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Improved Jacobian matrix
estimation applied to snake
robots

Jostein Løwer*, Damiano Varagnolo and Øyvind Stavdahl

Department of Engineering Cybernetics, Norwegian University of Science and Technology,
Trondheim, Norway

Twomanipulator Jacobianmatrix estimators for constrained planar snake robots
are developed and tested, which enables the implementation of Jacobian-
based obstacle-aided locomotion (OAL) control schemes. These schemes use
obstacles in the robot’s vicinity to obtain propulsion. The devised estimators infer
manipulator Jacobians for constrained planar snake robots in situations where
the positions and number of surrounding obstacle constraints might change
or are not precisely known. The first proposed estimator is an adaptation of
contemporary research in soft robots and builds on convex optimization. The
second estimator builds on the unscented Kalman filter. By simulations, we
evaluate and compare the two devised algorithms in terms of their statistical
performance, execution times, and robustness to measurement noise. We
find that both algorithms lead to Jacobian matrix estimates that are similarly
useful to predict end-effector movements. However, the unscented filter
approach requires significantly lower computing resources and is not poised by
convergence issues displayed by the convex optimization-based method. We
foresee that the estimators may have use in other fields of research, such as
soft robotics and visual servoing. The estimators may also be adapted for use in
general non-planar snake robots.
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1 Introduction

Snake robots are mechanisms designed to mimic biological snakes, which aspire to
inherit the robustness and stability of biological snake locomotion. Like their biological
counterparts, and as explained in detail in Ariizumi and Matsuno (2017); Gray (1946),
mechanical snakes move using an array of different propulsion techniques, such as lateral
undulation, sinus lifting, and sidewinding. In principle, this makes snake robots suitable
for moving and adapting to unknown and challenging environments, such as in rubble
following landslides or collapsed buildings. As of now, this is largely an unrealized potential.
Many experimental systems for obstacle-aided locomotion (OAL) adapt to the environment
in an implicit or heuristical manner only, with little utilization of mechanical sensor
information. In contrast, the present work is part of an effort to achieve efficient, robust,
and intelligent locomotor behavior by exploiting information about the geometry and
mechanical properties of the surroundings of the robot.

To do so, a generic strategy consists of calculating and then exploiting the manipulator
Jacobian (or simply Jacobian) of the system.The Jacobian is a matrix which relates the robot
joint velocities to its end-effector velocities through a linear transformation parameterized
by the joint states (see Section 3 for more details). In many robot systems, the kinematics
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of the robot is known and time-invariant, which makes it possible
to compute the Jacobian analytically. In the case of snake robots,
however, computing the Jacobian is a much more involved task,
partly because it depends on the continually changing configuration
of contact points between the robot and the environment. In snake
robots, the Jacobian matrix gives a relation between the joint
speeds and the velocity of the head. This information may prove
useful when designing locomotion strategies for snake robots, in
the same way that Jacobian is essential in motion planning for
robotic manipulators. This provokes the need for research on how
to effectively estimate Jacobianmatrices in constrained snake robots,
ideally in real-time.

The present paper addresses this problem, but specifically in the
case of planar snake robots, i.e., ones that are intended to navigate
on a smooth, two-dimensional surface, with obstacles that constrain
the robot’s movements. Planar snake robots are configured such that
the axes of rotation of all joints are perpendicular to the ground
plane. Therefore, they are unable to lift parts of their body off
this plane, and thus cannot utilize gaits such as sidewinding and
sinus lifting. Because of this, planar snake robots rely on either
anisotropic friction between their body and the ground plane or
its macroscopic equivalent: contact with obstacles, for propulsion.
Planar snake robots have limited practical use, but their motion
perfectly resembles that of a general 3D snake robot exhibiting
pure lateral undulation (i.e., with no lifting action) on a flat surface
containing obstacles. Thus, they lend themselves to studying this
particularmode of propulsion. Furthermore, results based on planar
motion may create a foundation on which research generalized to
non-planar scenarios can be performed, and the chosen platform
thus enables basal research into OAL and related subjects.

