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Abstract

The collection of biological data in the form of large data sets has been an undertaking in the
field of biology for the last few decades. Due to the nature of biological systems these data
sets are large and complex. A field that seeks to make this data clearer and more understand-
able is the field of systems biology, which utilises a holistic approach to biological processes,
understanding them as interconnected systems. One of the sub-fields of systems biology is the
field of genome scale metabolic modelling, which utilises network analysis in combination with
genomic data in order to develop models for understanding the metabolism of cells. These mod-
els, known as Genome Scale Metabolic Models (GEMs), are representative of specific cells and
are capable of predicting the activity of pathways in the metabolic network of the cell. These
predictions are known as metabolic flux distributions, where flux is a value representing the
metabolic flow through a reaction. It calculates these flux predictions by utilising flux balance
analysis (FBA) in conjunction with a pseudo-reaction that represents the cells consumption of
metabolites for growth. This pseudo-reaction is the biomass objective function (BOF). How-
ever, the BOFs for the models are usually made to be static and unchanging with factors like
growth rate and environment. This is an assumption that crucially does not reflect reality.

A previous study researched how uncertainty in the biomass composition would impact the
predicted flux distributions. However, this study was performed on a model that is naturally
robust and therefore is likely to underestimate the impact of the uncertainty injections. The
current study performed a similar analysis on a more restricted model with a lower degree of
robustness, namely the eciML1515 model of E. coli. It then implemented growth rate-specific
BOFs for the iML1515, based on experimental data sets, in order to study if the accuracy of
the model increases with a more condition-dependent BOF. Results found that the eciML1515
displayed generally high degrees of propagation of uncertainty from the biomass composition
to the biomass production, as well as some central metabolic pathways. While both models dis-
played a level of robustness, the standard GEM was far more robust then the eciML1515 model.
These results support the idea that more constrained models, compared to the standard GEMs,
are likely to be more impacted by perturbations and alterations of the biomass composition.

As for the growth rate-specific BOFs, they displayed a general improvement of accuracy on
the flux distribution predictions for most of the experimental data sets. The exception to this
was for the data sets corresponding to acetate, glucose and gluconate as carbon sources. For
glucose this result was expected, as the standard BOF is based on specific data gathered from
E. coli grown on glucose.

In conclusion, this study finds that the uncertainty propagation of the models predicted flux
distributions is very likely to increase the more restricted the models are. However, by imple-
menting condition-specific BOFs and accounting for some of the variations caused by environ-
ments and growth rate, the accuracy of GEMs can increase. More research should be done into
environmental and conditional factors that can be accounted for in GEMs, as well as a closer
study on how the biomass composition can impact flux distributions, focusing on specific path-
ways in the metabolic network.
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Sammendrag

Innhentning av biologiske data i form av store datasett har vore eit mål i biologifeltet de siste
tiårene. Disse datasetta er store og komplekse, grunnet måten biologiske system har utviklet
seg. Eit felt som søker å gjøre disse datasetta klarere og meir forståeleg er systembiologi.
Det bruker ein heilskapeleg tilnærming av tilnærming av biologiske prosesser og forstår dem
som samankobla system. Ein av underfelta til systembiologi er feltet for genomskala metabolsk
modelering, som utnytter nettverksanalyse i kombinasjon med genomdata for å utvikle modeller
for å kartlegge metabolismen til celler. Disse modellene, kjent som Genomskala Metabolske
Modeller (GEMs), representerer spesifikke celler og er i stand til å predikere aktiviteten til
metabolismen i cellen. Disse prediksjonene kalles for metabolske fluksfordelinger, der fluks
er ein verdi som representerer den metabolkse strømmen igjennom ein reaksjon. Den bereg-
ner disse fluksprediksjonene ved å bruke fluksbalanse analyse (FBA) i kombinasjon med ein
pseudoreaksjon som representerer cellens forbruk av metabolitter for vekst. Denne pseudore-
aksjonen er biomasseobjektiv funksjonen (BOF). Skjønt BOF-ene til disse modelene er ofte
statiske og endrer seg ikkje med faktorer som miljø og vekstrate. Dette er ein antagelse som
ikkje gjenspeiler verkelegheiten.

Eit tidligere studie har blitt gjort der dei undersøkte om usikkerhet i den antatte biomasse
komposisjonen hadde invirkning på fluksprediksjonene. Dette studiet vart derimot utført på ein
model som er naturleg robust og derfor sannsynlegvis undervurderte effekten av usikkerhetsin-
jeksjonen. Den nåverende studien gjennomførte ein lignende analyse på ein meir begrensa
modell med mindre robusthet, i form av eciML1515 til E. coli. Videre så implementerte den
vekstrate spesifikke BOF-er for iML1515, basert på eksperimentell data, for å undersøke om
nøyaktigheten til modellen auker med ein meir spesifikk BOF. Resultata til denne analysen
fant at eciML1515 hadde ein høg grad av usikkerhetsspredning fra biomassekomposisjonen til
biomasseproduksjon og visse metabolske reaksjonsveier. Begge modellene visste robusthet,
men standard GEM hadde langt høgere grad av robusthet samanligna med ecIML1515 mod-
ellen. Disse resultata støtter ideen om at meir begrensa modeller, samanligna med standard
GEMs, vil sannsynligvis være meir påverka av endringer i biomassekomposisjonen.

Når det gjeld dei vekstrate spesifikke BOF-ene, så viste de generell forbedringer i nøyaktigheten
til fluksprediksjonene for de fleste datasetta. Unntaket var for datasetta som tilhørte acetate,
glukose og gluconate som kilde til karbon. Det var forventa at standard BOF-en skulle vise
meir nøyaktig fluksprediksjon for glukose som karbon kilde da denne BOF-en er basert på data
fra ein E. coli som brukte glukose som karbon kilde.

Oppsummert, så konkluderer dette studiet med at usikkerhetsspredning for flukspredik-
sjoner vil mest sannsynleg auke jo meir begrensa modellene er. Dette kan derimot gjørast opp
for med å implementere meir spesifikke BOF-er som bedre representerer biomasse komposisjo-
nen under spesifikke forhold. Meir forskning burde utførast på faktorer som kan implementerast
i GEMs, i tillegg til eit nærare studie på korleis biomasse komposisjonen påverkar flukspredik-
sjoner, med fokus på spesifikke reaksjonsveier i metabolismen.
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Chapter 1
Introduction

The collection of biological data has been a primary goal in the field of biology for well over
the last quarter-century, with a significant emphasis on unraveling the genome, proteome and
metabolome of various species [1]. The Human-Genome project, which began in the 1990s,
took 13 years to map out 90% of the human genome and was a massive endeavour by the sci-
entific field, involving extensive collaboration [2]. Similar projects have been performed on
other species with an ever increasing efficiency. Today, it is possible to sequence a genome in
less than a week [3], generating complex data sets that explore the biological components of a
species in more detail then we’ve ever been able to before. However, the complexity of these
data sets also poses challenges. The interactions between the genome, proteins, and metabolism
of a species are intricate and surpass the comprehension of human researchers using only tradi-
tional approaches. Consequently, innovations in computation, handling and processing of this
data have recently emerged as crucial advances for biology [4]. The idea of using computa-
tional tools and approaches to convert these dense and intricate interactions between proteins,
genome and metabolism into data fit for interpretation is enabling researchers to keep up with
the ever-growing collection of large datasets [5].

Systems biology is an approach that addresses these challenges of managing these large
datasets in biology. It is an evolving field that aims to advance our understanding of complex
biological systems by analyzing and modeling them as interconnected networks of components.
Unlike the more traditional reductionist approach that focuses on individual parts, it has a more
holistic approach to the study of biological behaviour, looking at it as an ever-changing sys-
tem [6]. Systems biology utilises experimental data collected from various fields to map out
the interactions between the components of a biological behaviour, before scaling these up to
full models describing these behaviours. These models can simulate the system, predict how it
will react to changes in its environment and identify key components and pathways [7]. This
approach allows for the construction of simplified and more understandable representations of
complex biological systems through the use of models. One of the core ways to understand and
develop these models is with network analysis. By treating the individual components as nodes
and their interactions as edges, the biological behaviour can be understood as a network [8].

The principles of systems biology and network analysis can be applied to metabolic infor-
mation to create a model of the metabolic network based on genomic data that contains all
known metabolic reactions and the corresponding genes. This is done by creating a representa-
tion of the cellular components, where the metabolites are nodes and the interactions between
them are edges. This is the central principle behind genome scale metabolic modeling, a pow-
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Chapter 1. Introduction

erful tool capable of simulating the metabolism of cells, making complex metabolic data easier
to understand and interact with. Traditionally, genome scale metabolic models (GEMs) was
mainly used to further our understanding of individual organisms. However, in recent times
there has been a growing interest in metabolic data for combining it with other data in order
to produce a greater understanding of metabolic interactions between organisms. One example
is for understanding the interactions between a host biome and its microbial community [9].
GEMs has the potential of being widely adopted to increase our understanding of other fields,
increase production of specific drugs by manipulating metabolism of organisms, designing mi-
crobial strains optimized for producing specific biomaterials like biofuel, etc [10]. The use of
GEMs would allow researchers to understand metabolism in a more comprehensive manner,
enabling predictions on how the behaviours of organisms would change based on the environ-
ment and how, in turn, the organisms affect the environment. With the increasing availability of
genomic and metabolic data the potential applications for GEMs is only growing.

The central prediction produced by GEMs is the metabolic flux distribution of the model.
The metabolic fluxes are a value that represents the turnover rate of a metabolite through a
reaction. In other words, it creates a mathematical representation of the predicted activity in
a metabolic network. To create these predictions it uses mathematical optimization and linear
programming, a method for maximising or minimising a vector in an equation set. However, in
order for these methods to be properly applicable, an objective function has to be defined.

The objective function, and therefore the target for optimisation in most GEMs, is the
biomass objective function (BOF). This is a simplified representation of the organism growth
and production of biomass. It is set as the objective function as it is a reasonable assumption
that most organisms have evolved to optimize for growth. The principal method of applying
the concepts of mathematical optimisation and linear programming to the metabolic network
is what is known as flux balance analysis (FBA), which is capable of calculating the optimal
configuration for the metabolic fluxes in the network to produce biomass [11]. In order for
FBA to represent the metabolism of an organism a couple of key assumptions are made. One of
these assumptions is of steady state; namely that the metabolism of the organism has reached a
point where the concentration of the metabolic contents in the organism never change, i.e. that
the consumption and production of each metabolite internally cancel each other out. A second
assumption is that the organism in question has reached a state of optimality. This is done as
FBA naturally calculates the most optimal solution for the organism and so would only be an
accurate representation if the organism in question has managed to reach the optimal state. This
can be a challenge as there might be hindrances stopping the organism from reaching this opti-
mality not accounted for in the metabolic model. A third assumption is the assumption of mass
balance, that every reaction in the metabolic network can be properly represented as synthesis
or degradation of a set of metabolites, in relatively equal measures. These assumptions are cen-
tral to FBA and necessary for FBA to keep its elegant and simple use-case.

However, GEMs inherently make another assumption, owing to the static nature of the
BOF; namely that the biomass composition of a cell never changes due to environmental and
metabolic perturbations. However, studies have shown that the biomass composition of cells
can vary with factors like growth rate and environment. As such this assumption is likely in-
correct and by factoring in the growth rate for the BOF it is possible that the accuracy of the
predicted metabolic network of the model will increase [12].

