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ABSTRACT

Programming and activities related to computer science studies require complex
cognitive process, involving a number of emotive and mental dimensions. Employ-
ing multiple data capturing streams has shown to glean insight in these dimensions,
and multimodal data is a way to visualise and quantify the complexities of these
processes. This study has replicated and built upon a previous experiment, ex-
posing pairs of students (20 pairs) to a a debugging task in a collaborative setting,
while capturing data with eye-tracking, physiological and facial data. Features
have been extracted from this captured data, and further analyzed to identify and
decide which of these features bears the most importance in predicting students
performance while debugging in a collaborative setting. These important features
have been discussed to inform future work on how to design interventions in a
collaborative setting, to enhance student learning and performance.

Oppsummering
Programmering og aktiviteter som inngår i informatikk-studier krever komplekse
kognitive prosesser, og involverer flere følelsesmessge og mentale dimensjoner. Ved
å bruke datannsamling fra flere kilder, kan vi få innsikt i disse dimensjonene,
og multimodale data er en måte å visualisere og kvantifisere kompleksiteten i
disse prosessene. Denne studien har reprodusert og bygd på et tidligere master-
eksperiment, der par av studenter (20 par) har blitt eksponert for en debuggin-
goppgave i en samarbeidssetting, i mens deres blikkmønstre, fysiologiske og an-
siktsdata har blitt innsamlet. Egenskaper (features) ved disse innsamlede dataene
har blitt ekstrahert, og videre analysert, for identifiserte og vurdere hvilke av
disse egenskapene som bærer mest viktighet for å kunne forutse måloppnåelse i en
samarbeidssetting i programmering. Disse egenskapene har blitt diskutert, med
mål for å informere fremtidig arbeid, om hvordan man kan bruke egenskapene til å
designe feedback i en sammarbeidsetting, for å forbedre læring, og måloppnåelse.
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CHAPTER

ONE

INTRODUCTION

This section outlines the motivation of this thesis, describes how the thesis was
conducted, and clarifies which research questions this thesis aims to answer.

1.1 Motivation

"Programming is a complex learning activity that involves coordination of cog-
nitive processes and affective states." [1]. The field of Learning Analytics and
Human Computer Interaction has come a long way in using both eye-tracking,
facial recognition, facial and EEG data in its research. The bulk of the research
has been focused on methodology, and investigating that these tools can be used
to generate key insights in students learning process in the field of Computer Sci-
ence. A key concept in Learning Analytics however, is the theory of the cycle.
The cycle comprises of learners generating data, which is analyzed, and used to
provide metrics of visualisation. The last step in the cycle, is providing this ana-
lyzed information as feedback to the learner. Figuring out how to effectively and
appropriately use the information as interventions for learning is key. Research
on closing the loop in with regards to using physiological data is still a new field.
In a review and call-to-action on research on the use of IDEs in learning analyt-
ics, Hundhausen et. al. compares five generally used IDEs and the data they
collect. They vary widely in this respect, and interestingly, none of them collect
physiological data. This may be explained with the fact that IDEs plugins are
not generally focused specifically on learners and learning processes, but rather
on product usability and efficiency [2]. Still, this tells us that using augmented
data, such as eye-tracking, physiological and facial data to inform interventions is
a comparatively overlooked field of research, and should be investigated further.

1.2 Problem statement

This thesis aims to reproduce an experiment [3] to contribute to its findings. From
this experiment, insights into which metrics could be turned into useful features,
and which features best predict success. The analysis will both investigate how
much data is needed to make a prediction, and discuss how to use the extracted
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2 CHAPTER 1. INTRODUCTION

most important features to aid designing interventions for students, to increase
learning and performance.

The following research questions are defined:

• RQ1: Which metrics are the most important for predicting student expertise
in collaborative coding?

• RQ2: How early can these features predict student success?

• RQ3: How can these predictive metrics be applied for designing IDE inter-
ventions to improve expertise?

1.3 Thesis structure
This thesis provides theory grounding on the use of multimodal sensor data in
a collaborative setting and related work in chapter 2. Chapter 3 describes the
design of this study, how the experiment was conducted and data collected and
processed for analysis. Chapter 4 presents the results of the analysis of this data,
and in chapter 5, the implications of these results are discussed. The following
chapter details the conclusion of this thesis 6.



CHAPTER

TWO

BACKGROUND AND RELATED WORK

This section gives theoretical background to this thesis, and justifies the thesis in
relation to the academic field of this subject. Large parts of this background is
taken from the pre-project to this thesis "How eye-tracking and facial recognition
can be used to give interventions to learners" [4], with modifications and additions.

2.1 Cognitive load

According to a seminal work on the subject, "Cognitive load can be defined as a
multidimensional construct representing the load that performing a particular task
imposes on the learner’s cognitive system" [5]. This work is a development on how
to use cognitive load measure for transfer of information, within a theory called
Cognitive Load Theory. This theory assumes a cognitive architecture consisting of
a limited working memory, partly independent processors for different information
input, and an unlimited long time memory, working together. Furthermore, that
within the process of learning, cognitive schematic building is an essential process
to consider. According to Paas, "... cognitive load is not simply considered as a
by-product of the learning process but as the major factor that determines the
success of an instructional intervention." [5] Furthermore, the article argues that
performance is affected by cognitive over-or underload. This lends to the argument
that intervention in a learning context would greatly benefit by being modified by
measured cognitive load. Cognitive Load Theory defines three types of cognitive
load, intrinsic, extraneous, and germane.

Intrinsic: Equates to the inherent difficulty imposed by the subject matter
or task. This type of cognitive load is difficult to impact without changing
the subject matter or task itself.

Extraneous: Cognitive load that does not originate from the task, and is
not directly related to learning, but from elements outside the activity of
the task. This could be considered things that distracts from or facilitates
learning, such as presentation of tasks.

Germane: The load that is associated with the subjects own learning pro-
cess, the creation and modification of schema.

3



4 CHAPTER 2. BACKGROUND AND RELATED WORK

During the process of comprehending the purpose of code blocks and methods,
and thus the functionality of a program, programmers must understand how the
different parts of the program interacts and works, to get a mental model of the
program.

2.2 Multimodal data for learning analytics

Sharafi et. al. did a systematic literature review in 2015, compiling all relevant
studies on eye-tracking in software engineering [6]. One of the first recognized
studies, examined the possibilities of using eye-movements as a proxy for cogni-
tive processes in a field where verbal reports were the norm [7]. The exploratory
study found that using eye-tracking, and inferring cognitive processes from the
subjects visual attention allocation was viable. They found that this way of col-
lecting information may solve some problems that verbal reports may pose, mainly
the training required to properly formulate thought-processes, and the toll con-
current reports may take on the subjects ability to focus on the task at hand.
The study also underlines limitations of the field at the time, and mentions that
it is difficult to infer participants mental state and cognitive processes solely using
their eye movements as data [6]. This advocated by Mangaroska et. al., who
states that "Programming is a complex learning activity that involves coordina-
tion of cognitive processes and affective states." [1]. This study showed that the
Learning Analytics and Learning Design would benefit from using multiple modes
of data, considering the multitude of processes that must be consolidated dur-
ing programming [1]. Using debugging performance as a dependent variable, the
study compared prediction accuracy of eight models, each using a specific combi-
nation of pre-measured expertise, log data, eye-tracking, facial data, physiological
data, or all of the above. The results show that the models combining data from
other sources in addition to log data and performance indicators, performed better
than the model using only these data streams [1]. The models using eye-tracking
data and facial data performed well, but the model combining all data streams
was clearly the most accurate. The findings of each of the types of data-streams
underline the importance of combining information from several measurements,
as to get the full picture of cognitive processes, learning strategies, and behavior
that occurs during programming.

2.3 Collaborative programming

Collaborative programming, or pair programming, is a paradigm where two or
more people do programming activities on the same task, with the same tools
and often on the same display. As a learning strategy, it is implied to have sev-
eral benefits over other paradigms of coding, including better code quality [8, 9],
enables cognitive apprenticeship [2], and increased productivity. A disadvantage
of this technique is that it requires communication skills to have learning out-
comes for all participants. Another facet of collaborative programming, is the
location. Studies has shown [10] that remote collaborative programming or pair
programming may have the same benefits co-located programming gives. This
might imply that the communication between programmers, and especially non-
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verbal communication has less significance for success. Within both university and
computer science work, remote increased in popularity, especially recently due to
the COVID pandemic. Therefore, researching and developing tools that are fea-
sible both co-located and remote is useful. Data from multimodal streams could
give a deeper understanding about collaboration in conjunction with individual
mental processes, and might help mitigate the loss of both verbal and non-verbal
communication.

2.4 Interventions in IDEs

For this study, we will use Hundhausen et. al.’s definition of intervention, which is
"...an event in which some combination of information, guidance, and feedback is
shared with learners for the purpose of positively influencing the learner’s behavior,
attitudes, or physiological state." [2].

Hundhausen et. al. also discusses the potential IDEs has to impact learning
in computing education. In this review, they argue the importance of following
a general learning strategy when designing and delivering interventions [2]. The
study proposes a cyclical process model for IDE-based learning analytics, which
consists of 1: collecting data, 2: analyzing data, 3: design intervention, and 4:
deliver intervention. In our study, we know that we will collect gaze and facial
data, and analyze this. In the design stage of the process, Hundhausen splits
the intervention into content, presentation, and timing [2], in basic terms with
what to intervene with, how to intervene, and when to intervene. Using CLT as a
base learning strategy, designing and delivering intervention should focus on de-
creasing extraneous load, and facilitating the schema-building germane load. For
decreasing extraneous load, Hundhausen recommends placing information physi-
cally close to the task that is to be solved [2]. This coincides with Van Gog and
Halszkas findings on spatial layout of presentation [11]. This is the case for the
next recommendation, which is to reduce redundancy of information. Presenting
information that already has been presented increases germane load without ac-
tually contributing to schema-building. Another important concept of learning
theory Hundhausen mentions is the locus of control [2]. This relates very much to
the emotional state of the learner. Interventions try to move the locus of control
from being external, where the learner perceives that the situation is happening to
them, and altering its outcome is outside the learners control, to being internal,
a state where the learner has control of how the situation plays out. Hundhausen
calls this attributional feedback, which gives the learner encouragements that their
work is worthwhile and progressive [2]. The Mirroring View in Mangarotska et. al.
[12] is an example of this type of feedback, showing the learners its current progress
and the evolution of their learning process. At a high level, this means creating
interventions that helps learners identify learning goals, encouraging them on their
work and effort, and push them to keep trying if they seem struck or disheartened.

According to Hundhausen et. al. "It is important to recognize that changes
in response to interventions often happen gradually, not immediately. This is
because the learning analytics process is inherently cyclical: learning data leads
to interventions, which lead to new learning data and additional interventions.
Hence, even if initial interventions lead to no detectable changes in learner behav-
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ior or attitudes, detectable changes may well occur over a longer period of time
through an iterative process of progressive refinement." [2] A study that reflects
this line of thinking was conducted by Trætteberg et. al. in 2018 [13]. In this case
study, the researchers examined the effect visualizations on progress and feedback
had on students habits, within the context of an Object-Oriented Programming
(OOP) course. The research augmented the Eclipse IDE with two plugins for data
collection, and used data from the use of these, eye-gaze data and self reports to
measure changes in students attitudes and habits during the semester. The plug-
ins collected log data, such as number of times the code was run, as well as tested,
and displayed them real time, providing the students with a visualization of their
progress. These plugins also informs instructors on how their students are work-
ing, so that they could see if the students are following guidance, and may give
corrections based upon this information.