Planar snake robots share similarities with robot manipulators,
in the sense that they both are constituted of primarily rotational
joints and rigid links. However, they differ in the following aspects:

1. A planar snake robot is continually in contact with the surface
underneath the robot.This introduces friction between the robot
and the surface.

2. Most robot manipulators are grounded, in the sense that a base
coordinate frame is typically fixed in the world frame. In contrast,
generally no part of a planar snake robot is fixed in relation to the
world frame.

3. A typicalmanipulator is intended to interactwith its environment
only through its end-effector; thus, its kinematic equations have
a constant structure. In contrast, a snake robot is intended
to interact with its environment at any point of any link.
The corresponding constraints cause structural changes in the
kinematics of the robot/environment system as the robot comes
into contact with new obstacles or departs from obstacles it was
previously in contact with.

The last aspect is especially important as we discuss the
motivation for this paper. Figure 1 shows how a snake robot in
contactwith its environmentmight bemodeled as a kinematic chain,
using pairs of translational and rotational joints fixed in the world
frame to model the obstacles. The kinematics of such a model is
examined in detail in Gravdahl et al. (2022); Liljeback et al. (2010)
and will not be treated further, as the Jacobian matrix estimation
strategies proposed in this paper are completely independent of the
model. As the snake moves through its environment, the number

of obstacle constraints and their positions relative to the robot will
change. With incomplete prior knowledge of the position, shape,
and orientation of each obstacle, it is challenging to ascertain the
constrained kinematics of the snake robot. Finding the Jacobian
for a constrained planar snake robot is desirable from a control
perspective, but due to the uncertain nature of the snake robot’s
kinematics, finding the Jacobian in a closed form is challenging.This
paper seeks to find an estimate ̂J for the robot Jacobian, without the
need for an exact model of the constrained kinematics of the system.

Estimating Jacobians for robot manipulators is an established
andwell-researched field. Differentmethods for Jacobian estimation
are diligently used in the field of visual servoing (Wang et al., 2019;
Hosoda and Asada, 1994; Kosmopoulos, 2011; Shademan et al.,
2010), which serve as inspiration for the contributions in this
paper. Similar methods have been applied for calibration of robotic
stereo vision (Qian and Su, 2002). While this paper specifically
addresses Jacobian estimation in planar snake robots, the endeavor
of estimating Jacobians is highly relevant to other fields within
robotics and is discussed further in Section 8.

2 Notation

Thenotation used for the remainder of the paper is inspired from
Liljebäck et al. (2012). The kinematics characterizing a planar snake
robot may be derived by inspecting Figure 2: a generic planar snake
robot consisting of N links is composed of Nj = N− 1 joints, whose
axes are oriented in the same direction. The robot is assumed to be
embedded in a frame of reference denoted by (x0,y0). Each link of
the robot has its own link local coordinate frame (xi,yi), where i is the
link number.The local frames are oriented such that the x-axis forms
a line between the axis of joints i and i− 1, and the y-axis points in
the left transversal direction. The tail link of the robot is indexed
as link 1 and the head as link N. As shown in the figure, the angle
between the global axis x0 and the local axis xi, for i ∈ [1…N], is then
denoted as θi and called the link angle of link i. The relative angles
between adjacent links, i.e., the joint angles, are instead denoted as
ϕi for i ∈ [1…NJ]. It follows that the relation between the link angles
and the joint angles is given by

ϕi = θi+1 − θi. (1)

The vector containing the joint angles ϕ and vector containing the
joint speeds ϕ̇ then are defined as

ϕ = [ϕ1,ϕ2,…,ϕNj
]
⊤

ϕ̇ = d
dt
ϕ = [ϕ̇1, ϕ̇2,…, ϕ̇Nj

]
⊤.

For the remainder of this paper, the superscript (⋅)n denotes the
iteration step of the algorithm being studied.

3 The manipulator Jacobian

Consider a generic robot manipulator with N rigid links and
N− 1 joints, as shown in Figure 2. We denote the end-effector
position as x, the end-effector velocity as ẋ, the joint angles as q,
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FIGURE 1
Top view of a 5-link planar snake robot (orange) in contact with three obstacles (black outline). The kinematic representation of the snake robot
interacting with the obstacles is shown in the lower figure. Note how the obstacles can be modeled as a translational joint and a rotational joint
attached to the world frame.