In spite of these assumptions, GEM has shown itself capable of producing models that show
accurate and robust results for predicting the growth rate of organisms. The robustness is likely
owing to the flexible nature of GEM and in particular the commonly used model type Constraint
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Based Reconstruction and Analysis (COBRA). This model type is defined by a limited num-
ber of restrictions. One particular study, by Maranas et al. [13], investigated the propagation
of uncertainty through the metabolic network on an E. coli GEM. They found that the predic-
tion of growth rate displayed a high level of robustness and resistance to perturbations in the
biomass coefficients. However, the prediction of the internal metabolic fluxes did not display
this same level of robustness; in some cases even amplifying the uncertainty propagation from
the biomass coefficients throughout the metabolic network [13]. This could be a side effect of
the flexible nature of the COBRA model, causing huge internal metabolic pathway shifts in or-
der to maintain the same biomass growth in spite of the perturbation. As such a model type that
has more restrictions on the internal metabolic network could potentially give a more accurate
view on how the metabolic network reacts to alterations in the environment and biomass com-
position. One such model type is the enzyme constrained models GECKO, which accounts for
the reaction enzymes. Enzymes are proteins that assists in the reaction without being a product
or substrate [14]. As such the GECKO model is potentially more rigid in its metabolic network
predictions and less robust in the biomass growth prediction, but will give a better view of un-
certainty propagation throughout the metabolic network.

The overarching aim of this study is to study the metabolic network and how uncertainty
and alterations in the biomass composition interacts with the predictions of flux distributions
from the model. This overarching aim can be split into two smaller ones.
The first aim is to perform a propagation of uncertainty analysis on the eciML1515, an
E. coli GECKO model. This is based on the reasoning that the GECKO model will give a
more accurate evaluation of predicted flux distributions following perturbations in the biomass
composition, owing to the model’s lower degree of robustness.
The second aim is to study how a condition dependent biomass representation in the model
will affect the accuracy of the flux distributions. This is achieved by creating a new growth
rate-specific biomass objective function for an E. coli GEM and testing how it performs based
on experimental data from Gerosa et al. study [15]. The study collected data on specific re-
actions, the growth rate and exchange reactions from E. coli cells growing on different carbon
sources. The principal aim of this study is to further the understanding of predicted internal
metabolic reactions, how the biomass composition can affect them and if implementing more
specific representations of the biomass can increase the accuracy of the model’s predictions.
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Chapter 2
Background

This chapter aims to give the reader the necessary understanding of the theoretical foundation
behind this project. The chapter starts by presenting an overview of cell metabolism, with a
focus on metabolic pathways and enzymes that control the reactions involved with these path-
ways. Moving forward, the chapter focuses on the representation of the metabolism as genome-
scale models. It explores the mathematical and theoretical basis for the process of developing
and analyzing these GEM models as well as some of the most common analysis performed
on these models such as FBA, Parsimonious Flux Balance Analysis (pFBA) and Minimization
of Metabolic Adjustment (MOMA). Finally it gives an overview of two different models that
represent E. coli in the form of iML1515 and eciML1515.

2.1 Cell Metabolism

The metabolism of a cell can be defined as the complex network of biochemical reactions that
enables the cell to sustain life. These reaction includes processes such as energy utilisation,
nutrient uptake and building cellular components. Central to the metabolic network are the
enzymes, specialized proteins that can act as catalysts to control the biochemical reactions that
occur within the cell. They are capable of controlling the energy-requirements and the rate at
which internal reactions occur. Enzymes exhibit a high degree of specificity to their specific
substrates. A key component is their structure and formation of something called an active
site, a pocket or cleft with a structure specific to their respective substrates. Once the substrate
binds to the active site, the enzyme is capable of increasing the speed or even inducing the
transformation of a substrate into a product. Most enzymes do this by lowering the activation
energy, or free energy, needed for the energy to occur by introducing a more stable transition
state between substrate and product [14]. Fig. 2.1 shows an example of how an enzyme can
change the energy requirements for a reaction to occur. Most enzyme-catalysed reactions are
defined by the turnover number, kcat, of the enzyme in question. The formula that defines these
turnover numbers is

kcat =
Vmax

[E]
, (2.1)

where Vmax is the maximum velocity of the biochemical reaction in question and [E] is the
concentration of enzymes present. This is a representation of the maximum number of substrate
molecules that can be transformed into products per molecule of enzyme per unit time. Due to
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Chapter 2. Background

this it acts as an upper limit on how fast said reaction can occur [16]. Turnover number and its
impact on the metabolism of a cell will be discussed further in chapter 2.2.11.

Figure 2.1: Graph representing the difference in activation energy required between an uncatalyzed
reaction and a catalyzed one. The y-axis represents the free energy required at that moment in the
reaction and the x-axis represents the current state of the reaction, moving from the inital state to then
final state. The catalyzed reaction has a noticeable lower curve and so a lower required free energy
needed to reach the final state. This translates into a higher rate of reaction, or reaction speed. Note that
this is a general example and not a specific one. Figure taken from Ref. [14].

The substrate and products of these reactions are referred to as metabolites, which move through
different pathways in the cell metabolism. A pathway is a series of interconnected biochemi-
cal reactions that convert the substrates into products [17]. Thanks to the myriad of pathways
present in the metabolism, cells are capable of turning a relatively limited amount of available
extra-cellular substrates into a vast amount of products for different functions and requirements.
These pathways can then be used to group and categorize different sections of metabolism, by
separating them based on what function they serve in the cell. An example of this is shown in
Fig. 2.2 with the metabolism of E.coli. While the metabolism might seem like an impossible
network to untangle, modern computational methods, a deeper understanding of the genome
and a systemic way of thinking has allowed us to make huge strides in representing and under-
standing these metabolic networks [18].
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2.2 Genome Scale Modeling

Figure 2.2: Map over the metabolism of an E.coli showing some of the different biochemical reactions
available to the cell. They are grouped and color coded based on what function they serve for the cell.
This shows that, while the metabolism of a cell might seem complex, by looking at the pathways and
systems instead of individual reactions the metabolism can be mapped out in a more understandable way.
Figure taken from Ref. [19].

2.2 Genome Scale Modeling
Genome-scale modeling is a method for creating a representation of the metabolism of a cell
based on genomic data. It is a network based process for collecting all the known metabolic in-
formation about a system, including genes, enzymes, metabolites and reactions. It can provide
predictions relating to growth and cellular fitness for single cells and allow a deeper understand-
ing of their metabolism [9]. This section will cover the process of creating these GEMs.

2.2.1 Genome Scale Network Reconstruction
The first step in the GEM approach is to create a genome-scale network reconstruction, which
is a computational method that translates genomic data into a metabolic network. The starting
point is a well-annotated genomic sequence of the target organism, typically obtained from pub-
lic databases or similarly available data. The annotated genome sequence provides information
on what genes are present in the organism and their function. As such it will give an initial set
of candidate biochemical reactions that are encoded on the genome, allowing for a draft recon-
struction of the network.

This part can often be automated with computer-assisted tools, although the network pro-
duced by this is often full of gaps and missing critical reactions or pathways due to limitations
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of the genome annotation. For example it will be missing specific information about the organ-
ism like the substrate and co-factor specificity. To address these gaps and refine the network
the next step of the process is to integrate metabolic, genetic and biochemical data to map out
which genes and enzymes are involved in which reactions and pathways and fill in the gaps in
the draft network produced from the annotated genome sequence. This part can not be fully
automated and requires detailed knowledge about the metabolism of the organism in question.
The goal is to fill in enough holes in the draft network until a metabolic phenotype is achieved.

The data for these metabolic phenotypes are usually gathered experimentally and gives a
suitable target for the network construction. This is a labour intensive and time consuming pro-
cess. As an example, biochemical studies of the enzymes belonging to the organism can help
fill in the gaps in reversibility and substrate specificity that the would not be present in the draft
network. Once the gaps have been sufficiently filled, a curated reconstruction of the network
has been formed. After this the next step is to turn the curated reconstruction of the network
into a mathematical representation. This becomes the basis for the GEM which can then be fur-
ther developed by adding constraints that limit the metabolism and allow for more biologically
realistic predictions. [20].

2.2.2 Constraint Based Reconstruction and Analysis

The conceptual basis behind using constraint based reconstruction and analysis (COBRA) is
formed around six axioms that are based on fundamental statements:
Axiom #1: All cellular functions are based on chemistry. As a result of this they can be de-
scribed by chemical equations.
Axiom #2: Annotated genome sequences combined with experimental data enables a recon-
struction of the genome-scale network. This is the basis behind the network reconstruction
discussed in the earlier section.
Axiom #3: Cells operate under a variety of constraints. These constraints cannot be violated
and is what allows for the estimation of all the states that a genome-scale network reconstruc-
tion can achieve. These constraints fall under four different categories that will be discussed
further: psycho-chemical, topological, environmental and regulatory.
Axiom #4: Cells function in a context-specific manner. This means that when a cell is placed in
a particular environment it expresses a subset of genes in response to said environments cues.
In response to this the cellular component of the cell can be profiled with -omics methods (tran-
sciptomics, metaboliomics, proteomics etc.) and used to tailor the network to better represent
the environment being considered.
Axiom #5: Mass and energy is conserved. This is a fundamental physical law in nature. Due
to the nature of this law and that all chemical equations can be represented with stoichiometric
coefficients with the set of biochemical equations being represented by the stoichiometric ma-
trix (S), all steady states can be described mathematically by one linear equation, Sv = 0. v is
the vector of fluxes through chemical reactions.
Axiom #6: Cells evolve under selection pressure in a given environment. From this a definition
of the objective function can be made as a representation of this selection pressure to determine
the optimal states from the given network reconstruction and constraints. This statement will
be further explored in subsection 2.2.9.
These six axiomatic statements and the constraints they represent forms the theory behind CO-
BRA which is that a model of the metabolic network can be formed by defining and implement-
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2.2 Genome Scale Modeling

ing the constraints into the metabolic network in conjunction with the stoichiometric matrix
[21, 22].

2.2.3 The Stoichiometric Matrix
The stoichiometric matrix is an important tool in the context of genome-scale modeling. It is a
way to describe the relationship between metabolites and reactions in a metabolic system. The
stoichiometric matrix is defined as the matrix S as a m× n matrix with the form

S =


s11 s12 . . . s1n
s21 s22 . . . s2n
...

... . . . ...
sm1 sm2 . . . smn

 , (2.2)

where m represents the metabolites in the system, n represents the reactions and smn represents
the stoichiometric coefficient of the metabolite through the reaction. From this matrix we can
define the vector v given as n × 1 and further define the overall change of metabolites in the
system as Sv. From the earlier mentioned mass and energy conservation axiom we can set this
value as

Sv = 0. (2.3)

This is what is known as the steady state assumption, an important assumption in the context
of GEMs. By implementing this assumption the stoichiometric model can be collapsed into
a system of solvable linear equations. A properly setup stoichiometric matrix is therefore a
mathematical representation of the flow of metabolites through a metabolic network and plays
a crucial role in developing models based on metabolic knowledge [23].

Of note is that the number of metabolites m will be far lower then the number of reactions
n, giving the matrix a vast degree of freedom, and making the equation set underdetermined
and unsolvable in its current state. Therefore more constraints are defined mathematically and
implemented in order to restrict the equation set and allow for possible solutions [24].

2.2.4 Mathematical implementation of constraints
Mathematical implementation of constraints take the form of either an equation or an inequality.
In order to apply the proper mathematical formulation on a constraint it has to be either defined
as a bound or as an equality.

An equality is represented as an equation. The classical example being conservation of
mass. According to the Steady State Assumption there can be no accumulation or depletion of
cellular components and thus all production and depletion of individual components must be
equal. This assumption is mathematically represented as the earlier mentioned equation

Sv = 0,

mentioned in Axiom 5, where S is the stoichiometric matrix and v is the vector of reaction rate
[22]. This is further explored in chapter 2.2.3.

Bounds are represented as inequalities. These constraints limit certain parameters or in-
dividual variables, such as concentration, fluxes, or kinetic constants. Limits can be applied to
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individual fluxes to keep them from leaving their defined possible range in the form

vmin ≤ v ≤ vmax.

Irreversible reactions can be mathematically defined by setting the lower limit of the reaction to
0

vmin = 0.

Concentration of biomass components can never go in the negatives

0 ≤ xi.

Certain components can have an upper limit due to solvent capacity constraints

xi ≤ xmax.

Kinetic constants can never go in the negative and have an upper limit defined by collision
frequency

0 ≤ k ≤ kmax [22].

