-
tion decreases, the conditions for achieving nth order form
closure become increasingly strict, but allows for stronger
assumptions on the properties of the configuration.

The most widely adapted approximations is that of 1st

order form closure [24]. In this case we study whether an
instantaneous rigid motion q̇N ∈ Q̇N of the robot will cause
a penetration of at least one obstacle. These motions are
commonly referred to as twists and the space Q̇N as the twist
space [25].

We denote the contact points between the robot and the
obstacles as p1 · · ·pk ∈ S(q) as shown in Fig. 3. Each
of the contact points is assigned a contact normal vector
n̂W

1 · · · n̂W
k ∈ W that are unit vectors that are normal to the

boundary of the robot in each respective contact point and
oriented away from the obstacle.

The velocity of each contact point ṗi when subject to a
twist parameterized by q̇N = (ẋN , ẏN , θ̇N ) is known to be

ṗi = [θ̇]× p̂i + [ẋN , ẏN ]T (3)

where [·]× denotes the skew symmetric matrix of a given
vector. The nature of the interaction at a given contact point
is implied by the product ˙̂pi · n̂W

i , where the operator (·)
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Fig. 7. An articulated snake robot whose unactuated dynamics are immobi-
lized by the obstacles, but which is not under 1st order form closure

denotes the dot product. If the product is positive, the robot is
moving away from the obstacle in the given contact point. If
the product is zero, the robot slides or rolls along the obstacle.
If the product were negative, the robot would penetrate the
obstacle at the given contact point. Thus, each contact point
imparts a constraint

ṗi · n̂W
i ≥ 0. (4)

By inserting (3) into (4), the constraint can be written in
therms of the twist q̇N as

q̇N · n̂i ≥ 0 | n̂i =
[
pi [1]× n̂W

i , n̂W
i

]
∈ Q̇N . (5)

This equation defines a half-space in the twist space with
n̂i as its defining normal vector; we denote this half-space
Ni ⊂ Q̇N where

Ni = {q̇N ∈ Q̇N | q̇N · n̂i ≥ 0}. (6)

Any applied twist outside Ni would constitute a penetration
at the ith contact point. The intersection of the half-spaces
associated with all contact points yields a region of twists that
do not violate any of the constraints. The resulting space

V =

k⋂
i=1

Ni (7)

forms a polyhedral cone [26]. If the cone contains only its
origin, i.e. that V = {0}, then no non-zero twists exist that
would not cause a penetration. In this case the robot is under
1st order form closure in the configuration q. 1st order form
closure has the advantage that it guarantees the finiteness of
the reaction forces between the robot and the obstacles when
subject to a finite external force, but it requires a minimum of
four unique contact points in the planar case [24]. A numerical
method for determining 1st order form closure is covered in
[5], and thus will not be covered further in this paper.

First order form closure is a sufficient condition for form
closure in its general sense, however there exist configurations
that are form closed that are not 1st order form closed. This
implies that 1st order form closure is a conservative metric, as
it identifies only a subset of form closed configurations. One
such example is shown in Fig. 7. In these cases, a higher order
analysis is necessary to determine the closure properties of the
robot.

Higher order form closure is covered to a great extent
in [27]. Under these analyses, additional derivatives (e.g.
q̈N ,

...
q N ) are taken into account, and the curvature of the ob-

stacles and the robot around the contact points are considered.
Higher order form closure is achievable with a minimum two

contact points in the planar case, and with a minimum of three
contact points if the contact points are only on the flat sides
of the robot’s links [28]. Higher order analysis does not give
any guarantees as to the finiteness of the reaction forces, and
are significantly more difficult to calculate [27]. Because of
the guarantee of finite reaction forces and its computational
simplicity, we consider 1st order form closure as the most
relevant in the study of snake locomotion.

VI. SIMULATION CASE STUDY

The following case study aims at demonstrating the pre-
dictable behavior of a snake robot when locomoting in a form
closed region, and how its dynamics are affected when leaving
the region. The study takes place in a simulated cluttered 2D
environment.

