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Abstract

This thesis investigates a physics-informed, fully Bayesian framework for parameter
estimation and uncertainty analysis in linearized homogeneous ODEs. The incor-
poration of a discrepancy term to account for the often intractable, systematic
deviation between the simplified model and the true noisy observation process is
examined. A comparison is made between a model incorporating this discrepancy
term and a model without it. The discrepancy term, modeled as a flexible Gaus-
sian Process, is incorporated into the forcing function of the homogeneous ODE
as a virtual force that counterbalances the deviation between the model and the
process. Hamiltonian Monte Carlo is used for inference, with the pendulum as a
case study.

Our empirical studies demonstrate that the discrepancy term effectively captures
the systematic deviation in a test case with observations from a linear process with
an added Gaussian Process, accurately recovering parameter estimates in contrast
to the non-discrepancy model. Furthermore, the discrepancy model outperforms
the non-discrepancy model in estimating noise in a damped process up to a certain
level of observation noise. Our findings also suggest that the model’s enhanced
flexibility from the discrepancy term results in a more effective exploration of the
posterior space during HMC iterations. These findings support the inclusion of the
discrepancy term on the forcing function in the model. However, a fundamental
challenge arises when applying this approach to processes where the true process
closely resembles the model process with different parameters. This limitation
becomes evident when utilizing the linearized model with a discrepancy term for a
nonlinear process. However, these inaccurate estimates lead to an improved fit to
the data and better predictions. Overall, this research improves our understanding
of physics-informed Bayesian calibration accounting for discrepancy in simplified
models and addresses challenges in capturing systematic discrepancies in linearized
nonlinear homogeneous processes.
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Samandrag

Denne masteroppgåva utforskar eit fysikkinformert, fullstendig bayesiansk ram-
meverk for parameterestimering og usikkerheitsanalyse i lineariserte homogene or-
dinære differensiallikningar (ODE-ar). Vi undersøkjer korleis eit avviksledd kan
inkorporerast for å ta omsyn til ofte analytisk ukvantifiserbare, systematiske avvik
mellom den forenkla modellen og den faktiske observasjonsprosessen. Vi saman-
liknar ein modell som inkluderer dette avviksleddet med ein modell som ikkje gjer
det. Avviksleddet, som er modellert som en fleksibel Gaussisk Prosess, blir integrert
i den homogene ODE-en sin kraftfunksjon som ei virtuell kraft som motverkar
avviket mellom modellen og prosessen. Vi brukar Hamiltonian Monte Carlo for
inferens, med pendelen som eit case-studie.

Dei empiriske studiane våre viser at avviksleddet effektivt fangar opp systematiske
avvik i ein test-case med observasjonar frå ein lineær prosess med ein addert Gauss-
isk Prosess. Den korrigerar parameterestimata i motsetning til modellen utan av-
viksledd. Vidare presterer modellen med avviksledd betre enn modellen utan dette
leddet når støyen i ein dempa prosess skal estimerast, opp til ei viss grad av obser-
vasjonsstøy. Funna våre tyder også på at den auka fleksibiliteten frå avviksleddet
i modellen resulterar i meir effektiv utforsking av posteriorirommet under HMC-
iterasjonane. Desse funna støttar inkluderinga av avviksleddet i kraftfunksjonen til
modellen. Imidlertid møter vi ei grunnleggjande utfordring når modellen brukast
på avvikande prosessar der den faktiske prosessen liknar den forenkla modellen,
men med ulike parametrar. Denne avgrensinga blir tydeleg når vi brukar den lin-
eariserte modellen med avviksledd på en ikkje-lineær prosess. Likevel fører desse
unøyaktige estimata til ei betre tilpassing til dataen og betre prediksjonar. Totalt
sett bidreg denne studien til forståelsen vår av fysikkinformert bayesiansk kalibrer-
ing som tek omsyn til avvik i forenkla modellar, og adresserer utfordringar knytt
til å fange opp systematiske avvik i lineariserte ikkje-lineære homogene prosessar.
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Chapter 1

Introduction

Inverse problems, where the goal is to determine the values of model paramet-
ers given the observed output or data, arise in a wide range of scientific fields.
These problems typically occur in scenarios that involve remote sensing or indir-
ect measurements, where the aim often is to find the internal characteristics of
an inaccessible region by analyzing the output measurements obtained from out-
side sources. Inverse problems also involve reconstructing unobserved events using
present-state measurements (Groetsch, 1993).

Examples of inverse problems include reconstructing medical images in CT and
MRI from partial measurements (Song et al., 2022), analyzing ground motion
caused by earthquake waves to explore the Earth’s deep interior (Thurber and
Ritsema, 2015), and estimating parameters in climate models that are difficult to
measure directly, such as carbon dioxide absorption by oceans and ice melting rates
(Flato et al., 2013).

To address inverse problems effectively, the Bayesian framework is commonly used.
Methods within this framework use both prior knowledge and observed data to
estimate parameters in the form of posterior distributions (Givens and Hoeting,
2012a). These posterior distributions also serve as a foundation for making pre-
dictions about unobserved data that capture and quantify the uncertainties in the
estimations and predictions (Kennedy and O’Hagan, 2001).

Incorporating prior knowledge about the physics of a system can be highly ad-
vantageous when working with inverse problems. Physics-informed priors, often
modeled as Gaussian Processes (GPs), contain structured prior knowledge about

1



CHAPTER 1. INTRODUCTION

the system’s behavior (Raissi et al., 2017).

However, when the governing equations used in the physics-informed priors are
imprecise, a deviation arises between the true observed physical process and the
constructed model, potentially leading to biased and over-confident parameter es-
timates (Brynjarsdóttir and O’Hagan, 2014). The deviation can result from various
factors, such as simplified or omitted physics in the simulator, numerical approx-
imations required for computing simulator outputs, and the limited applicability of
the simulator’s assumptions in different real-world scenarios (Gardner et al., 2021).

A possible approach to address this issue is introducing a discrepancy term to our
model, which aims to capture the deviation between the process and the model
(Kennedy and O’Hagan, 2001). This term represents the uncertainty stemming
from the, often intractable, systematic deviation between the model and the true
observed process, distinct from the independent observation noise. Due to its
desirable properties, a flexible Gaussian Process (GP) is typically used to model
this discrepancy.

In 2001, Kennedy and O’Hagan (2001) introduced a Bayesian framework account-
ing for model discrepancy, which has been further developed in numerous stud-
ies, including Higdon et al. (2004), Bayarri et al. (2007) and Brynjarsdóttir and
O’Hagan (2014). Spitieris and Steinsland (2022) combined this with the theory
about physics-informed priors for linear differential equations (Raissi et al., 2017),
in a fully Bayesian framework. The research conducted by Spitieris and Steins-
land (2022) compares two models: one with a discrepancy term added to one of
the processes in the covariance matrix and another without accounting for dis-
crepancy. The study examines various kernel functions, computational complexity
reduction, and big data approximations. They found that the model account-
ing for discrepancy can recover the true parameters of the physical models when
the reality is more complex than the model. Their approach offers computational
advantages over conventional Bayesian methods, resulting in faster analysis and in-
ference. Their findings are illustrated through two examples; the heat flow process
and the Windkessel model.

This thesis further investigates the impact of accounting for model discrepancy in
parameter estimation. The study of Spitieris and Steinsland (2022) mainly focused
on time-dependent ODEs and linear space-time dependent inhomogeneous PDEs,
both linear. We investigate this approach on linearized nonlinear homogeneous
ODEs and linear homogeneous ODEs.

While recent techniques propose physics-informed priors using numerical Gaussian
process regressions at each timestep for modeling linearizations of nonlinear pro-
cesses (Raissi et al., 2018), our study takes a simpler approach. We approximate

2



CHAPTER 1. INTRODUCTION

the nonlinear process by a linearized model with a discrepancy term represented
by a flexible GP. This term aims to capture the deviation between the nonlinear
process and the linear model, avoiding the complexity of physics-informed priors
for nonlinear systems. We use the Markov Chain Monte Carlo (MCMC) method
Hamiltonian Monte Carlo (HMC) extension No-U-Turn sampler (NUTS) in STAN
to obtain estimates for the posterior distributions of the parameters of interest.

In contrast to Spitieris and Steinsland (2022), who incorporates the discrepancy
term into the observed process of interest in the structure of the physics-informed
prior, we take a different approach. We move the discrepancy term to the homo-
geneous side of the differential equation, often referred to as the force function,
and interpret it as an external force that influences the process to conform to the
model’s behavior. We incorporate this external force as a discrepancy term in
the physics-informed prior, assuming it follows a Gaussian Process. This is done
with the expectation of facilitating the model’s ability to identify discrepancies in
a constant function.

We use the pendulum process as a case study to assess the differences between a
model that accounts for discrepancy and a model that does not. For an idealized
pendulum system characterized by a nonlinear homogeneous ODE describing the
angular displacement, the angle can be approximated using linearization in the
context of small angles. This linearization can be incorporated in the physics-
informed priors, simplifying the analysis but introducing deviations to the original
nonlinear process. The inclusion of a discrepancy term in the physics-informed
priors aims to capture this deviation.

We use synthetically simulate noisy observations obtained from various pendulum
processes to assess the model’s performance. We then explore how the model
responds to different types of systematic deviations between the model and the
observed process. This investigation evaluates the model’s ability to recover accur-
ate parameter estimates in a linear pendulum process with a controlled systematic
deviation, a nonlinear idealized process, and a nonlinear damped process.

By studying the pendulum system, we can gain insights that apply to other physical
systems approximated by homogeneous linear ODEs, expanding our understanding
to more complex systems with similar characteristics. The pendulum can represent
problems that can only be imprecisely described by a linear homogeneous ODE,
resulting in a disparity between the model and the true underlying process. Our
investigation assesses the model’s ability to account for and capture the discrepancy
arising from the linearized approximation or other types of systematic discrepancies
between the model and the observed process.

To explore the differences between the model accounting for discrepancy and the

3



CHAPTER 1. INTRODUCTION

model that does not, the following experiments are conducted:

E1: A comparative analysis is performed between the model that incorporates
the discrepancy and the model that does not. The two models are compared
across various behaviors of the deviation between the model and the actual
process. The evaluation focuses on the model’s capacity to capture and
differentiate these deviations from the rest of the process.

E2: The sensitivities of the two models are compared and evaluated for the fol-
lowing factors:

(a) The amount of observation noise in the observations.

(b) The number of cycles in the observations.

Chapter 2 introduces the governing equations for the different pendulum processes
and their differences. Chapter 3 provides the theoretical background for our model
approach, while Chapter 4 presents the method of simulating observation and con-
structing the physics-informed Bayesian models of the pendulum, with and without
a discrepancy term, including our shift of the discrepancy term. In Chapter 5, ex-
perimental configurations are presented, and Chapter 6 presents and discusses the
results. A summary and conclusion of the study are found in Chapter 7.

4



Chapter 2

The Dynamics of the
Pendulum and Difference
Between Pendulum Models

This chapter examines the pendulum process and its approximation through lin-
earization. This is later used as a case study to examine the performance of our
models, as it serves as a simple model that can help understand other systems
with similar characteristics. This chapter is a revised and extended version of the
chapter introducing the pendulum process in my unpublished project thesis.

2.1 The Idealized Pendulum (TP)

An idealized pendulum consists of a weight attached to the end of a massless rod,
only affected by gravity. A pendulum setup is illustrated in Figure 2.1. When
released from an initial angle u0 at time t = 0, the pendulum swings back and
forth under the influence of gravity.

The motion of the idealized pendulum can be described by a homogeneous nonlinear
differential equation, which can be derived using Newton’s Second Law of Motion
or Lagrangian mechanics (Owen, 2014):

5



CHAPTER 2. THE DYNAMICS OF THE PENDULUM AND
DIFFERENCE BETWEEN PENDULUM MODELS

𝑢!

Figure 2.1: Illustration of the pendulum with initial angle u0.

d2u(t)

dt2
+

1

R
sin(u(t)) = f(t), f(t) = 0. (2.1)

Here, u(t) is the angle at time t and 1
R = g

L , where g is the gravitational constant
and L the length of the rod. Note that 1

R is commonly denoted as ω2
0 in literature,

and that the unit is
[
1
R

]
=
[
ω2
0

]
= 1

s2 . Equation (2.1), describing the true idealized
process, will be referred to as TP.

The term f(t) represents an external force applied to the pendulum. In a non-
idealized process, this force could come from various sources, such as air resistance,
friction in the pendulum’s pivot point, or an external motor driving the pendulum’s
motion. u(t) then describes the motion of the pendulum as it responds to this
external force, with the first term on the left-hand side representing the pendulum’s
inertia and the second term representing the restoring force due to gravity. In the
idealized pendulum, f(t) = 0, meaning that there is no external force acting on the
pendulum.

There is no analytical solution to this equation, but we can solve it numerically
with methods like RK4 (Butcher, 2008). In the case of simulating the angular
displacement of the pendulum, we need constraints on the initial angle u(0) and
velocity du(0)

dt .
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DIFFERENCE BETWEEN PENDULUM MODELS

2.2 Linearization of the Pendulum (LP)

By looking at the Taylor expansion of the sine function, given by

sin(u) = u− u3

3!
+

u5

5!
− u7

7!
+ ..., (2.2)

we see that for sufficiently small values of u, sin(u) ≈ u is a good approximation.
Then the governing equation becomes

d2u(t)

dt2
+

1

R
u(t) = f(t), f(t) = 0. (2.3)

We refer to the process of Equation (2.3) as the linearized process (LP). An advant-
age of this linearization is that it has an analytic solution for the angle displacement:

u(t) = u0 cos

(√
1

R
t

)
. (2.4)

The error of this linearization is given by the higher-order terms in the Taylor series
expansion in Equation (2.2).

We compare the linearized process (LP) to the true process (TP) for various initial
angles in Figure 2.2. We observe a systematic displacement error between TP and
LP, caused by the approximation sinu(t) ≈ u(t) which amplifies with the initial
angle u0.

In Figure 2.3a, we see that the difference between LP and TP has a cyclic pattern
that increases with time and continues to rise until LP deviates by more than half
a cycle from TP. Then the error starts decreasing. Eventually, the LP’s higher
frequency allows it to catch up to the TP when it is one wavelength ahead, and the
discrepancy becomes zero again. This cycle repeats, indicating that the discrepancy
is a periodic shift. Figure 2.4a illustrates this discrepancy for a shorter time period.
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Figure 2.2: Plot of pendulum angle motion u(t), with initial angles u0 = π/10,
u0 = π/5 and u0 = π/2 respectively. The purple line shows the simulated motion
of the true idealized process (TP) from Equation (2.1) while red shows the simulated
motion of the linearized approximation (LP) from Equation (2.3).
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Figure 2.3: Difference between the angular motion of TP (true idealized process)
and LP (linearized process), and DP (damped process) and LP, respectively, for 8
seconds of the pendulum motion.
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Figure 2.4: Discrepancy between the angular motion of TP (true idealized process)
and LP (linearized process), and DP (damped process) and LP, respectively, for 8
seconds of the pendulum motion.