Once these constraints are properly mathematically defined, they can be applied to the net-
work reconstruction in order to limit the amount of possible functional states that the network
can reach. This is performed in a successive fashion, where the starting point can be represented
as a space where the axis are the fluxes through reactions in the network. First the steady state
assumption is applied, creating a subspace shown as a hyperplane. The second step is to define
the reaction directions by accounting for irreversible reactions and defining each flux as posi-
tive. This converts the plane from the steady-state assumption into a semi-finite convex cone
shape, the edges of which represent the extreme states. The third step is to apply the capacity
constraints to the reaction fluxes. This closes the cone and creates a closed solution space, as
a bounded convex subset, in which all the allowable network states lie. After this, by applying
more constraints and limitations, the solution space can be further shrunk down to increase the
predictive accuracy of the optimization [22]. Fig. 2.3 is a visual representation of this process.
After the solution space has been defined, optimization can applied in order to find particular
solutions within this solution space.
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Figure 2.3: A visual representation of the shrinking solution space caused by applying the proper con-
straints and limitations to the metabolic network outlined previously. It starts in a 3 dimensional space
which then has a subspace created in it by applying the stoichiometric constraints and linear algebra to it.
After the subspace has been defined, it is further restricted into a cone by adding in the reaction direction
constraints and performing a convex analysis. This then forms a solution space represented as an infinite
convex cone. The cone is then bounded by applying the capacity constraints and the upper limits of
the reactions. From this a bounded solution space has been formed where particular solutions can be
represented. By applying further restrictions the space can be bounded and restricted further, allowing
for elimination of even more unfeasible network states. Figure taken from Ref. [25].
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2.2.5 Linear Programming
Linear programming is the branch of applied mathematics for solving optimization problems of
a particular form. It can be defined as the minimisation or maximisation of an objective func-
tion subject to a number of inequality constraints. The general form of a linear programming
problem is written as

maximise
n∑

j=1

cjxj, (2.4)

s.t.
n∑

j=1

aijxj ≤ bi, i = 1, 2, ...m (2.5)

xj ≥ 0, j = 1, 2, ...n (2.6)

m are the variables of the problem, while n defines the constraints. cj represents the objective
function coefficient of xj which represents the decision variables of the objective function. ai
and bi refers to problem data that defines the problem. A linear programming problem can also
be written in matrix form, in which case it uses the general form

maximise z = cTx (2.7)

s.t. Ax ≤ b (2.8)

x ≥ 0. (2.9)

In this form

c =

c1...
cn

 ,b =

b1...
bn

 ,x =

x1
...
xn

 (2.10)

are column vectors that define the constraints and objective function. cT is the transpose of
vector cT and A is the m× n matrix where each element is defined as ai,j .

Any vector x that satisfies the constraints of the problem is said to be a feasible solution and
from this linear problems can be classified into three different classes. The first class are infea-
sible problems, where there exists no vector x that satisfies the constraints. The second class are
unbounded problems, where the constraints do not sufficiently constrain the objective function.
This means that there will always be a better possible solution and the solution space stretches
infinitely. The third class are bounded problems, where the problem is neither unbounded nor
infeasible. This means that there will be an unique solution to the objective function. Note that
this does not mean that the variables that yield the optimal objective function are also unique
[26].

From subsection 2.2.4 it can be seen that the linear optimization problem that GEM pro-
duces is a bounded linear problem. A method for solving these problems have been developed
called the simplex method .

The simplex method is based on the idea that the optimal solution can be found for a linear
programming problem by defining an initial solution and then iteratively improving it. This
is achieved by identifying an entering variable that can be increased to improve the objective
function and a leaving variable that can be decreased to maintain the feasibility of the solution.
This process repeats until an optimal solution is found [27]. A graphical representation of this
process can be seen in Fig. 2.4.

12



2.2 Genome Scale Modeling

Figure 2.4: Graphical illustration of how the Simplex Method iteratively finds the optimal solution from
another feasible solution. It firsts selects 0, 0 as a feasible solution before iteratively improving it along
the x-axis, changing to the y-axis once the solution reaches the edge. It keeps iterating until it can
no longer improve the solution. This is a general example and does not use any specific data. Figure
modified from Ref. [28].

2.2.6 Flux Balance Analysis

As mentioned in 2.2.3, the equation set formed from the stoichiometric model and the steady
state assumption is severely underdetermined owing to the many more reactions then metabo-
lites in the matrix [29]. While the constraints implemented in 2.2.4 creates a bounded solution
space for the model, a method still remains for arriving at specific solutions. Many methods
have been tried, however FBA has risen as the principal method for predicting flux distributions
and so find specific solutions in the solution space.

FBA can be applied to predict solutions in this space in the form of calculated flux distri-
butions. By applying the principals of linear programming and the mathematical constraints
outlined in 2.2.4, the general vector structure of FBA can be given as

max Z = cTv, (2.11)

s. t. Sv = 0, (2.12)

lb ≤ v ≤ ub. (2.13)

In these equations, c is the vector of weights, or the coefficient vector, that indicates how much
the reactions, given as the vector v, contribute to the objective. Eq. 2.12 is the steady state
assumption and helps define the system as a set of linear equation. Eq. 2.13 defines the solution
space [30].

In order for FBA to produce solutions in the solution space an objective function has to also
be defined. The general form of this objective function can be written as

Z = ⟨w, (
v
b

)⟩ =
∑
i

wivi +
∑
j

wjbj, (2.14)

where w is the vector of weights (wi) on the internal (vi) and exchange fluxes (bi) respectively.
The weights define the importance of specific aspects of the objective function [31]. A visual
example of this solution space with a particular optimal can be seen in Fig. 2.5.
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Figure 2.5: Illustration of the bounded null space, and a particular solution found by linear optimization
and programming. This figure shows that the optimal solution is found at the edges of the solution space.
Not that this is a general example and not a specific one. Figure taken from Ref. [25].

This gives a general structure for finding maximising or minimising an objective function,
however, a specific one still needs to be defined. By selecting one that is evolutionary motivated,
FBA is more likely to give accurate flux distribution.

For the majority of FBAs this objective is set as the biomass objective function, a represen-
tation of the cell producing biomass and growing. It is a reasonable assumption that evolution
has optimized the metabolic system of the organism around biomass production as it is a driv-
ing factor for replication and life [32]. As such we can assume that the cells metabolism will
be under selection pressure to favor internal pathways that optimize production or efficiency of
production of biomass and will favor a metabolic network that maximises this. The biomass
objective function and its implications is explored further in 2.2.9.

The calculated flux distribution produced by FBA can be used to interpret the metabolic
capabilities of a cell under different conditions and modifications [33]. The fluxes act as a
representation of the netto flow of metabolites through the reaction in question. However, in
order for FBA to give an assumed optimal state of the metabolic network, some assumptions
have to be made. One of these is the earlier mentioned assumed steady state [34]. This means
that there is no overall accumulation or depletion of metabolites inside the metabolic network,
with the exception of the biomass objective function or for exchange reactions. This is a rea-
sonable assumption over a large time scale however over shorter time scales cells can violate
this assumption in order to achieve short term goals. Another assumption made for FBA is that
the metabolic system has reached its optimal state, focused on the reaction set as the objective
function.

As mentioned earlier, the equation set that FBA gives a solution for is underdetermined.
While the additional constraints, as well as the selection of a specific objective function, helps
to make the equation set solvable, FBA is still likely to find multiple different optimal solutions
[35]. Additionally, the limited knowledge on exact flux constraints as well as the large degree
of interconnectivity the metabolic network displays will further increase the possible optimal
solutions [36]. A graphical visualisation is that the objective function will be parallel to a plane
of possible different constraints. In order to achieve more metabolically realistic results for the
internal metabolic fluxes, alternative methods and expansions for FBA have been developed.
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2.2.7 Parsimonious Flux Balance Analysis
Parsimonious flux balance analysis (pFBA) is an expansion of the FBA method, that seeks to
further restrict the number of possible solutions that FBA finds. The underlying assumption for
pFBA is that growth pressure will cause a selection for strains that process the growth substrates
the most rapidly and efficiently with the minimum amount of used enzyme. We can define
this statement as an assumption that cells will be selectively pressured for the fastest growing
strains and that the sum of fluxes throughout the network can act as a proxy for minimization of
enzyme usage. To approximate this assumption into a functional method, pFBA first employs
FBA to optimize growth rate, followed by minimizing the net metabolic flux through the gene-
associated reactions in the network. Defined mathematically this step is represented as

min
m∑
j=1

virrev, j, (2.15)

s.t. max vbiomass = vbiomass, lb, (2.16)

s.t. Sirrev ∗ virrev = 0, (2.17)

0 ≤ ∗virrev, j ≤ vmax, (2.18)

where m are the gene-associated reversible reactions in the metabolic network, max vbiomass is
the optimal growth rate, found through FBA, and the lower bound of the growth rate is set to
this optimal to restrict the solution [37].

By employing pFBA to find the most efficient metabolic network topology, one can find an
optimal solution for the objective function that at the same displays the most efficient metabolic
network topology [38]. This is likely to give a more accurate solution as the standard FBA
method naively finds the most optimal solution for the objective function, but ignores the other
aspects of the cell. Other methods have been developed in order to get more accurate predictions
then FBA can offer, usually by accounting for a particular situation in which one of FBAs
assumptions does not apply.

2.2.8 Minimization of Metabolic Adjustment
One earlier mentioned assumption of FBA is that it assumes the metabolic system is in its op-
timal state for the objective function set [39]. While this can be a reasonable assumption over
a large time scale, for shorter time scales, where the organism have not been exposed to long-
term evolutionary pressure, this assumption is often inaccurate. As such the Minimization of
Metabolic Adjustment (MOMA) method was developed, which is a method for finding the min-
imal distance from a point in the feasible space to another given optimum, often outside of the
feasible space. The main use case of MOMA was for creating a more accurate calculated flux
distribution following a genetic perturbation, such as gene knockouts. The main hypothesis is
that the mutant network, following a perturbation, is minimally different from the unperturbed
network.

In order to find this minimal distance mathematically MOMA relies on the concept of Eu-
clidean distance. It aims to minimize this distance in the solution space, following the mutant
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knockout, between a feasible point and the optimal solution of the wild type. The Euclidean
distance is defined mathematically as

D(w, x) =

√√√√ N∑
i=1

(wi − xi)2. (2.19)

Here, D represents the distance in the Euclidean space, N is the space of fluxes, w represents the
flux vector of the wild type and x represents the flux vector that is the target of minimization. As
this is a non-linear problem, linear optimization will not apply. Thus MOMA relies on quadratic
programming (QP) to solve the problem, which uses linear constraints, but can be applied to a
quadratic objective function. A general structure for a QP problem is defined as

f(x) = Lx+
1

2
xTQx, (2.20)

where f(x) represents the objective function, xT is the transpose of x, L is the vector defined as
n × 1 and Q is the matrix n × n. L represents the linear part of the objective function while
Q is a representation of the quadratic part. In order to transform the minimization of Euclidean
distance into a QP objective function, one can observe that minimizing D is equivalent to mini-
mizing its square. Furthermore, Q can be set to the identity matrix of I and L can be set to -v.
This, in turn, means we can express MOMA as a quadratic problem by setting

min f(x) =
1

2
xIxT + (−v)x, (2.21)

s.t. Sx = 0, (2.22)

v
′

i = 0, (2.23)

lb ≤ b ≤ ub, (2.24)

where v
′
i represents the flux through the knock out of reaction j.

One observation to make is that MOMA finds the point in the solution space that is the
closest to the wild-type point, as calculated with FBA. From this we can intuit that, if an FBA
solution exists for the model, then a MOMA solution will also exist [40].

While MOMA is intended, and designed for, predictions of the metabolic network after a
genomic perturbation, it can also be applied to find the closest feasible solution for a model to
experimental data. This is due to the nature of MOMA where it finds the closest point in the
solution space of a model to another given reference point. By setting the reference point of
the MOMA problem to the experimental data, MOMA can provide a feasible solution that is
closest in Euclidean distance to this data.