FIGURE 2
Schematic diagram for the computation of the kinematics of a simple
3-link planar snake robot as previously mentioned. The link angles θi
and joint angles ϕi relate to the orientation of the local frames of the
links.

and the joint velocities as q̇. The end-effector position is related to
the joint angles by a forward kinematic function:

x = f (q). (2)

If a robot involves one or more rotational joints, the kinematic
function f is often highly non-linear. For the purpose of developing
automatic manipulation control schemes, it is of interest to

determine how a set of joint velocities q̇ will affect the velocity of
the end-effector, ẋ. This can be obtained by differentiating (2) with
respect to time so that

ẋ = J (q) q̇. (3)

From an intuitive perspective, the Jacobian matrix J(q)
corresponds to a parameterized linear transformation of the joint
velocities q̇ to the end-effector velocities ẋ. The Jacobian is also
essential in mapping between joint torques and tool point forces
and torques. In the case that J(q) is invertible, this quantity can be
used to compute a set of joint velocities q̇ for any desired end-effector
velocity ẋ. In this case,

q̇ = J−1 (q) ẋ. (4)

If J(q) is not invertible, then computing q̇ as a function of ẋ
may be performed using other methods relying on the existence
of J(q), such as constrained optimization, or by determining the
Moore–Penrose inverse J+q) for J(q).

In summary, the availability of J(q) is beneficial from a
control perspective. For most robotics applications, the manipulator
Jacobian J(q) can be found analytically as the kinematics of the robot
is known. In the case of snake robots, the Jacobian relates the joint
velocities to any of the snake robot’s state variables. We might not
only be interested in themovement of the end-effector (the head link
in the case of snake robots) but also in the motion of the remaining
links in the robot since this information might be useful for
activities such as low-level control or path planning. Furthermore,
the correspondence between joint torques and contact forces has
significant relevance for effectiveOAL, e.g., forminimizing obstacle-
related friction, and avoidance or resolution of jam situations (cf.
Liljeback et al., 2009).
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As mentioned in the introduction and hinted in Figure 1, the
Jacobian of a constrained snake robot depends on how andwhere the
robot touches obstacles. InOAL situations, the configuration of such
obstacles relative to the robot is continually changing, implying that
the corresponding Jacobian is also time-varying.This introduces the
problem of having to estimate it from field data as the locomotion is
unfolding.

4 An optimization-based Jacobian
matrix estimation approach

The first estimator proposed in this paper is inspired from Yip
and Camarillo (2014, 2016), where the authors present a framework
for model-less control in soft robots. Soft robots share a property
with planar snake robots, in that the exact kinematics of the
robot is difficult to ascertain. The control framework considered
in Yip and Camarillo (2014, 2016), schematized in Figure 3, relies
on recursively estimating the Jacobian based on measurements of
the soft robot’s control inputs and of the resulting end-effector
movements. We adapt the model-less control framework to be
usable for planar snake robots. The notation used in this section
is consciously adapted to conform with the choices mentioned in
Section 2. The joint states of the snake robot are given by the joint
angles ϕ ≜ q, and the end-effector position in the reference frame is
given by the position of the head of the snake robot, given in world
frame x ≜ r. This paper explicitly considers using the position of the
head of the robot r as the system output, a choice that most closely
relates to the system output used in Yip and Camarillo (2014). In
practice, one may choose different system outputs, even if this may
add computational complexity.This could include the linear velocity
of any of the remaining links or the angular velocities of the links.
Given a current estimate of the Jacobian ̂Jn, the current joint speeds
ϕ̇n, and the current head velocity rn, themodified Jacobian estimator
for a snake robot is given by the optimization problem

min
̂Jn+1
‖ΔJ‖2

s.t. ̂Jn+1 = ̂Jn +ΔJ

̇rn = ̂Jn+1ϕ̇n.