2.3 Pendulum with Damping (DP)

The idealized pendulum (TP) discussed above would oscillate with a constant amp-
litude indefinitely. In the real world, energy dissipates, due to for instance friction
and air resistance, causing the amplitude of the pendulum’s motion to gradually
decrease until it eventually comes to rest. A system like this, known as a damped
pendulum, introduces additional complexity to the calculations by breaking energy
conservation within the system. Following the formulation by Chasnov (2022), the
equation of motion for a damped pendulum is given by:

d2u(t)

dt2
+ λ

du(t)

dt
+

1

R
sin(u(t)) = f(t), f(t) = 0 (2.5)

Here, λ = µ/m with µ representing the friction coefficient and m denoting the
pendulum’s mass. We refer to this system as the damped process (DP).

A simulation of the damped pendulum, obtained using Euler’s method, together
with a simulation of LP with the corresponding physical parameters, is shown in
Figure 2.5. The observed difference between the processes is attributed to both the
linearization sinu(t) ≈ u(t) and the damping effect caused by the term λdu(t)

dt in DP
that is not present in LP. Linearization introduces a shift in time (t), while damping
influences the amplitude difference in the y-direction, both of which contribute to
an increasing discrepancy as time progresses.

Figures 2.3b and 2.4b illustrate the discrepancy uDP − uLP between the linear
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Figure 2.5: Simulations from the damped pendulum (DP) with initial angle
u0 = π/5, R = 0.2 and damping parameter λ = 0.5, together with the linear-
ized pendulum LP. The pendulum’s behavior is observed over a period of ∆t = 8s.

process (LP) and the damped process (DP) over different time durations of 230
and 8 seconds, respectively. In the simulations, DP has a damping coefficient of
λ = 0.5, which causes it to come to rest after only a few cycles gradually. In
Figure 2.4b, we see that the error between the LP and DP increases over time.
Conversely, Figure 2.3b demonstrates that once the pendulum reaches a state of
rest, the error stops growing and exhibits constant periodic behavior opposite to
LP. This is because the LP continues oscillating while DP remains constant at zero.

2.4 Difference Between Pendulum Models

Next, we examine the energy behavior of the systems. In a mechanical system
(Goldstein et al., 2002),

E(t) = Ep(t) + Ek(t) (2.6)

where the potential energy Ep is given by

Ep(t) = mgL (1− cos(u(t))) (2.7)

and the kinetic energy Ek is given by

EK(t) =
1

2
L2m

(
du(t)

dt

)2

(2.8)
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CHAPTER 2. THE DYNAMICS OF THE PENDULUM AND
DIFFERENCE BETWEEN PENDULUM MODELS

Figure 2.6 displays the energy plots for LP, TP, and DP. For TP, the energy remains
constant. The small oscillations observed in the energy plot are due to errors in
the numerical simulation, and vanish by choosing a sufficiently small step length.

The mechanical energy of LP exhibits periodicity, indicating periodic energy gain
and loss. This periodicity can be interpreted as the corresponding TP being driven
and decelerated by an external periodic force,

d2u(t)

dt2
+

1

R
sin(u(t)) = fp(t), fp(t) = − 1

R

(
u(t)3

3!
− u(t)5

5!
+

u(t)7

7!
− ...

)
. (2.9)

Lastly, we examine the mechanical energy in DP, shown in Figure 2.6. Here, the
periodic curve also displays a downward trend, signifying energy dissipation over
time. This energy dissipation can be interpreted as the corresponding TP with an
external damping force,

d2u(t)

dt2
+

1

R
sin(u(t)) = fd(t), fd(t) = −λ

du(t)

dt
. (2.10)
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Figure 2.6: The left plot shows the mechanical energy in the pendulum processes
E(t) = EP (t) +EK(t) for TP (true idealized process), LP (linearized process) and
DP (damped process) over a simulation period ∆t = 4s. The right plot only shows
TP and LP in order to see the differences between the two better.
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Chapter 3

Background

This chapter provides an overview of the background theory that forms the found-
ation of the physics-informed Bayesian Calibration method that we later explore
experimentally.

We first introduce Bayesian inference, a widely recognized methodology that en-
ables the integration of prior knowledge and the quantification of uncertainty. We
discuss the utilization of Markov Chain Monte Carlo (MCMC) methods to ad-
dress computational challenges in Bayesian analysis, focusing on the mechanisms
of MCMC and briefly presenting the Hamiltonian Monte Carlo (HMC) method.
Additionally, we present convergence diagnostics used when assessing inferences’
reliability in the MCMC process.

We then introduce physics-informed priors (Raissi et al., 2017) within the Bayesian
calibration through the Gaussian Process assumption and an approach to account
for model discrepancy (Kennedy and O’Hagan, 2001), and how these theories are
combined and integrated into a fully Bayesian framework (Spitieris and Steinsland,
2022).

3.1 Bayesian Inference

In this section, we present the widely established and recognized theory on Bayesian
Inference, with Gelman, Carlin et al. (2013) serving as our primary reference.

The Bayesian approach incorporates prior knowledge and observed data for infer-
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ence, unlike Frequentist statistics that rely solely on observations. Bayesian data
analysis can be understood as a three-step process: Model specification, posterior
inference, and model assessment (and possibly iterating these steps if needed).

Let θ be the vector containing the unknown parameters. In the Bayesian inference
framework, the elements of θ are treated as random variables, and the posterior
distribution of the parameters given the observed data y is calculated. This is done
by Bayes Theorem, i.e., multiplying the prior distribution of θ by the likelihood of
the data given the parameter and then normalizing by the marginal likelihood of
the data.

Thus, the posterior distribution of θ given the observations y is expressed as

posterior︷ ︸︸ ︷
p (θ|y) =

likelihood︷ ︸︸ ︷
p (y|θ)

prior︷︸︸︷
p (θ)

p(y)︸︷︷︸
evidence

(3.1)

Here, p(θ) is the prior distribution of θ, which means it represents what is known
about θ without knowledge of the data y. The posterior distribution p (θ|y), on
the other hand, represents our revised knowledge about θ due to the data y. The
likelihood function p(y|θ) (also denoted as L(θ|y)) gives the likelihood of observing
y with the given hypothesis of θ (Givens and Hoeting, 2012b).

The denominator p(y) =
∫
p(y|θ)p(θ)dθ (or p(y) =

∑
p(y|θ)p(θ) if θ is discrete) is

the marginal likelihood, or evidence, of the data. We can view the marginal likeli-
hood of the data as a normalizing constant that ensures the posterior distribution
p(y|θ) integrates or sums to one. Therefore, Bayes Theorem is commonly expressed
as follows:

posterior ∝ likelihood × prior (3.2)

To obtain the posterior distribution, one needs to specify priors, affecting the res-
ults. Choosing an appropriate prior may be challenging if little is known about the
parameters of interest.

Obtaining the posterior density distribution of a single component θi (the marginal
posterior) can also be challenging. This distribution is obtained through integration
as follows:
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p
(
θi | y

)
=

∫
p (θ | y) dθ1 . . . dθi−1dθi+1 . . . dθd (3.3)

This is used to find the minimum mean squared error (MMSE) estimation of one
component θi,

θ̂iMMSE = E
(
θi | y

)
=

∫
θi

θip
(
θi | y

)
dθi, (3.4)

and evaluate confidence of the estimation of θi by assessing its credible interval
width.

However, in most real applications, the integral in Equation (3.3) is highly dimen-
sional and may not have a closed form, which makes it difficult or impossible to
solve analytically. Therefore, numerical methods such as Markov Chain Monte
Carlo (MCMC) are used to approximate the posterior distribution.

3.2 Markov Chain Monte Carlo (MCMC)

MCMCs are widely used simulation-based techniques for solving complex problems
in high-dimensional spaces when we cannot work it out analytically (Andrieu et
al., 2003). MCMC methods are widely used in scientific analyses to numerically
estimate model parameters, generate predictions and assess uncertainties using
Bayesian inference, often in large dimensional spaces.

3.2.1 The Conceptual Framework of MCMC

The main idea behind Monte Carlo simulation methods is that we want to draw
a set of independent and identically distributed (i.i.d.) samples {θ(i)}Ni=1 from a
target density p(θ) we cannot sample directly from, defined on a (possibly) high-
dimensional space X . The methods approximate the target density by obtaining a
sufficient number of these samples. The set X can represent system configurations,
posterior spaces, or feasible solution sets.

Markov Chain Monte Carlo (MCMC) draws serially correlated samples from a
proposal distribution instead of independent ones. However, the samples form a
Markov Chain of N random variables where two draws θ(i) and θ(i+n) become
increasingly independent as n increases (Robert and Casella, 1999).

15



CHAPTER 3. BACKGROUND

If the effective sample size (Neff or ESS), which indicates how many of the sim-
ulated samples are equivalent to independent samples, is sufficiently large, then a
large portion of the sample’s empirical distribution can serve as a reliable approx-
imation of the target distribution.

The probabilistic Programming language for statistical inference, STAN, is com-
monly used as an MCMC sampler for Bayesian analysis.

3.2.2 Metropolis Hastings

The Metropolis Hastings (MH) method is a commonly used MCMC method for
obtaining a sequence of random samples from the target distribution, where a new
position θ∗i+1 is proposed by generating a sample from the proposal distribution
Q(θ′i+1|θi) (Robert and Casella, 1999):

θ′i+1 ∼ Q(θ′i+1|θi). (3.5)

The transition probability T (θ′i+1|θi) given by

T (θ′i+1|θi) = min

(
1,

p(θ′i+1|y)
p(θi|y)

Q(θi|θ′i+1)

Q(θ′i+1|θi)

)
(3.6)

determines whether the proposed step is accepted or rejected. If the step is accep-
ted, we set θi = θ′i+1 and continue iterating. If the step is rejected, the previous
point is kept, and we propose a new step. This process is repeated many times to
generate a large number of samples from the posterior distribution.

3.2.3 Hamiltonian Monte Carlo (HMC) and the No-U-Turn
Sampler (NUTS)

Hamiltonian Monte Carlo (HMC) is an advanced version of the MH algorithm.
HMC offers two notable advantages over standard MH methods: reduced sample
correlation, resulting in a higher effective sample size (ESS), and improved detection
of convergence issues (Honkela, 2020).

HMC efficiently explores the posterior distribution of a given density function us-
ing concepts from Hamiltonian dynamics and molecular dynamics (Duane et al.,
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1987). By simulating Hamiltonian dynamics and incorporating gradient informa-
tion, HMC aims to enhance chain convergence (Betancourt, 2018).

The No-U-Turn Sampler (NUTS) extends HMC by simulating the motion of a
fictitious particle until it makes a U-turn, serving as a diagnostic for improper pos-
teriors, making it even more efficient (Hoffman and Gelman, 2014). HMC-NUTS
is the standard method in STAN. Instead of going into extensive technical explan-
ations of HMC and HMC-NUTS, our focus lies on its implications for evaluating
convergence diagnostics to avoid inaccurate interpretation of results.

3.2.4 Diagnostic Tools for Assessing MCMC Convergence

Markov Chain Monte Carlo (MCMC) algorithms aim to sample from the target
posterior distribution by reaching convergence. However, due to finite sample sizes,
assessing convergence in practical sampling is challenging. To evaluate MCMC
convergence, several measures can be used, and the convergence diagnostics we
present are among those presented in Givens and Hoeting (2012).

Trace plots visually represent the sampled parameter values over iterations. Stable
and smooth patterns suggest convergence, while unstable behavior indicates mixing
or convergence problems. Running multiple chains with different initial values helps
explore all important characteristics of the target distribution. By comparing the
behavior of these chains, we can identify issues and improve mixing if necessary.

Another diagnostic tool is the potential scale reduction factor R̂. It compares
within-chain and between-chain variances to assess convergence. Values close to 1
indicate convergence, while significantly larger values indicate lack of convergence.

Autocorrelation function plots (ACF) show the correlation between samples at
different lags, indicating poor mixing if autocorrelation decays slowly. Cross-
correlations between parameters can also indicate convergence issues.

The effective sample size (ESS) measures the number of independent samples ob-
tained from N samples of the Markov Chain, given by

ESS =
N

1 + 2
∑∞

t=−∞ ρt
. (3.7)

Here, the sum over t represents the summation of the ACF values ρt across all
possible lags t. Higher ESS values indicate better convergence and more efficient
sampling.
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3.3 Gaussian Processes

Having established the foundations of Bayesian inference, we now focus on Gaussian
Processes (GPs), which are used in our physics-informed priors. Gaussian Processes
provide a robust framework for modeling and predicting complex systems, offering
a flexible and probabilistic approach to capture uncertainties in predictions (Raissi
et al., 2017). This section presents relevant theory from Rasmussen and Williams
(2006), Gaetan and Guyon (2010) and Gramacy (2022).

A Gaussian Process (GP) is a stochastic process where every set of realizations
follows a multivariate normal distribution. This means that a GP denoted as g(t)
can be characterized by its mean vector µ : X → R and kernel K : X ×X → R+.
The kernel is also referred to as the covariance function. For a GP g(t), we use
the notation g(t) ∼ GP (µ(t),Kgg(t, t

′)). The notation indicates that the GP g(t)
is drawn from a multivariate normal distribution with mean function µ(t) and
covariance Kgg(t, t

′) = Cov(g(t), g(t′)) that gives the covariance between the GP
g(t) at times t and t′.

The GP assumption relies on the premise that it is reasonable to capture the pro-
cess of g(·) in a joint normal distribution. This assumption can be useful for making
predictions about data based on prior knowledge and observations, as the predic-
tions are given as probability distributions. Given their convenience, flexibility, and
ability to provide realistic representations, GPs are widely employed in statistical
theory and modeling.

Some commonly used kernels are the linear kernel, the squared exponential kernel,
the periodic kernel, the Matérn kernel, the rational quadratic kernel, and the neural
network kernel. In this work, we use the squared exponential kernel

KSE(t, t′) = σ2e
−0.5

(
t−t′

l

)2

. (3.8)

where σ and l are the hyperparameters determining the kernel’s behavior. The
squared exponential kernel is widely used due to its smoothness, interpretability
of hyperparameters, and other desirable properties. Specifically, it is infinitely
differentiable for all values of the parameters σ and l.