MOMA is based on the same stochiometric constraints as FBA, but relaxes the assumption
of optimal growth. That way it is capable of finding suboptimal flux distributions, that are
an intermediate between the models own optimum and the wild type optimum. The objective
function of MOMA is therefore not exclusively based on biomass growth like it is for FBA.

2.2.9 Biomass Objective Function
As explained earlier, for most GEMs, cell growth is the target for optimization. Growth can
be represented by experimentally determining the metabolites, and their amounts, necessary to
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Figure 2.6: Graphical representation of the variance of macro-molecular composition, for RNA, DNA
and proteins, as well as cell volume with regards to growth rate. A: The variance for RNA, in the dotted
line, and for DNA, with the whole line, with specific growth rate. The circles represent the RNA values
and the squares DNA values. The difference in color between them represents where the data is collected
from, as Pramanik and Keasling used two different sources of data for these values. From this we can
observe that the macro-molecular fraction of RNA increases with specific growth rate, while the fraction
of DNA decreases. B: The variance for the molecular amount of amino acids in the biomass with growth
rate. The difference in color between the dots represent the different sources of data used for these plots.
From these values we can see that macro-molecular fraction of proteins decreases sharply with growth
rate. C: The variance of the cell volume with specific growth rate. The different symbols represent the
different sources for the data used to produce these graphs. From this we can see that the volume of the
cell displays a non-linear increase with the specific growth rate of the cell. This figure was modified from
Ref. [12]

synthesize the biomass in the organism. These metabolites can then be represented as a set of
reaction fluxes that drain the appropriate metabolites with the correct amounts. The require-
ments are usually based on the measured values of the biomass composition. The sum of these
requirements creates the biomass objective function, which is added in as an extra column in the
stoichiometric matrix of the model. This function represents the organism using its metabolites
and pathways to produce mass and be capable of life and replicating itself. Due to the nature of
these compositions the biomass objective functions are unique to their respective cells [41].

The composition of an E. colis biomass, can be split up into six different groups. These
groups are proteins, RNA, DNA, lipids, co-factors and metallic ions, which can be further di-
vided up into subunits for each group [42].

Of note is that a general assumption is made for GEMs and FBA that the biomass composi-
tion, which can be represented as the fractions of these groups, is constant and does not change
for the organism in question. This is false as we know that the biomass composition is affected
by different factors like growth rate and environment. The impact of growth rate on the groups
in the biomass composition has been studied closely by Pramanik and Keasling.

They found that the biomass composition shows variance and is affected by the growth rate
[12]. These variations for the macro-molecular groups of RNA, DNA and proteins as well as
for the volume of the cell can be seen in Fig. 2.6.

Another factor adding uncertainty to the composition of the biomass is the natural limita-
tions caused by the measurement techniques, the temporal and varying nature of the metabolism
and the heterogeneous nature of cell populations. A previous effort into studying these vari-
ations found the biomass coefficients, and thus the composition of the components in the
biomass, to be binomally distributed. To study how this variance would affect the model a
study was performed by Maranas et al., studying the impact on the variance on a standard CO-
BRA E.coli model. They found that, while the predicted biomass growth was barely affected,
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the predicted internal flux distribution of the E.coli showed major variance as a consequence of
the composition variance[13].

In order to make the biomass objective function more accurate, and thereby increase the
accuracy of the internal flux distribution, these variations based on can be implemented into the
biomass objective function. This can be done by reconstructing the biomass objective function
based on the equations outlined.

The biomass objective function is balanced around representing the biomass at 1 g mmol−1,
as it is required in order to convert the flux prediction to growth rate This is due to the growth
rate being given as g gDW−1h−1 while the fluxes are given as mmol gDW−1h−1. As such any
change in the biomass objective function has to account for this by scaling the coefficients of
the biomass reaction until the appropriate molar weight of biomass is reached. This is due to a
small change in the molar weight of biomass can cause massive perturbations upstream in the
flux distribution of the metabolic network and so make the predicted flux values inaccurate.

2.2.10 iML1515 model
The iML1515 model is a model based on the metabolic network of E. coli K-12 MG1655
[43]. The biomass objective function is based on data collected by Neidhardt and etc., where
they found that the average E. coli cell growing at 37 °C in a glucose minimum media with
a doubling time of 40 minutes (1.67 µ) has a dry weight of 2.8 ∗ 10−13g. This dry weight is
split into the metabolic groups of protein, at 55% of the dry weight, RNA, at 20.5% of the dry
weight, DNA, at 3.1% of the dry weight, and lipid, at 9.1 % of the dry weight. In addition
to these there are also the metabolic groups of lipopolysaccharides, peptidoglycan, glycogen,
polyamines, cofactors and metallic ions [44]. However, these groups show little to no change
with growth rate, as shown in 2.2.9. This is the general biomass composition that is represented
in the iML1515 model, through the implementation of the BOF.

2.2.11 Enzyme-constrained models
One of the methods to enhance the standard GEMs is to combine these with the Enzymatic
Constraints and Kinetics and Omics data (GECKO) method, in order to further restrict the
solution space. It does this by incorporating enzymatic and kinetic data in the model as an
additional set of constraints. Enzymes are catalysts in the organism controlling and influencing
the metabolic reactions occurring within said organisms. Reactions have a basic constraint in
that they can not exceed the reactions maximum rate (Vmax) defined by the enzymes turnover
rate (kcat) multiplied by the enzymes intracellular concentration.

This is represented in the equation

vj ≤ kij
cat ∗ [Ei], (2.25)

where i represents the metabolite and j represents a corresponding reaction.
Enzymes also have their own mass balance constraint, which can be defined by the equation

− 1

kij
cat

vj + ei = 0. (2.26)

vj represents the flux of reaction j, kij
cat is the turnover number for enzyme i catalyzing reaction

j. ei represents the usage of enzyme i.
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In order to expand the standard GEM model and account for these enzymatic constraints,
the GECKO model expands the stoichiometric matrix. It adds more rows that represents the
different enzymes in the system. The turnover rates for each enzyme is included, in order to
transform the metabolic flux into enzyme usage. As such the enzymes can be considered ”faux”
metabolites that are also consumed for the different reactions. Additionally, more columns are
added to the matrix which contains the enzymatic usage value for each enzyme. After the ex-
pansion of the stoichiometric matrix is finished, the constraints outlined earlier are then applied.
This shrinks the solution space further and the enzymatic data has been successfully integrated
into the model. Of note is that the turnover rates, the kcat values, are manually curated and tuned
after a draft model has been made. This is to ensure that the model is capable of representing
the metabolic phenotypes and to make the model fit with experimental data appropriately [45].
Fig. 2.7 is an illustration of the mathematical process of creating an enzyme constrained model
by expanding the stoichiometric matrix to include proteomic data.
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Figure 2.7: A: Illustration of how the basic flux of a reaction is altered in order to implement the
enzyme usage as an additional method of constraining the model. B: A representation of how the basic
stoichiometric matrix (upper-left sub-matrix) is expanded to include the enzymatic data. S represents
the expanded stoichiometric matrix, M refers to the metabolites, E to the enzymes, e to the enzymatic
usage and v to the flux through a reaction. Note that the upper right sub-matrix will be empty as the
metabolites have all zero enzymatic usage. Figure taken from Ref. [45].
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Chapter 3
Software and methods

This chapter provides a summary, along with a short description, of the different softwares
and methods used throughout this project. It begins with a description of the various Python
packages and software applications used and an explanation on their role in this project. After-
wards, it provides an explanation of how the propagation of uncertainty analysis was adapted
to work with the eciML1515 model and the process of performing said analysis on that model.
Finally it explores the method of establishing and implementing growth rate-specific BOFs for
the iML1515 and the statistical methods utilised to compare it to the experimental data.

3.1 Python packages and software used
Python is an interpreted, object-oriented programming language, with a readability focused syn-
tax [46]. It was used as the programming language for this project with Jupyter Notebook as the
interface. The program and language was provided by the Anaconda package and environment
system [47]. The following packages and software was used in conjunction with Python for
altering the bounds of the models, creating predicted flux distributions, sampling and extracting
coefficient data from the models.

3.1.1 COBRAPy
COBRAPy is a Python package used for building and analyzing GEMs. It was used regularly
throughout this project to interface with, modify and create predicted flux distributions for the
genome-scale and enzyme-constrained models [48].

3.1.2 ReFramed
ReFramed is a Python package that is similarly used for simulating GEMs [49]. It was used
in in this project for its MOMA function, as the expanded functionality of it was better for the
purpose of this project then the one provided by COBRAPy.

3.1.3 Gurobi
Gurobi is a proprietary solver designed for mathematical optimization. It was used to solve
the different optimization problems occurring throughout this project, such as the linear pro-
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gramming problems for FBA and pFBA as well as the quadratic programming problems for
minimzation of metabolic adjustment (MOMA) [50].

3.2 Quantifying the propagation of uncertainty from biomass
composition to flux predictions

This section will outline the steps necessary to perform a uncertainty propagation analysis on
the eciML1515 model, an enzyme constrained variant of the iML1515 model, which is a com-
prehensive metabolic COBRA model of an E.coli cell. The works of Maranas et al., where
they performed a similar analysis on the iML1515 model, was the inspiration for the methods
utilised in this section [13].

3.2.1 Standardizing the eciML1515 to the iML1515 for propagation of
uncertainty analysis

I used the latest enzyme constrained model for E. coli, the eciML1515 [51], for the uncertainty
propogation analysis. It was modified to make it more standardised and comparable to the com-
monly used metabolic model for E. coli, the iML1515. The biomass function and objective was
replaced with the biomass function from iML1515, as the pathways leading into the biomass
function in eciML1515 are categorized based on the enzymes catalyzing the reatctions. This
causes some issues with the provided functions for propagation of uncertainty. The reverse
beta-oxidation pathway was disabled by setting its upper bound to 0 mmol gDW−1h−1, as this
pathway is an engineered one that is absent in wild-type strains, but included in the model [52].
The reverse pyruvate synthase pathway was disabled by setting the upper bound of the reac-
tion to 0 mmol gDW−1h−1, as this pathway is only induced in superoxide generators [53]. The
scripts for adjusting the eciML1515 can be found in the provided Github repository in the folder
scripts/ModelAdjustments.

3.2.2 Propogation of uncertainty analysis on the eciML1515 for biomass
yield and specific metabolic fluxes

The methods discussed in this section were largely based on, and followed the same procedures
as the perturbation analysis performed by Maranas et al. on the iML1515 [13].

After the eciML1515 was modified to cooperate with the scripts provided in the study by
Maranas et al. [13] for the perturbation analysis, the parameters for analysis were set up. The
parameters subjected to perturbations and uncertainty were the biomass precursor coefficients
(Biomass uncertainty), the macromolecular composition of the biomass (Macro uncertainty),
the growth associated maintenance of the model (GAM uncertainty) and the non-growth as-
sociated maintenance of the model (NGAM uncertainty). In addition certain selected biomass
precursors were picked as parameters for individual sampling of a single biomass coefficient.
The selected biomass precursors were all the DNA, RNA and the amino acids. The parameters
were sampled 10 000 times based on a normal distribution with the mean value corresponding
to the original value. This was done four times with a growing relative standard deviation (SD)
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of 5%, 10%, 20% and 30%. The biomass precursors coefficients and the GAM value were ex-
tracted from the biomass reaction with the lumped coefficients, then sampling was performed
in accordance with the earlier mentioned parameters.

To normalize the biomass molecular weight (MW) to 1 g mmol-1, following the uncertainty
injection of the biomass constituents, the equation

cnewi =
csamp
i∑

iϵIBiom
csamp
i MWi

, (3.1)

was utilised. Ibiom is the set of biomass precursors used in the biomass reaction, csamp
i is the

randomly sampled coefficient for the biomass precursor i, MWi is the MW of the biomass
precursor i and cnewi is the coefficient for the biomass precursor i, calibrated to make the biomass
functions MW be equal to 1 g mmol−1.