(5)

Problem (5) can be interpreted as follows: find aminimal change
ΔJ in the current Jacobian J t so that the new Jacobian J t+1 = J t +ΔJ
explains the relation between the measured values ̇rt and ϕ̇t. The
Euclidean norm ‖⋅‖2 is used as the metric for determining the
magnitude of the change in the Jacobian. Because of this, (5)
falls in the category of equality-constrained convex optimization
(CO) problems for which many efficient numerical solvers exist
(Kronqvist et al., 2019). Some care should be taken when using
this method as (5) may have some undesirable properties under
specific conditions. By definition, (5) is not guaranteed to have a
unique (and global) optimum and can, under some conditions, have
infinitely many or no solutions. An inherent issue with the Jacobian
proposed in Yip and Camarillo (2014) is that if the actuators of
the robot are stationary, solving the optimization problem does not
lead to meaningful estimates. On inspection of the last constraint
in (5), the estimated Jacobian ̂Jn+1 will uncontrollably diverge for
sufficiently small values of ϕ̇. In a real-life scenario, the measured

FIGURE 3
Simplified schematic of the control flow in the model-less control
framework presented by Yip and Camarillo (2014). At each time step n,
the scheme computes a current estimate Ĵn of the Jacobian,
combines it with the desired trajectory ẋnd, determines the desired
joints velocities q̇n, and actuates them. The system then measures the
trajectory of the robot ẋn and uses it together with q̇n to compute Ĵn+1,
the estimated Jacobian, for the next time step.

values ̇rt and ϕ̇t will be noisy to some degree. An optimization-based
formulation of the estimatormakes it difficult to analytically find the
statistical properties of the estimates (the statistical properties of the
estimator ̂J are not discussed in Yip and Camarillo (2014). A lack of
statistical performance indices could lead to issues down-the-line if
the estimates are used in, e.g., control strategies, as control strategies
typically require information about the statistical properties of the
estimate to infer qualities such as stability and convergence.

5 An unscented Kalman filter-based
Jacobian matrix estimator

The unscented Kalman filter (UKF) approach is designed to
perform state and parameter estimation on non-linear state-space
problems by improving on the extended Kalman filter (EKF). The
main difference between these two filters is the mechanism for
propagating the error covariances: while the EKF relies on the
linearization of the state-space model, the UKF relies on unscented
transforms (Julier and Uhlmann, 2004; Wan and Van Der Merwe,
2000). The UKF has been shown to statistically outperform the
EKF for a large subset of problems while exhibiting a similar or
even reduced computational load. While both methods rely on an
assumption that the underlying is locally linearizable around its
state, the UKF outperforms the EKF in scenarios where the model
nevertheless contains discrete non-linearities, owing to its use of the
unscented transform.This is an essential property when performing
estimation on amoving snake robot as it might come in contact with
new obstacles or depart from obstacles it previously was in contact
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FIGURE 4
Digital render of a 5-link boa snake robot, with a soda can for scale reference.

TABLE 1 Summary of themost relevant physical parameters of the
simulated robot.

Link width 84 mm

Axis–axis distance 130 mm

Link mass 500 g

Link friction coefficient 0.1 -

Joint torque 3 Nm

with.This will cause a discrete change in the system kinematics and,
thus, also in its Jacobian.

Moreover, theUKF can be used as amodel parameter estimation
algorithm, the application of which is the primary interest in this
paper. The general parameter estimation problem is stated by Wan
and Van Der Merwe (2000) as

yn = G (xn,w), (6)

where the non-linear map G(⋅) relates a system input xn to a
system output yn parameterized by a vector w (note that Wan and
Van Der Merwe (2000) uses a notation for which the state variable x
has a different meaning than in our Sections 2 and 3).