An important aspect when deciding to give a learner feedback, or provide
intervention, is timing [2]. Eye-tracking and facial recognition shows promise
for painting a complete picture on a learners cognitive load and emotional state.
"...there are optimal opportunities to interrupt learners; if information about one’s
mental activity is available, interruptions can be used effectively to guide the user
to pertinent information without hindering information retention." [14]

Motivation has an impact on effort of learners, and thus should be considered
when discussing systems with the ability to adjust task difficulty. Effort and
cognitive load are linked, and studies suggest that a learners motivation affects
the cognitive load. Both too high and too low cognitive load inhibits performance
[15].

Using expertise as a variable, and measuring differences in attention allocation,
strategy and eye-movements between novices and experts is a common research
theme within Learning Analytics. In an experiment utilizing the Eclipse IDE,
Mangaroska et. al. [12] tried to make connections between visual attention, ex-
pertise and success using participants gaze patterns. The participants were tasked
with removing a number of errors from a snippet of code. The environment had
several views, each representing an AOI, one of these being a Mirroring Tool, which
displayed several metrics about the participants coding behaviour, and information
about the status of the code as well. The experiment measured the participants
attention to AOI and attention switches between the AOI, as well as code reading
patterns. The results show a correlation between expertise and reading patterns,
as saccades in a vertical fashion would signify higher expertise. More interestingly,
the experiment showed that the participants using the mirroring tool, and acted
upon the feedback they got from it, seemed to have a greater amount of success in
debugging. The study also found that difference in expertise amongst the partic-
ipants was reflected in their gaze data, and how they allocated their attention to
different AOIs, i.e gaze patterns. This gives motivation for developing tools that
takes students expertise into account, and that personal adaptation of learning
will help with learning outcomes across expertise.

Even though Hundhausen argues against systems that based intervention on
expertise [2], if used correctly, this metric may still be of use when designing
interventions for IDEs.

The duration of a fixation may indicate the amount of mental processing re-
quired for understanding the information gazed upon. The importance of the
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concept or the difficulty of understanding could explain higher gaze durations,
and could be useful in designing systems for intervention. In the case of using
experts gaze data to provide intervention for novice learners, the areas attended
to longer, and with higher cognitive load could be used for interventions that hint
to where a novice should aim their gaze. Conversely, using experts gaze patterns
could help decide which level of cognitive load is appropriate for the given AOI
or concept, and could merit intervention in the form of questions to the learner,
if the system notices that the novice is not applying enough mental effort.

2.5 Intervention in collaborative setting
The study this thesis builds upon [3], presented as motivation the lack of an
existing system that could collect synchronized data. There was then a research
gap in collaborative systems that in realtime collected physiological data. This
research gap extends to the motivation of this thesis, as there is little research
done on providing intervention to students in a collaborative setting.
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CHAPTER

THREE

METHODS

This section describes the methodical approach of the study, the system used for
the experiment, how the system collects data, how this data is processed, and
lastly how features for analysis were extracted.

3.1 Experimental design

This section describes the context and implementation of the experiment done
in this study, which data were collected, and how the data was processed and
analysed. It then describes how the research was designed and implemented.

3.1.1 Context

This study aims to analyze quantitative data to engineer features that can be used
to inform the design of interventions for IDEs. Therefore, a formal experiment
was set up to collect multimodal data from participants. This study is inspired
by and builds on an earlier master thesis [3]. The thesis conducted an experi-
ment capturing multimodal data from students participating in a collaborative
programming task. The system described in this earlier master thesis was used as
a tool to collect data for this current study. More details about the system and
its use in the experiment can be found in section 3.2. From this point on in this
text, the system implemented in this earlier master thesis will be referred to as
the system, or in some specific cases, the client.

The research portion of this thesis will largely follow the same approach to
collecting datasets.

A common disadvantage of laboratorial experiments are that they are not
comparable to real-world settings[16]. In this case, sans the different sensors, the
experiment is almost identical to a real world setting.

One of the objectives of this thesis is to supply more data points to further
engineer features and attempt to improve upon the predictive results of the afore-
mentioned master thesis. This means that the data collected from the previous
master will be used for feature engineering in addition to new data collected. How
the experiment was conducted, and the data collected are described as follows.

9
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3.1.2 Participants

In total, the experiment had 40 participants, where 29 were male and 11 were
female. This study’s results and eventual findings were specifically aimed to be
used by and for students. Generalizability was, therefore, not a consideration
while choosing participants for the experiment. Given that representativity was
not deemed an essential factor, participants were sampled by convenience. The
participants were from the author’s network and were contracted in person or
via social media. Additional participants were recruited through interest forms
published through message boards of organizations the author participated in,
like the university, former employment, and volunteer organizations. At last, some
participants were recruited through university staff working on similar research.
The eligibility criteria of the population from where the sample was chosen was
only the knowledge and skill that would be natural to assume a person had after
completing an introductory Object Oriented programming course or comparable
programming skill. No exclusion criteria were used. Most of the sample were
students from NTNU (36), and four of the participants were professional software
developers or scientists working for NTNU. The participants were rewarded with
a gift card valued at Kr 200 for participating in the study. Additionally, two
participants were rewarded with a gift card valued at Kr 500. The winners of
these rewards were drawn by raffle.

3.1.3 Experimental setup and procedure

Due to limited time, and miscommunication, the experiment was conducted in
two different lab settings, the UX lab and the Design lab. Firstly, the participants
were welcomed to the lab setting; then, they were given a release form stating
that they agreed to collect, store, store, and use their data for this master’s and
further research. The participants were then given an individual pretest. The
pretest consisted of ten blocks of code written on it, given to the participants
before the programming task, where the participants had 10 minutes to complete
the test. The objective of the pretest was to gauge code comprehension, where the
participants would answer what they thought the output of the code blocks would
be or what the code blocks did, either through multiple choice or open answer.
After the 10 minutes were up, the participants were guided to each computer.
In the UX-lab setup, the computers faced one another, but in the Design-lab,
the computers faced each other. In both instances, the setup was used to mimic
remote collaboration. The different setups can be seen in 3.1.1.

When seated, the participants were given a run-through over how the system
worked, where relevant artifacts in the code editor were placed, how to run the
game, where to look for output, as well as the intricacies of the system. They
were then presented with the problem they were about to solve, a preview of how
the game should work, including specific functions. They were told that their task
was to identify and rectify an unknown number of bugs to get the game to run
as described. The pairs were also informed on how long they had to complete the
task and that they could ask questions about the system, which would not lead
to point reduction, and questions about the code in case they got stuck, which
would lead to point reduction.
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Figure 3.1.1: Environment of the Design Lab

After this, the participants were helped to put on their Empatica E4 wrist-
bands [17], on their non-dominant hand, as per the wristbands user manual. The
participants were helped with the fixation of the wristband to prevent the wrist-
band being put in a position that might affect the data collection. As described in
section 6, the usage of the wristbands had to be adjusted after the first three pairs.
For the first pairs, after fixating the wristband, the wristbands were connected to
the streaming server of the system. For the subsequent pairs, the wristbands were
connected to their own phone. After this, the Tobii X3-120 [18] eye-tracker was
calibrated for each participant, using a 7-point calibration with the Tobii Eye
Tracker Manager [19]. The height and tilt of the monitor were adjusted accord-
ing to each participant and the chair placement. The web camera was adjusted
according to this tilting.

Finally, scripts starting the game server, eye-tracking server, and manually
starting the wristband recording were commenced. The task was limited to 25
minutes, with a trigger-activated at the experiment’s start, which automatically
ended the test. Pairs that ended before were told to click on the button of the E4
wristband to mark the end of the session. The pairs spent an average of 24(SD =
2 minutes 2 seconds) minutes on the task.

The collaborative programming task will from here on out be referred to as de-
bug task. The pre-test is listed in appendix A, the debug task is listed in appendix
B.
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3.2 Data collection

The data used in this study were collected quantitatively through the sensors
described in the experiment setup 3.1. To sum up, data was collected through
the pretest, biometric data from the wristbands and eye-trackers, log and click
data from the server and code editor, facial and audio data from the server, and
measurements from the completed code from the participants. The measurements
associated with the collected data are a mix of pre and post-computed and are
further explained in the subsequent paragraphs.

3.2.1 Pretest

The pre-test, found in Appendix A, was conducted on paper. The total score was
the predetermined measurement. Each pre-test had a time limit of 10 minutes
and consisted of 10 questions, each worth one point.

3.2.2 Wristband Data

As mentioned in 6, using the wristbands presented considerable difficulty. The
original plan was to collect wristband sensor data through the client of the system
described in the appendix. Instead, the wristband data was recorded to two cell
phones, stored, and pushed to the Empatica developer client [20]. The wristbands
collected six measurements. These measurements are BVP (blood volume pulse),
sampled at 64 Hz, EDA (electrodermal activity), sampled at 4 Hz; TEMP (body
temperature), sampled at 4 Hz; and IBI (interbeat interval), which was sampled
at an irregular interval since it is based on measures from BVP. More on how the
processing of this data differed from the planned processing will be in 3.3.6. All
the mentioned measurements were associated with predefined measures and were
used to compute post-processed measurements. These post-processed measure-
ments include computed stress from body temperature, computed entertainment
from heart rate, computed arousal, and computed engagement from electrodermal
activity. These measurements are described further in section 3.3.6.

3.2.3 Video

The system used a JavaScript API face-api [21] to process the video in realtime.
Therefore, the video was never recorded, only measures of facial landmarks with
coordinates, and how much these facial landmarks correlated to predefined emo-
tions, (1) neutral, (2) happy, (3) sad, (4) angry, (5) fearful, (6) disgusted, and (7)
surprised. The video was sampled at 1hz, and the client processed the datastream
with a timestamp per sample.

3.2.4 Audio data

Audio were recorded from each machines webcam. Relevant measures from this
data point were all post-processed. The measurements needed were not what was
being said but rather if and when something was said. Thus, the measurement
was speech for each participant; speech overlaps between participants and silence.
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3.2.5 Gaze data

Two Tobii X3-120 were used to collect gaze data. The data was collected at 120Hz,
with a 7-point calibration pre-data capture. The data streams were captured
through the client described in [3]. Gaze data collected were pupil diameter and
coordinates of gaze points for both pupils. All measures used in the analysis
were post-computed. These measurements include cognitive load, information
processing index, perceived difficulty, and measured anticipation. In addition,
aggregated measures were computed, including the number of saccades, number
of fixations, ratio of saccades to fixations, mean durations and velocity, dispersion,
and more. These measurements will be discussed further in section 3.3.7.