For the Macro uncertainty, the weight fractions of the macromolecular classes were sampled
and the coefficients of constituents in each class were uniformly scaled. As for the sampling
of the indivdual biomass precursors, in order to ensure a biomass MW at 1 g mmol−1, the
parametric uncertainty injected into the singular biomass precursor was equally distributed after
biomass MW normalization to ensure the relative fraction of precursors was kept. This process
was performed using a script provided by Maranas et al., with some modifications in order to
make them functional with the eciML1515 model. The modified scripts can be found in the
provided Github repository under scripts/Part1.

After the sampling, a pFBA is performed for each sample in order to find a predicted flux
distribution. From the pFBA results a mean and standard deviation was calculated for the flux
of every reaction. In order to find the propogation of uncertainty throughout the flux distribution
a standard deviation ratio (SDR) was calculated for each flux. The calculation was done using
the formula

SDROutput
Input = SDRv

c =
∆( SD

Mean
)
Output

∆( SD
Mean

)Input
, c (3.2)

where v represents the reaction in question, c represents the parameter the uncertainty was
applied to and SDRv

c represents the ratio between the output relative SD with the input relative
SD.

To determine the SDR of the total cofactor production fluxes for NADH, NADPH and ATP,
the sum of all the fluxes producing these cofactors is calculated. This sum was then set as a new
flux for SDR calculation. This was done by extracting the stochiometric values and the flux
through the cofactor reactions from the sampling results. The formula to calculate the new flux
was

vcofactor =
∑

jϵJcofactor

SCofactor,j vj. (3.3)

vcofactor is the cofactor production flux, SCofactor,j is the stochiometric value of the cofactor in
the reaction j and vj is the flux through the reaction j. This formula was applied to all the
producing reactions for ATP, NADH and NADPH in order to find the netto flux production and
SDR of these cofactors.

As the code incurs a heavy workload, they were run using an external computer. The com-
puter was provided by the Network Systems Biology group at NTNU, it had a 8-core processor
with two threads per core and a clock speed of 5360 MHz. In addition, while the source code
for uncertainty injection and pFBA was provided for all parameters, the scripts for SDR calcu-
lation and the ATP, NADH and NADPH cofactor production fluxes were only provided for the
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injection of uncertainty into all biomass coefficents parameter. Due to this those scrips had to
be modified from the script provided for the parameter of all biomass coefficents. Once every
script was set up and modified they were run on the eciML1515 model.

After the SDR was calculated for each flux and for each set parameter the data was collected,
the appropriate SDR values were extracted and analyzed. They were then compared with the
results from the Maranas et al. projects. The full data sets can be found in the provided Github
repository.
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3.3 Implementing a growth rate-specific biomass objective
function for the iML1515 model

This section of the project covers the methods and formulas needed in order to create a condition-
dependent and growth rate-specific version of the iML1515 based on provided experimental
data from Gerosa et al. study where they collected data on the metabolic flow of E. coli using
different carbon sources [15].

3.3.1 Establishing the biomass coefficient formulas for a condition-dependent
and growth rate-specific biomass composition

The standard iML1515 model was used for the reconstruction. The biomass constituents were
extracted from the objective function of the model and then grouped and categorized based
on the data provided in supplement (x). These groups are amino-acids (proteins), RNA, DNA,
lipids, co-factors and metal ions. To calculate the growth rate-specific coefficient for each group,
data from the study by Pramanik and Keasling was utilised, where they established equation for
the calculation of a growth rate-specific biomass composition [54]. These formulas are based
on experimental data and detailed sampling. As the data provided no info on the impact of
growth rate on metal ions and co-factors, they were not considered for the production of a
growth rate-specific biomass objective function. The equation for the growth rate-specific RNA
for a biomass composition was

Cµ
RNA = 1.1395− 0.9665

µ
∗ 2−0.665/µ, (3.4)

where Cµ
RNA is the growth rate-specific molecular fraction of the biomass composition and µ is

the specific growth rate. The unit for the RNA molecular fraction is given as mmol NTPs gDW−1.
This equation represents a non-linear increase in the RNA fraction as the specific growth rate
rises.

The equation used to calculate a growth rate-specific molecular fraction of the DNA for the
biomass composition was

Cµ
DNA =

0.1µ

0.023
(20.017+0.663/µ − 20.663/µ). (3.5)

Cµ
DNA is the growth rate-specific molecular fraction of DNA in the biomass composition and µ is

the specific growth rate. The unit for the DNA molecular fraction is given as mmol dNTPs gDW−1.
This equation represents a non-linear decrease in the DNA fraction relative to the increase in
the specific growth rate.

The equation used to calculate a growth rate-specific molecular fraction of the proteins for
the biomass composition was

Cµ
Protein = 4.228 ∗ (20.288/µ). (3.6)

Cµ
Protein is the growth rate-specific molecular fraction of proteins in the biomass composi-

tion and µ is the specific growth rate. The unit for the protein molecular fraction is given
as mmol AAs gDW−1, where AA stands for the amino acids. This equation shows that the
growth rate-specific molecular fraction of the proteins in the biomass composition is reverse-
proportional with the specific growth rate.
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Equations for the growth rate-specific lipid fraction were not provided in the study, although
equations for growth rate-specific surface area of an E. coli cell were. As the surface area of
a cell is directly proportional to the amount of lipids in the cell, due to the structure of the
cells membrane wall. The outer membrane of an E. coli is an asymmetric bilayer consisting of
phospholipids and glycolipids [55]. This can be used to determine a growth rate-specific from
experimental data and the equations for the growth rate-specific surface area of the E. coli These
equations are

R = 0.293 ∗ 2(0.41µ), (3.7)

which represents the radius, R, of a cell based on a specific growth rate, represented by the µ
variable. The length of an E. coli based on specific growth rate is given with the equation

L = 2 ∗ 20.333µ. (3.8)

The length of the cell is given as L, while the specific growth rate is given as µ. By applying the
assumption that an E. coli cell is a cylindrical shape with hemispherical caps, the surface area
can be calculated based on the general equation for the surface area of this structure

A = 2πR(L− 2R) + 4πR2. (3.9)

A represents the area, L the length and R the radius of the shape. This gives an equation set for
calculating the growth rate-specific surface area of an E. coli.

In order to find a growth rate-specific equation for the lipid molecular fraction, experimental
data was used. The experimental data contained the specific growth rate of an E. coli in addition
to the number of lipids in the cell. From this the amount of lipids per surface area was calculated
using the equation

Cµ
lipids factor =

nlipids

Acell

. (3.10)

nlipids is the amount of lipid in mmol in the experimental data, Acell is the surface area of the
cell in question. The factor between these two was then used to establish a growth rate-specific
equation for the amount of lipids in the biomass composition. This equation is

Cnew
lipids = 0.2485 ∗ Acell, (3.11)

where Cnew
lipids is the new calculated coefficient of the lipid group going into the biomass and Acell

is the calculated surface area of the cell based on growth rate.
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3.3.2 Implementing and normalizing growth rate-specific stoichiometric
coefficients for the construction of a growth rate-specific biomass
objective function

Next, a method for converting the coefficients from the standard biomass objective function
into growth rate-specific ones was established. The first step to this method was to define a
model and specific growth rates as a base. The model to use as a base was the iML1515 and
the specific growth rates were taken from the experimental data mentioned earlier. The next
step of the method used the above formulas and the specific growth rate to establish growth
rate-specific group coefficients for the biomass objective function. Once these are calculated,
each of the coefficients for the BOF in the iML1515 were extracted and grouped. The BOF for
the iML1515 can be defined as ∑

iϵIBiom

ci = IBiom, (3.12)

where ci represents the coefficient of the metabolite i as part of the biomass objective function
IBiom. Each of these coefficients were subsequently grouped and categorized based on the
metabolite groups of RNA, DNA, lipids and proteins. The sum coefficient of each group was
then calculated by using the equation ∑

iϵIG

ci = CG, (3.13)

where CG denotes the sum of the coefficients of each group G. The next step of the method
involved finding the factor between the growth rate-specific group coefficient and the extracted
group coefficients. This was done using the equation

Q =
Cµ

(Group)

C(Group)

. (3.14)

where Cµ
(Group) is the calculated growth rate-specific group coefficient and C(Group) is the ex-

tracted group coefficient. This factor was then applied uniformly to each individual components
coefficient in the group. This scales up or down each coefficient appropriately in order to adjust
the sum to the growth rate-specific group coefficients. The formula used to do this was

∀c ϵGroup : cµ = Q ∗ c, (3.15)

where c is the individual coefficients of each component in the group and Q is the calculated
factor from formula 3.14. This produced new established growth rate-specific groups defined
as ∑

iϵIG

cµi = Cµ
G. (3.16)

cµi is the growth rate-specific component coefficient for the metabolite i, Cµ
G is the growth rate-

specific coefficient for the metabolite group G and IG is each of the metabolite groups repre-
sented in the biomass objective function.

After each of the growth rate-specific coefficients were established, they had to be normal-
ized appropriately in order to make the growth rate-specific BOF represent 1 g mmol−1 of the
biomass. It was decided that this would be performed by normalizing each of the metabolite
groups to 1 g mmol−1 . By representing each of the groups as a percentage of the biomass
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Figure 3.1: A visual representation of the workflow for establishing a growth rate-specific biomass
objective function and normalizing it to 1 g/mmol. This process was performed on the standard iML1515
model. The first step of the process was the extraction and grouping of the fluxes and cofactors from the
biomass objective function. The groups were based on the metabolite groups the biomass consists of.
After the coefficients were grouped they were subsequently set to the growth rate-specific ones calculated
from the equations outlined in 3.3.1. Once each of the groups were converted to be growth rate-specific
they were then normalized to 1 g mmol−1. From these group coefficient a new growth rate-specific BOF
was set in the model using the groups as its coefficients.

composition, it is then naturally normalized to 1 g mmol−1 . A similar method was used to
normalize the groups as done earlier by calculating a quotient for the component coefficients
and MW of the metabolites. The input coefficients multiplied with the MW was adjusted so
that the sum of them was equal to 1 g mmol−1 . The metabolite groups can then subsequently
be defined as ∑

iϵIG

cµ, Ni = Cµ, N
G . (3.17)

Cµ, N
G represents the normalized growth rate-specific sum coefficient of each group and cµ, N

represents the component coefficients of said groups.
Once the normalized growth rate-specific group coefficients were established, new reactions

were created in the model corresponding to each group. From these reactions a new growth
rate-specific BOF was created and implemented into the model, with the ID: ”NewBiomassRe-
action”. This new BOF can be defined with the equation∑

GϵGBiom

Cµ, N
G = Iµ, NBiom, (3.18)

where Iµ, NBiom is the growth rate-specific BOF. A visualisation of the workflow for this method can
be found in Fig. 3.1 and the code to perform this method can be found in the Github repository.
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3.4 Implementing eight different growth rate-specific biomass
functions for the iML1515 based on experimental data

Eight different models were created using the script outlined in the previous chapter on the
iML1515 model. These eight models were based on the experimental data provided by Gerosa
et al. [15]. The details of each model is shown in Table 3.1.

Table 3.1: The details of each of the eight growth rate-specific BOF models created for this project. The
models were created using the method outlined in the previous section. This table establishes the name
of the models, as well as their specific growth rate, what carbon source the data is based on and specific
important exchange reactions. The models can be found in the Github repository under models.