Estimating the Jacobian ̂Jn+1 in (5) can then be formulated as
a parameter estimation problem in which the input is xn = ϕ̇n, the
output is yn = ̇rn, the parameter is w = ̂Jn+1, and the non-linear
mapping G(⋅) is the matrix multiplication operation. This enables
using a UKF-based approach to estimate ̂Jn+1 via reformulating
the parameter estimation problem into the non-linear state-space
representation

̂Jn+1 = ̂Jn + ηn

̇rn = ̂Jnϕ̇n + νn
, (7)

where both ηn and νn are zero-mean stochastic variables,
ηn is the process noise, and νn is the measurement noise. This
formulation allows users to exploit process noise covariance as
a tuning parameter. This, in turn, influences the convergence
properties and tracking performance of the filter. For a system with
stationary parameters, ηn should be near zero as our confidence
in the parameter estimates does not deteriorate over time. In our
case, ̂Jn changes with time and thus requires a positive definite

covariance for the process noise. In general, larger values for the
process noise covariance will not only lead to a quicker response
to changes in Jn but also to more noise in the estimate ̂Jn.
Conversely, small values for the process noise will produce less noise
in the estimate of ̂Jn but might introduce significant lag in the
estimates.

We finally note the following detrimental but fundamental
property that mimics the problem observed at the end of Section 4:
the Jacobian estimation problem is not globally observable since the
non-linear mapping defined in (6) is, in our case, a linear mapping
with respect to ̂Jn. The linear map is not bijective, preventing both
global and local observability. However, the mapping retains the
property of being practically identifiable (Wieland et al., 2021), a
property that implies that the Jacobian ̂Jn can be made observable
by introducing sufficiently rich input–output data pairs. In our case,
the parameters can be made observable by providing a sufficiently
rich control input ϕ̇n. At the same time, due to the non-linear
mapping being practically identifiable, it is difficult to infer any
general guarantees on the stability, convergence, or correctness of
the estimated Jacobians. This may have important implications for
path planning and lower-level control, which should be carried out
in such a manner as to render the system practically identifiable.

In summary, for both the algorithms proposed in this paper,
the lack of persistently exciting inputs causes numerical and
theoretical problems. As this paper is focused on proposing and
characterizing these algorithms, how to mitigate this inherent
problem is considered a future work.

6 Methods

This section outlines a series of simulation experiments designed
to evaluate the performance and execution times of the two
algorithms described in Sections 4 and 5 and their robustness
to measurement noise. All experiments were performed using a
snake robot simulator which was purpose-built for OAL research.
The simulator is built upon the physics engine Coumans (2020).
All experiments were performed on a simulated snake robot with
11 links that emulates a snake robot platform currently under
development by the authors. A rendering of the robot is shown in
Figure 4. Essential physical parameters of the simulated robot are
given in Table 1. Three experiments were carried out to investigate
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FIGURE 5
Simulated snake robot moving through its environment using a basic undulation pattern at three different time steps. Each of the colored squares on
the underlying plane measures 1m⋅1m.

FIGURE 6
Comparison of the true ̇r to the predicted values of ̇r from the two
estimators in experiment 1. Note that for the two topmost plots, the
blue line showing the true ̇rx is mostly hidden behind the orange line
showing the predicted ̇rx. The two bottom plots show the error
between the ̇r and the predicted values of ̇r.

FIGURE 7
Mean square error (MSE) for the estimators in experiment 2

different properties of the two Jacobian estimation algorithms. All
three experiments share the same basic setup: the robot is set in
a starting position θN = 0, r = 0, and ϕ = 0 on an infinitely large
plane populated by cylindrical obstacles, where 0 is the null vector
of appropriate dimensionality.The obstacles have a radius of 50 mm,
are fixed within the world frame, and are placed at regular intervals

in two rows with coordinates given in meters by

[0.5k+ 0.25 0.1]T∀k ∈ {−3,10}

[0.5k −0.1]T∀k ∈ {−3,10}.
(8)

The snake robot is actuated to perform an undulation pattern that
creates propulsion by a rudimentary interaction with the obstacles
without the need for feedback control. Note that this form of
propulsion is only possible because the exact location and properties
of the obstacles are known. We note that the position or geometry
of the obstacle are not known to the two Jacobian estimation
strategies and that it is only given for the sake of reproducibility
of the experiments. The goal of the experiments is to examine the
behavior of the Jacobian estimation, not the behavior of the control
strategy. The design of a more complex control strategy leveraging
the estimated Jacobians is considered a futurework.Thedesired joint
angles ϕn

k = [ϕ
n
d,1, ϕnd,2, …, ϕnd,Nj]

T are computed as

ϕn
d,k =

π
3
sin(4nΔt −

π
3
k), (9)

where Δt is the time step of the simulation.The other parameters for
the undulation patternwere chosen to create propulsion in the snake
robot, for the given set of obstacles. A visualization of the snake
moving using the pattern described in (9) through the obstacles
described in (8) is shown inFigure 5A. For all three experiments, the
simulation is run for a duration of 10s and a time step of Δt =

1
240

s.
The three experiments are described as follows.