The length scale hyperparameter l determines the extent of correlation between
points in the process. If l is small, points are correlated over a short length scale,
while a large l indicates correlation over a longer length scale (observations that
are more distant from each other still exhibit a detectable level of correlation).
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Figure 3.1: GPs for different magnitudes of scale parameters σ and length scale
parameters ℓ. One realization of each process.

The output scale hyperparameter σ determines the overall scaling of the output
values, representing the average distance of the function from its mean. The vari-
ances at each time point t are given by σ2, which serves as the diagonal elements
of the covariance matrix. The value of K(t, t′) should equal σ2 when t = t′.

Figure 3.1 illustrates the relationship between these properties and the magnitude
of the parameters σ and ℓ. Each parameter combination is represented by a single
realization.

Two advantageous properties of GPs are as follows:

Property 1. The sum of two GPs remains a GP.

Property 2. The derivatives of a GP remain a GP for a differentiable covariance
function.

Property 2 states that

Cov

(
g(t),

∂g (t′)

∂t′

)
=

∂Kgg (t, t
′)

∂t′
(3.9)

and

Cov

(
∂g(t)

∂t
,
∂g (t′)

∂t′

)
=

∂2Kgg (t, t
′)

∂t∂t′
(3.10)

for a differentiable covariance function.
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3.4 The Linear Differential Operator

We present the linear differential operator LΦ
t , which enables us to derive expres-

sions for the physics-informed covariance matrix (Raissi et al., 2017). We can
express the underlying linear differential equation governing the physical process
in the following form:

LΦ
t u(t) = f(t), (3.11)

with

LΦ
t = Φn

dn

dtn
+Φn−1

dn−1

dtn−1
+ . . .+Φ1

d

dt
+Φ0 (3.12)

Here, L represents the linear differential operator, the subscript t denotes the de-
rivative with respect to t, and Φ is a vector containing the unknown physical
parameters involved in the equation. Note that elements of the vector Φ can take
a value of zero.

3.5 Physics-Informed Priors

In their work, Raissi et al. (2017) introduced physics-informed multi-output Gaus-
sian Process priors that aim to systematically integrate the structural properties
of the underlying physical model into the covariance function. This section gives
an overview of relevant theory presented in their research.

The motivation for this approach is to enhance the model by incorporating prior
knowledge regarding the relationship between measurements, considering their spa-
tial or temporal separation. This relationship is effectively captured within the
covariance function discussed in Chapter 3.3. Raissi et al. (2017) employ a linear
differential operator (Chapter 3.4) to construct a multi-output GP. They consider
a system described by

LΦ
t u(t) = f(t), (3.13)

Assuming that a u(t) follows a GP, it can be expressed as
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u(t) ∼ GP (µu(t),Kuu(t, t
′|θ)) (3.14)

where θ are the hyperparameters of the kernel. For instance, for the squared
exponential in Equation (3.8), θ would have consisted of σ and ℓ.

In cases involving multiple GPs that exhibit interdependence, such as u(t) and f(t)
with their relationship described in Equation (3.13), we can construct a multivariate
GP of u(t) and f(t) that represents the linear correlation between two GPs. Using
Properties 1 and 2, we have that

u(t) ∼ GP (µu(t),Kuu(t, t
′|θ))

LΦ
t u(t) = f(t) ∼ GP (µf (t),Kff (t, t

′|θ,Φ))
(3.15)

where Φ is the vector containing the physical parameters of the system, µu(t) is the
mean function of u(t) and the kernel Kuu(t, t

′) = Cov(u(t), u(t′)) describes the de-
pendency between u(t) and u(t′), meaning how similar the angle magnitude at two
different times t and t′ are. Likewise, Kff (t, t

′) = Cov(f(t), f(t′)), describes the re-
lationship between f(t) and f(t′). Note that Φ containing the physical parameters
now has become a hyperparameter of the kernel Kff (t, t

′|θ,Φ)).

The covariance between the two GPs can be written as

Cov(u(t), f(t)) = Kuf (t, t
′|θ,Φ)

Cov(f(t), u(t)) = Kfu(t, t
′|θ,Φ)

(3.16)

Combining Equations (3.15) and (3.16), the joint distribution of u(t) and f(t) can
be written as

[
u(t)
f(t)

]
= GP

(
µ(t) =

[
µu(t)
µf (t)

]
,K(t, t′) =

[
Kuu(t, t

′|θ) Kuf (t, t
′|θ,Φ)

Kfu(t, t
′|θ,Φ) Kff (t, t

′|θ,Φ)

])
.

(3.17)

Here, K(t, t′) is (Nu+Nf )× (Nu+Nf )-dimensional, where Nu is the dimension of
u(t) and Nf is the dimension of f(t). Note that the assumption of a multivariate
normal distribution might not accurately reflect the true nature of the data but is
often a useful assumption.

Next, we aim to determine the expressions for the block elements Kuf (t, t
′|θ,Φ),

Kfu(t, t
′|θ,Φ), and Kff (t, t

′|θ,Φ) in the covariance matrix K(t, t′). The expression
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of Kuu(t, t
′|θ), is determined by the choice of kernel with hyperparameters θ.

By Properties 1 and 2, we have that for any linear differential operator LΦ
t describ-

ing the relationship between u(t) and f(t), the covariance matrix expressions are
given by (Särkkä, 2011):

Kfu(t, t
′|θ,Φ) = LΦ

t Kuu(t, t
′|θ) (3.18a)

Kuf (t, t
′|θ,Φ) = LΦ

t′Kuu(t, t
′|θ) (3.18b)

Kff (t, t
′|θ,Φ) = LΦ

t LΦ
t′Kuu(t, t

′|θ). (3.18c)

The essential advantage of this approach is the construction of a multi-output GP
that encompasses both u(t) and f(t), eliminating the necessity for a numerical
solution of the governing differential equation (Spitieris and Steinsland, 2022).

3.6 Physics-Informed Bayesian Calibration

Model calibration involves updating the unknown parameters of a model to align
its outputs with observed data or uncertainties (Higdon et al., 2004; Kennedy and
O’Hagan, 2001). This calibration process allows for accurate predictions of the
behavior of a specific process within a given context by estimating the appropriate
inputs.

We put the theory of physics-informed priors into a fully Bayesian framework,
following Spitieris and Steinsland (2022).

Consider noisy observations yobs given by

yobs =

[
uobs

fobs

]
=

[
u(tu) + ϵu
f(tf ) + ϵf

]
, (3.19)

where tu and tf are the vectors containing the temporal or spatial values of which
we have observations uobs and fobs with measurement noises ϵu ∼ N (0, σ2

u) and
ϵf ∼ N (0, σ2

f ), respectively. We have the multi-output GP

p(yobs|θ,Φ, σu, σf ) = N (µ,K) (3.20)
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where µ is the vector containing the mean functions and can generally be described
as

µ =

[
µu(tu|β)

µf (tf |β,Φ)

]
(3.21)

(Spitieris and Steinsland, 2022), where β comprises the parameters of the mean
functions. However, unlike Spitieris and Steinsland (2022) we focus solely on scen-
arios with constant mean functions, so we only refer to the mean vector as

µ =

[
µu

µf

]
. (3.22)

The covariance matrix takes the following form:

K =

[
Kuu(tu, t

′
u|θ) + σ2

uIu Kuf (tu, t
′
f |θ,Φ)

Kfu(tf , t
′
u|θ,Φ) Kff (tf , t

′
f |θ,Φ) + σ2

fIf

]
(3.23)

In Chapter 3.1, the parameters of interest was denoted by θ for generality. Here we
we want to obtain estimates for all parameters α = (θ,Φ, σu, σf ), where θ contains
the model parameters, Φ contains the physical parameters and σ2

u and σ2
f are the

measurement noise variances in ϵu ∼ N (0, σ2
u) and ϵf ∼ N (0, σ2

f ), respectively. As
emphasized by Kennedy and O’Hagan (2001), considering an input as unknown,
despite knowing its true value, can enhance the computer model. The known para-
meter is then categorized within the set Φ as a prior distribution centered around
the true value with a non-zero variance. This approach can allow for deviations
from the true physical value and may result in an empirically improved computer
model of reality.

This approach of Bayesian calibration with physics-informed priors eliminates the
need to predefine values for the independent measurement noises, described by
their variances σ2

u and σ2
f . Instead, we assign priors to these variables, allowing

the model to evaluate and determine posterior probabilities for their values. This
flexibility is particularly beneficial when our knowledge about these parameters is
uncertain or lacking.

Another advantage of this approach is that it does not require explicit specification
of initial conditions. Instead, when analyzing the observations, our model relies
on the underlying differential equation, which is the foundation for our physics-
informed priors. This is especially advantageous when our knowledge regarding
these initial magnitudes is limited.
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3.6.1 Model Discrepancy

When the model is simplified compared to the true process, a discrepancy arises
between the model and the observed data. This model-form uncertainty leads to
an imperfect alignment between the model and the observed process (Kennedy and
O’Hagan, 2001). Recognizing model discrepancy is essential in effectively utilizing
observations from the physical system (Brynjarsdóttir and O’Hagan, 2014). In this
section, an approach for accounting for model discrepancy is introduced.

Suppose that we observe the process y(t), corrupted by noise

yobs(ti) = y(ti) + ϵi, (3.24)

where y(·) is the true process, and ϵi represents the observation error for the i’th ob-
servation. Assuming we have the simplified model yM (·, ·), Kennedy and O’Hagan
(2001) added a functional discrepancy term δ(t) that is independent of yM (·, ·). We
propose the observed process can be expressed as (Spitieris and Steinsland, 2023):

yobs(t) = y(t) + ϵ = yM (t,Φ) + δ(t) + ϵ. (3.25)

Here, the vector Φ comprises the physical parameters. The discrepancy term δ(t)
is typically modeled using a flexible GP, and the independent noise term ϵt is
usually modeled as independent and identically distributed (iid) normal variables
with mean 0 and variance σ2

ϵ . This corresponds to

y(t) = yM (t,Φ) + δ(t), (3.26)

where yM (·, ·) and δ(·) are independent.

Differentiating between model discrepancy and the physical process in complic-
ated calibration problems can be challenging (Brynjarsdóttir and O’Hagan, 2014).
They illustrate the dangers of failing to acknowledge model discrepancy and em-
phasize that in many calibration problems, the objective is to estimate the values
of parameters with limited a priori knowledge. Without reliable priors, it becomes
challenging for the model to differentiate between process, the model discrepancy
and other sources of uncertainty. This includes accurately differentiating between
the systematic deviation δ(t) and the observation noise ϵt in the data.

Utilizing informative priors for the discrepancy term may help reduce the risk of
misclassification of the deviation type (Brynjarsdóttir and O’Hagan, 2014). How-
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ever, in real-world scenarios, our understanding of the underlying characteristics
of this term is often limited. We aim to explore this aspect further through our
experimental investigations.

3.7 Physics-Informed Bayesian Calibration Account-
ing for Model Discrepancy

To account for the imperfections of physical models as representations of reality, we
adopt the approach of Kennedy and O’Hagan (2001) by incorporating a functional
model discrepancy into our model formulation. We follow Spitieris and Steinsland
(2022) and, for simplicity, assume the discrepancy only exists in the function u(t).
We call the process following the model uM (t). This leads to the following model
formulation:

y(t) =

[
u(t)
f(t)

]
=

[
uM (t) + δu(t)
f(t)

]
, (3.27)

where δu(t) is the difference between the process following the model, uM (t), and
the actual process u(t). We assume that δu(t) follows a GP, δu(t) ∼ GP (0,Kδu (t, t′)).
We assume that y(t) follows the multivariate GP

p (y(t)) = N (µ(t),Kdisc(t, t
′)) (3.28)

where µ(t) = [µu(t), µf (t)]
T and

Kdisc(t, t
′) =

[
Kuu (t, t

′ | θ) +Kδu (t, t′ | θδu) Kuf (t, t
′ | θ,Φ)

Kfu (t, t
′ | θ,Φ) Kff (t, t

′ | θ,Φ)

]
. (3.29)

Considering noisy observations yobs of this process at times tu and tf respectively,

yobs =

[
uobs

fobs

]
=

[
uM (tu) + δu(tu) + ϵu
f(tf ) + ϵf

]
, (3.30)

where ϵu ∼ N (0, σ2
u) and ϵf ∼ N (0, σ2

f ), we get that

p (y | θ, θδu ,Φ, σu, σf ) = N (µ,Kdisc)
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where Φ is the vector of physical parameters, θ is the vector of the model hy-
perparameters from the multi-output GP of y and θδu is the vector of the model
parameters of the GP of δu(t).

The covariance matrix containing measurement noise is

Kdisc =

 Kuu (tu, t
′
u | θ) +Kδu (tu, t

′
u | θδu) + σ2

uIu Kuf

(
tu, t

′
f | θ,Φ

)
Kfu (tf , t

′
u | θ,Φ) Kff

(
tf , t

′
f | θ,Φ

)
+ σ2

fI

 ,

(3.31)

where tu and tf represents the times at which the observations of u(t) and f(t) are
done, β is the vector of the mean function parameters (Spitieris and Steinsland,
2023).

3.8 Posterior Predictive Checks

Posterior distributions obtained from MCMC sampling provide information about
parameter uncertainty, and if we know the true value, we can compare it to the pos-
terior mean to assess estimation bias. Posterior predictive checks (PPCs) comple-
ment this analysis by comparing model predictions from the estimated parameters
to observed data, facilitating further assessment of the compatibility between the
model and the observed process. When we aim to test the model against a known
process, we can compare the model’s predictions to both the observed data and
the known process. This comparison reveals insights into the model’s performance
and helps identify any discrepancies that may arise.

In a Bayesian model, represented as p (y | α) where α denotes the unknown para-
meters, we can determine the posterior predictive distribution (PPD) for new data,
represented by y∗, given the observed data, y. This is achieved through the follow-
ing expression (Gelman, Meng et al., 1996):

p (y∗ | y,H) =

∫
p (y∗ | α,H) · p(α,H | y) dα, (3.32)

where H is the model including the prior distributions p(α), p (y∗ | α) is the
sampling distribution, representing the likelihood of the new data y∗, also referred
to as replications, given the parameters α. The expression p(α,H | y) corres-
ponds to the posterior distribution of the parameters α given the model H and
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the observed data y. The posterior predictive distribution encompasses two dis-
tinct sources of uncertainty: the sampling uncertainty of output y given α and
parametric uncertainties concerning α.

In terms of calculating the replications y∗ in this approach, we consider the mul-
tivariate GP

yobs ∼ GP (µ,K) (3.33)

where yobs = (uobs, fobs) is our observations at times tu and tf respectively, µ =
(µu, µf ), and K is the covariance matrix, including measurement noise.