Model ID µ (h−1) C. Source C.
Source
Uptake
( mmol
gDWh

)

Acetate
Secre-

tion
( mmol
gDWh

)

Secondary
Secre-

tion
( mmol
gDWh

)

ReBMAc 0.29 Acetate 13.58

ReBMGal 0.18 Galactose 1.97

ReBMFru 0.49 Fructose 8.33 3.33

ReBMSucc 0.51 Succinate 15.90 3.32
Fumarate

1.14

ReBMGlu 0.65 Glucose 9.65 6.83

ReBMPyr 0.39 Pyruvate 26.71 11.91
Lactate

1.16

ReBMGly 0.49 Glycerol 10.14 0.60

ReBMGlcn 0.59 Gluconate 5.00 5.00

The given specific growth rate, µ, was used for the construction of a growth rate-specific
BOF. For the uptake reactions, the lower bound for glucose was set to 0 mmol gDW−1h−1

to disable that as a carbon source while the lower bound of the carbon source was set to -1000
mmol gDW−1h−1 to enable that as a carbon source. For the secretion values the upper bound of
the exchange reactions in question were set to 1000 mmol gDW−1h−1 to enable secretion of the
component. The other exchange reactions outside of the ones mentioned were not modified. A
similar set of reference models were created from iML1515, with the same bounds, but without
a specific growth rate-dependent biomass objective function. The models were then converted
to a ReFramed compatible format, using the provided conversion function in ReFramed, and
MOMA was performed. The secretion, uptake and growth rate values from the experimental
data was used as reference values for each corresponding model. These values were then ex-
tracted from the solution MOMA created and inserted back into the model as bounds for the
growth rate and exchange reactions. Some slack was introduced into the bounds by rounding
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the values up for the upper bound and down for the lower bound. The rounding target was
set to the nearest hundredth. After this the models were converted back to COBRAPy for the
sampling.

Sampling was performed on each model, using COBRAPy, with the number of samples set
to 10 000. This produced 10 000 predicted flux distributions, with variations based on the sam-
pling, for each model. Each individual predicted flux distribution was extracted and the fluxes
for the set of reactions corresponding to the fluxes in the experimental data were saved. In order
to compare the fluxes from the sampling to the experimental data the root square error between
each experimental data and the corresponding sampled flux was found. For each sample the
mean of these errors were then given as the root mean squared error (RMSE) of that sample.
The formula used to calculate RMSE was

RMSEi =

∑
jϵJ

√
(cj,i − cj,J)2

nJ

, (3.19)

where i is the selected sample, cj,i is the flux through reaction j and J is the set of experimental
data for each reaction. nJ is the number of reactions in the experimental data.

After the RMSE was calculated for each sample in each model a t-test was performed be-
tween the reference models and the experimental models. This was done to test if there was a
statistical significant difference between the two populations and in what direction the differ-
ence lies.

A second set of statistical testing was performed, this time with a focus on the relative error.
To calculate the relative error for each reaction the equation

REj = |(cj,i − cj,J)

cj,J
|, (3.20)

was used, where REj represents the relative error of the reaction j, cj,i represents the value of
the reaction j from sample i and cj,J represents the value of the reaction j from the experimental
data J . Each sample was given a relative error score by calculating the mean relative error
of each reaction in the sample. These scores were then compared between the growth rate-
specific biomass objective function variants and the reference iML1515 models by using a t-test
analysis.
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This chapter presents the results of the project, which was divided into two main parts. The
first part involved an analysis on the parametric propagation of uncertainty for the eciML1515
model, in comparison to the results found in a similar study by Maranas et al., which was con-
ducted on the iML1515 model [13]. The study evaluated the uncertainty propagation on growth
rate, ATP-, NADH- and NADPH production following injection of parametric uncertainty. The
parameters for injection was for all biomass coefficients, the macro-molecular fraction of the
biomass composition, the GAM, the NGAM and certain individual biomass coefficients.

The second part was a study on how creating a growth rate-specific (BOF) would impact
the accuracy of predicting internal metabolic flux distributions. This was done on the iML1515
model and the specific growth rates, as well as the target flux distribution, were based on exper-
imental data gathered by Gerosa et al. [15].

The equations for a growth rate-specific biomass objective function were sourced from a
study performed by Pramanik and Keasling [54].

4.1 Propagation of parametric uncertainty on metabolic flux
predictions

The following section covers the results obtained from the propagation of uncertainty results
for the eciML1515. The methods used for arriving at these results can be found in 3.2.2 and the
full data for the analysis can be found in the Github repository.

4.1.1 Growth rate predictions for eciML1515 following metabolic modifi-
cations for parametric uncertainty propagation analysis

In order for the scripts and methods given by Maranas et al. for the uncertainty propagation to
work with the eciML1515 model, certain specifications and modifications had to be done on the
model. These are laid out in chapter 3.2.1.

After the reverse beta-oxidase and reverse pyruvate synthase pathway was disabled in both
models, FBA was performed, with glucose as the limiting metabolite, in order to evaluate the
impact of the pathway changes on the metabolic network. The results of the FBA on the biomass
growth is laid out in Table 4.1. eciIML1515 showed a significant reduction in growth rate with
FBA while the standard iML1515 showed no change. This significant reduction for the growth
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rate in the eciML1515 model is unexpected as Ref. [56] and Ref. [53] shows that these path-
ways should not be present in wild type (WT) E. coli cells.

Considering how a GECKO model is constructed, as laid out in 2.2.11, it is possible that
the models enzyme activity was implemented with the assumption that the reverse beta-oxidase
pathway was an active pathway in the metabolic network. Therefore, when the kcat values
were manually configured and adapted, these pathways were active. This, in turn, made these
pathways necessary for the biomass objective function and made them growth-coupled. As a
consequence, when these pathways are disabled, the growth rate of the model displays a mas-
sive reduction.

This could possibly lead to further consequences for this analysis as it is possible that other
pathways in the metabolic network were also coupled with these pathways. Ideally, the ec-
iML1515 would be further modified, following this discovery, to account for this and to retune
the kcat values with these pathways disabled. However, this is a time consuming process, which
was a limited resource for this project. As such it was decided that it was beyond the scope of
the project and that it would move on with the eciML1515 staying as it is following the dis-
abling of the pathways.

Table 4.1: A representation of the growth rate change between the standard iML1515 and the eciML1515
models after disabling the reverse pyruvate synthase and reverse beta-oxidase pathways. eciML1515
shows a considerable reduction in growth rate, while iML1515 shows no change.

Models µ before disabling pathways (h−1) µ after disabling pathways (h−1)
iML1515 0.8770 0.8770

eciML1515 0.5744 0.1939
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4.1.2 Propagation of parametric uncertainty on the growth rate predic-
tions of eciML1515

The modified eciML1515 model was ran through a parametric uncertainty analysis with the
parameter set to all biomass coefficients. The setup for the uncertainty analysis is outlined in
3.2. All the references in the computer code to specific reaction IDs had to be altered to match
with the reaction IDs in the eciML1515. For reversible reactions, the eciML1515 splits these up
into different reactions. This had to also be accounted for by implementing them as separate re-
actions in the code. The modified scripts can be found in the provided Github repository under
scripts/Part1. After the analysis was done the datasets were collected and the SDR value for the
biomass growth was calculated. For comparison, the results of the similar analysis performed
on the iML1515 was acquired from the study by Maranas et al. [13]. The results of the biomass
coefficient parametric uncertainty on the biomass production is displayed in Fig. 4.1.

0.0 0.2 0.4 0.6 0.8 1.0
SDRVBiom

All Ci

eciML1515

iML1515

M
od

el
s

Perturbation in growth rate after injection of uncertainity into all biomass coefficients

Figure 4.1: Bar plot representing the difference in SDRVBiom
All ci

between the iML1515 model and ec-
iML1515 model. This is after uncertainty was inserted into the biomass coefficients of both models.
Both models displayed an SDR on biomass growth of under 1.0. This means that both models display a
dampening effect on the biomass growth after inserting uncertainty into the biomass coefficients of the
biomass objective function.

This result that both models have a growth rate SDR, as defined by equation 3.2, of < 1.0.
SDR represents the size of the normal distribution on the specified reaction from the sampling
compared to the normal distribution on the uncertainty injection on the coefficients. An SDR
value of 1.0 means that the reaction displays the same normal distribution as the one applied to
the parameter coefficients, while > 1.0 means the reaction displays a wider normal distribution
and < 1.0 a tighter one. From this, we can define that an SDR of > 1.0 means that the reaction
has an amplifying effect on uncertainty, while an SDR of < 1.0 means the reaction has a damp-
ening effect on uncertainty. Since both models display an SDRVBiom

All ci
< 1.0 this means that the

biomass reaction is dampening on the propagation of uncertainty from the biomass coefficients.
From this it can be said that the biomass production of both models is robust, meaning it is

resistant to perturbations in the biomass coefficients. While both models were expected to dis-
play a robust biomass production, owing to the nature of the metabolism and selection pressure,
its worth noting the significant difference between them. iML1515 displayed an SDRVBiom

All ci
of

0.049 while the eciML1515 displayed an SDRVBiom
All ci

of 0.42. This points to the eciML1515
being far less robust for biomass composition perturbations compared to the iML1515. The
reason for this difference could be that the enzyme constrained model has a reduced solution
space, compared to the standard GEM model. These enzyme constraints limit the capability of
the model to adjust the internal fluxes to counteract perturbations in the biomass composition
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and maintain the growth rate. This would manifest as a reduced robustness, when looking at
the growth rate, for the eciML1515 compared to the iML1515. It is possible that additional
constraints would amplify this effect and reduce the solution space of the model further.

Although, as mentioned above, the overall growth rate of the eciML1515 is lower then the
iML1515, as a result of the pathway alterations. This could have had an impact on this result
owing to the larger impact any absolute variation of the biomass growth would cause in the
calculated SDR. This is likely to cause an inflation of the SDR for the eciML1515, although it
is difficult to say for certain how big this inflation would be. Additionally, it is possible that the
disabling of these pathways also effected other pathways, by them potentially being coupled as
a result of the kcat values being tuned with these active. This could further restrict the solution
space and inflate the SDR as a result of this. In order to study this the analysis could be per-
formed again on a retuned version of eciML1515 that does not rely on the pathways discussed
in chapter 4.1.1, however, as mentioned, that would be an undertaking beyond the reach of this
project.

After the parametric uncertainty analysis on all biomass coefficients (SDRAll ci) was done, a
new analysis was performed with the parameters set to macromolecular fractions in the biomass
composition (Macro), GAM and NGAM. The results of the perturbation analysis on the biomass
growth rate from these parameters can be seen in Fig. 4.2. The Macro uncertainty injection
showed a large impact on the SDR of the growth rate and displayed an amplifying effect. This
was an unexpected result as the macromolecular fractions should display a similar level of ro-
bustness to the biomass coefficients, albeit it is likely to display a slightly higher value for
SDR. This is due to standard deviation insertion of the macromolecular fractions prioritising
the largest fractions of the biomass. This means that the coefficients that are the most abundant
in the biomass gets prioritised and likely leads to a higher SDR on the biomass growth. This
can be seen in the study by Maranas et al. where they performed this analysis on the iML1515
[13]. From this study we can see that the iML1515 still displays a dampening effect on the
Macro parameter and only has a slightly higher SDR then for the all biomass coefficient pa-
rameter. The reason why the results display a massive SDR on eciML1515 for biomass growth
with the macro parameter is not clear. One possible explanation is that the code for insertion of
uncertainty for the single coefficients-, macro-, GAM- and NGAM parameter had to be modi-
fied from the code belonging to the all biomass coefficient parameter. This was a result of the
Maranas et al. [13] study not providing enough of the necessary source code in order to repli-
cate their results. Therefore, the computer code to perform this part of the analysis had to be
adapted from the earlier code as well as the information they presented in their study. As such it
is possible these scripts are not working correctly and giving the wrong values. If so it is likely
that the Macro results will display unexpectedly high values for the other SDR results as well.