• Experiment 1: The Jacobian is estimated using measurements
of ̇rn and ϕ̇n from the described simulation without further
alteration.
• Experiment 2: Similar to experiment 1, except that the
undulation of the robot is commanded to halt such that
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FIGURE 8
Comparison of the true ̇r to the predicted values of ̇r from the two estimators in experiment 2. Note that for the two topmost plots, the blue line
showing the true ̇rx is mostly hidden behind the orange line showing the predicted ̇rx. The two bottom plots show the error between the ̇r and the
predicted values of ̇r.

FIGURE 9
Comparison of the true ̇r to the predicted values of ̇r from the two estimators in experiment 3. Note that for the two topmost plots, the blue line
showing the true ̇rx is mostly hidden behind the orange line showing the predicted ̇rx. The two bottom plots show the error between the ̇r and the
predicted values of ̇r.

ϕ̇n rapidly approaches 0 att = 5s and remains stationary until
t = 7s, where the undulation is resumed.
• Experiment 3: Similar to Experiment 1, except that a
measurement noise is applied to the measurement of ̇rn such
that ̇ ̃rn = ̇rn + δr, where δr ∼N (0,Σr) and Σr = 0.1 ⋅ I is the
covariance of δr , with I being the identity matrix.

Ideally, the metric to measure the performance of the estimators
would be to compare the estimated Jacobian ̂J to the true Jacobian J .
As previously discussed, the true Jacobian is challenging to obtain, so
othermetrics of performance are used.We apply ametric commonly
used inmachine learning and see if ourmodel produces the expected
output from a known input. For each time step, a prediction is
produced from our estimators based on the next input ϕ̇n+1 and the
current Jacobian ̂Jn. The input ϕ̇n+1 is applied to the snake robot and
produces an output ̇rn+1. The true value of ̇rn+1 is compared to that
of the prediction from the estimators to evaluate their performance.
The mean square error (MSE) is used to evaluate the error of the
estimators.

Both algorithms were implemented in Python, using cvxpy
(Agrawal et al., 2018; Diamond and Boyd, 2016) for convex
optimization and filterpy (Labbe, 2017) for the unscented Kalman
filter and associated resources.

7 Results

All plots showing the results of experiments 1–3 are placed in
the Appendix due to their size and visual complexity, but should be
interpreted as a part of this section.

7.1 Experiment 1

The data collected from experiment 1 can be visualized
in Figures 6A–D. The CO-based algorithm provides decent
predictions for the y-component of the head velocity vector ̇ry but
diverges for the x-component of the head velocity vector ̇rx over

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1190349
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Løwer et al. 10.3389/frobt.2023.1190349

FIGURE 10
True ̇rx compared to the noisy signal used in experiment 3. (A) Comparison of the true rx to the predicted values of rx, (B) Comparison of the true ry to
the predicted values of ry, (C) The error between the true rx and the predicted values of rx, (D) The error between the true ry and the predicted values
of ry.

time. The UKF-based algorithm predicts both components of ̇r
without diverging. The mean square error between the estimated ̇r
and the true value of ̇r is shown in Figure 7.

7.2 Experiment 2

The data from experiment 2 are visualized in Figures 8A–D.
As the robot becomes stationary shortly after t = 5s, the CO-
based algorithm rapidly diverges. This is compliant with what was
theorized in Section 4. As the robot continues its movement at
t = 7s, the CO-based algorithm diverges further. As ϕ̇→ 0, theUKF-
based algorithm also displays stability issues. However, as the robot
resumes moving at t > 7s, the UKF-based algorithm shows a higher
degree of error until t = 7.3s but rapidly converges to the true value
of ̇r as t > 7.3s.

7.3 Experiment 3

The results from experiment 3 are shown in Figures 9A–D, with
Figure 10 depicting a realization of themeasurement noise about ̇rx.