3.2.6 Code editor/webapp

As described in the [3], the client logged every event within the editor. This data
of writing, removing, and replacing text, was logged in real-time to a Firebase
real-time database. The client logged the event, a timestamp for the event, and
the ID of the user performing the action. As the scope and objective of this study
changed, as described in 3.1.1, a lot of the specific data collected by this stream
ended up not being necessary for this study and ended up not being further used.
The data logged in the real-time database from the editor has implications for the
analysis. It is used as the basis for timestamping the experiment for each pair of
participants. In addition, the data here contains the changes in the code during the
experiment and the state of the code at the end of the experiment. Timestamps
were used to trim data since only the data was captured during the 25-minute
period the experiment was conducted, as well as for calculating the offset between
devices. The server timestamping and synchronization usage is described further
in section 3.3.1. The state of the code is essential to track, as it is used to measure
performance for computing completion of debugging.

3.3 Data processing

This section describes how the data collected from the experiments were pre-
processed, then processed to be ready for feature extraction and analysis. The
data was processed using Python [22], with the packages pandas [23] for data
analysis and manipulation, numpy [24] for calculating metrics, and matplotlib
[25] for visualizing during processing and analysis. The same packages were used
for post-processing, with tsfresh [26] added for feature extraction. All streams
described in this section went through the same pipeline to be ready for analy-
sis. Firstly, the data were inspected and pre-processed to check for missing values
and evaluate which effect this would have on further analysis. Subsequently, the
cleaned primitive data were transformed into more interpretable primary mea-
sures. Once the data was transformed into primary measures, these were used
to compute features, which were used for analysis and further feature extraction
using tsfresh.
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3.3.1 Timestamping

In order to be able to interpret the data collected by the eye tracker in the context
of something else, e.g., presented stimuli or data from other sources such as EEG,
the data must be synchronized in time with whatever it is going to be analyzed in
conjunction with. As the data collected were done via two clients and one server,
the first processing step was generating reliable timestamps for each sensor.

3.3.2 Trimming data

Since the experiment involved several sensors, and the system used for the exper-
iment was performed on two different computers, in which both sensors, client,
and server were started manually, some data were collected both before and after
the experiment started. To trim this superfluous data, start and end timestamps
were used. The start timestamp is from the start of the experiment, that is, when
the participants clicked start in the editor, and the end timestamp is set either
automatically 25 minutes after the start timestamp, or if a pair completed the
debug task early, the end timestamp is set to an event click on the wristbands.

3.3.3 Sliding windows

For all data streams, the sliding window technique was employed. The sliding
window technique, often used in analyzing time-series data, is a highly beneficial
method for understanding the nuances of temporal patterns and sequences. With
this technique, a fixed-size window—30 seconds in this case—is "slid" across the
time series, with each slide shifting the window by a specified interval, which for
this analysis was 5 seconds. Each 30-second window overlapped with the previous
window by 25 seconds, ensuring a significant level of data continuity and thereby
aiding in the detection of trends, patterns, or anomalies that may exist within the
data. This approach is beneficial for time-series data as it allows for the system-
atic examination of distinct, continuous chunks of data within a given timeframe,
facilitating the extraction of meaningful local patterns and characteristics. The
sliding window technique enables a more nuanced and dynamic analysis of time-
dependent changes and relationships within the data by providing an ongoing
snapshot of the dataset. The Pandas package has a .rolling() method that was
useful for applying sliding windows of the time-series data. This method was only
made for computing functions over a single column or set of values, so a custom
rolling function was made for computations requiring several values and variables.

3.3.4 Debug Score

As the system logged every event of the code editor, the exact state of the code
at the end of the debug task could be reproduced. The debug task had five bugs
to be identified and fixed, each worth five points. The state of the code at the
experiment was parsed manually, and each pair of participants were given a score
according to the number of bugs corrected, from one to five. The processing of
this dependent variable differs slightly from the one done in [3], as the time was
not considered, and the number of bugs differed from six initially to five in this
experiment. Two independent variables were extracted from the debug score, one
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continuous from zero to five, and one categorical, labeling success as low or high,
with the cutoff at < 3 bugs corrected.

3.3.5 Audio measures

For processing and computing measures from the audio files, the Python library
Pydub [27] was used. As a result of not using external microphones, the audio files
were recorded in .webm format, a format often used to contain media for use on
the web. As it is a container for both video and audio, these files are unsuitable for
use with PyDub. Therefore, the files were converted into .wav format to make this
data appropriate for processing. To do this, the Python module subprocesses for
automation, to access FFmpeg, a software tool for handling audio, and more. The
audio streams in the webm containers were decoded and converted into processable
wav format. This conversion process decompresses the raw audio data, processes
it, converts it, and decompresses it again. While compressed audio loses a lot of
granularity and nuance, compressing is desirable to take less space. When opening
audio files for processing using PyDub, decompression automatically takes place
to load audio into memory before compressing again. Additional pre-processing
was done to the audio files before computing measures. As mentioned in section
3.2.4, measures pertaining to times of communication were to be computed. These
measures are for when one participant is speaking, both are speaking in an interval
and when none are speaking. As described in section 6, a lot of background
noise and audio artifacts could make the computation less accurate. Therefore,
additional pre-processing was done to the audio files. To compute the measures,
silence detection had to be used. Pydub has functionality for this, shown in code
listing 3.1.

1 silence.detect_silence(
2 chunk ,
3 silence_thresh =-40,
4 min_silence_len =1000,
5 seek_step =100,
6 )

Listing 3.1: pydub.silence

The parameter silence_thresh describes the threshold for audio to be consid-
ered silence and is measured in dBFS, decibels comparative to the signal level at
max. The parameter min_silence_thresh describes how long a detected silence
must last to be classified as silence. This parameter was set to 1000 milliseconds
not to consider slow speech as silence. A high pass filter and noise reductions
were applied to the files not to have to set the silence threshold too high and lose
data from this filter. As applying such processing to audio decreases the fidelity
and almost always results in data loss, the high pass filter was applied first, then
the noise reduction. This was to keep as much of the original data as possible
by first filtering out the low-frequency components of the keyboards and mouse
and then reducing noise from other sources. The high-pass filter was implemented
using signal processing methods from the Python package Scipy [28], cutting out
frequencies below a certain threshold. This threshold was set at 250Hz, below the
human speech frequency range of 300Hz. After removing unwanted low-frequency
artifacts, noise reduction was applied to the files using the Python package noise
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reduction. This processing allowed the silent detection method to be less discrim-
inatory at a value of -40dBFS. After the silence and speech detection, additional
confirmation of the correctness of the values was done manually in Audacity. After
this signal preprocessing, the measures that were extracted from this sensor were
the number of silences, speech overlap, and single participant speaking during each
interval of the sliding window.

3.3.6 Wristband measures

Since the measurements of the wristbands were recorded using Empatica propri-
etary software, the data was additionally processed before pre-processing. In the
client described in [3], timestamps were automatically added for each sample point;
this was not the case using the proprietary software. The data formatted by the
wristbands came with the timestamp of the beginning of the recording, expressed
in UNIX time in seconds, as well as the sample rate of each measurement. To get
accurate timestamps for each sample in each measurement, the beginning times-
tamp was taken, and for each subsequent sample point, the start time plus the
time delta was expressed by dividing the second by the frequency.

∆ = 1s/Hz (3.1)

After timestamping the samples, the following measures were computed:

• Arousal

• Engagement

• Stress

• Entertainment

• BVP change

Arousal

The arousal measure was computed from the EDA samples recorded by the wrist-
band. A simple version of the EDA Positive Change algorithm, described by
Leiner et al. [29], was implemented in Python to compute arousal. The com-
putation measures the amplitude between skin conductance values samples and
determines emotional arousal levels. Arousal as a measure can tell us how emo-
tionally engaged a student is to the presented information.

Engagement

Engagement is a complex construct that can be measured in several ways and
is beneficial for inferring the effectiveness of presented learning tasks. One of
the ways engagement can be measured is through the conductance of the skin,
EDA. By breaking down the EDA signal into its tonic and phasic components,
we can calculate three inputs that can be combined into an accurate measure of
engagement. Using the phasic part of the signal and defining an onset and offset
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threshold to quantify peaks of the signal, the measured amplitude was computed,
by summing up the highest points of the signal, every time the signal curved above
the onset threshold. In addition, the measure AUC (Area under the curve) was
computed using the tonic of the signal to approximate the area under the curve
of the signal between two points. AUC reflects the overall magnitude of the EDA
response, and combining it with the amplitude and the number of peaks of the
amplitude measurement is a valuable indication of emotional engagement.

Stress

A measure of stress was derived using the sampled skin temperature from the wrist-
bands. Skin temperature is known to be influenced by physiological responses to
stress, such as increased sweating and changes in blood flow. The recorded skin
temperature data over time were analyzed to identify patterns and quantify the
overall temperature change. This involved fitting a mathematical model to the
temperature data points, which helped estimate the rate of temperature change.
In this context, a significant negative change in temperature was considered indica-
tive of stress. The assumption was that a more significant decrease in temperature
corresponded to a higher stress level. This measure provided an objective assess-
ment of stress levels based on the physiological response captured by the wristband
without requiring subjective reporting or self-assessment.

Entertainment

The measure of entertainment could be calculated through a process that evalu-
ated multiple dimensions of heart rate data sampled from the wristband. Firstly,
the mean heart rate was calculated to understand each participant’s physiolog-
ical response during the experiment. In addition, the variance of the hr signal
was computed to assess the degree of fluctuation in heart rates. The minimum
and maximum hr values were obtained to provide a range of heart rates within
which the participant’s response varied. The difference between these minima and
maxima was calculated.

The correlation coefficient between hr samples and timestamps was calculated
to ascertain the linearity of the HR signal over time and thus provide valuable
insight into how the participant’s heart rate evolved throughout the experiment.

Additionally, the autocorrelation with a lag equal to 1 was computed. This
process aimed to discern the level of non-randomness in the HR data, providing
information about any consistent patterns or rhythms present in the heart rate.

Lastly, the approximate entropy of the signal was determined, which quantified
the unpredictability of fluctuations in the HR time series [30]. This provided a
measure of the complexity and irregularity of the HR, offering valuable insight
into how much the participant’s heart rate varied in an unpredictable manner
during the experiment. Together, these nine measures give an understanding of
the participant’s entertainment level.
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Blood volume pulse

For the blood volume pulse measurement from the wristband sensor, only descrip-
tive statistics were generated.

not computed: -Emotional regulation(IBI)
For each of these measures, describe how they were computed, and why they

were computed. Explain why IBI measures has not been computed, and what
emotional regulation shows

Since IBI did not have a regular interval where it was sampled, this method
could not be used to properly timestamp this measure.

3.3.7 Gaze measures

To obtain measures ready for feature extraction, the gaze data was processed in
several steps. The system[3] used a Python language binding to the Tobii-research
SDK to subscribe to and collect data from the eye trackers. The data captured
from the eye trackers are formatted according to the model of the eye tracker.
In this case, the raw data extracted from the eye tracker was a timestamp per
sample, gaze point coordinates, gaze origin, eye position, pupil diameter, and a
validation tag. Each of these data points was for both eyes. These primitive data
were then sanitized only to include values for which at least pupil measurement
was deemed valid. The same was done for pupil diameter. Then, the x and y
values for both values of left and right pupils were concatenated to represent one
point on the screen and order the screen into a grid.