We are specifically studying a form of OAL known as
lateral undulation [2], [29], which is illustrated in Fig. 8.
During lateral undulation, the robot slithers along obstacles in
a manner such that every point on its body trails the position
of its head, with minimal lateral slippage. It achieves this by
propagating the geometry of its body from its head towards
its tail. We refer to the path traced by the snake robot’s body
during locomotion as the undulation path.

Lateral undulation is the preferred mode of propulsion for
biological snakes [30]. As they undulate through cluttered
terrain, the snakes tend to chose their contact points with
their environment in a way that is beneficial for their loco-
motion. Intuitively, there exist configurations where a lateral
undulation gait would push the snake off its undulation path or
cause the snake to lose propulsion entirely. Biological snakes
actively choose paths through their environment that prevent
these kinds of configurations [31]. To produce meaningful
locomotion with lateral undulation in snake robots, a geometric
condition that identifies these kinds of undulation paths and
configurations is needed. Form closure can be used for this
purpose.

The demonstration builds on a physics based simulation run
on the MuJoCo physics engine [32]. The intended undulation
path and the position of the obstacles are shown in Fig. 9,
and are designed so that the snake robot will remain in the
form closed region for an initial portion of the path and exit
the form closed region as t > 31.0s. The robots’ trajectory
is designed to provide 1st order form closure. The physical

Fig. 8. A snake (orange) moving along a path (dashed green) in an
environment cluttered with obstacles (black) by lateral undulation.
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parameters of the simulated robot are given in Table I, and
were chosen to resemble the Boa snake robot [33].

TABLE I
PHYSICAL PARAMETERS OF THE SIMULATED SNAKE ROBOT

Parameter Value Unit
Number of links (N ) 15 (unitless)

Link length 0.2 m
Link width (2w) 0.16 m

Friction coefficient 0.1 (unitless)
Link mass 0.4 kg

Maximum actuator torque 3 Nm

As the undulation path is continuous it is, in general, not
possible to overlay an articulated snake robot perfectly on the
path. We utilized the method described in [34], where the head
of the robot is placed on the path in a desired position and
each joint is consecutively placed on the path behind the head
as shown in Fig. 9. By doing this form of approximation,
it is a matter of simple geometry to calculate the desired
joint angles for any placement of the robot on the path. The
path itself is chosen manually while employing the following
considerations:

1) The undulation path is straight within a link length’s
radius of each obstacle. This is to ensure that the joints
of the robot are straight as they slide past the obstacle
to prevent discontinuities and collisions.

2) The path is created from straight line segments and arcs
of constant radius. This is a pattern commonly seen
in biological snakes [31] as they attempt to form the
shortest possible path between two contact points, but
are restricted by a minimum curvature in their body.

Under form closure, the speed at which the shape of the
snake robot is propagated backwards along its body is approx-
imately equal to the propulsive speed of the robot’s head along
the undulation path. In biological snakes this speed typically
remains constant during locomotion [35] and as such is set to
a constant speed of 0.1 m/s for the following demonstration.

The simulated robot’s joint angles ϕ(t) are driven to the
desired joint angles ϕd(t) by a monovariable PD control loop
in each joint. While this is a naive approach to the low-level
control of the robot, it serves to show the efficacy of form
closure as a condition for undulation-based locomotion, even
when using simple low-level controllers. This controller con-
figuration also guarantees dissipativity and thus rudimentary

Fig. 9. The undulation path followed by the snake robot in the demonstration.
The path itself is marked as an dashed green line with a shaded area showing
the area ideally traced by the snake robots’ body as it moves along the path.
The cylindrical obstacles are marked by black circles. The initial configuration
of the snake robots’ spine is shown by orange connected circles.

stability properties of the overall system. Renderings of the
simulation are shown in Fig. 10. The trajectory of the robot’s
head compared to its desired position on the undulation path
is shown in Fig. 11, and its deviation from the desired head
position is shown in Fig. 12. The actuator torque applied
throughout the simulation is shown in Fig. 13.