If we want to make predictions u∗ at new points t∗u, we use that the distribution of
the new point follows a multivariate Gaussian (Spitieris and Steinsland, 2022):

p (u∗ | t∗u, t, yobs, α) = N (µ∗
u,Σ

∗
u)

µ∗
u = µu (t

∗
u) + V ∗T

u K−1(y − µ)

Σ∗
u = Kuu (t

∗
u, t

∗
u)− V ∗T

u K−1V ∗
u ,

(3.34)

where t = (tu, tf ), yobs = (uobs, fobs), α is the model parameters and V ∗T
u =

[Kuu (t
∗
u, tu) Kuf (t

∗
u, tf )]. The posterior distributions for new observations f∗

can be calculated correspondingly.

To improve computational efficiency, we can use some techniques in the calcula-
tions, following Betancourt (2017). Firstly, we use the Cholesky decomposition of
the covariance matrix K, denoted as LK . In the computation of µ∗

u, we solve K−1y
by solving the system:

tri(LK)−1y tri(LK)−1, (3.35)

where

tri(A)[m,n] =

{
A[m,n] if m ≥ n, and
0 otherwise.

(3.36)

(Stan Development Team, 2022). These computations are divided into two parts
and performed efficiently using the STAN-functions mdivide_left_tri_low() and
mdivide_right_tri_low().
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Similarly, in the computation of Σ∗
u, we solve V T

u K−1V ∗
u by solving the system:

(tri(LK)−1 V ∗T
u )T (tri(LK)−1 V ∗T

u ) (3.37)

using mdivide_left_tri_low().
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Chapter 4

Method: Physics-Informed
Bayesian Calibration for the
Pendulum

In this chapter, we introduce the approach of a physics-informed Bayesian calibra-
tion framework for the pendulum process. The approach involves three steps:

1. Observation Data Simulation: We simulate noisy observations from four dif-
ferent pendulum processes: the linearized pendulum process (LP), the lin-
earized pendulum process with an added Gaussian Process (LPGP), the true
idealized process (TP), and the damped process (DP). This is referred to
as noisy observations from the (LP/LPGP/TP/DP) process. A detailed de-
scription is provided in Chapter 4.1.

2. Model Construction: We develop two physics-informed Bayesian calibration
models. The first model (M1WOD) does not account for discrepancy, while
the second model (M2WDf ) incorporates discrepancy. These are referred to
as the models. The construction of these models can be found in Chapter 4.2.

3. Inference: We employ HMC-NUTS within STAN for inference, and the Rstan
interface is used to post-process the posterior samples generated by the mod-
els.

In Chapter 6, we evaluate the performance of our models with the simulated obser-

29

https://CRAN.R-project.org/package=rstan


CHAPTER 4. METHOD: PHYSICS-INFORMED BAYESIAN
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vations as input. The experimental configurations employed in these experiments
are outlined in Chapter 5.

4.1 Observation Data Simulations

In Spitieris and Steinsland (2022) and Chapter 3.6.1, discrepancy is introduced as
the model’s deviation from the observation process, which is the case in a physical
context. However, during the assessment and discussion of our results, we adopt a
different perspective: the observation process deviating from the model. This con-
ceptual shift maintains the mathematical framework while offering a more intuitive
explanation and evaluation of our approach. Consequently, it becomes meaningful
to test the model on various processes that exhibit different types of deviations
from the model.

The process of simulating observation data is illustrated in Figure 4.1.

Time interval 
of 

simulations

Simulate 
physical 
process

Simulate 
noisy 

observations

Physical 
parameters

𝚫𝑡

𝐷!
𝐷"

ℇ!,~𝑁 0, 𝜎!$

ℇ"~𝑁 0, 𝜎"$

𝑁!, 𝑁" , t%, t&

Governing 
differential 
equation

Noise and 
time points 

of 
observations

𝑅

𝑢(𝑡)

Figure 4.1: Procedure of simulating noisy observations Du and Df . The governing
differential equation is parameterized with physical and simulation parameters.
Noisy observations are generated, resulting in observation data Du = {(ti, ui)}Nu

i=1

and Df = {(tj , fj)}
Nf

j=1. Here, tu and tf represent the sets tu = {ti}Nu
i=1 and

tf = {tj}
Nf

j=1, the times where u and f are observed, respectively. ∆t represents
the time interval of our observations, starting at t0 = 0

30



CHAPTER 4. METHOD: PHYSICS-INFORMED BAYESIAN
CALIBRATION FOR THE PENDULUM

We want to assess the performance of the two models on four different pendulum
angle processes u(t). For all simulations, we set the initial values as follows:

u(0) = u0 (4.1)
du(0)

dt
= 0. (4.2)

The four different pendulum angle simulations Du = {(ti, ui)}Nu
i=1 are obtained from

the following processes:

1. LP: u(t) is simulated from the solution for the linearized pendulum process
(Equation (2.4)).

2. LPGP: u(t) is simulated from the linearized pendulum process (Equation
(2.4)) with the addition of a Gaussian process δsim(t) ∼ N (0,Kδsim(t, t′)),
such that we simulate from

u(t) = u0 cos

(√
1

R
t

)
+ δsim(t)

3. TP: u(t) is simulated from the true idealized pendulum process (Equation
(2.1)) using the Runge-Kutta 4 (RK4) method (Butcher, 2008) for approx-
imating the solution of u(t).

4. DP: u(t) is simulated from the damped pendulum process (Equation (2.5))
and a numerical solution for u(t) is obtained using the Euler method.

In LPGP,

Kδsim(t, t′) = σδsime

−0.5(t−t′)2

l2
δsim .

The GP allows us to introduce a systematically controlled discrepancy that we
know fulfills the GP assumption, and observe the model’s response. It is important
to note that the initial seed influences the simulations for the GP, so we conduct
multiple trials using different GP realizations. More on this in Section 5.1.3.

From each of these simulations of u(t) we extract their value at Nu equally distrib-
uted times tu = {ti}Nu

i=1 and add noise ϵu,i
i.i.d∼ N(0, σ2

u) to each observation. By
this, we obtain our noisy angle observations, denoted by Du = {(ti, ui)}Nu

i=1.
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We include the right-hand side of the pendulum equations discussed in Chapter
2 in the input data as noisy observations from the process f(t) = 0. Let Df =

{(tj , fj)}
Nf

j=1 represent the observations, where fj denotes the noisy observations
fj = 0 + ϵj at equally distributed times tf = {tj}

Nf

j=1, and Nf is the total number

of observations. Here, ϵf,j
i.i.d∼ N(0, σ2

f ).

4.2 Constructing the Models

Next, we construct the physics-informed Bayesian Calibration models M1WOD and
M2WDf . The outline of the models is shown in Figure 4.2. Here M1WOD does
not include the parts with a dashed contour, whereas M2WDf does.

Observations Posterior 
distributions

Bayesian 
calibration 

model

Physics 
informed 
kernel K

Priors

𝐷!, 𝐷"

K

R~𝑁 &,&
σ ~𝑁 &,&

...

Linearized 
physical 
model

Discrepancy
(for M2_WDf)

𝐾#
𝑢$% 𝑡 , 𝑓$%(𝑡)

HMC

Figure 4.2: Outline of the physics-informed Bayesian calibration procedure. We
base the model on a linear physical model, where its structure is incorporated in
the physics-informed kernel K. The dashed line around the discrepancy Kδ that
goes into the physics-informed kernel indicates that this is only incorporated in the
Bayesian calibration model for M2WDf . The kernel K of M1WOD does not contain
the discrepancy term Kδ. Then we assign priors for the parameters in the model,
including the physical parameters, the noise parameters, and the model parameters.
We run numerous Hamiltonian Monte Carlo (HMC) iterations to obtain posterior
distributions.
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4.2.1 M1WOD: Model That Does Not Account for Model
Discrepancy

For the linearized pendulum (LP) from Equation (2.3), the linear differential op-
erator of LΦ

t u(t) = f(t), becomes

LΦ
t =

d2

dt
+

1

R
, (4.3)

Our model M1WOD is then based on

p(yobs|α) = N (µ,K) (4.4)

where α = (Φ, θ, σu, σf ) with Φ = (R) and θ = (σ, ℓ). we assume that the mean
function is given by µu(t) = 0. This assumption is based on the fact that the pen-
dulum oscillates around its equilibrium position. Furthermore, as we have f(t) = 0
in our processes, it has a zero mean for all t (indicating that no other external
forces are acting on the pendulum), so we set µf (t) = 0. By this, we get

µ =

[
µu

µf

]
=

[
0
0

]
(4.5)

Note that in other cases, these mean functions can take the form of variable-
dependent functions or functions of each other. This is exemplified through the
Windkessel experiments discussed in Spitieris and Steinsland (2022).

Next, the kernel can be expressed by

K =

[
Kuu(tu, t

′
u|θ) + σ2

uIu Kuf (tu, t
′
f |θ,Φ)

Kfu(tf , t
′
u|θ,Φ) Kff (tf , t

′
f |θ,Φ) + σ2

fIf

]
(4.6)

where Iu and If are the (Nu ×Nu) and (Nf ×Nf ) identity matrices, respectively,
and, as obtained in my project thesis
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Kuu(t, t
′|θ) = σ2e−

0.5(t−t′)2

l2

Kuf (t, t
′|θ,Φ) = LΦ

t′Kuu(t, t
′|θ)

= −σ2e−
0.5(t−t′)2

l2

l2
+

σ2 (t− t′)
2
e−

0.5(t−t′)2

l2

l4
+

σ2e−
0.5(t−t′)2

l2

R

Kfu(t, t
′|θ,Φ) = LΦ

t Kuu(t, t
′|θ)

= −σ2e−
0.5(t−t′)2

l2

l2
+

σ2 (t− t′)
2
e−

0.5(t−t′)2

l2

l4
+

σ2e−
0.5(t−t′)2

l2

R

Kff (t, t
′|θ,Φ) = LΦ

t LΦ
t′Kuu(t, t

′|θ)

=
3σ2e−

0.5(t−t′)2

l2

l4
− 6σ2 (t− t′)

2
e−

0.5(t−t′)2

l2

l6

+
σ2 (t− t′)

4
e−

0.5(t−t′)2

l2

l8

− σ2e−
0.5(t−t′)2

l2

R l2
+

σ2 (t− t′)
2
e−

0.5(t−t′)2

l2

R l4

+
1

R

−σ2e−
0.5(t−t′)2

l2

l2
+

σ2 (t− t′)
2
e−

0.5(t−t′)2

l2

l4
+

σ2e−
0.5(t−t′)2

l2

R


(4.7)

4.2.2 M2WDf : Model That Accounts for Discrepancy

Next, we look at the construction of M2WDf .

As discussed, our model M1WOD is based on the linearized pendulum process (LP),
such that

LΦ
t (uLP (t)) = f(t) = 0 (4.8)

yields. However, as seen in Section 2, for TP and DP, we can have observations that
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follow a process u(t) that do not conform to the model’s process uLP (t), implying
that the model is imprecise for these processes.

To address this, we start by describing the actual process as u(t) = uLP (t)+∆u(t).
The term ∆u(t) = u(t)−uLP (t) represents the deviation between the actual process
we are considering and the corresponding linear process on which the model is
based. Figure 2.4 illustrates two examples of how the deviation ∆u(t) can look.

Shifting the discrepancy term from u(t) to f(t)

If our observations from u(t) deviate from the model LΦ
t that we use in our physics-

informed priors, we need to account for this when we apply our model to the
observations u(t) ̸= uLP (t). For a linear differential operator, it holds that

LΦ
t (uLP (t) + ∆u(t)) = LΦ

t (uLP (t)) + LΦ
t (∆u(t)), (4.9)

and inserting Equation (4.8), gives

LΦ
t (uLP (t) + ∆u(t)) = f(t) + LΦ

t (∆u(t)). (4.10)

Suppose the difference between our observations and the corresponding model
process, ∆u(t), follows a GP. According to the GP properties, the transformed
process LΦ

t (∆u(t)) will also follow a GP. We define δ(t) = LΦ
t (∆u(t)), where

δ(t) ∼ GP (0,Kδ(t, t
′)). With u(t) = uLP (t) + ∆u(t), we can express the equa-

tion as:

LΦ
t (u(t)) = f(t) + δ(t) (4.11)

Here, the term δ(t) should capture the deviation between the model and the process.
This shift is done with the expectation that it is easier to identify the systematic
error in the model on the side of which the model is expecting a constant function
than to the process the linear operator is applied to.
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What δ(t) Means in Terms of TP and DP

This shift becomes more intuitive when we explore the role of the discrepancy term
δ(t) in capturing the discrepancy between the LP-based model and the specific
processes of TP and DP. We look at Equations (2.9) and (2.10), which explains LP
and DP as TPs, but with external forces fp(t) and fd(t), respectively, acting on it.

Starting with LP and TP, LP represents TP affected by an external force fp(t).
We now turn it around and say that TP equals a corresponding LP but with an
opposing external force, given by

f−p(t) = −fp(t) =
1

R

(
u(t)3

3!
− u(t)5

5!
+

u(t)7

7!
− ...

)
. (4.12)

This means that uTP = uLP +∆u(TP−LP ) with f(t) = 0 can be written as

LΦ
t (uTP (t)) = LΦ

t (uLP +∆u(TP−LP )(t)) = f−p(t) (4.13)
(4.14)

with f−p(t) ̸= 0. As we see, this does not align with the model LΦ
t (u(t)) = 0, hence

we add a discrepancy term that should aim to satisfy

f(t) = f−p(t) + δ(t) = 0 (4.15)

Consequently, the discrepancy term δ(t) aims to capture the behavior of fp(t) as
f−p + fp(t) = 0.

We employ a similar approach for DP, where we previously viewed it as a TP with
an external force fd(t). Now, we view it as a LP with an external force f−dp(t),
where

f−dp(t) = −fd(t)− fp(t) = λ
du(t)

d(t)
+

1

R

(
u(t)3

3!
− u(t)5

5!
+

u(t)7

7!
− ...

)
, (4.16)

so for uDP = uLP +∆u(DP−LP )(t) with f(t) = 0, we have
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LΦ
t (uDP (t)) = LΦ

t (uLP +∆u(DP−LP )(t)) = f−dp(t) (4.17)
(4.18)

where f−dp(t) ̸= 0. This does not fit the model, hence we add a discrepancy term
that aims to satisfy

f(t) = f−dp(t) + δ(t) = 0 (4.19)

Here, the discrepancy term δ(t) aims to capture the behavior of fdp(t) as f−dp +
fdp(t) = 0.

Incorporating additional knowledge into the discrepancy term would be simple in
this case. However, in other cases, limited information may be available regarding
this discrepancy, motivating us to model it as a flexible GP, treating it as a process
we do not know.