Event classification

To generate aggregated attributes from these primitives, such as fixations and sac-
cades, and derived attributes from these, processing that classified the primitives
into events needed to be done. Fixations and saccades are the two primary states
of gaze. Classification of these varies from study to study, but for this study, the
definitions were any eye movement exceeding a velocity threshold. This threshold
is described further down in this section. The first part of the processing was
to capture collective aspects related to eye movements, including the duration,
distance covered, velocity of the eye movements, as well as their direction. These
oculomotor parameters were then used to decide if a sampled data point belonged
to the same event, that is, if it belonged to a saccade or a fixation. There are many
ways to make this classification. A commonly used technique for labeling saccades
and fixations is to use a velocity threshold, the I-VT algorithm [31]. This algo-
rithm was used in a modified fashion to classify. The classification process of this
algorithm is simple: if the velocity value for a sample point is below the threshold,
it is classified as a fixation; if it is above, it’s a saccade. For each valid sample
point, this threshold comparison is made, and each consecutive sample point that
falls below this threshold is collapsed into a single event, a fixation. Thus one sep-
arates and labels fixations and saccades. The I-VT algorithm that Salvucci and
Goldberg proposed changed the degree of visual angle to calculate velocity. As
using degrees requires knowledge of the specific setup for the experiment, and the
experiment allowed the participants to move both the screen and the chair they
were sitting on, calculating the velocity based on visual angle degree was decided
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against simply because the viewing distances differed so much per participant.
The solution was to divide the distance between each sample point coordinate
with the time between sample points to get pixels per millisecond. A viewing dis-
tance estimate was used to get an accurate threshold from various experimental
setups. Assuming a velocity threshold of 30°/s, a commonly used threshold, and
a viewing distance of 45 to 65 cm (55 cm mean), the velocity threshold for the
24-inch monitor with a 1920x1080 resolution would be represented by:

For 45 cm viewing distance: 30°/s * 60 pixels/degree = 1800 pixels/s = 1.8
pixels/ms For 65 cm viewing distance: 30°/s * 40 pixels/degree = 1200 pixels/s =
1.2 pixels/ms

So a rough threshold of the mean of these values were chosen: saccade = 1.5
pixels/ms.

Once the sampled data points were concatenated and labeled according to
I-VT algorithm, the attributes shown in table 3.3.1, 3.3.2 and () were extracted.

Attribute name Descriptive
statistic Description

Number of fixa-
tions total The sum of all events la-

beled as fixations.

Fixation dispersion mean, median,
min, max, std

Maximum distance between
any two gaze points within
a potential fixation.

Fixation duration mean, median,
min, max, std

The duration of each event
labeled as fixation.

Fixation to saccade
ratio total

The ratio of fixations to sac-
cade within a given time pe-
riod.

Table 3.3.1: Fixation attributes

In addition to these attributes pertaining to the movement of the gaze, the
pupil diameter attribute descriptive statistics was calculated in the same manner.

With the presence of these attributes, several more complex measures could
be computed, which are listed in the following sections.

Skewness of saccade velocity and fixation duration histograms

From the velocity of the aggregated saccade velocities, and likewise with the aggre-
gated durations of fixations, skewness histograms for each of these measures were
generated per participant. Skewness is a model that describes the distribution of
a specified parameter.

For saccade velocity, high or positive skewness means the velocity tends to
be high. High saccade velocity has been argued to indicate comprehensibility
in the presented material [32]. High skewness is also related to anticipatory gaze,
which could indicate familiarity with the material [33]. Neither of these arguments
directly translates to expertise, as comprehensibility is an artifact of the material
itself, and familiarity could be true for non-experts without directly impacting
performance.
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Attribute name Descriptive
statistic Description

Number of saccades total The sum of all events la-
beled as saccades.

Saccade velocity mean, median,
min, max, std

The velocity of an event la-
beled as a saccade, in pixel-
s/ms.

Saccade duration mean, median,
min, max, std

The duration of each event
labeled as saccade.

Saccade direction classification

The direction of the sac-
cade, wherein an increasing
x-coordinate value equals
"forward", and a decreasing
one equals "backwards".

Saccade to fixation
ratio total

The ratio of saccade to fix-
ations within a given time
period.

Scanpath velocity ratio

The ratio of forward sac-
cades to total saccades, cal-
culated from saccade direc-
tion.

Duration to dis-
tance ratio ratio

Attribute used to compute
information processing in-
dex.

Table 3.3.2: Saccade attributes

For fixation duration, high or positive skewness means fixation duration tends
to be long, and short mean duration fixation results in a low or negative skew.
High fixation skew can point both to higher concentration.

Both these skewness measures could be used to indicate familiarity and com-
prehensibility.

Example histograms of these measures are shown in figure 3.3.1 and figure
3.3.2.
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Figure 3.3.1: Skewness of saccade velocity histogram

Figure 3.3.2: Skewness of fixation duration histogram

Cognitive load

Using the diameter of the pupil, a measure of cognitive load clould be derived.
Like all continuous data streams, eye-tracking data contain noise in the form of
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head movements, off-screen eye flashes, and blinks. The first step in ensuring a
valid measure for the cognitive load was to isolate and detect blinks, as no valid
pupil diameter could be determined from when the eye was shut. As Hollander
and Huette point out, parameters for blink extraction vary from study to study
[34]. This study argues that consecutive sample loss of under 85ms is unlikely
to be a blink. This lower threshold was also used by Faber et al. [35], with the
same sampling rate 120Hz as this experiment. Therefore, all consecutive samples
with a nonvalid gaze value that lasted at least 85ms were classified as blinks and
filtered out of the sample set. To measure cognitive load, the LHIPA algorithm
[36] was used, in addition to the ModMax algorithm created by many of the same
authors [37]. The LHIPA algorithm was used to detect pupil diameter oscillation
by analyzing the high and low frequencies of pupillary activity and outputs an ap-
proximate level value for the participant’s cognitive load in the captured window.
LHIPA was an open-source algorithm to another algorithm, Index of Cognitive
Activity, which is proprietary, thus not open for use in research. LHIPA detects
changes in cognitive load but is not shown to distinguish user-perceived difficulty.
After the cognitive load was measured, aggregated attributes from pupil diameter,
the mean, and the difference between the participant’s cognitive load were used
for further analysis.

Information processing index

From the length of the distance of the saccades and the duration of the fixations
captured, tendencies in reading patterns or other types of visual scanning behavior
can be inferred. Short fixations coupled with long saccades indicate skimming
text, while the opposite, long fixations and short saccades, could signify deliberate
focus. The metric information processing index uses both the spatial dimension
of saccades and the temporal dimension of fixations to compute the ratio between
the two and measure reading patterns [38]. The information processing index was
calculated by finding the thresholds for what constitutes a short and long fixation
and the same for a short and long saccade and then getting the ratio between long
fixations and short saccades. How this code was implemented is shown in code
listing 3.2.

1 def compute_ipi_thresholds(ratios):
2

3 short_threshold = np.percentile(np.asarray(ratios), 25)
4 long_threshold = np.percentile(np.asarray(ratios), 75)
5

6 return short_threshold , long_threshold
7

8

9 def compute_information_processing_index(ratios , short_threshold ,
long_threshold):

10

11 number_of_long_f_short_s = max(np.sum(np.asarray(ratios) >
long_threshold), 1)

12 return np.sum(np.asarray(ratios) < short_threshold) /
number_of_long_f_short_s

Listing 3.2: information processing index
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Perceived difficulty

As mentioned in section 3.3.7, the LHIPA algorithm did not detect the partici-
pant’s perceived difficulty. To provide some mitigation for this deficit, a measure
of perceived difficulty was calculated. This measure was computed by averaging
the length over the duration of each saccade over the total count of saccades for a
given window, which gives a value of the perceived difficulty.

Anticipation

Another measure that could indicate a students familiarity with the task or prob-
lem, is anticipation. To compute this measure, the average velocities of the sac-
cades of a given window were aggregated. Then, a measure of the difference from
the average of saccade velocities were given, their variance. These two measures
were then iterated through, and the cube of the differences between the velocity
and the average velocity. The sign of this value is then used to give a categorical
value for the classification of anticipation. Anticipation is a key factor for expertise
[39], and could be used to gain insight in a students reading strategy.

An additional measure that could have been useful, is the angle of the pupils
in relation to the screen. While this is a measure in it self, it could have been used
to calculate other metrics. As mentioned, to calculate the velocity of a saccade,
I-VT was used, with distance travelled as a variable. This computation could also
be done with the change in degrees of the angle of the pupil. This measure could
also have been used to measure saccade amplitude, a measure which can be used
to compute several measures, most notably ratio of global to local saccades.

3.3.7.1 Final set of measures for feature extraction

Name Sensor Description
Silence Audio Number of intervals of minimum

1s where no participant were
speaking per window.

One speaking Audio Number of intervals where one
participant were speaking per
window.

Both speaking Audio Number of intervals where both
participants were speaking per
window.

Arousal Wristband Emotional arousal levels from
skin conductance, mean and dif-
ference between participants

Engagement amplitude Wristband Sum of peaks from phasic sig-
nal of skin conductance per win-
dow, mean and difference of par-
ticipants
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Engagement no. peaks Wristband Number of peaks from phasic sig-
nal of skin conductance per win-
dow, mean and difference be-
tween participants

Engagement AUC Wristband Overall magnitude of skin con-
ductance per window, mean and
difference between participants

Stress Wristband Indication of stress from change
in skin temperature, mean and
difference between participants

Entertainment Wristband Nine measures relating to
heartrate signal dimensions,
mean and difference between
users

BVP Wristband Descriptive statistics of blood vol-
ume pulse per window, mean and
difference between participants

No. fixations Eye tracker Number of fixations per window,
mean and difference between par-
ticipants

Fixation dispersion Eye tracker Descriptive statistics of spread of
gaze points within fixations per
window, mean and difference be-
tween participants

Fixation duration Eye tracker Descriptive statistics of fixation
durations per window, mean and
difference between users

Fixation to saccade ratio Eye tracker Ratio of fixations to saccades per
window, mean and difference be-
tween participants

No. saccades Eye tracker Number of saccades per window,
mean and difference between par-
ticipants

Saccade velocity Eye tracker Descriptive statistics of saccade
velocity per window, mean and
difference between participants

Saccade duration Eye tracker Descriptive statistics of saccade
durations per window, mean and
difference between participants

Saccade distance Eye tracker Descriptive statistics of saccade
distances per window, mean and
difference between participants

Forward to total ratio Eye tracker Ratio of forward to total saccades
per window, mean and difference
between participants
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Saccade to fixation ratio Eye tracker Ratio of saccades to fixations per
window, mean and difference be-
tween participants

Anticipation Eye tracker Mode of measure anticipation per
window, value per participant,
and difference between partici-
pants

Perceived difficulty Eye tracker Descriptive statistics of the per-
cieved difficulty value per win-
dow, mean and difference be-
tween participants

IPI value Eye Tracker Information processing index per
window, mean and difference per
participant

Cognitive load Eye tracker Computed mean cognitive load
value per window, mean and dif-
ference between participants

Pupil diameter Eye tracker Descriptive statistics of pupil di-
ameter per window, mean and
difference between participants

Skewness of saccade velocity histogram Eye tracker Distribution of saccade velocity
per window

Skewness of fixation duration Eye tracker Distribution of fixation duration
per window

Neutral FaceApi Mean value of the neutral expres-
sion per window, mean of partic-
ipants

Happy FaceApi Mean value of the happy expres-
sion per window, mean of partic-
ipants

Sad FaceApi Mean value of the sad expression
per window, mean of participants

Angry FaceApi Mean value of the angry expres-
sion per window, mean of partic-
ipants

Fearful FaceApi Mean value of the fearful expres-
sion per window, mean of partic-
ipants

Disguisted FaceApi Mean value of the disgusted ex-
pression per window, mean of
participants

Surprised FaceApi Mean value of the surprised ex-
pression per window, mean of
participants

The preprocessing and measure aggregation described in this section were ap-
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plied to the data captured by the experiments conducted in [3] to get more data
points for the analysis and increase accuracy.