As seen in Fig. 10 –12, the robot follows the undulation
path when applying a lateral undulation gait as long as it
remains in the form closed region. The tracking error between
the head position and its desired position remains largely be-
tween 0.05m and 0.1m. While the across-path error remains
relatively small, the error mainly arises from the head lagging
slightly behind its desired position along the path. This is
likely due to friction and the inability of the PD control loop
to perfectly track the desired joint angles ϕd(t).

As the robot loses form closure at t = 31.0 s, it rapidly
deviates from the undulation path, as shown in Fig. 11. In
Fig. 10, the robot shows significant lateral slippage after losing
form closure.

Fig. 13 shows that during locomotion, the actuation of
the joints remains under the saturation limit of 3.0Nm. The
average absolute actuation torque can be taken as a proxy
for energy expenditure. After an initial transient this graph
exhibits a general trend of tapering off after form closure is
lost, reflecting that the robot is mostly wiggling in one place
while spending little or no energy on gross propulsion. Some
oscillations are apparent in the actuation, which can partially
be attributed to the presence of friction in the simulation.

Fig. 10. Still-frames from the simulation showing the locomotion of the snake
robot through the cluttered planar environment at times t = 0s, 15s, 30s, 40s.
The dashed green line shows the undulation path of the snake robot and the
blue circle shows the location of the robots’ head.
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Fig. 11. The blue line shows the position of the snake robots’ head, while
the dashed line shows the undulation path. The robot loses form closure as
the head passes the point pN = (6, 0).

Fig. 12. The blue line shows the euclidean distance from the head position
pN to its desired position along the undulation path. The dashed line at
t = 31.0 indicates the time when the snake robot loses form closure.

Fig. 13. The dashed line shows the average absolute actuation torque of the
joints over time. The orange line shows the actuation of the joint with the
greatest actuation torque at any given time.

VII. DISCUSSION AND FUTURE WORKS

While this paper focused on planar snake robots within
W = R2, all theorems in this paper can be generalized
to snake robots operating in W = R3 where the space
of head poses QN is expanded to so that it is represented
by the space SE(3). In this case it is required to have a
minimum of seven contact points between a snake robot
and its environment to achieve 1st order form closure. While
the complexity of calculating form closure increases in a
3-dimensional workspace, the structure of the form closure
problem remains similar. Thus, the findings in this paper are
relevant even when studying snake robots in three dimensions,
and should lend itself to further generalization to non-snake-
like robot OAL.

As form closure is a strictly geometric condition, it does not
consider friction. The effect of this is twofold: Form closure
guarantees that the unactuated dynamics of the snake robot
are constrained, even when friction is near nonexistent. On the
other hand, there intuitively exist form closed configurations
where an attempted motion would cause the propulsive forces
to be canceled out by equal frictional reaction forces from the
obstacles. In this case the robot would be jammed in its current
configuration. Consequently, a form closed configuration does

not guarantee that locomotion is possible in a scenario with
friction. The resolution of jammed configurations is treated in
some detail in [7], but further research is necessary to identify
criteria for jam avoidance.

Biological snakes are often observed to produce undulatory
locomotion in cluttered environments using three or less
contact points, and in some cases using only a single contact
point [29]. This alludes that form closure is an overly strict
condition, and that there exist less strict conditions that still
allow for undulatory locomotion. Of particular interest are the
notions of partial form closure and force closure [5], [36].

In this paper we treated form boundedness from a purely
mathematical perspective. As this is a novel concept, further
research may be done in developing analytical or numerical
methods for identifying form bounded configurations. We also
recognize a limitation of form boundedness: The loss of form
closure in a given configuration does not guarantee that it
will become form bounded before losing its constrainedness
entirely.

Although form closure is a well-researched topic, to the
best of the authors’ knowledge this work is novel in utilizing
form closure as a condition for locomotion. The development
of path planning algorithms and of control strategies that
build on the concepts of form closure go beyond the scope
of this manuscript, and constitute an interesting topic for
future research. Possible directions for this research include
energy optimal path planning in the presence of a hierarchy
of constraints related to form closure, form boundedness
and other, increasingly relaxed criteria. One possible goal of
such an endeavor is to ensure graceful degradation of the
system’s propulsive abilities in the presence of an uncertain
or unpredictable environment.
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