Incorporating the Discrepancy Term in the Model

Given the assumption that δ(t) ∼ GP (0,Kδ(t, t
′)), the expression for Kδ(t, t

′) when
employing the squared exponential kernel can be expressed as follows:

Kδ(t, t
′) = σ2

δe
−0.5

(
t−t′
lδ

)2

, (4.20)

with scale hyperparameter σδ and length scale hyperparameter lδ.

We consider our observation process y(t) to be represented as:

y(t) =

[
u(t)
f(t)

]
=

[
uLP (t) + ∆u(t)
f−force(t) + fforce(t)

]
=

[
uLP (t) + ∆u(t)
f−force(t) + δ(t)

]
, (4.21)

where f(t) = 0, f−force(t) represents the virtual force we get from treating the
actual process with the linearized model, and fforce(t) is the virtual force that
offsets the total observation process f(t) back to zero.
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In order to capture the discrepancy, we use Equation (4.11), and get the model
M2WDf ,

p(yobs|αdisc) = N (µ,Kdisc) (4.22)

where αdisc = (Φ, θ, σu, σf , σδ, lδ). For µ, the same holds as for M1WOD. The
kernel is given by

Kdisc =

[
Kuu(tu, t

′
u|θ) + σ2

uIu Kuf (tu, t
′
f |θ,Φ)

Kfu(tf , t
′
u|θ,Φ) Kff (tf , t

′
f |θ,Φ) +Kδ(tf , t

′
f |σδ, lδ) + σ2

fIf

]
(4.23)

with elements from Equation (4.7), in addition to Kδ(tf , t
′
f |σδ, lδ) from Equation

(4.20).

As discussed, we propose placing the discrepancy term on the f side of the equa-
tion. The shift in the discrepancy term is intended to help the model identify the
systematic deviation between the model and the process. This shift is made based
on the expectation that it may be easier to identify systematic errors in the model
when focusing on the side where the model expects a constant function, rather
than within the more complex process on the left-hand side.
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Chapter 5

Experimental Configurations

In this chapter, we define the parameter values of the simulations and the pri-
ors of the models described in Chapter 4. Then we present how we do repeated
experiments in E1, and the modifications of E2a and E2b. These parameters and
configurations are subsequently employed in the experiments conducted in Chapter
6.

5.1 Experiment 1 (E1) Configurations

This section specifies the details and parameters for Experiment 1. These configur-
ations also serve as the basic configurations for Experiment 2, enabling a systematic
evaluation of individual variations.

5.1.1 Simulation Parameters

For our pendulum process simulations, described in Chapter 4.1, we utilize the
parameter values listed in Table 5.1. Figure 5.1a provides a visualization of ob-
servations generated using these parameters, showing that the observations span
approximately 1.5 cycles.

The computational cost of inference increases with the number of measurement
points in the input data, as noted by Spitieris and Steinsland (2022). This con-
sideration is important when determining the quantity of measurement points Nu
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and Nf . Additionally, practical constraints and limitations in measurement device
capabilities can restrict the frequency and number of measurements that can be
obtained.

In their study, Spitieris and Steinsland (2022) utilized three replicates for each
measurement point, which can help distinguish between independent and system-
atic errors. However, implementing such practices in real-life scenarios may not
be feasible, as it often requires the ability to perform simultaneous or synchron-
ized measurements. Therefore, for our investigation, we will use a single set of
measurements for each time point.

Parameter Value
u0

π
5

R 0.2s2

λ 0.5 1
s

σ2
u 0.032

σ2
f 0.032

Nu 20
Nu 20
∆t 4s
σδsim

π
30

lδsim 1

Table 5.1: Parameters used in the Pendulum angle simulations for E1. u0 is the
initial angle, R = L

g is the physical parameter deciding the frequency, λ is the
damping parameter, σ2

u is the measurement noise variance of the observed angle
measurements u, σ2

f is the measurement noise variance of the observed f , Nu is
the number of angle observations, Nf is the number of observations of f , ∆t is the
time period of the observations (starting at t0 = 0) and σδsim and lδsim are the
hyperparameters of the added GP in LPGP.

5.1.2 Priors

In Chapter 3.1, we discussed the importance of reasonable priors in Bayesian ana-
lysis. We want to choose priors that imitate a real-life experiment, so we do not set
them too informative. Since none of the parameters take negative values, we follow
Spitieris and Steinsland (2022) and impose a lower limit of 0 on all parameters,
and obtain improper truncated prior distributions. The physical priors we use in
the models are chosen as follows:
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Figure 5.1: An example of observations of the pendulum angle motion from LP
with measurement noise variances σ2

u = 0.032 and σ2
u = 0.12, respectively. In green

are simulations from the true idealized process u(t) for a continuous scale of t of
the pendulum with initial angle u0 = π/5.

R ∼ N (0.2, 0.12)

σu ∼ Half-N (0, 0.052)

σf ∼ Half-N(0, 0.12),

(5.1)

while the model parameter priors are

σ ∼ N (1, 12)

l ∼ N (1, 12)
(5.2)

For the model with discrepancy, M2WDf , additional priors are introduced for the
parameters of the discrepancy δ(t):

σδ ∼ Half-N
(
0, 12

)
lδ ∼ N (1, 12)

(5.3)

These priors are illustrated in Figures 5.2, 5.3, and 5.4 to get a better understanding
of their distributions.
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Figure 5.2: Priors for the process parameters used in the model. Note that these
are truncated and improper.
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Figure 5.3: Truncated improper priors for the covariance matrix in the model.
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Figure 5.4: Truncated improper priors used for the covariance matrix of the dis-
crepancy term in the model.

5.1.3 GP Realizations for LPGP

In order to investigate various discrepancies between the model and the underlying
process in the data simulation, we employ five distinct realizations of GPs for
experimental evaluation with values of σδ and lδ from Table 5.1. These GPs are
shown in Figure 5.5.
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Figure 5.5: GP realizations that are added to LP in the simulations of the LPGP
process.

5.1.4 Repeated Experiments

We employ a methodical approach to mitigate the influence of randomness in
stochastic experiments on our conclusions due to favorable or unfavorable measure-
ment noise placements. By conducting repeated experiments with different realiz-
ations, we can investigate the effect of the variability introduced by the placement
of the noise. Algorithm 1 outlines this procedure.
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Algorithm 1 Repeated experiments

Simulate u(t) from the process that we want to investigate
for i = 1 : num_experiments do

for k = 1:Nu do
ϵu,k ∼ N (0, σ2

u)
ui,k = y(ti,k) + ϵu,k

end for
for j = 1:Nf do

ϵf,j ∼ N (0, σ2
f )

fj,k = 0 + ϵf,j
end for
Fit model to obtain posteriors for αi

end for
Plot histograms of each parameter of αi in the same coordinate system for all
num_experiments to compare

5.2 Experiment 2a (E2a) Configurations: Measure-
ment Noise

In this experiment, we investigate the model’s response to varying levels of meas-
urement noise by adjusting the parameter σu in the simulations. We explore a
range of values for σu and adjust the priors accordingly. The experiment follows
the procedure outlined in Algorithm 2.

In Experiment 2, we consider a range of 10 equally distributed values of σu between
0.02 and 0.15:

σu,sim = (0.02, 0.344, ..., 0.15)

Concurrently, we adjust the priors of σu to accommodate these changes. The prior
distribution for σu is now given by:

σu ∼ N (σu,sim, 0.052),

still truncated with a lower limit of 0, as the standard deviation cannot be negative.
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Algorithm 2 Repeated experiments with different values for the measurement
noise variance σu

Set σu = (σu,min, ..., σu,max)
Simulate u(t) from the process that we want to investigate
for (i=1:length(σu)) do

for k = 1:Nu do
ϵu,k ∼ N (0, σ2

u)
ui,k = y(ti,k) + ϵu,k

end for
for j = 1:Nf do

ϵf,j ∼ N (0, σ2
f )

fj,k = 0 + ϵf,j
end for
Fit model to obtain posteriors of αj

Calculate Rbias,i = abs(Rtrue −Rposterior mean)
Calculate σu,bias,i = abs(σutrue − σuposterior mean)
Rupper, i = Upper 95% quantile value of Ri

Rlower, i = Lower 95% quantile value of Ri

CIwidth, i = Rupper −Rlower
end for
Plot (σu, Rbias)
Plot (σu, σu,bias)
Plot (σu, CIwidth)
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5.3 Experiment 2b (E2b) Configurations: Number
of Cycles

In this experiment, we investigate the impact of varying the number of observed
cycles on the model’s performance. The objective is to determine whether increas-
ing the number of cycles leads to improved estimates, and how the model responds
to increasing the observation period.

We conduct two experiments with an extended measurement duration, resulting in
an increased number of cycles compared to Experiment 1 (E1). The measurement
noise is restored to the baseline value of σu = 0.03, and the observation period
is increased from ∆t = 4s, where we have approximately 1.5 cycles, to ∆t = 8s,
where we have approximately 3 cycles.

The first experiment (E2b-1) keeps the same number of measurements as for ∆t =
4, Nu = Nf = 20 measurements. The second experiment (E2b-2) consists of
Nu = Nf = 40 measurements, meaning that we maintain the same measurement
density as for ∆t = 4.
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Chapter 6

Results and Discussion

All experiments in this chapter can be reproduced by running the codes in the fol-
lowing GitHub repository: https://github.com/selmalerke/MasterThesis.git.

The results are presented and discussed sequentially in this chapter, with more
complex findings having dedicated sections for detailed discussion after presenting
the experiments. Each experiment concludes with a summary, showing the cor-
responding PPCs. A summary of the noteworthy findings can be found Chapter
7.

6.1 Results from Experiment 1 (E1): A Comparat-
ive Analysis of the Models M1WOD and M2WDf

When assessing model performance in parameter estimation, bias and the width
of the credible interval are key considerations. The aim is to achieve unbiased
results with appropriately sized credible intervals, avoiding excessively wide or
overly confident predictions.

In this experiment, we compare the model results between M1WOD and M2WDf

defined in Chapter 4.2, for the four different processes presented in Chapter 4.1.
Our focus is on examining the estimates of the physical parameter R and the meas-
urement noise parameter σu, the parameters of most interest in a real-life problem.
We refer to the posterior means of the two parameters as R̂ and σ̂u, respectively.
Knowing their true values from the simulation process allows us to evaluate the
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model results. While the posterior distributions don’t directly provide estimated
amplitude and start angle, we can assess their estimates through posterior predict-
ive checks.

Experimental configurations for this experiment are described in Chapter 5.1.

6.1.1 Simulated Observations from the Linearized Process
(LP)

First, we test our two models on observations simulated from the linearized process
(LP), i.e., the same process on which the model M1WOD is based. The posterior
distributions of R and σu for one realization of LP observations are displayed in
Figure 6.1, along with their true values represented by dashed green lines.
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Figure 6.1: Comparison of marginal posterior distributions from computer models
on observations from LP with Nu = 20, Nf = 20 and noisy observations equally
distributed from 0 to 4 seconds.

The trace plots in Figure Appendix B.1 display the exploration of the parameter
space by the chains during iterations, offering insights into convergence and stability
in the analysis (although not ensuring them). Additionally, summary statistics for
the STAN fits of the two models can be found in Appendix B.2.
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As expected, both models’ posteriors cover the true value. Notably, the posterior
distribution of R from M2WDf appears wider than that of M1WOD. This differ-
ence can be attributed to the additional discrepancy term in M2WDf intended to
account for a non-existent systematic error in the simulated process. Consequently,
M2WDf exhibits unnecessary flexibility, resulting in a less confident posterior dis-
tribution.

The posterior mean estimate of σu, σ̂u, in Figure 6.1b shows a slight leftwards
bias. This bias is likely influenced by the arrangement of the observed data points.
With only 20 observations of an angle affected by noise, the positioning of these
observations can lead to underestimation or overestimation of σu.

To test this hypothesis, we simulate five different observation realizations from
the LP process and obtain posterior distributions for each realization. Figure 6.2
illustrates variations in the observed posteriors of σu across these sets, indicating
that relying on 20 observations may not accurately capture the measurement noise
in the posterior mean estimation. However, the posterior distribution consistently
covers the true value in all five realizations. Furthermore, Figure 6.2 demonstrates
similar behavior in the posterior distributions across different realizations: the
posterior distribution of R is slightly wider for M2WDf compared to M1WOD,
while the posteriors of σu are quite similar for both models in each realization.
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Figure 6.2: Comparison of posterior distributions from M1WOD and M2WDf on
observations following the LP process with Nu = 20, Nf = 20 equally distributed
noisy observations from 0 to 4 seconds.
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Figure 6.3: Prior distributions and posterior distributions from the two models on
Nu = Nf = 20 noisy observations equally distributed between 0 and 4 seconds
from LP. Note that the priors are truncated at 0 as we know that the values of
both R and σu are non-negative.

Figure 6.3 visually compares the posterior and prior distributions, illustrating the
increased precision and decreased uncertainty achieved through the models.

6.1.2 Simulated Observations from the Linear Process with
an Added Gaussian Process (LPGP)

Secondly, we incorporate a Gaussian Process (GP) into the angle observation, as
described in Chapter 4.1. For this experiment, the observations follow the same
process as M2WDf .

We begin by examining the first LPGP process, LPGP1, which incorporates GP1
(the blue realization in Figure 5.5). Figure 6.4 compares the model results for the
observations from this process. In terms of R̂, M1WOD exhibits a slight bias, while
the distribution of M2WDf centers around the true value. Regarding σu, M2WDf

effectively captures the noise, while the posterior distribution of M1WOD deviates
significantly from the true value. The bottom row of Figure 6.4 displays the pos-
terior distributions for five different observation realizations of this process, illus-
trating consistent differences between M1WOD and M2WDf across different noise
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placements. This suggests that M1WOD attributes the discrepancy to measure-
ment noise, as it lacks a discrepancy term to account for the additional Gaussian
Process in the observations, while M2WDf successfully separates the systematic
deviation and independent noise from the process.
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Figure 6.4: Comparison of posterior distributions from observations following the
LPGP1-process with Nu = 20, Nf = 20 and equally distributed noisy observations
from 0 to 4 seconds. The first row displays results from one observation realization,
while the second row shows posteriors from five different observation realizations.
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To explore the performance of the models on observations with different systematic
discrepancies, we evaluate model results on different GP realizations. The GP real-
izations are depicted in Figure 5.5, and the corresponding posterior distributions
are shown in Figure 6.5.
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Figure 6.5: Comparison of posterior distributions from simulated data following
different LPGP processes with Nu = 20, Nf = 20 and noisy observations equally
distributed from 0 to 4 seconds.