The GAM and NGAM uncertainty injections, on the other hand, displayed a minimal effect
on the SDR of the biomass production, with both displaying a major dampening effect. The
NGAM uncertainty was expected to not have much of an impact on the growth rate, owing to
the fact that it is tied to maintenance reactions that are not growth associated. As such any vari-
ance on the NGAM value should have a minimal impact on the growth rate. This is reflected
in both the results for the eciML1515 and the results from Maranas et al. [13] study where the
SDR on growth rate relative to uncertainty injection of the NGAM value was 0.02. The GAM
uncertainty injection displaying a major dampening effect on the growth rate is, on the other
hand, unexpected. The GAM is directly tied to the growth of the cell and, as such, any vari-
ance in the GAM value is expected to have a major impact on the growth rate. This result can
be seen in the results from Maranas et al. study where they found that the GAM injection of
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Figure 4.2: Bar plot representing the SDRVBiom
All ci

after inserting uncertainty into different parameters.
The parameters are NGAM, GAM, macromolecular fractions (Macro) and all biomass coefficents (All
Ci) for the eciML1515 model. The SDR of the Macro parameter was 2.52, while the SDR for all biomass
coefficients, GAM and NGAM was 0.43, 0.05 and 0.02 respectively. This points to the Macro parameter
displaying an amplifying effect on propagation of uncertainty, when looking at the growth rate. The
other parameters displayed dampening effects.

uncertainty was the parameter that displayed the highest SDR for growth rate. The reason why
the eciML1515 does not share this result is unclear. It is possible that the earlier mentioned
implementation of the code for performing this injection is faulty, as the source code was not
provided.
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Figure 4.3: Results from the uncertainty injection into specific biomass constituents, looking at the
propagation of uncertainty on the production of biomass, ATP, NADH and NADPH. The specific biomass
constituents selected were the RNAs, DNAs and amino acids. All the coefficients showed overall little
impact on the uncertainty propagation.

4.1.3 Propagation of uncertainty on biomass production, ATP produc-
tion, NADH production and NADPH production based on injection
of uncertainty into specific individual biomass constituents

After the propagation of uncertainty for all biomass coefficients was studied, the study focused
on the propagation in a single biomass coefficient at a time. This was done by performing an
uncertainty insertion with a single biomass coefficient as parameter, as laid out in 3.2.2. pFBA
was performed on each sample and the SDR value of each flux was calculated. The SDR val-
ues for growth rate, ATP production, NAD production and NADH production can be seen in
Fig. 4.3.

These result show that the SDR impact of individual biomass coefficients on the growth rate
is severely dampened, with most values gathered around 0.03 SDRVBiom

ci
compared to the in-

jected SDR on the individual biomass coefficient. This is in stark contrast to the 0.43 SDRVBiom
All ci

from the previous injection result. This contrast is expected as, a single biomass coefficient
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4.1 Propagation of parametric uncertainty on metabolic flux predictions

Figure 4.4: Results from Maranas et al. study on the impact of uncertainty injection into specific biomass
consituents. It focused on the Standard Deviation Ratio between the injected uncertainty and the produc-
tion of biomass, ATP, NADH and NADPH. Figure modified from Ref. [13]

varying, would not have a drastic impact on the growth of biomass as a whole. The results from
the analysis performed on the iML1515, provided by Maranas et al. [13] study, can be seen in
Fig. 4.4. By comparing the results from each model we can see that the eciML1515 generally
displays the same overall patterns for growth rate and ATP production as the iML1515. How-
ever the iML1515 displays a consistently higher SDR for each individual biomass coefficient
compared to the iML1515. This is consistent with expectations for the same reasons talked
about in chapter (x). The eciML1515 has less degrees of freedoms owing to its additional set of
enzyme restrictions, meaning it is less robust then the iML1515 and so is expected to display a
higher SDR compared to the iML1515. However of note is also that the results for NADH- and
NADPH production for the eciML1515 model are almost the same. The specific values of each
one can be found in the Github repository. This is not shared between the results for iML1515,
which have significant differences between NADH- and NADPH production. The reason why
the eciML1515 has such similar results is unclear and still not fully understood. It seems like
an unlikely result owing to the fact that NADPH is produced from NADH. These results seems
to indicate that almost the entirety of NADH is converted into NADPH in the system, which
seems like an unlikely result. It is possible that this is caused by the earlier mentioned pathways
being disabled and causing a huge shift in the metabolic phenotype. This could have led to
the pathways consuming NADH, for other purposes then to convert it to NADPH, being un-
available. Another possibility is that this is due to the source code to perform this step was not
available. As such, it had to be implemented based on the information available in Maranas
et al. study [13]. It is possible that this implementation was not done correctly and therefore the
NADH, ATP and NADPH are displaying the wrong values. In order to evaluate this step could
be re-performed after the eciML1515 has been retuned with the pathways disabled and with the
code to perform this step re-evaluated. However, this is beyond the scope of this project.
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Figure 4.5: Propagation of uncertainty, focused on the citric acid cycle and glycolysis, from the para-
metric uncertainty injection into all biomass coefficents, macro-molecular fractions, GAM and NGAM.
From this we can see that the macro results displayed an ampliyfing effect, while the other parameters
displayed a dampening effect on the specific reactions, although the BM-SDR displayed a relatively mi-
nor dampening effect.

4.1.4 Propagation of uncertainty on specific fluxes in the glycolysis and
citric acid cycle pathways from different parameters

After the parametric uncertainty on individual biomass coefficients was finished the project
moved on to studying how the parametric uncertainty impacted the predicted internal fluxes
of the metabolic network of eciML1515. The citric acid cycle and glycolysis was selected for
closer examination as the study by Maranas et al. selected these pathways, giving a reference
for comparison for the eciML1515. Additionally these pathways are part of the high-flux back-
bone and studies have shown that E. coli responds to perturbations in the growth conditions by
reorganizing the pathways the rates of the fluxes that are part of this backbone [57]. By study-
ing these pathways, the results should give insight into how the model responds to biomass
composition perturbations. The SDR values of the reactions belonging to these pathways were
thus extracted from the results. A graphical representation of the SDR of these reactions for the
different parameters for uncertainty injection can be seen in Fig. 4.5.
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4.1 Propagation of parametric uncertainty on metabolic flux predictions

From these results we can see that the macro uncertainty displays a massive amplifying
effect on the uncertainty propagation throughout the predicted metabolic network for glycoly-
sis and citric acid cycle. This reflects the earlier result where the uncertainty on the biomass
production was amplified for the Macro-parameter for injection. It is expected that the Macro
parameter displays an overall higher SDR compared to the all biomass coefficients parameter,
owing to the fact that adding uncertainty into the macro molecular fractions of the biomass
composition will naturally prioritize the elements of the biomass that are the most abundant.
However, the size of the difference reflected in these results is unexpected. If we compare to
the results from the iML1515, from Maranas et al. study, we can see that the results from the
iML1515 shows Macro results for each reaction that never go above twice the results of the all
biomass coefficients result. This is in stark comparison to the results from the eciML1515 that
display Macro results up to five times higher compared to the biomass coefficients results. In
addition the iML1515 model also displayed high results for the GAM parameter that are not
shared for the eciML1515 model. These inconsistencies are possibly a result of the scripts for
the Macro, GAM and NGAM parameters. While the study performed by Maranas et al. pro-
vided scripts for the injection of uncertainty for all the parameters, they only provided scripts
for the calculating the sum of fluxes and SDR for the ”all biomass coefficients” parameter. As
such the scripts for the other parameters had to be modified from the provided scripts. It is
possible that the scrips were not modified correctly and does not calculate the correct values for
the other parameters. Based on this, it was decided that only the results from the ”all biomass
constituents” parameter was evaluated and these results can be seen in Fig. 4.6.

These results show that the uncertainty on the predicted internal metabolic fluxes from un-
certainty injection of all biomass coefficients is different from the prediction of biomass pro-
duction. While the biomass production displayed an SDR of about 0.43 from injection of un-
certainty into all biomass coefficients, a number of the internal reactions display a higher SDR.
While the reactions still display a dampening effect on propagation of uncertainty, it is lessened
to the point that uncertainty of biomass composition can lead to different results on the inter-
nal flux distribution. This was expected as the robustness of the prediction of biomass growth
is not reflected in the internal metabolic network of the model. The result is also shared for
the iML1515 that displayed a similarly higher SDR for the internal reactions compared to the
biomass production, as can be seen in the study by Maranas et al. [13].

Of note is that multiple reactions in the pathways displayed no results. This was unexpected
as these reactions are connected and part of the same pathways, and therefore should display
similar patterns of uncertainty propagation. In addition an SDR of 0 is a highly unlikely re-
sult for any active pathway in the metabolic network, as any active pathway will display some
variance from pFBA. Therefore it is likely that these empty values point to some mistake in
either the implementation of the scripts for calculating SDR or how the model interacts with the
scripts.

In spite of these inconsistencies, it seems likely that the additional constraints from the en-
zyme constrained model had an impact on the propagation of uncertainty, however, a closer
look at the model and the scripts should be performed in order to clear up the inconsistencies
from the analysis.

These results indicate that the biomass compositions of the models are important for the
metabolic flux predictions for the eciML1515, especially when studying the internal metabolic
fluxes. This reinforces the results from the Ref. [13] analysis that showed a similar result for
the internal metabolic flux predictions on the iML1515. Based on the result that perturbations
in the biomass composition has an impact on the metabolic flux predictions of a model, espe-
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Figure 4.6: Propagation of uncertainty, focused on the citric acid cycle and glycolysis, from the paramet-
ric uncertainty injection into all biomass coefficents, represented by the BM-SDR. From this we can see
that the macro results displayed an ampliyfing effect, while the other parameters displayed a dampening
effect on the specific reactions, although the BM-SDR displayed a relatively minor dampening effect.
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4.2 Quantifying the error and difference in flux predictions for growth rate-specific BOF
variants of the iML1515 model compared to the standard variant

cially when additional constraints are implemented, one can intuit that the implementation of
a BOF that more accurately represents the biomass composition under different environments
and conditions could increase the predicted flux accuracy of the model. In order to analyse this
further the next part of this project implemented growth rate-specific BOFs, in order to have a
more accurate representation of the biomass composition, for an E. coli model and compared
the predictions from these BOF variants with experimental data.

4.2 Quantifying the error and difference in flux predictions
for growth rate-specific BOF variants of the iML1515
model compared to the standard variant

Owing to the impact on the predicted growth rate following the disabling of the reverse beta
oxidase and reverse pyruvate synthase, shown in 4.1.1, it was decided that the eciML1515
would not be the model of choice for studying growth rate-specific BOFs. This is due to the
difficulty it would have to reach the experimental values necessary for quantifying the error
in flux predictions. Instead the standard iML1515 was used as a base mode for implementing
growth rate-specific BOFs.

4.2.1 Implementing growth rate specific biomass objective functions based
on experimental data

Eight different variations of the iML1515 model with different growth rate-specific biomass
objective functions were created. The specific growth rates were based on experimental data
provided by Gerosa et al. [15]. The models can be found in the Github repository under mod-
els. Each of the growth rate-specific BOF models were also bundled with a standard iML1515
model to act as a reference.

After the implementation of the growth rate-specific biomass objective functions, the bounds
of the exchange reactions and growth rate were set according to the experimental data. How-
ever, this turned out to produce infeasible solutions for FBA on most of the models. This is
likely due to the specific values from the experimental data not being in the available solution
space for the iML1515 model. The iML1515 is a model of the E. coli strain K-12 MG1655 [58],
while the experimental data is based on the E. coli BW25113 [15]. The difference in genomic
data between these two can lead to the experimental data for one not being a feasible solution
for the other.

As such it was decided that MOMA would be utilised in order to find the closest possible
feasible solution to the specific growth rate and exchange reaction fluxes from the experimental
data. However, COBRAPys MOMA function was found to be lacking in this regard as it uses
the flux solution of a model as its reference values. Since, for this project, the reference val-
ues were the exchange fluxes and the growth rate the MOMA function provided by COBRAPy
would not be applicable. The models were therefore ported over to ReFramed using its provided
porting function and MOMA was utilised on the models as per 3.3.2.

After the MOMA was finished, the growth rate, secretion and uptake values were extracted
from the results and set as new bounds for the models in COBRAPy. This allowed them to
represent the closest feasible solution to the experimental data. However, if the values were
set as bounds directly the models would still produce infeasible solutions. This is due to how
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Chapter 4. Results and discussion

Python handles floats and rounding, as such the bounds had to be given a tiny amount of slack
to account for Pythons rounding of floats.