Before going to the feature extraction step in the analysis, audio, and blood
volume pulse measures were deemed superfluous to analysis and therefore cut out
from the dataset.

3.3.8 Feature extraction

In this study, it was decided to incorporate feature extraction into the analytical
pipeline after the initial data processing and computation stage. The capabilities
of TSFRESH were leveraged. It is a Python library designed explicitly to extract
relevant features from time-series data automatically. There were other options
for extracting features from time series, like TSFEL or tsfeatures. However, there
were several reasons to choose TSFRESH as a feature extraction library. This
library can extract a more comprehensive list of features than the other mentioned
libraries, which lends to capturing more complex patterns in the data. TSFRESH
is also highly customizable, giving greater flexibility in dealing with diverse data.
Lastly, the library comes with built-in mechanisms of relevance filtering, which
makes feature space reduction easier, and helps avoid overfitting the model in the
analysis. Despite already having a large set of variables before feature extraction,
an argument for expanding upon this set was to ensure that the Random Forest
model would be robust, provide accurate predictions, and leverage accurate feature
importance levels. Another reason for using a library for extraction is that it saves
time that would have been used on manual feature engineering, leaving more time
and focus for analysis. In addition, this library is compatible with packages already
used, like pandas, and easily integrates with scikitlearn [40], which was needed for
the analysis.

In the context of this study, the processed sensor data from all the sources
were merged into a single, stacked DataFrame. This unified dataset allows for
comprehensive and integrated analysis, considering the interactions between dif-
ferent sensor data types. Each experiment with all its values was represented as
one-time series.

As TSFRESH generated aggregate features from each value, the min, max,
and median measures included from the final measure dataset were cut out to not
double up and over-specify features and decrease computational time.

The specific operations are determined by the parameters supplied to the ex-
traction function; in this case, ’MinimalFCParameters’ was used. This preset
configuration in TSFRESH specifies a subset of features that are relatively fast to
calculate. This choice was made to balance the computational resources required
for feature extraction and the richness of the resulting feature set. TSFRESH
operates on the DataFrame on a window-by-window basis. Various features are
based on the configured parameters for each rolling window in the time series.
This rolling window approach is ideal for this dataset because it allows us to cap-
ture static and dynamic sensor readings’ characteristics over time. The features
extracted can include superficial statistical characteristics like mean, variance, and
standard deviation, as well as more complex properties such as trends, seasonal-
ity, and autocorrelation. Once TSFRESH has extracted a broad set of features
from the data, it proceeds to the relevance filtering stage. In this step, TSFRESH
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applies a hypothesis test to each feature to assess its significance in predicting the
target vector. This is accomplished using the ’extract_relevant_features’ func-
tion, with the target vector being the ability of the participants to debug the
program.

This function works by evaluating the p-value of each feature; only features
with a p-value below a certain threshold are retained, indicating that they have
a statistically significant relationship with the target vector. This process results
in a subset of the initially extracted features that are most likely to contribute to
the predictive model.

3.3.9 Data analysis

For this analysis, it was decided to use RF as the predictive algorithm. Since there
are continuous and categorical variables, combining them in one classifier other
than RF was difficult. Moreover, RF offers easy extraction of features importance
and has been found to be a top-performing algorithm in a large comparative study
(Fernández-Delgado, Cernadas, Barro, & Amorim, 2014) [41]. Neural networks
(NNs) were also looked into. However, since the outcomes cannot be explainable
in terms of how the NN algorithm combines the features to produce the output,
and it is impossible to calculate the importance of features, it was concluded that
NNs were not the best approach. Finally, the support vector machine (SVM)
approach was looked into, but since SVM can be biased based on the chosen
support vectors, it was decided to avoid the risk of overfitting the models.

Random forest classifier

After the dataset was cleaned, measures were calculated, and relevant features
were extracted from these measures; the final features were run through scik-
itlearns RandomForestClassifier. As one of the objectives of this thesis was to get
an idea of which data and how much is needed to inform an intervention, the ran-
dom forest classifier was run several times on different dimensions. One of these
dimensions is time. The final dataset was run through the RF classifier, split on
percentages of time series per experiment, firstly 100% of the time series, down to
10% of the time series. This was done to get an idea of how much sensor data to
make an accurate prediction and thus deliver an intervention (early prediction).
To gain insight into which of the sensors used in the experiment could give the
most accurate prediction and therefore limit overfitting and excess computational
usage, the RF classifier was run on datasets pertaining to each sensor individually,
one for measures pertaining to the eye-tracker, one for the wristband sensor, and
one for the facial measures. These runs were done without feature extraction, only
using the computed measures. As mentioned, the experiment’s target variable was
measured categorically and as a continuous value. Therefore, all the aforemen-
tioned runs were done with continuous and categorical values as target vectors.
In all, the random forest classifier was run 24 times.
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RESULTS

4.1 Performance prediction accuracy using Multi-
modal data

When it comes to performance prediction in terms of debugging score, the random
forest classifier, using the features extracted from the multimodal data provides an
accuracy of 0.98. Similarly when it comes to performance prediction in terms of
categorical success the random forest using the features extracted from multimodal
data provides an accuracy of 0.98. When we analyzed the top 30 most important
features from the multi modal data we observe that the top 26 features are derived
from engagement and the two other features are there derived from pupil diameter
4.1.1. On the other hand when we analyze the top 30 most important features
for predicting the categorical performance, we observe that 28 out of 30 most
important features are derived from engagement and pupil diameter. In the case
of predicting the performance categories we do not observe the top 26 features
to be derived from engagement we observe that the features extracted from pupil
diameter and engagement share the top 30 ranks 4.1.2.
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Figure 4.1.1: 30 most relevant features for debugging score
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Figure 4.1.2: 30 most relevant features for categorical success

4.2 Performance prediction accuracy using partial
Multimodal data (Early prediction)

We chose a threshold of 0.95 For both debugging score prediction and categorical
success prediction when it comes to early prediction comparisons. We observe that
there is no significant drop until we use 20% of the data in terms of time. This
indicates that we can predict the performance of the diets with an accuracy of 0.96
and 0.97 for debugging score and categorical accuracy, respectively, just by using
30% of the total data. In terms of time, this corresponds to on an average 7.2
minutes of interaction time. In the remainder of this subsection we will analyze



32 CHAPTER 4. RESULTS

the top 30 most important features for the different data lengths separately for
debug score accuracy and categorical success accuracy.

4.3 Categorical Success

When we use the 90% data to predict the categorical accuracy we notice that the
top 30 most important features are derived from engagement (16 out of top 30
features), pupil diameter (six out of 30 top features), saccades (two out of top 30
features), perceived difficulty (two out of top 30 features), heart rate (two out of
top 30 features), and information processing index (two out of top 30 features).

When we use the 80% data to predict the categorical accuracy we notice that
the top 30 most important features are derived from engagement (17 out of top 30
features), pupil diameter (eight out of 30 top features), perceived difficulty (Two
out of top 30 features), saccades (one out of top 30 features), heart rate (one out
of top 30 features), and stress (one out of top 30 features).

When we use the 70% data to predict the categorical accuracy we notice that
the top 30 most important features are derived from engagement (13 out of top
30 features), pupil diameter (nine out of 30 top features), information processing
index (three out of top 30 features), stress (three out of top 30 features), saccades
(one out of top 30 features), and perceived difficulty (one out of top 30 features).

When we use the 60% data to predict the categorical accuracy we notice that
the top 30 most important features are derived from engagement (16 out of top 30
features), pupil diameter (seven out of 30 top features), perceived difficulty (four
out of top 30 features), information processing index (two out of top 30 features),
and HR (one out of top 30 features).

When we use the 50% data to predict the categorical accuracy we notice that
the top 30 most important features are derived from engagement (13 out of top
30 features), pupil diameter (11 out of 30 top features), HR (four out of top 30
features), and saccade (two out of top 30 features).

When we use the 40% data to predict the categorical accuracy we notice that
the top 30 most important features are derived from engagement (10 out of top
30 features), pupil diameter (10 out of 30 top features), saccade (five out of top
30 features) , perceived difficulty (four out of top 30 features), and HR (one out
of top 30 features).

When we use the 30% data to predict the categorical accuracy we notice that
the top 30 most important features are derived from pupil diameter (13 out of
top 30 features), engagement (10 out of 30 top features), HR (six out of top 30
features), and saccade (one out of top 30 features).
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(a) 90% of data (b) 80% of data

(c) 70% of data (d) 60% of data

(e) 50% of data (f) 40% of data
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(g) 30% of data

4.4 Debugging Score

When we use the 90% data to predict the debugging score we notice that the
top 30 most important features are derived from engagement (25 out of top 30
features), pupil diameter (three out of 30 top features), and arousal (one out of
30 top features).

When we use the 80% data to predict the debugging score we notice that the
top 30 most important features are derived from engagement (26 out of top 30
features), pupil diameter (one out of 30 top features), stress (one out of 30 top
features), and arousal (one out of 30 top features).

When we use the 70% data to predict the debugging score we notice that the
top 30 most important features are derived from engagement (25 out of top 30
features) and pupil diameter (four out of 30 top features).

When we use the 60% data to predict the debugging score we notice that the
top 30 most important features are derived from engagement (24 out of top 30
features) and pupil diameter (four out of 30 top features).

When we use the 50% data to predict the debugging score we notice that the
top 30 most important features are derived from engagement (28 out of top 30
features) and pupil diameter (one out of 30 top features).

When we use the 40% data to predict the debugging score we notice that the
top 30 most important features are derived from engagement (22 out of top 30
features), pupil diameter (four out of 30 top features), and arousal (two out of top
30 features).