Notably, for LPGP2 and LPGP5, M1WOD provides slightly more accurate pos-
terior mean estimates of R compared to M2WDf . However, M1WOD consistently
struggles to accurately estimate the noise across all LPGP iterations, while M2WDf

consistently successfully distinguishes the noise from the rest of the process.

For LPGP3, M1WOD greatly overestimates the noise, resulting in a posterior dis-
tribution of R that closely resembles the prior distribution. This phenomenon is
discussed in Chapter 6.1.6. For this process, M2WDf manages to recover a good
estimate R̂, and better captures the true value of σu in its posterior distribution,
despite the slight bias of its mean.
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6.1.3 Simulated Observations from the True Idealized Pro-
cess (TP)

Next, we examine the data simulated from TP, where a discrepancy arises between
the model and the observation process due to linearization. The posterior distri-
butions in Figure 6.6 show that both models indicate a value of R around 0.21,
deviating from the true value of 0.2. As seen in Chapter 2, the linearization affects
the frequency, which is explained by the parameter R. This means that the dis-
crepancy term in M2WOD fails to capture the systematic discrepancy between the
model and the process that comes from the linearization of the model.

Chapter 6.1.5 explores this issue further.
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Figure 6.6: Comparison of posterior distributions from observations following TP
with Nu = 20, Nf = 20 and equally distributed noisy observations from 0 to 4
seconds. The first row displays results from one observation realization, while the
second row shows posteriors from five different observation realizations.
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6.1.4 Simulated Observations from the Damped Process (DP)

In the case of analyzing the posterior distributions from DP, it is reasonable to
simplify the analysis by assuming that the linearization in the model influences the
parameter R (frequency), while the damping mechanism in the process affects the
parameter σu (measurement noise).

Similarly to TP, both models exhibit a rightwards bias in the posterior distribution
of R (Figure 6.7), as discussed in Chapter 6.1.5.

However, in Figure 6.7, M2WDf successfully estimates the posterior of σu, whereas
M1WOD fails to do so. The increasing discrepancy in y-direction is interpreted as
measurement noise by M1WOD, while M2WDf captures this systematic deviation
by its discrepancy term, effectively distinguishing it from the rest of the process.
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Figure 6.7: Comparison of posterior distributions from observations following DP
with Nu = 20, Nf = 20 and equally distributed noisy observations from 0 to 4
seconds. The first row displays results from one observation realization, while the
second row shows posteriors from five different observation realizations.
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6.1.5 When the Model Accounting for Discrepancy Fails to
Capture Deviation Due to Linearization

In Chapter 6.1.3, the model M2WDf fails to capture the systematic discrepancy
between the LP-based model and the TP-based process due to linearization. To
investigate this further, we analyze the mean squared error (MSE) between TP and
LP. By continuously simulating TP without noise using the true value of R = 0.200,
we calculate the deterministic MSE between TP and continuously simulated LPs
for different values of R. The resulting MSE values are plotted in red in Figure 6.8,
where the minima indicate the R values of LP corresponding to the lowest MSE
with TP.

We observe that the minimum MSE does not align with the corresponding LP value,
but rather occurs at R = 0.210 with an MSE of 2.19 · 10−06. This finding suggests
that the model fits the data better for R = 0.210 than its true value of R = 0.200.
In other words, a TP with R = 0.200 closely resembles an LP with R = 0.210,
more so than an LP with R = 0.200. Consequently, this explains the prominent
concentration of posterior distributions around R = 0.210 for both M1WOD and
M2WDf . In essence, M2WDf fails to identify the systematic discrepancy arising
from the linearization in the model because it more closely resembles a model
process with a different value of R.
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Figure 6.8: Mean squared error in angle simulations. The green line is the true
value of R, while purple and red dashed lines are the minimum mean squared error
between the angle measurements of LP-TP and LP-DP, respectively, for different
values of R.

Moving on to the estimation of R for DP, we find that the minimum MSE between
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LP and DP occurs at R = 0.226 with an MSE of 0.0293, deviating from the true
value of R = 0.200. This observation explains the rightward bias observed in
the posterior distributions depicted in Figure 6.7. Although the bias may appear
less prominent compared to that of TP, it is due to the wider overall posterior
distribution.

6.1.6 When the Model Interprets the Process as a Zero-
Amplitude, Noisy Process

Specific combinations of observation data and models can lead to a misinterpreta-
tion of the observations as independent noise centered around zero. Consequently,
the model overestimates the magnitude of the noise, resulting in an estimated value
of σ̂u ≈ 0.3, which significantly deviates from the true value. As a consequence,
the posterior distribution of parameter R remains similar to the prior distribution.
An illustrative example of this scenario can be observed in LPGP3 in Figure 6.5b,
where the true value of σu is 0.03, but the posterior distribution centers around 0.3.
The models the results as shown in Figure 6.9. Here, the red dotted lines represent
the predictions of M1WOD, while the blue dotted lines represent the predictions
of M2WDf . The corresponding 95% credible intervals are shown in the same color
as their respective predictions. The black line represents the underlying simulation
process (LPGP3), and the black "x" marks represent the noisy input observations
used for inference.
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As illustrated, the model M1WOD interprets this situation as a process with no
amplitude (u0 = 0), as shown in Figure 6.9 indicating that the equation holds true
for all values of R, as

u(t) = u0 cos

(√
1

R
t

)
, u0 = 0 (6.1)

does not depend on R.

To explain this, we first look at Figure 6.10, which illustrates the wide range of
potential frequency values captured by the prior distribution of R. Additionally,
it is important to note that the model possesses no prior knowledge regarding the
initial angle or amplitude of the process, apart from the information provided by
the observations together with the prior on the measurement noise.

−0.4

0.0

0.4

0 2 4 6 8
Time

A
ng

le

R value

R = 0.01
R = 0.2
R = 0.5

Figure 6.10: Illustration that shows the range of frequencies encompassed by the
prior distribution of R in the pendulum motion. The green line corresponds to the
specific value R = 0.2 we use in the simulations.

The true solution involves a combination of R and σu. The model considers the
parameter priors, physics-informed priors, and observed data to determine the
probabilities of different solutions.

However, the solution space for R is relatively small, as depicted in Figure 6.11.
While the specific case in Figure 6.11, which exhibits the solution space of R for
LP with σu = 0.03, successfully converges to the correct solution, it highlights the
challenges and limitations of finding a solution that strictly adheres to the con-
straints of M1WOD. In M1WOD, the model attempts to explain the observations
as a combination of the underlying process and independent noise, without incor-
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porating an additional term to account for other deviations, as M2WDf does. This
makes M1WOD more sensitive to deviations that do not originate from the process
or the independent noise. Consequently, for some deviating processes, the only
viable solution within the framework of M1WOD is a noisy zero-amplitude process.

0

1

2

3

4

5

0.0 0.2 0.4 0.6
R

de
ns

ity

Prior

Figure 6.11: Valid solutions of R for LP with σu = 0.03 are in between the two
dark blue dashed lines. The yellow distribution is the prior distribution of R.

6.1.7 Posterior Predictive Checks and Takeaways from Ex-
periment 1

In order to gain a more intuitive assessment of our results, we proceed by simulating
replicated data based on the fitted models and comparing them to the observed
data.

Figure 6.12 shows the posterior predictive checks (PPCs) for M1WOD and M2WDf

applied to each simulation process in E1. It is important to note that in regions
where only the blue PPCs are visible, the red PPCs are almost identical, with the
blue PPCs effectively covering them.

In Figure 6.12, both models show similar and accurate predictions for LP and TP,
with reasonable CI widths. Note that for TP, the PPC aligns with the process,
even though the estimations of R, as shown in Chapter 6.1.3, are biased. These
observations are consistent with the scenario emphasized by Kennedy and O’Hagan
(2001), who discusses that the true values of physical quantities do not necessarily
coincide with Φ and that the physically true value of a calibration parameter can
result in a poorer fit and less accurate predictions than an alternative value.
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Figure 6.12: Posterior predictive checks for E1. The red and blue dotted lines
show the predictions from M1WOD and M2WDf , respectively. The blurred red
and blue shows the corresponding 95% credible interval for M1WOD and M2WDf ,
respectively. LP+GP denotes the process LPGP1. Note that for LP and TP,
the posterior predictive curves for the two models exhibit almost identical beha-
vior. Consequently, the results obtained for M2WDf cover the results obtained for
M1WOD.

However, for LPGP, M1WOD deviates from the true process near the maximums
and has a wider 95% credible interval, indicating higher measurement uncertainty
than M2WDf . This aligns with the findings in Figure 6.4, where M1WOD tends
to overestimate the measurement noise. In contrast, M2WDf effectively predicts
unknown measurements and closely matches the actual data. As discussed, the
discrepancy is attributed to the relative flexibility of the models, with M1WOD

being less adaptable in handling process deviations.

M1WOD misinterprets the damping as measurement noise in an undamped process
when examining the data simulated from DP. This results in an underestimation
of the amplitude at the beginning of the process and an overestimation towards
the end, and an overestimation of the noise as shown in Figure 6.7. On the other
hand, M2WDf more accurately predicts the unknown measurements due to its
extra flexibility in the discrepancy term.

The PPCs in Figure 6.12 highlight that M2WDf accurately predicts all four differ-
ent processes, while M1WOD only succeeds in accurately predicting LP and TP.
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6.2 Resuts from Experiment 2 (E2)

In Experiment 2, we examine two variations: E2a, which involves varying the
noise parameter σu, and E2b, where we increase the number of observed cycles.
Detailed configurations can be found in Chapter 5. These results are evaluated in
conjunction with those from Chapter 6.1, which includes the posterior distributions
for σu = 0.03 and ∆t = 4s.

6.2.1 Experiment 2a (E2a): Measurement Noise

This experiment examines the performance of the models under varying levels
of measurement noise variance, as described in Chapter 5.2. Each run consists
of 3 chains of 200, 000 HMC iterations. The objective is to compare the models’
responses to different noise levels. Note that the y-axis in the plots varies depending
on the process, as the main focus is comparing the two models for each process.
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Figure 6.13: Absolute bias of R̂, absolute bias of σ̂u, and width of credible interval
for LP at varying levels of measurement noise determined by σu.

Figure 6.13 shows the bias and credible interval width for R and σu across different
values of σu. We observe that as the noise level increases, the stability of M1WOD

in estimating R and σu diminishes compared to M2WDf . Notably, there are peaks
in the biases and credible interval width of R for M1WOD at σu = 0.11 and
σu = 0.15. This suggests that accurate estimates with M1WOD may require more
iterations or yield incorrect results for the given noisy observations, highlighting
its lower flexibility compared to M2WDf . In Appendix C.1, a similar experiment
with 300, 000 HMC iterations demonstrates the absence of the peak at σu = 0.11
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for M1WOD. This indicates that increasing the number of iterations can improve
the accuracy of estimates with M1WOD.

Figure 6.14 shows the same diagnostics, but for LPGP1 observations. For σu <
0.06, the results align with Figure 6.4. In Figure 6.14b, M1WOD exhibits decreasing
bias of σu until a peak is reached at σu = 0.12. In M2WOD, the bias of R shifts from
leftward to rightward at σu = 0.12. These findings reinforce the greater stability
of M2WDf in converging to the correct outcome.
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Figure 6.14: Absolute bias of R̂, absolute bias of σ̂u, and width of credible interval
for LPGP1 at varying levels of measurement noise determined by σu.

Figure 6.15 displays the bias and CI-width for TP. A general increasing trend is
observed. However, a notable finding emerges: a dip is observed for M1WOD at
σu = 0.15, accompanied by a peak in both the bias and CI-width of R. This
suggests that the model has identified a posterior distribution of R that is both
incorrect and uncertain while still providing a reasonable estimation of σu. Despite
previous observations suggesting that M2WDf failed to capture the systematic
discrepancy between LP and TP, a closer examination of the bias of R in Figure
6.15a reveals consistently slightly improved estimates by M2WDf compared to
M1WOD. However, this improvement comes at the expense of a slightly wider
credible interval for R, as depicted in Figure 6.15c. While the complete systematic
deviation between the model and TP remains unaccounted for, it is evident that
M2WDf captures a portion of the discrepancy, resulting in slightly less biased
results compared to M1WOD. As discussed earlier, the presence of remaining bias
actually results in a superior fit to the data and enhanced predictive performance,
compared to the scenario where the estimates are unbiased.
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Figure 6.15: Absolute bias of R̂, absolute bias of σ̂u, and width of credible interval
for TP at varying levels of measurement noise determined by σu.

Figure 6.16 shows the performance of M2WOD compared to M1WOD for DP.
M2WOD demonstrates the ability to distinguish between measurement noise and
damping at lower noise levels, but this becomes more challenging as the noise
level increases, leading to bias and wider confidence intervals beyond a certain
noise threshold. The consistent overestimation of noise in the damped process by
M1WOD is due to the absence of a term capturing systematic damping. As the
noise level increases, the estimates of R from M2WDf are more biased than for
M1WOD. This indicates that the flexibility of the discrepancy term in a highly
noisy process makes it challenging to discern between systematic deviation and
measurement noise, resulting in an incorrect estimate of the frequency, represented
by R.
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Figure 6.16: Absolute bias of R̂, absolute bias of σ̂u, and width of credible interval
for DP at varying levels of measurement noise determined by σu.
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Posterior Predictive Checks for E2a

Figure 6.17 shows the PPCs for the four processes with a noise parameter of σu =
0.1. Similar to E1 with σu = 0.03, the predictions for LP and TP remain close to
the true values, but with wider 95% CIs due to increased noise. The differences
between the models are less pronounced compared to the lower noise level.
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Figure 6.17: Posterior predictive for E2a with noise parameter of σu = 0.1. The red
and blue dotted lines show the predictions from M1WOD and M2WDf , respectively.
The blurred red and blue show the corresponding 95% credible interval for M1WOD

and M2WDf , respectively. Note that for LP and TP, the posterior predictive curves
for the two models exhibit almost identical behavior. Consequently, the results
obtained for M2WDf cover the results obtained for M1WOD (E2a).

In particular, for LPGP1, the models perform almost similarly, contrasting the
results for σu = 0.03. This aligns with the findings in Figure 6.14, where M2WDf

does not outperform M1WOD for noise levels approaching and exceeding σu ≈ 0.1.

However, there is still a visible distinction in the PPCs for DP, with M1WOD ex-
hibiting inaccuracies in estimating the decaying amplitude and consistently over-
estimating the noise, consistent with the results in Figure 6.16b.
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6.2.2 Experiment 2b (E2b): Number of Cycles

This experiment investigates the effect of doubling the number of observed cycles.
It is conducted in two variations: E2b-1 maintains the same number of measure-
ments, resulting in half the measurement density as before, while E2b-2 doubles
the measurement number to maintain the same measurement density as previous
experiments. Each run consists of 5 chains of 100, 000 HMC iterations. The rest
of the configurations remain as before.