After the bounds were properly implemented into each respective model, sampling of the
models was performed as outlined in 3.4. The sampling produced 10 000 solutions with varia-
tions for each model. In order to evaluate the results, the absolute RMSE score for each solution
was calculated using equation 3.20. This gives a comparison between the sampled fluxes and
the experimental data. The flux for the reaction SUCOAS displayed a huge variance and would
inflate the RMSE score for each sample massively. This is potentially a result of there being
multiple reactions that form and consume a specific metabolite in equal measures, one of which
being the SUCOAS reaction. This could create a metabolic loop of production and consump-
tion of said metabolite, where these reactions can vary all the way up to the upper bound and
still produce feasible metabolic phenotypes. Therefore, when sampling is performed, and the
flux of SUCOAS is considered, the RMSE score appears largely inflated. To circumvent this
inflation, and keep the RMSE scores sensible, a filter was added to remove the SUCOAS flux
from consideration when calculating the RMSE scores.

This produced 10 000 RMSE scores from each sample of each model. In order to best eval-
uate these scores it was decided that a box plot representation would be made and a t-test would
be performed for the reference models and the growth rate-specific BOF models. The box plot
representation can be seen in Fig. 4.7 and the t-test results can be seen in Table 4.2.

From these results we can see that, by implementing growth rate-specific BOFs, the models
show some improvements for galactose, fructose, pyruvate and glycerol. The standard iML1515
model was expected to display a better result then the reconstructed biomass objective function
one for glucose as a carbon source, as the iML1515 was built based on data from a glucose
limited E.coli cell [58].

After some discussion around these results it was decided that another statistical analysis for
the results would be performed with relative error evaluation and a cutoff point instead. This
was because the absolute RMSE score would overvalue fluxes with a large base value, caus-
ing an inflation of the RMSE score. On the other hand, a relative error with no cutoff would
massively overvalue the tiny fluxes in the model, causing another inflation of RMSE score. By
introducing a cutoff point, where only fluxes above a certain size are considered, this problem
can be avoided and the relative error can still be evaluated. It is also worth noting that the abso-
lute RMSE score ignores the standard deviation of the experimental flux data. However, from
the data, provided in the supplementary data, it can be seen that some of these values have large
standard deviation, meaning that the experimental value provided for the flux is unlikely to be
an accurate representation. To account for this another filter was added where, if a reaction in
the experimental data displayed an SD that was half of the value or above, a relative standard
deviation of 50%, it would not be considered for the error evaluation.

For these reasons the relative error of each sample value was considered against the exper-
imental data if the value was above 0.1 and the SD was not higher then half the value. A box
plot comparing this relative error can be seen in Fig. 4.8 and a t-test comparison between the
population of the growth rate-specific models and the standard model can be seen in Table 4.3.
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variants of the iML1515 model compared to the standard variant

Acetate Galactose Fructose Succinate Glucose Pyruvate Glycerol Gluconate
Experimental Data Carbon Source
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Figure 4.7: Box plot of the RMSE score between the growth rate-specific BOF variants and the refer-
ence BOF of the iML1515 model. The growth rate-specific BOF variants were implemented based on
experimental data from different carbon sources, producing eight different variants. The carbon source
for each is displayed on the x-axis. The bounds for each model were taken from a MOMA solution in
order to find the closest bounds to the experimental data that still produced a feasible model. Each model
was sampled, along with a reference model, to produce 10 000 different solution and each solution was
compared with the experimental data for the internal fluxes in order to produce the RMSE score. The
RMSE score is represented in the y-axis.
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Table 4.2: Results from the t-test performed between the RMSE score for the growth rate-specific BOF
variants and the reference iML1515 models. The growth rate-specific BOF variants were implemented
based on experimental data from an E. coli strain growing on mediums with different carbon sources.
The RMSE score was calculated based on sampling results, where an approximation of the experimental
values for the exchange rates and growth rates were used as bounds for the models. We can see that
all the models displayed a low p-value meaning that the difference in the populations are all statistically
significant. In addition, the galactose, fructose, pyruvate and glycerol show a negative T-value confirming
the results from Fig. 4.7 that the growth rate-specific BOF variant is more accurate to the experimental
data compared to the standard iML1515 model for these carbon sources.

Carbon Source T-value p

Acetate 69.14 0.000

Galactose −194.80 0.000

Fructose −134.30 0.000

Succinate 18.90 0.000

Glucose 8.00 0.000

Pyruvate −2.97 0.003

Glycerol −46.28 0.000

Gluconate 102.20 0.000
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Figure 4.8: Box plot of the relative error of the growth rate-specific BOF variants and the reference BOF
of the iML1515 model. The growth rate-specific BOF variants were implemented based on experimental
data from different carbon sources, producing eight different variants. The carbon source for each is
displayed on the x-axis. The bounds for each model were taken from a MOMA solution in order to find
the closest bounds to the experimental data that still produced a feasible model. Each model was sampled,
along with a reference model, to produce 10 000 different solution and each solution was compared with
the experimental data for the internal fluxes in order to produce the relative error. In addition a filter was
implemented that removed values that were either ≤ 0.1 in flux value or had an SD that was ≥ 50% of
the flux value. The relative error is represented in the y-axis.

45



Chapter 4. Results and discussion

Table 4.3: Results from the t-test performed between the relative error for the growth rate-specific BOF
variants and the reference iML1515 models. The growth rate-specific BOFs were implemented based
on experimental data from E. coli strain growing on media with different carbon sources. The relative
error were calculated based on sampling results, where an approximation of the experimental values
for the exchange rates and growth rates were used as bounds for the models. In addition a filter was
implemented that removed values that were either ≤ 0.1 in flux value or had an SD that was ≥ 50% of
the flux value. As can be seen all the models displayed a p-value of 0.000, meaning that the populations
are statistically significantly different from each other. In addition the data based on galactose, fructose,
succinate, pyruvate and glycerol as carbon sources all displayed negative T-values. This means that the
values for the growth rate-specific BOFs variants displayed a lower relative error then the values from
the standard reference iML1515 models.

Carbon Source T-value p

Acetate 31.43 0.000

Galactose −174.77 0.000

Fructose −147.63 0.000

Succinate −94.36 0.000

Glucose 12.42 0.000

Pyruvate −87.48 0.000

Glycerol −47.06 0.000

Gluconate 75.68 0.000

The results from the relative error comparison reinforces the results from the absolute com-
parison. Showing improvements in the predicted flux accuracy for galactose, fructose, pyruvate
and glycerol. In addition, the relative error showed improvements for the experimental data
based on the succinate carbon source. This is likely a result of the growth rate-specific BOF
variants having more accurate results, for the experimental data, for the smaller fluxes. This
would mean that the relative values display results closer to 0, which further means the results
are closer to the experimental data, for the growth rate-specific BOF variants compared to the
standard iML1515. This is reflected in the results and points to the attempt at implement a
growth rate-specific BOF was successful.

This could mean that the implementation of more condition specific BOFs has potential
for increasing the predicted flux accuracy of metabolic models. The results seems to indicate
that the growth rate-specific BOF achieved a more accurate prediction of metabolic fluxes com-
pared to the standard BOF. The growth rate-specific BOF displayed values that were closer to 0,
when looking at the relative error, for the galactose, fructose, succinate, pyruvate and glycerol
data sets. As mentioned earlier the standard BOF for the iML1515 is based on data from E.
coli strains mainly from glucose as a carbond source, as such it was unlikely that the growth
rate-specific BOF would achieve a more accurate prediction then the standard one. This is also
reflected in the relative error results, where the standard BOF displayed a relative error that was
closer to 0. Nevertheless, by tailoring the biomass composition to be more specific to certain
conditions and strains, it seems possible that more accurate predictions of metabolic phenotypes
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can be achieved.
This data also indicates that the accuracy of the GEM predictions for the internal metabolic

fluxes are poor. The relative error of each carbon source was grouped between 0.8 and 1.2 for
each carbon source, with the exception of gluconate which was at around 3.5 relative error. A
relative error of 1 means that the average samples average predicted flux was a full value off
the experimental data. This indicates that the GEMs, in their current state, perform poorly for
predictions of the internal metabolic fluxes and studies should be performed in order to find
ways to improve the GEMs for these aspects.

It should be noted that this data is based on experimental values that displayed high values
of standard deviation. As mentioned earlier steps were taken to filter the values that displayed
too much variation, or that were too low to be considered significant. However, the limit for
when these values were filtered away and not compared to the flux predictions were arbitrarily
chosen. It is possible that more accurate limits for filtration could improve the data and the
results, but this would require an in depth consideration of each reaction and would be above
the time budget available for this project.

Another way to avoid this issue could be to gather more specific data, which does not display
as large deviation. However, this is also beyond the scope of this project. Additionally, this
study only looked at the fluxes tied to pathways in the central carbon metabolism, which should
be relatively robust. Some other specific pathways in the metabolism, that are more directly
tied to the production of biomass components, are likely to display a larger difference between
the growth rate-specific BOF and the standard BOF. As an example, the synthesisation of nu-
cleotides is directly tied to the production of RNA in a cell, and therefore should be dependent
on their fraction in the biomass composition. However, the data found on these pathways was
limited and not focused on the growth rate and therefore would not be a good fit for this study.

Also of note is that the experimental data, the iML1515 model and the growth rate-specific
biomass data are all based on different strains of E. coli. It is possible that more specific data fo-
cusing on one strain could further improve the accuracy. Although this would involve gathering
specific data for the strain and is an undertaking beyond the scope of this project.
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Chapter 5
Conclusion and Outlook

This thesis was an attempt to further the understanding of GEM models internal flux distribu-
tion and how additional constraints and variables impact this accuracy. The first part of the
study focuses on the propagation of uncertainty in an enzyme constrained model. Specifically
the E. coli GEM eciML1515. The theoretical foundation was that the additional constraints
added with implementation of enzymatic data would give a more accurate view of the impact
of uncertainty on flux predictions from perturbations in biomass compositions. This is due to
how the eciML1515 is naturally less robust and likely a better representation of an E. coli cell
in this regard compared to the iML1515.

To compare the propagation of uncertainty analysis results between the models, data from
Maranas et al. study was collected while a similar analysis was attempted for the eciML1515.
The eciML1515 displayed a significantly lowered level of robustness from this analysis com-
pared to the standard GEM model of iML1515. This supports the theoretical foundation by
illustrating that the additional constraints and lowered degrees of freedom could mean that un-
certainty in the biomass composition has a larger impact on flux predictions. There were some
inconsistencies with the other parameters, which could have impacted the results and the con-
clusions of these parameters. With more resources and time the eciML1515 could be retuned
and improved, as well as the code for the perturbation analysis. However such endeavours are
beyond the scope of this project.

The second part of this project aimed to study how the implementation of a growth rate-
specific BOF would improve the predicted flux distribution for GEM models. The theoretical
foundation for this part was since the biomass composition has an impact on metabolic flux pre-
dictions, as the results of the Ref. [13] analysis and the earlier work in this project illustrated,
a more accurate representation of the composition would translate to a more accurate flux pre-
diction. In order to study this, experimental data was used to create eight different growth
rate-specific BOF variants. The experimental data was based on samples collected from E.
coli cells collected from growth media with differing carbon sources. These variants were then
compared to the standard iML1515. The growth rate-specific variants showed improvements
in predictions for the majority of the carbon sources, with the exception of acetate, glucose
and gluconate. The variants were expected to not show much improvement for glucose, as the
iML1515 is based on data collected from an E.coli growing with a glucose carbon source.

This shows that the implementation of condition-dependent biomass based on growth rate
can improve predicted flux distributions for models and is an avenue of models that should be
further explored. In particular the impact on specific pathways in the cell should be studied
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closer, to better understand how growth rate effects the metabolic flux network. Additionally,
studies on other conditions that could be implemented in order to improve the accuracy of the
current GEM models could be studied closer.
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Appendix A
Data and Source Code
The data for the results of, as well as the source code for the methods used, in this project
can be found in the Github repository at the URL:
https://github.com/HelgeMonsson/MasterThesis
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