When we use the 30% data to predict the debugging score we notice that the
top 30 most important features are derived from engagement (21 out of top 30
features), pupil diameter (7 out of 30 top features), and arousal (two out of top
30 features).
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(a) 90% of data (b) 80% of data

(c) 70% of data (d) 60% of data

(e) 50% of data (f) 40% of data
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(g) 30% of data

4.4.1 Performance prediction accuracy using individual data
sources

We present the results of performance prediction using the individual data sources.
We observe that the physiological data provides the highest performance prediction
followed by gaze data, and the facial data provides the least accurate performance
prediction. This is true for both debugging score and categorical success. We
observed that while using only physiological data we get a performance prediction
of 0.99 on the debugging score and a performance prediction of 0.99 for categorical
success. When we use only eye tracking data to predict debugging score, the
accuracy is 0.97 and that for categorical success is 0.96. Finally when we use only
facial data to predict the debugging score and categorical success we get accuracies
of 0.85 and 0.88 respectively.
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Figure 4.4.1: 30 most important features for all data streams for categorical
success

Figure 4.4.2: 30 most important features for all data streams for categorical
success

Looking at the feature importance for predicting the performance, when it
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comes to the debugging score, with individual data sources, we observe the fol-
lowing:

For physiological data, six of top 10 most important features are derived from
engagement (engagement_auc_mean, user_2_engagement_auc, user_1_engagement_auc,
user_2_engagement_amplitude , user_1_engagement_amplitude, engagement_amplitude_mean).
Other three in the top 10 most important features are derived from arousal
(user_2_arousal, arousal, user_2_arousal). Other features derived from the HR
and stress are ranked lower than the top 10 most important features 4.4.3.

Figure 4.4.3: 10 most important features for physiological data

For gaze data, six of top 10 most important features are derived from pupil di-
ameter (user_2_pupil_diam_mean, user_1_pupil_diam_mean, pupil_diam_mean_diff,
pupil_diam_med_diff, pupil_diam_mean, user_1_pupil_diam_std). Other two
in the top 10 most important features are derived from saccade (user_2_saccade_median_distance,
user_2_saccade_median_distance). Other features derived from rest of the gaze-
data measurements are ranked lower than the top 10 most important features
4.4.4.
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Figure 4.4.4: 10 most important features for gaze data

For facial data, we observe that the negative emotions are ranked higher in the
terms of feature importance than the positive emotions. Moreover, we also observe
that the emotions with high arousal, with the only exception of sadness, are ranked
higher in terms of feature importance than the emotions with low arousal. This is
also consistent with the observation that physiological arousal based features rank
in top 10 most important features from the physiological data source 4.4.5.

Figure 4.4.5: 10 most important features for facial data

Next looking at the feature importance for predicting the performance, when
it comes to the categorical success we observed the following:

For physiological data, six of the top 10 most important features are derived
from engagement (engagement_auc_mean, user_1_engagement_auc, user_2_engagement_auc,
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user_3_engagement_amplitude, engagement_amplitude_diff, engagement_amplitude_mean).
Other two in top 10 most important features are derived from arousal (autocor-
relation_2_mean, user_1_autocorrelation_2). Other features derived from HR
and stress are ranked lower than the top 10 most important features 4.4.6.

Figure 4.4.6: 10 most important features for physiological data

For gaze data, four of the top 10 most important features are derived from
pupil diameter (user_2_IPI, pupil_diam_mean_diff, pupil_diam_median_diff,
user_1_pupil_median). The other two of the top 10 most important features are
derived from perceived difficulty (user_2_percieved_difficulty_std, user_1_percieved_difficulty_std).
There are two more of the top 10 most important features that are derived from
saccade distances (user_2_saccade_mean_distance, user_2_saccade_median_distance).
Other features derived from rest of the gaze-data measurements are ranked lower
than the top 10 most important features 4.4.7.
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Figure 4.4.7: 10 most important features for gaze data

Finally for facial data we observe that once again the negative emotions are
ranked higher in terms of feature importance than the positive emotions however
while predicting the categorical success there is no clear indication of arousal based
emotions in the terms of feature importance 4.4.8.

Figure 4.4.8: 10 most important features for facial data
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DISCUSSION

This chapter provides a discussion of the results gleaned from the prediction ca-
pabilities of the data analysis.

The key findings of the analysis were as follows:

• Using data streams from several sensors leads to very accurate predictions
of performance, both when testing for categorical and continuous defined
performance.

• Using all data streams provides accurate prediction of performance with only
using 30% of time series data.

• Results indicate prediction accuracy is highest for physiological data, then
eye-tracking data, and lowest for facial emotion data.

• The most important features from all prediction cases are related to engage-
ment, pupil diameter, HR, stress, arousals and saccades.

From the results we can clearly observe an emerging pattern that six multi-
modal measurements contribute to the most important features in a vast majority
of the prediction cases. That is, with the complete or partial data. These measure-
ments are engagement, pupil diameter, HR, stress, arousal and saccade. Therefore,
on the basis of their nature, we can conclude that the most important measures
emerging from the multimodal analysis are engagement, pupil diameter, saccades
and stress. Due to the fact that stress is also a derived measure from HR and
engagement has the similar properties as arousal, we can provide more informa-
tive feedback based on stress and engagement as compared to HR and arousal
respectively. Finally, we know that pupil diameter and saccades are the basic con-
stituent variables for cognitive load [14], we can provide more informative feedback
based on cognitive load rather than pupil diameter and saccades. This answers
our first research question, RQ1, the most important features that predicts a stu-
dent performance in a collaborative debugging setting is stress, engagement,
and cognitive load. We also see that this holds for early prediction, and that
early prediction down to as little as 30% of the data yields accurate predictions,
which answers RQ2. In the following we will discuss a few ways on how to provide
feedback based on the most important factors stress, engagement, and cognitive
load, which answers RQ3
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Interventions for stress

As stress is a measure of affective state more so than measurable cognitive state,
interventions catering to this measure may take the form of encouraging actions
outside of the problem solving.

The purposes of these interventions would therefore be to encourage the student
to step away from the problem solving. Suggestion on modifying the emotional
states of the programmers [42] entails limiting negative emotions. With this in
mind, we suggest interventions that remind students to take breaks when their
measured stress levels reach a threshold.

Another factor to consider, is the nature of pair programming. Several studies
has shown pair programming to reduce feeling of frustration[43, 44], an emotive
state closely related to stress. With this quality of collaborative coding in mind,
we suggest researching interventions that focus on the collaborative experience.
This means, interventions that encourages communication between collaborators
as a measure to modify stress levels. These interventions could be reminders to
communicate to decompose the problem, change focus to another problem, or
starting over.

Interventions for cognitive load

The results show that success can be predicted by analysing cognitive load. This
is also true for the analysis of early prediction of success, implying that providing
intervention is feasible in real time, to increase or decrease cognitive load to a value
that increases learning, and thus success. To do this, the study proposes three
types of intervention. For all the following suggestions, it should be mentioned that
in designing interventions that aim to modify cognitive load, introducing visual
elements during programming may indeed reach the goal of decreasing cognitive
load but still not helping the pairs achievement or learning. If the interventions
ends up decreasing cognitive load, but splitting attention from the task at hand,
thus defeating the purpose of the intervention. The modification in cognitive load
could also come from the load inferred by the intervention, only reflecting how
much focus and attention the intervention requires, be it less or more focus. This
argument may in many cases be not that important, as learning to program is a
complex process, where the workflow requires attention splitting to several forms
of information, to consolidate into learning schemas.

Content based help

A common workflow for solving problems for programmers, novices and experts
alike, is searching for solutions, or example code on the web. This process splits the
attention of the programmer, and especially for novices this may pose a problem,
as they might not understand the code in the existing solutions, or the underlying
concepts used in these examples. A workaround for this, could be to implement
systems that generate tutorials or explanations for the concepts that generates
higher cognitive load. As mentioned, this may overload the student with too
much new information, and increase cognitive load. As a countermeasure, this
content based help could be tailored to the participant in conjunction with the
interventions discussed in the following section.
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Worked examples

Several studies has shown that there is a positive correlation between employing
worked examples, decrease in cognitive load and increase in performance [45, 46].
This however has been suggested to not be true for higher-prior knowledge learn-
ers, who benefit from completion-worked examples [47], that is, partially solved
examples. The effect of using worked examples is studies, but a lot of these studies
investigate them in the use in mathematics or other fields. Studying the use in pro-
gramming is rare, something which also holds true in the context of collaborative
programming. In both of the case of fully worked and partially worked examples,
attention and therefore cognitive load can be directly directed at goal-inducing
effort by interventions. Adaptive feedback could be helpful in a collaboration set-
ting, especially if the students engaging in the collaboration have different levels
of prior knowledge. This applies to both prior knowledge generally, and on a con-
cept to concept level. Interventions that help towards leveling out the variance of
knowledge or achievement would enhance the the technique.

Hints

Hints are a type of intervention that are meant to compensate for a non-sufficient
level of prior knowledge. They can however have the opposite effect on learners
with a sufficient base of prior knowledge, and act as distractors, decreasing cog-
nitive load, but at a cost of diverting attention to objects not relating to higher
performance.

Interventions for engagement

The duration of a fixation may indicate the amount of mental processing required
for understanding the information gazed upon. The importance of the concept
or the difficulty of understanding could explain higher gaze durations, and could
be useful in designing systems for intervention. In the case of using experts gaze
data to provide intervention for novice learners, the areas attended to longer, and
with higher cognitive load could be used for interventions that hint to where a
novice should aim their gaze. Conversely, using experts gaze patterns could help
decide which level of cognitive load is appropriate for the given AOI or concept,
and could merit intervention in the form of questions to the learner, if the system
notices that the novice is not applying enough mental effort.

Modifying difficulty of problem

A factor that can affect students measured engagement the level of difficulty while
solving a problem. Concepts that require a higher level of understanding might
limit engagement, regardless of effort, and can be a demotivating factor for novices.
Similarly for high achieving students, they might express lower engagement if the
concept they are tackling is too understandable, or too novel for their level. A form
of intervention that may tackle both of these issues, is an adaptive interventions
that scale the difficulty of the learning concept based on the predicted success of
the effort the pair is demonstrating.
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Summative intervention

Another dimension of engagement apart from the cognitive, is the behavioural
dimension of engagement. Sadler [48] employs a notion of "feedback gap", which
for the students entails an understanding of the their own performance in relation
to the goal of the task at hand. This can relate to the behavioural dimension
of engagement, as this dimension could require summative instead of formative
feedback. This means, to foster engagement for students, interventions that helps
students understand their progress towards the learning goal, or visualizes their
achievement may help modify their engagement in a way that increases learning
and achievement.

5.1 Future work
As will be discussed in 6, the data collection suffered from issues with the system
as a whole, and with individual sensors. Therefore, the first recommendation for
future work would be to run the experiment described in this thesis again, for
more data points for analysis. Another way of handling missing data would be
to implement an imputation technique. Another option is to use Synthetic Mi-
nority Oversampling Technique (SMOTE) to create synthetic samples. Increasing
sampling size would help underline which sensor features could be best suited for
informing interventions. As we saw from the results, the predictions were very ac-
curate, even with 30% of the data, purely because of the wealth of data samples,
and the continuous nature of the data. SMOTE, or other statistical techniques
could overcome overfitting by generating minority instances, or outliers through
interpolation.

As the results of predicting based on individual data sensors imply, based on
the accuracy of prediction, imply that some features may overlap in information.
Short-term future research may focus on identifying which factors contain mutual
information. In a future system that gives real time intervention, a possible goal
should be to limit the amount of data is needed to make effective interventions.
The idea of early prediction should be a focus for such a system, as collecting
multimodal data is expensive, both in storage, computation and processing. As
described in limitations 6, complex systems are time-consuming to manage, so
doing more exploratory testing on which permutations of sensors gives sufficient
accuracy in predicting success.