Doubled Number of Cycles, Halved Measurement Density (E2b-1)
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Figure 6.18: Posterior distributions from M2WDf from processes with Nu = Nf =
20, and true value of R = 0.2 as the green dashed line. Dark blue has the doubled
amount of cycles in the input data, as the observations are equally spread over
∆t = 8s, whereas light blue has an observation period of ∆t = 4s (E2b-1).

Figure 6.18 shows comparisons of posterior distributions from M2WDf of the para-
meters for the four processes using M2WDf with Nu = Nf = 20 measurement
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points and different lengths of the observation period: ∆t = 4s (light blue) and
∆t = 8s (dark blue). We observe that spreading the same number of observations
over a larger number of cycles leads the model to estimate a process with negli-
gible amplitude and high noise as the most probable outcome. This phenomenon
is discussed in Chapter 6.1.6 for LPGP3. These results shows that selecting a time
interval spanning multiple cycles does not improve parameter estimation accur-
acy within this number of measurements. In Appendix C.2, we see that the same
yields for M1WOD. Intuitively, this observation makes sense, as detecting patterns
becomes more challenging with lower observation density.

In Appendix C.3, the posterior distributions for the halved number of cycles (∆t =
2), with Nu = Nf = 20, i.e., the doubled measurement density, are compared to
the standard settings (∆t = 4). The comparison shows that the posteriors are
nearly identical between the two scenarios.

Doubled Number of Cycles, Maintained Measurement Density (E2b-2)

Next, we explore the results obtained for ∆t = 4s, Nu = 20, Nf = 20 and ∆t = 8s,
Nu = 40, Nf = 40, where the aim is to explore the impact of doubling the ob-
servation period while maintaining the same measurement density. The posterior
distributions of σu, along with their prior distributions, are shown in Figure 6.19.
Interestingly, we observe bimodal posteriors for the variable M2WDf in all pro-
cesses, while for M1WOD, bimodal posteriors are obtained for all processes except
DP where the posterior centers around the noisy zero-amplitude solution. This is
further discussed in Chapter 6.2.3.
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Figure 6.19: Posterior distributions from M2WDf from processes with the true
value of R = 0.2 as the green dashed line. Nu = 40 and = Nf = 40 observations
are equally spread over ∆t = 8s (E2b-2).
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6.2.3 Bimodality in Posterior Distributions for More Cycles
in the Observations

We see that contrary to the expectation of improved results for an increased ob-
servation interval with the same measurement density, we find that the opposite is
true. In the results of E2b-2, we observed bimodality between the estimates con-
verging to the correct estimate or to the same phenomenon as discussed in Chapter
6.1.6, where the posterior distribution of R closely resembles the prior distribution,
assuming a process with zero amplitude and noisy measurements.

This finding can have two potential explanations. Firstly, it is possible that some
chains have not converged despite conducting the same number of MCMC iterations
compared to the corresponding ∆t = 4s scenario. Secondly, the bimodal posteriors
suggest the existence of two distinct solutions with different probabilities, indicating
that the chain has converged to a bimodal distribution. In Appendix C.4 a trace
plot for such a case, specifically for LPGP from Figure 6.18b. The plot reveals the
absence of transitions between the modes, indicating that the chain is trapped and
unable to move freely between the modes.
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Figure 6.20: Valid solutions of R for LP with σu = 0.03 are in between the two
dark blue dashed lines, ∆t = 4s and ∆t = 8s, respectively. The yellow distribution
is the prior distribution of R.

The reason why this phenomenon occurs for longer measurement periods but not
for the corresponding shorter ones, even with the same number of iterations, can
be attributed to the fact that for a smaller fraction of the process, the solution
space of R is larger due to its ability to vary to some extent while still conforming
to the process. However, when dealing with more cycles, the solution space of R
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becomes narrower. This is because the frequency must accommodate all the data
points within the cycles, leaving less room for deviation since any errors in the
frequency estimation would propagate and lead to inaccurate predictions. In the
illustration in Figure 6.20, we see that the values of R the possible solution can
take is significantly narrower for ∆t = 8s than for ∆t = 4s. This undermines
our explanation for the difficulty in achieving a correct convergence of solutions
with more cycles in the observations. Consequently, it increases the likelihood of
becoming trapped in the zero-amplitude solution.

Posterior Predictive Checks for E2b-2
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Figure 6.21: Posterior predictive for E2b. The red and blue dotted lines show the
predictions from M1WOD and M2WDf , respectively. The blurred red and blue
shows the 95% credible interval for M1WOD and M2WDf , respectively. Prior on
σu ∼ N (0, 0.052).

Next, we look at the PPCs. Figure 6.21, displays the PPCs for all four pro-
cesses with ∆t = 8s and Nu = Nf = 40. We see that this is a middle of the
bimodal posterior distributions obtained for the experiments, and we also see that
for DP, where the posterior of M1WOD was not bimodal, the model predicts a
zero-amplitude noisy process.
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More Informative Priors on Noise

In our scenario, the prior distribution of σu contains more information than that
of R. As a result, a significant improvement in model performance would require
a substantial increase in the information content of R relative to the impact of
increasing the information content of σu.

0

500

1000

1500

2000

0.0 0.2 0.4 0.6
R

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of R

0

25

50

75

100

0.0 0.2 0.4 0.6
R

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of R

0

500

1000

1500

2000

0.0 0.2 0.4 0.6
R

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of R

0

5

10

15

20

0.0 0.2 0.4 0.6
R

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of R

0

50

100

0.1 0.2 0.3
σu

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of σu

(a) LP

0

40

80

120

0.1 0.2 0.3
σu

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of σu

(b) LPGP

0

50

100

0.0 0.1 0.2 0.3
σu

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of σu

(c) TP

0

30

60

90

120

0.05 0.10 0.15 0.20 0.25
σu

F
re

qu
en

cy Model
M1_WOD
M2_WDf

Posterior distributions of σu

(d) DP

Figure 6.22: Posterior distributions with prior on σu ∼ N (0, 0.032) instead of
σu ∼ N (0, 0.052). Observations from from processes with Nu = Nf = 40, and true
value of R = 0.2 as the green dashed line.

We investigate the models using a more informative prior on σu, specifically σu ∼
N (0, 0.032) instead of σu ∼ N (0, 0.052). The posterior distributions are depicted
in Figure 6.22, while the PPCs can be observed in Figure 6.23. It is evident that
due to the increased flexibility, M2WDf better captures the underlying process,
while M1WOD still gets bimodal posteriors, indicating two solutions with different
probabilities or that the chains have not yet converged. This bimodality is also
observed for the posteriors of LP from M1WOD, although the model aligns with
the process of LP.
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This observation suggests that with greater flexibility, M2WDf explores the pos-
terior space more effectively and is less prone to becoming trapped in an incorrect
mode. Nevertheless, as observed in E2b-2 with less informative priors on the noise,
it requires either a larger number of iterations than the ones conducted in that par-
ticular case, or more informative priors, as investigated here. Note that it appears
that M2WDf slightly underestimates the noise with this informative prior that is
biased to the left, placing a bit too much trust in observations.
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Figure 6.23: Posterior predictive for E2b with more informative priors. The red
and blue dotted lines show the predictions from M1WOD and M2WDf , respectively.
The blurred red and blue shows the 95% credible interval for M1WOD and M2WDf ,
respectively. Prior on σu ∼ N (0, 0.032) instead of σu ∼ N (0, 0.052).

The set of experiments in E2b shows that the model struggles when dealing with
more cycles, but that M2WDf tends to explore the posterior space more effecively,
and is more affected by more informative priors. In the case of several cycles in
the input data, a different kernel choice is worth considering, as indicated by the
promising results of the periodic kernel presented in Spitieris and Steinsland (2022).
However, it is clear that a shorter fraction of the input data cycles is desired for
the current kernel to perform effectively.
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Chapter 7

Summary and Conclusion

In this thesis, we have explored the effectiveness of incorporating a discrepancy term
in a physics-informed Bayesian Calibration model, specifically for a homogeneous
linearized ODE. We use a model that follows a homogeneous linear differential
equation LΦ

t (u(t)) = f(t) = 0, where LΦ
t is the linear differential operator with

respect to t, and Φ is the physical parameters. We constructed one model that
does not account for discrepancy between the model and the observation process,
and one that does.

Setting up the models requires initial effort and knowledge of the physics of the pro-
cess. The inclusion of a discrepancy term offers a flexibility that aims to distinguish
the systematic discrepancy from the rest of the observed process.

In contrast to Spitieris and Steinsland (2022), which incorporated the discrepancy
on the process that is assumed to include a systematic deviation, which in this
case is u(t), we included the discrepancy term on the opposite side, f(t). This
is interpreted as follows: We represent a process following the model as uM (t).
However, if the actual observation process is u(t) = uM (t) +∆u(t),∆u(t) ̸= 0, the
model is incorrect. In this case, we consider it as if the process originates from
the model process uM (t) but is affected by an external force fforce(t) that compels
the model process to resemble the actual process u(t) = uM (t) + ∆u(t). Hence,
we introduce a discrepancy term δ(t) into f(t) to nullify this force fforce(t). This
results in LΦ

t (u(t)) = fforce(t) + δ(t) = 0.

We have investigated the models’ behavior compared to a model without a dis-
crepancy term for noisy observations from four processes: (1) when there is no
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systematic deviation between the model and the observed process, (2) when the
process is nonlinear so that the deviation arises from the linearization (3) when the
deviation follows a Gaussian Process (GP) and (4) when the process involves an
additional damping term that is not accounted for in the model.

When analyzing the models’ performance on a process with a controlled deviation
from the model, which follows the GP assumption, we observe that the model con-
taining a discrepancy term successfully distinguishes the systematic deviation from
the actual process for a linear process. It recovers the true values in its estimates,
unlike the model without discrepancy, which either categorizes the deviation as
measurement noise or fails to estimate the process entirely, resulting in estimates
of a process with zero amplitude and high levels of independent and identically
distributed noise.

However, the linearized model fails to accurately capture deviations from the non-
linear process due to linearization in its discrepancy term. This is because the
nonlinear process more closely resembles a linearized process with a different para-
meter. This incorrect estimate provides a better fit to the data and leads to im-
proved predictions, a scenario discussed by Kennedy and O’Hagan (2001).

On the other hand, when estimating the noise for a damped process, the model with
a discrepancy term outperformed the model without a discrepancy term. However,
when the observations contain high noise levels, the model with a discrepancy term
struggles to distinguish systematic deviations from independent noise.

Additionally, we observed indications that the model with a discrepancy term ex-
hibited more stability in terms of convergence: it consistently needed fewer HMC
iterations to converge to the solution compared to the model without a discrep-
ancy term, which became clear when we had more noisy observations and when
the input data consisted of more cycles. This suggests that the increased flexibility
in the model with the discrepancy term enables more effective exploration of the
posterior space, reducing the likelihood of getting trapped in suboptimal modes.

With an increased number of cycles in the observations, the solution space nar-
rows, rendering both models more sensitive to deviations from the process. The
model without a discrepancy term becomes particularly sensitive, lacking the flex-
ibility to distinguish deviations from the process and only being able to account for
observations originating from the process or independent noise. Conversely, even
when the observations stem from the same process as the model without discrep-
ancy, the model with the additional discrepancy term exhibits a higher likelihood
of converging to the correct distributions. In the study by Spitieris and Steins-
land (2022), the performance of three different covariance functions for the kernel
was examined. Notably, the periodic kernel demonstrated promising results in
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capturing periodic behaviors. The potential benefits of applying this kernel when
dealing with observations spanning multiple cycles are worth considering. Further
investigation into the application of the periodic kernel in such scenarios may lead
to improved outcomes, including modeling the discrepancy with a periodic kernel
when the deviation between the model and the process exhibits periodic behavior.

Conclusion

In conclusion, incorporating a discrepancy term as an external force in the physics-
informed Bayesian Calibration model offers promising results in identifying system-
atic deviations and improving estimation accuracy. Evidently, the added flexibility
provided by the discrepancy term allows for more effective exploration of the pos-
terior space and increases the likelihood of finding the correct solution for a given
number of HMC iterations. However, a fundamental problem arises when applying
this approach to a deviating process closely resembling the model process with dif-
ferent parameters. This situation becomes evident when using a linearized model
with a discrepancy term on a nonlinear process. In such instances, it becomes im-
possible for the discrepancy term to accurately capture the deviation completely,
hindering the model’s ability to recover the true parameter estimates. However,
despite the incorrect parameter estimates, this can result in a better fit of the data,
leading to improved predictions.

75



CHAPTER 7. SUMMARY AND CONCLUSION

76



References

Andrieu, C. et al. (2003). ‘An introduction to MCMC for machine learning’. In:
Machine Learning 50.1, pp. 5–43. doi: 10.1023/A:1020281327116. url: https:
//doi.org/10.1023/A:1020281327116.

Bayarri, M. J. et al. (2007). ‘A Framework for Validation of Computer Models’.
In: Technometrics 49.2, pp. 138–154. doi: 10.1198/004017007000000092. url:
https://doi.org/10.1198/004017007000000092.

Betancourt, M. (2017). Robust Gaussian Processes in Stan. url: https://betanalpha.
github.io/assets/case_studies/gp_part3/part3.html#1_initial_setup.

— (2018). A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv: 1701.
02434 [stat.ME].

Brynjarsdóttir, J. and A. O’Hagan (2014). ‘Learning about physical parameters:
the importance of model discrepancy’. In: Inverse Problems 30.11, p. 114007.
doi: 10.1088/0266-5611/30/11/114007. url: https://dx.doi.org/10.1088/0266-
5611/30/11/114007.

Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. New
York: John Wiley & Sons. isbn: 978-0-470-72335-7.

Chasnov, J. R. (2022). 11. The Damped, Driven Pendulum. url: https://batch.
libretexts .org/print/url=https ://math. libretexts .org/Bookshelves/Scientific_
Computing_Simulations_and_Modeling/Scientific_Computing_(Chasnov)/II%
3A_Dynamical_Systems_and_Chaos/11%3A_The_Damped%2C_Driven_
Pendulum.pdf.

Duane, S. et al. (1987). ‘Hybrid Monte Carlo’. In: Physics Letters B 195.2, pp. 216–
222. issn: 0370-2693. doi: https://doi.org/10.1016/0370-2693(87)91197-X. url:
https://www.sciencedirect.com/science/article/pii/037026938791197X.

Flato, G. et al. (2013). ‘Evaluation of Climate Models’. In: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to the Fifth As-
sessment Report of the Intergovernmental Panel on Climate Change. Ed. by
T. F. Stocker et al. Cambridge, United Kingdom and New York, NY, USA:
Cambridge University Press.