As described in section 6, the initial plan for this study was to actually de-
sign the interventions discussed. This plan involved a qualitative analysis of the
extracted important features, and then a workshop with professors of HCI and
design, for the design of these interventions. The next step was to make low-level
designs of these actionable feedbacks. Therefore a long-term recommendation
would be to implement designs for the actionable feedback, and then measure the
effects of the feedback. As the effect of feedback on learning and academic success
is something that is inherently cyclical, and takes more time than is permitted in
a masters thesis, the effect of the implemented interventions should be in form of
a case study ranging from a whole semester to a year, to gain novel insight, much
like in [13].
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CONCLUSIONS

This thesis builds on and replicates an experiment using a web-based collaborative
code editor, where multimodal data has been collected and analysed for use in de-
sign of interventions for students learning. The thesis presents the most important
features or streams of data for predicting students performance while debugging,
and how the datatreams collected could be used for early prediction of students
success. The thesis provides a discussion about how these features could be used
to provide interventions in the form of actionable feedback, and argues why this
feedback could be used to improve student performance in a collaborative debug
setting.

Limitations
This section describes the limitations of the thesis.

Improvement of system

A large workload of this study went into setting up the system to use for data col-
lection during the experiments, as well as correcting issues during the experiments,
which will be discussed further in the next section 6. The system as described, con-
sisted of several sensors, protocols, languages, frameworks within these languages,
packages for these languages, as well as proprietary software for the sensors. All
of this had to run simultaneously on two different computers. Initially, the idea
for the study and the experiments, were to use the system as delivered, plug and
play. This was not the case, and such, around two months worth of workload was
invested into making the system run. As one of the objectives of this thesis was
to recreate the experiment done in [3], using the same system to test viability of
collecting realtime multimodal data in a collaborative setting, the time spent de-
bugging/improving the system was deemed worthwhile. The system, as mentioned
consisted of several parts, with limited documentation and scale-wise a very large
code base to get acquainted with. Disregarding getting to know the code-base,
the problems that needed to be fixed could be summed up in three categories:
language specific package dependencies issues, issues with individual sensors, and
all their parts and proprietary software, and ensuring that all the parts worked
consistently as a whole, for both participants in the experiment.
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The issues with the first category were interconnected with the second one.
The python packages used for parsing the data from both the eye-tracker and
the wristband was pandas. During the time period from the implementation of
the system, to the time it was employed for this thesis, this package had received
updates. The system used several methods from pandas that were deprecated, but
for several reasons, information about this deprecation was not relayed through the
system. With little information to go from, the fix for this was to line by line debug
the system for output. A similar issue, but smaller happened with programmatic
connection to the eye-tracker. The eye-tracker used in the original experiment [3]
and this experiment is no longer in production, and the documentation for both
the eye-tracker and the SDK is scarce. The solution to this was to downgrade
the python versioning, but this was difficult to figure out, as the SDK did not
give error output specific for this to be a problem. This had to be figured out by
brute force trying solutions. The biggest hurdle in getting the system to work,
was to get consistent output from the wristbands. Firstly, the Empatica E4 is also
a discontinued model, replaced by Empatica EmbracePlus. The Empatica E4 is
connected with a BLED112 dongle through Bluetooth, and to get streaming data
from this wristband, it is necessary to use E4 Streaming Server for Windows [49],
documentation last updated in 2018. This proprietary server is connected to the
system via a TCPClient. In short form, there are four layers of failure for getting
streaming data from this sensor, and from the system, no error messages to inform
on which step is causing the loss of information. Debugging included manual line
by line debugging in python, updating drivers of the hardware, both the watch
and the BLED112 dongle, consulting Empatica for advice, and Wiresharking to
confirm for packet analysis. This was done on several machines to ensure that
installation of all mentioned steps were done correctly. Wiresharking confirmed
that the wristbands connected to each machine, and sometimes sent data, but not
always. The proprietors of the wristbands recommended deleting the software and
roaming data every time the wristbands were used, but this still didn’t lead to
consistent data transfer. A part of the problem was related to Windows Firewall,
which may or may not block the signal, without giving notice as to when this was
the case. One solution that seemed to work was to simply start the streaming
server as Administrator. The proprietors of the wristbands were not aware of this
issue.

Finally, this troubleshooting had to be done to both machines that would run
the experiment.

Experimental limitations

Due to miscommunication, some of the experiments (10) were done in a different
lab setting. The UX-lab was unavailable at the time. This led to half of the
experiments taking place in different locations. The design lab was located in a
room with very little ventilation. The only window in the room was adjacent to a
construction site on campus, which at times made noise. As bad indoor air quality
can lead to lapse in concentration, headaches, and generally bad performance, the
assessment was made to keep the window open, as well as using a blade fan to
further increase air quality. This decision was made knowing that the noise from
the construction site and the fan might compromise the audio quality, and lead to
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the need of processing the audio in a way that constitutes loss of data.
At the first day scheduled for experiments, we discovered several errors with

both the wristbands and one of the eye-tracker. The code used to parse the data
collected from the wristbands, ended up with only collecting BVP. This proved
that the issues with the wristbands persisted, and the long troubleshooting process
had proved for naught. One of the eye-trackers disconnected at random, which
gave no data collected from the eye-tracker. To tackle the issues with collecting
data from the wristbands, the module that was used for streaming and parsing data
from the wristband was discarded. Instead, a solution using Empaticas proprietary
software was used. This app recorded the data directly to a database, and was
processed at a later date, rather than directly with the system.

During the run of the tests, errors with the sensors continued. After getting
consistent data from the wristbands, and solving this issue, the issues with the
eye-trackers persisted, leading to incomplete data from the experiments.

Due to the technical difficulties of using one of the eyetracker (difficulties get-
ting the eye-tracker to recognize the participant during calibration) the partici-
pants were allowed to move their chair. Therefore the viewing distance fluctuates,
and may lead to less accuracy in the measurements. Saccade amplitudes were not
calculated because of the fluctuation of the seating distances.

Considering the amount of time that was used to troubleshoot the system,
the experiments had to be carried out, as it neared the end of the semester,
and students were beginning their exam preparations, and were less willing to
participate, there was no time to improve upon the system.

Missing computed data

The issues described above lead to few complete datasets from the experiments.
20 experiments were ran, but only 9 of the experiments data were complete, and
could be used for analysis.

The practical implications the above mentioned troubleshooting had on the
thesis, is twofold. Firstly, the amount of time spent on just setting up the exper-
iment left little time on the analysis-part for the thesis. The original plan of the
study was designing the interventions recommended in the discussion.
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Pre-test: Debugging

Name:_________________

For each question you will be given a code snippet and you have to figure out what the
output of the snippet is or what it does.

Question 1

What is the output of this program? Circle the correct answer.

A. 0 1 2 3 4 Here
B. 0 1 2 3 4 5 Here
C. 0 1 2 3 4
D. 1 2 3 4 5

Question 2

What is the output of this program? Circle the correct answer.

A. 0 1 2 3 4 Here
B. 0 1 2 3 4 5 Here
C. 0 1 2 3 4
D. 1 2 3 4 5



Question 3
What is the output of this program? Circle the correct answer.

A. -2 -1
B. 0
C. error
D. none of the mentioned

Question 4
What is the output of this program? Circle the correct answer.

A.
1. Derived_Demo’s __init__() invoked
2. Derived_Demo's __new__() invoked
3. Demo's __init__() invoked
4. Demo's __new__() invoked

B.
1. Derived_Demo's __new__() invoked
2. Demo's __init__() invoked
3. Demo's __new__() invoked

C.
1. Derived_Demo's __new__() invoked
2. Demo's __new__() invoked

D.
1. Derived_Demo’s __init__() invoked
2. Demo's __init__() invoked



Question 5
What is the output of this program? Circle the correct answer.

A. 0 1
B. 0 0
C. Error because class B inherits A but variable x isn’t inherited
D. none of the mentioned

Question 6
What is the output of this program? Circle the correct answer.

A. 25
B. 17
C. 16
D. Tuples can’t be made keys of a dictionary

Question 7
What is the output of this program? Write down the output.



Question 8
What is the output of this program? Write down the output.

Question 9
What is the output of this program? Write down the output.



Question 10
What is the output of this program? Write down the output.



B - DEBUG TASK

1 import math
2 import random
3 from os import environ
4

5 environ["PYGAME_HIDE_SUPPORT_PROMPT"] = "1"
6 import pygame
7 from pygame import mixer
8

9 # Intialize the pygame
10 pygame.init()
11

12 # create the screen
13 screen = pygame.display.set_mode ((800, 600))
14

15 # Background
16 background = pygame.image.load("background.png")
17

18 # Sound
19 mixer.music.load("background.wav")
20 mixer.music.play(-1)
21

22 # Caption and Icon
23 pygame.display.set_caption("Space Invader")
24 icon = pygame.image.load("ufo.png")
25 pygame.display.set_icon(icon)
26

27 # Player
28 playerImg = pygame.image.load("player.png")
29 playerX = 370
30 playerY = 480
31 playerX_change = 0
32

33 # Enemy
34 enemyImg = []
35 enemyX = []
36 enemyY = []
37 enemyX_change = []
38 enemyY_change = []
39 num_of_enemies = 6
40

41 for i in range(num_of_enemies):
42 enemyImg.append(pygame.image.load("enemy.png"))
43 enemyX.append(random.randint(0, 736))
44 enemyY.append(random.randint (50, 150))
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45 enemyX_change.append (4)
46 enemyY_change.append (40)
47

48 # Bullet
49

50 # Ready - You can’t see the bullet on the screen
51 # Fire - The bullet is currently moving
52

53 bulletImg = pygame.image.load("bullet.png")
54 bulletX = 0
55 bulletY = 480
56 bulletX_change = 0
57 bulletY_change = 10
58 bullet_state = "ready"
59

60 # Score
61

62 score_value = 0
63 font = pygame.font.Font("freesansbold.ttf", 32)
64

65 textX = 10
66 testY = 10
67

68 # Game Over
69 over_font = pygame.font.Font("freesansbold.ttf", 64)
70

71

72 def show_score(x, y):
73 score = font.render("Score : " + str(score_value), True , (255,

255, 255))
74 screen.blit(score , (x, y))
75

76

77 def game_over_text ():
78 over_text = over_font.render("GAME OVER", True , (255, 255,

255))
79 screen.blit(over_text , (200, 250))
80

81

82 def player(x, y):
83 screen.blit(playerImg , (x, y))
84

85

86 def enemy(x, y, i):
87 screen.blit(enemyImg[i], (x, y))
88

89

90 def fire_bullet(x, y):
91 global bullet_state
92 bullet_state = "fire"
93 screen.blit(bulletImg , (x + 16, y + 10))
94

95

96 def isCollision(enemyX , enemyY , bulletX , bulletY):
97 distance = math.sqrt(
98 math.pow(enemyX - bulletX , 2) + (math.pow(enemyY - bulletY

, 2))
99 )
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100 # Bug 1: Bullet -enemy collision
101 # Distance is only 0 if both objects are on the exact same (

x,y) coordinate
102 if distance < 0:
103 return True
104 else:
105 return False
106

107

108 # Game Loop
109 running = True
110 while running:
111

112 # RGB = Red , Green , Blue
113 screen.fill((0, 0, 0))
114 # Background Image
115 screen.blit(background , (0, 0))
116 for event in pygame.event.get():
117 if event.type == pygame.QUIT:
118 running = False
119

120 # if keystroke is pressed check whether its right or left
121 if event.type == pygame.KEYDOWN:
122 if event.key == pygame.K_LEFT:
123 # Bug 2: Spaceship movement logic
124 # Left arrow should set playerX_change to be a

negative value
125 playerX_change = 15
126 # Bug 3: Player input
127 if event.key == pygame.K_UP: # Should be right arrow

(pygame.K_RIGHT)
128 playerX_change = 15
129 if event.key == pygame.K_SPACE:
130 if bullet_state == "ready":
131 bulletSound = mixer.Sound("laser.wav")
132 bulletSound.play()
133 # Get the current x cordinate of the spaceship
134 bulletX = playerX
135 fire_bullet(bulletX , bulletY)
136

137 if event.type == pygame.KEYUP:
138 if event.key == pygame.K_LEFT or event.key == pygame.