77

https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1198/004017007000000092
https://doi.org/10.1198/004017007000000092
https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html#1_initial_setup
https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html#1_initial_setup
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
https://doi.org/10.1088/0266-5611/30/11/114007
https://dx.doi.org/10.1088/0266-5611/30/11/114007
https://dx.doi.org/10.1088/0266-5611/30/11/114007
https://batch.libretexts.org/print/url=https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Scientific_Computing_(Chasnov)/II%3A_Dynamical_Systems_and_Chaos/11%3A_The_Damped%2C_Driven_Pendulum.pdf
https://batch.libretexts.org/print/url=https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Scientific_Computing_(Chasnov)/II%3A_Dynamical_Systems_and_Chaos/11%3A_The_Damped%2C_Driven_Pendulum.pdf
https://batch.libretexts.org/print/url=https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Scientific_Computing_(Chasnov)/II%3A_Dynamical_Systems_and_Chaos/11%3A_The_Damped%2C_Driven_Pendulum.pdf
https://batch.libretexts.org/print/url=https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Scientific_Computing_(Chasnov)/II%3A_Dynamical_Systems_and_Chaos/11%3A_The_Damped%2C_Driven_Pendulum.pdf
https://batch.libretexts.org/print/url=https://math.libretexts.org/Bookshelves/Scientific_Computing_Simulations_and_Modeling/Scientific_Computing_(Chasnov)/II%3A_Dynamical_Systems_and_Chaos/11%3A_The_Damped%2C_Driven_Pendulum.pdf
https://doi.org/https://doi.org/10.1016/0370-2693(87)91197-X
https://www.sciencedirect.com/science/article/pii/037026938791197X


REFERENCES

Gaetan, C. and X. Guyon (2010). Spatial Statistics and Modeling. Springer. url:
https://link.springer.com/content/pdf/10.1007/978-0-387-92257-7.pdf.

Gardner, P. et al. (2021). ‘Learning model discrepancy: A Gaussian process and
sampling-based approach’. In: Mechanical Systems and Signal Processing 152,
p. 107381. issn: 0888-3270. doi: https://doi.org/10.1016/j.ymssp.2020.107381.
url: https://www.sciencedirect.com/science/article/pii/S0888327020307676.

Gelman, A., J. B. Carlin et al. (2013). Bayesian Data Analysis. Taylor & Francis
Ltd. Chap. 1.

Gelman, A., X. Meng and H. Stern (1996). ‘Posterior Predictive Assessment of
Model Fitness via Realized Discrepancies’. In: Statistica Sinica, pp. 733–760.
url: http://www.stat.columbia.edu/~gelman/research/published/A6n41.pdf.

Givens, G. H. and J. A. Hoeting (2012a). Computational Statistics, Second Edition.
Wiley, pp. 1–17. url: https : / / onlinelibrary. wiley. com/doi / book / 10 . 1002 /
9781118555552.

— (2012b). ‘Markov Chain Monte Carlo’. In: Computational Statistics. 1st. John
Wiley & Sons, Inc. Chap. 1.5. isbn: 9780470533314. doi: 10.1002/9781118555552.

— (2012c). ‘Markov Chain Monte Carlo’. In: Computational Statistics. 1st. John
Wiley & Sons, Inc. Chap. 7.3.1. isbn: 9780470533314. doi: 10.1002/9781118555552.

Goldstein, H., Charles Poole and J. Safko (2002). Classical Mechanics. 3rd. Addison-
Wesley.

Gramacy, R. B. (2022). Surrogates. CRC Press, Taylor & Francis Group. url:
https://bookdown.org/rbg/surrogates/.

Groetsch, C. W. (Jan. 1993). Inverse Problems in the Mathematical Sciences. Ori-
ginally published by Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braun-
schweig/Wiesbaden. Springer Fachmedien Wiesbaden. isbn: 3-528-06545-1. doi:
10.1007/978-3-322-99202-4.

Higdon, D. et al. (2004). ‘Combining Field Data and Computer Simulations for
Calibration and Prediction’. In: SIAM J. Scientific Computing 26, pp. 448–
466. doi: 10.1137/S1064827503426693.

Hoffman, M. D. and A. Gelman (2014). ‘The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo’. In: Journal of Machine
Learning Research 15.47, pp. 1593–1623. url: http :// jmlr .org/papers/v15/
hoffman14a.html.

Honkela, A. (22nd Sept. 2020). Computational Statistics I. url: https://www.cs.
helsinki .fi/u/ahonkela/ teaching/compstats1/book/hamiltonian - monte - carlo -
hmc.html (visited on 17th Apr. 2023).

Kennedy, M. C. and A. O’Hagan (2001). ‘Bayesian calibration of computer models’.
In: Journal of the Royal Statistical Society: Series B(Statistical Methodology).
url: https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294.

Owen, F. (2014). Simple pendulum via Lagrangian mechanics. url: http://www.
aoengr.com/Dynamics/LagrangianMechanicsPendulum.pdf.

78

https://link.springer.com/content/pdf/10.1007/978-0-387-92257-7.pdf
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107381
https://www.sciencedirect.com/science/article/pii/S0888327020307676
http://www.stat.columbia.edu/~gelman/research/published/A6n41.pdf
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118555552
https://doi.org/10.1002/9781118555552
https://doi.org/10.1002/9781118555552
https://bookdown.org/rbg/surrogates/
https://doi.org/10.1007/978-3-322-99202-4
https://doi.org/10.1137/S1064827503426693
http://jmlr.org/papers/v15/hoffman14a.html
http://jmlr.org/papers/v15/hoffman14a.html
https://www.cs.helsinki.fi/u/ahonkela/teaching/compstats1/book/hamiltonian-monte-carlo-hmc.html
https://www.cs.helsinki.fi/u/ahonkela/teaching/compstats1/book/hamiltonian-monte-carlo-hmc.html
https://www.cs.helsinki.fi/u/ahonkela/teaching/compstats1/book/hamiltonian-monte-carlo-hmc.html
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294
http://www.aoengr.com/Dynamics/LagrangianMechanicsPendulum.pdf
http://www.aoengr.com/Dynamics/LagrangianMechanicsPendulum.pdf


REFERENCES

Raissi, M., P. Perdikaris and G. E. Karniadakis (2017). ‘Machine Learning of Linear
Differential Equations Using Gaussian Processes’. In: Journal of Computational
Physics 348. doi: https://doi.org/10.1016/j.jcp.2017.07.050.

— (2018). ‘Numerical Gaussian Processes for Time-Dependent and Nonlinear Par-
tial Differential Equations’. In: SIAM Journal on Scientific Computing 40.1,
A172–A198. doi: 10 . 1137 / 17M1120762. eprint: https : / / doi . org / 10 . 1137 /
17M1120762. url: https://doi.org/10.1137/17M1120762.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian Processes for Machine
Learning. Cambridge, MA: MIT Press. isbn: 026218253X. url: http://www.
GaussianProcess.org/gpml.

Robert, C. P. and G. Casella (1999). Monte Carlo Statistical Methods. New York:
Springer-Verlag.

Särkkä, S. (2011). ‘Linear Operators and Stochastic Partial Differential Equa-
tions in Gaussian Process Regression’. In: Artificial Neural Networks and Ma-
chine Learning – ICANN 2011. Ed. by Timo Honkela et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 151–158. isbn: 978-3-642-21738-8. url: https:
//doi.org/10.1007/978-3-642-21738-8_20.

Song, Y. et al. (2022). Solving Inverse Problems in Medical Imaging with Score-
Based Generative Models. arXiv: 2111.08005 [eess.IV].

Spitieris, M. and I. Steinsland (2022). ‘Bayesian Calibration of imperfect computer
models using Physics-informed priors’. In: arXiv: 2201 . 06463v3. url: https :
//arxiv.org/abs/2201.06463.

— (2023). ‘Bayesian Calibration of Imperfect Computer Models using Physics-
Informed Priors’. In: url: https://www.researchgate.net/publication/357925983_
Bayesian_Calibration_of_Imperfect_Computer_Models_using_Physics-Informed_
Priors.

Stan Development Team (2022). Stan Functions Reference. url: https://mc-stan.
org/docs/functions-reference/linear-algebra-functions-and-solvers.html.

Thurber, C. and J. Ritsema (2015). ‘1.10 - Theory and Observations - Seismic
Tomography and Inverse Methods’. In: Treatise on Geophysics (Second Edi-
tion). Ed. by Gerald Schubert. Elsevier, pp. 307–337. doi: https ://doi .org/
10.1016/B978-0-444-53802-4.00009-9. url: https://www.sciencedirect.com/
science/article/pii/B9780444538024000099.

79

https://doi.org/https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
https://doi.org/10.1137/17M1120762
http://www.GaussianProcess.org/gpml
http://www.GaussianProcess.org/gpml
https://doi.org/10.1007/978-3-642-21738-8_20
https://doi.org/10.1007/978-3-642-21738-8_20
https://arxiv.org/abs/2111.08005
https://arxiv.org/abs/2201.06463v3
https://arxiv.org/abs/2201.06463
https://arxiv.org/abs/2201.06463
https://www.researchgate.net/publication/357925983_Bayesian_Calibration_of_Imperfect_Computer_Models_using_Physics-Informed_Priors
https://www.researchgate.net/publication/357925983_Bayesian_Calibration_of_Imperfect_Computer_Models_using_Physics-Informed_Priors
https://www.researchgate.net/publication/357925983_Bayesian_Calibration_of_Imperfect_Computer_Models_using_Physics-Informed_Priors
https://mc-stan.org/docs/functions-reference/linear-algebra-functions-and-solvers.html
https://mc-stan.org/docs/functions-reference/linear-algebra-functions-and-solvers.html
https://doi.org/https://doi.org/10.1016/B978-0-444-53802-4.00009-9
https://doi.org/https://doi.org/10.1016/B978-0-444-53802-4.00009-9
https://www.sciencedirect.com/science/article/pii/B9780444538024000099
https://www.sciencedirect.com/science/article/pii/B9780444538024000099


REFERENCES

80



Appendix A

Abbreviations

ACF Autocorrelation Function
CI Credible Interval
DP Damped Pendulum Process
M1_WOD Model 1 Without Discrepancy
M2_WDf Model 2 With Discrepancy on f
GP Gaussian Process
HMC Hamiltonian Monte Carlo
NUTS No-U-Turn Sampler
LP Linearized Pendulum Process
LPGP Linearized Pendulum Process with added Gaussian Process
MCMC Markov Chain Monte Carlo
MSE Mean Squared Error
Neff or ESS Effective Sample Size
ODE Ordinary Differential Equation
PPC Posterior Predictive Check
PPD Posterior Predictive Distribution
RK4 Runge-Kutta 4
TP True Idealized Pendulum Process
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Appendix B

Experiment 1 (LP) Diagnostics

B.1 STAN Fit Summaries from Experiment 1 (LP)

Table B.1: Summary statistics of one run of model M2WDf with simulated data
from LP (N = 100000 HMC iterations) reveal that Neff (ESS) is large, indicating
numerous uncorrelated samples and suggesting convergence (Rhat = 1).

mean semean sd 2.5% 25% 50% 75% 97.5% Neff Rhat
l 1.15 0.00 0.11 0.93 1.08 1.16 1.23 1.37 17023 1
σ 1.38 0.00 0.49 0.65 1.02 1.30 1.65 2.55 18169 1
σu 0.03 0.00 0.01 0.02 0.02 0.03 0.03 0.04 19276 1
σf 0.03 0.00 0.01 0.02 0.03 0.03 0.04 0.05 20590 1
R 0.20 0.00 0.00 0.20 0.20 0.20 0.20 0.20 22129 1
lp 74.22 0.01 1.64 70.11 73.39 74.55 75.41 76.37 12507 1
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Table B.2: Summary statistics of one run of model M2WDf with simulated data
from LP (N = 100000 HMC iterations) reveal that Neff (ESS) is large, indicating
numerous uncorrelated samples and suggesting convergence (Rhat = 1). Addi-
tionally, the non-zero value of the discrepancy hyperparameter σδ indicates that
the model has captured some of the non-existent discrepancy between the model
and the process. However, the distribution for σδ is wide and uncertain due to its
nonnegative constraint. This contributes to the extensive width of the posterior
distribution of R for M2WDf .

Mean semean sd 2.5% 25% 50% 75% 97.5% Neff Rhat
l 1.15 0.00 0.11 0.93 1.07 1.15 1.23 1.36 16444 1
σ 1.37 0.00 0.49 0.65 1.01 1.29 1.65 2.53 18036 1
σu 0.03 0.00 0.01 0.02 0.02 0.03 0.03 0.04 19045 1
σδ 0.11 0.00 0.13 0.01 0.04 0.07 0.14 0.46 23230 1
lδ 1.60 0.01 0.78 0.34 1.01 1.54 2.12 3.28 21451 1
σf 0.03 0.00 0.01 0.02 0.03 0.03 0.04 0.05 21558 1
R 0.20 0.00 0.00 0.19 0.20 0.20 0.20 0.21 16678 1
lp 70.60 0.02 2.04 65.73 69.48 70.95 72.08 73.52 9567 1
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B.2 Trace Plots from Experiment 1 (LP)
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Figure B.1: Trace plots from three chains with 100000 HMC iterations of M1WOD

for observations from LP. Note that scales on the y-axis vary for each parameter.
The observed mixing pattern, resembling a belt, indicates convergence of the
MCMC chains (E1, (LP)).
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Figure B.2: Trace plots from three chains with 100000 HMC iterations of M2WDf

for observations from LP. Note that scales on the y-axis vary for each parameter.
The observed mixing pattern, resembling a belt, indicates convergence of the
MCMC chains (E1, (LP)).
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Appendix C

Additional Results from
Experiment 2

C.1 Bias and Credible Interval Width for E2 (LP)
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Figure C.1: Absolute value of bias of R̂, absolute value of bias of σ̂u and with of
credible interval for LP for different levels of measurement noise, determined by
σu. This is the results from 300000 HMC iterations.
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C.2 Doubled Number of Cycles, Halved Measure-
ment Density for M1WOD
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Figure C.2: Same number of measurements and number of iterations, Nu = Nf =
20, but with ∆t = 4(light red) and ∆t = 8(dark red) for M1WOD.
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C.3 Halved Number of Cycles, Doubled Measure-
ment Density for M2WDf
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Figure C.3: Same number of measurements Nu = Nf = 20 and number of itera-
tions, but with ∆t = 4(light blue) and ∆t = 2(dark blue).
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C.4 Trace Plots for LPGP (E2b)
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Figure C.4: Trace plot for M1WOD with observations from LPGP in E2b, show-
ing non-mixing chains, showing a bimodality in the posteriors, suggesting mixing
problems.
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