K_RIGHT:
139 playerX_change = 0
140

141 # 5 = 5 + -0.1 -> 5 = 5 - 0.1
142 # 5 = 5 + 0.1
143

144 # Bug 4: Spaceship movement
145 playerX = playerX_change # Add playerX_change to playerX
146 if playerX <= 0:
147 playerX = 0
148 elif playerX >= 736:
149 playerX = 736
150

151 # Enemy Movement
152 for i in range(num_of_enemies):
153
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154 # Game Over
155 if enemyY[i] > 440:
156 for j in range(num_of_enemies):
157 enemyY[j] = 2000
158 game_over_text ()
159 break
160

161 enemyX[i] += enemyX_change[i]
162 if enemyX[i] <= 0:
163 enemyX_change[i] = 4
164 enemyY[i] += enemyY_change[i]
165 elif enemyX[i] >= 736:
166 enemyX_change[i] = -4
167 enemyY[i] += enemyY_change[i]
168

169 # Collision
170 collision = isCollision(enemyX[i], enemyY[i], bulletX ,

bulletY)
171 if collision:
172 explosionSound = mixer.Sound("explosion.wav")
173 explosionSound.play()
174 bulletY = 480
175 bullet_state = "ready"
176 # Bug 5: Increasing score
177 score_value = 1 # Increment score
178 enemyX[i] = random.randint(0, 736)
179 enemyY[i] = random.randint (50, 150)
180

181 enemy(enemyX[i], enemyY[i], i)
182

183 # Bullet Movement
184 if bulletY <= 0:
185 bulletY = 480
186 bullet_state = "ready"
187

188 # Bug 6: Bullet movement
189 if bullet_state == "fire":
190 fire_bullet(bulletX , bulletY)
191 bulletY = bulletY_change # Subtract bulletY_change from

bulletY (y starts from bottom)
192

193 player(playerX , playerY)
194 show_score(textX , testY)
195 pygame.display.update ()

Listing 1: Debug task
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Are you interested in taking part in the research project 

 ”Collaborative Code Editing Tool”?

This is an inquiry about participation in a research project where the main purpose is to research online

pair programming from a multimodal data perspective. In this letter we will give you information 

about the purpose of the project and what your participation will involve.

Purpose of the project

The scientific purpose is to research collaborative programming in a real-time online environment by 

collecting multimodal data and finding key metrics for performance. Furthermore, the project will 

examine how a dashboard presenting students' progress and multimodal data may benefit teachers.

The project is part of a master’s thesis.

Who is responsible for the research project? 

University: Norwegian University of Science and Technology

Faculty: Faculty of Information Technology and Electrical Engineering 

Department of Computer Science is the institution responsible for the project. 

Why are you being asked to participate? 

The sample has been selected from the students private network and consists of computer science 

students and professional software developers. The sample consists of 20 pairs, i.e., 40 participants.

What does participation involve for you?

If you chose to take part in the project, this will involve that you take part in an online pair 

programming session along with one other participant. You will be able to communicate vocally with 

the other participant. It will take approximately 30 minutes.

Data will be collected from multiple sources during the programming session. The data sources and 

the data that will collected includes:

• Code editor:

◦ Any change inside editor

• Wristband

◦ Blood volume pulse

◦ Galvanic skin response

◦ Peripheral skin temperature

• Eye-tracker

◦ Points of gaze

• Webcamera

◦ Facial landmarks

• Microphone

◦ Voice recordings

Participation is voluntary 

Participation in the project is voluntary. If you chose to participate, you can withdraw your consent at 

any time without giving a reason. All information about you will then be permanently deleted. There 



will be no negative consequences for you if you chose not to participate or later decide to withdraw. It 

will not affect your relationship with your school.

Your personal privacy – how we will store and use your personal data 

We will only use your personal data for the purpose(s) specified in this information letter. We will 

process your personal data confidentially and in accordance with data protection legislation (the 

General Data Protection Regulation and Personal Data Act). 

 The student (Øystein Haugen), in connection with the Department of Computer Science at 

NTNU, will have access to the personal data. Acces to the data will be transferred to the 

supervisor (Kshitij Sharma) of this project at 2023-06-11, along with the responsibilities of 

storage and security.

 I will replace your name and contact details with a code. The list of names, contact details and 

respective codes will be stored on a file spearately from the rest of the collected data.

Your age, gender and occupation may be included in a publication.

What will happen to your personal data at the end of the research project? 

The project is scheduled to end 2023-06-10. At the end of the project, all data collected during the 

project will be transferred to the supervisor Kshitij Sharma, who will then be solely responsible for 

data storage and data protection. Kshitij Sharma will conduct further research on the collected data, 

and will keep the data until 2024-06-10 at which it will be deleted.

Your rights 

So long as you can be identified in the collected data, you have the right to:

- access the personal data that is being processed about you 

- request that your personal data is deleted

- request that incorrect personal data about you is corrected/rectified

- receive a copy of your personal data (data portability), and

- send a complaint to the Data Protection Officer or The Norwegian Data Protection Authority 

regarding the processing of your personal data

What gives us the right to process your personal data? 

We will process your personal data based on your consent. 

Based on an agreement with the Department of Computer Science at NTNU, NSD – The Norwegian 

Centre for Research Data AS has assessed that the processing of personal data in this project is in 

accordance with data protection legislation. 

Where can I find out more?

If you have questions about the project, or want to exercise your rights, contact: 

 NTNU Department of Computer Science via supervisor Kshitij Sharma 

(kshitij.sharma@ntnu.no) or student Øystein Haugen (oystebha@stud.ntnu.no).

 Our Data Protection Officer: Thomas Helgesen.

 NSD – The Norwegian Centre for Research Data AS, by email: (personverntjenester@nsd.no) 

or by telephone: +47 55 58 21 17.



Yours sincerely,

Kshitij Sharma Øystein Haugen

Project Leader Student

(Researcher/supervisor)

-------------------------------------------------------------------------------------------------------------------------

Consent form 

I have received and understood information about the project Collaborative Code Editing Tool and 

have been given the opportunity to ask questions. I give consent: 

 to participate in a programming study

 for my personal data to be stored after the end of the project for follow-up studies (until 2023-

06-10)

 for information about me/myself to be published in a way that I can be recognised (information

is limited to age, gender and occupation)

I give consent for my personal data to be processed until the end date of the project, approx. 2023-06-

10

----------------------------------------------------------------------------------------------------------------

(Signed by participant, date)
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Utvalget rekrutteres både selektiv, og via oppmelding på oppslag i offentlig fora. 

Alder
18 - 29

Personopplysninger for utvalg 1
Lydopptak av personer

Hvordan samler du inn data fra utvalg 1?
Gruppeintervju
Vedlegg
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Vedlegg

Intervjuguide.odt

Grunnlag for å behandle alminnelige kategorier av personopplysninger
Samtykke (Personvernforordningen art. 6 nr. 1 bokstav a)

Informasjon for utvalg 1
Informerer du utvalget om behandlingen av personopplysningene?
Ja

Hvordan?
Skriftlig informasjon (papir eller elektronisk)

Informasjonsskriv

information_letter.odt

Utvalg 2

Beskriv utvalget

Eksperter innenfor fagfeltet, fagstab ved instituttet 

Beskriv hvordan rekruttering eller trekking av utvalget skjer

Selektiv rekruttert 

Alder
25 - 69

Personopplysninger for utvalg 2
Lydopptak av personer

Hvordan samler du inn data fra utvalg 2?
Gruppeintervju
Vedlegg

Intervjuguide.odt

Grunnlag for å behandle alminnelige kategorier av personopplysninger
Samtykke (Personvernforordningen art. 6 nr. 1 bokstav a)

Informasjon for utvalg 2
Informerer du utvalget om behandlingen av personopplysningene?
Ja

Hvordan?
Skriftlig informasjon (papir eller elektronisk)

Informasjonsskriv

information_letter.odt

Tredjepersoner

Skal du behandle personopplysninger om tredjepersoner?
Nei

Dokumentasjon

Hvordan dokumenteres samtykkene?
Manuelt (papir)

Hvordan kan samtykket trekkes tilbake?

Samtykket kan trekkes tilbake når som helst, ved å informere prosjektansvarlige. 

Hvordan kan de registrerte få innsyn, rettet eller slettet personopplysninger om seg selv?

Ved å kontakte de prosjektansvarlige, og disse vil være ansvarlige for å gi innsyn til opplysninger.  
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Totalt antall registrerte i prosjektet
1-99

Tillatelser

Skal du innhente følgende godkjenninger eller tillatelser for prosjektet?
Ikke utfyllt

Behandling

Hvor behandles personopplysningene?
Maskinvare tilhørende behandlingsansvarlig institusjon
Mobile enheter tilhørende behandlingsansvarlig institusjon

Hvem behandler/har tilgang til personopplysningene?
Prosjektansvarlig
Student (studentprosjekt)
Interne medarbeidere

Tilgjengeliggjøres personopplysningene utenfor EU/EØS til en tredjestat eller internasjonal organisasjon?
Nei

Sikkerhet

Oppbevares personopplysningene atskilt fra øvrige data (koblingsnøkkel)?
Ja

Hvilke tekniske og fysiske tiltak sikrer personopplysningene?
Adgangsbegrensning
Personopplysningene anonymiseres fortløpende
Andre sikkerhetstiltak

Hvilke

Datamaskinger er passordbeskyttet og mobile enheter har skjermlås og er passordbeskyttet.  

Varighet

Prosjektperiode
01.01.2022 - 20.06.2023

Hva skjer med dataene ved prosjektslutt?
Data anonymiseres (sletter/omskriver personopplysningene)

Hvilke anonymiseringstiltak vil bli foretatt?
Lyd- eller bildeopptak slettes

Vil de registrerte kunne identifiseres (direkte eller indirekte) i oppgave/avhandling/øvrige publikasjoner fra prosjektet?
Nei

Tilleggsopplysninger