Similarly to what was seen in experiment 1, the CO-based algorithm
diverges for ̇rx. To compare the two approaches from a quantitative
perspective, we report the MSE of both algorithms in Figure 11.

7.4 Execution times

The execution times of both the algorithms are shown in
Figure 12. The CO-based algorithm has an average computation
time of 16.32 m for each time step, while the UKF-based algorithm
has an average computation time of 1.25 m for each time step.

8 Discussion

8.1 Experiment 1

TheUKF-based algorithmoutperforms the CO-based algorithm
by having a significantly lower MSE for both components of ̇r. The
error of both algorithms increases when there are large changes in ̇r
(e.g., at t = 8 where there is a near-instantaneous change in ̇r). This
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FIGURE 11
Mean square error (MSE) for the estimators in experiment 1. (A) Comparison of the true rx to the predicted values of rx, (B) Comparison of the true ry to
the predicted values of ry, (C) The error between the true rx and the predicted values of rx, (D) The error between the true ry and the predicted values
of ry.

is expected, as a large unexpected change in velocity will rapidly
change the true value of the Jacobian of the system.

8.2 Experiment 2

This experiment displayed the inherent stability issues of both
algorithms, as theorized in Section 4. A key difference between
them is seen in their behavior immediately after the robot resumes
movement at t = 7s. The CO-based algorithm implements a strict
equality bound. After the algorithm diverges when ϕ̇→ 0 and
is restarted, the algorithm attempts to solve the constrained
optimization problem to find ̂Jn+1, based on an inaccurate estimate
of ̂Jn, leading to an inaccurate estimate of ̂Jn+1. This problem is
propagated into the next step of the algorithm. One simple solution
to this issue would be to reset the values of the values of the
Jacobian to ̂Jn = 0 immediately after a halt. In contrast to the CO-
based method, the UKF-based algorithm shows no degradation in
performance after the halt compared to before the halt, except for a
brief transient.

8.3 Experiment 3

The performance of the algorithms seems to degrade in a
similar fashion when subjected to increasing measurement noise.
The performance of the UKF-based filter can be tuned as described
in Wan and Van Der Merwe (2000) by adjusting the values of the
measurement and process noise covariance matrices. The ratio of
the elements in these two matrices controls the trade-off between
the filter’s ability to rapidly respond to sudden changes in state and
the filter’s robustness to noise.

8.4 Analysis of execution times

The higher computation time for the CO-based algorithm is
likely due to the estimator being based on a numerical solver; the
cvxpy platform uses the open-source OSQP, SCS, and ECOS solvers
Agrawal et al. (2018).The lower computation time of theUKF-based
algorithm is likely because it is based on basic matrix computations
and decompositions instead of numerical optimization. It may
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FIGURE 12
Computation time for each time step for the two estimators. (A) Comparison of the true rx to the predicted values of rx, (B) Comparison of the true ry to
the predicted values of ry, (C) The error between the true rx and the predicted values of rx, (D) The error between the true ry and the predicted values
of ry.

be possible to improve the average computation time for both
algorithms through code optimization; such optimization has not
been part of this study. Due to the fundamental differences in the
two algorithms, however, we expect our qualitative comparison to
survive such improvements.

8.5 Possibilities for generalization

While this paper focuses on Jacobian matrix estimation
for planar snake robots, both algorithms are adaptable to a 3-
dimensional scenario by increasing the dimensionality of the
measurement vector ̇rn from ℝ2 to ℝ3. Care should be taken
during this process, as the number of unobservable variables will
increase and the issues with convergence and observability will
likely worsen as the dimensionality of the measurement vector
increases. Both algorithms presented in this paper are easy to adapt
to other kinds of problems as they require little or no information
about the dynamics of the system they are applied to. The proposed

UKF-based algorithm may be relevant to the field of soft robotics
or constrained robotics with unknown kinematics. Generally, the
UKF-based algorithm may be useful for any system that can
be modeled as the general parameter estimation problem
in (6).

9 Conclusion

Jacobians capture the complex interactions of a planar
snake robot. It models a constrained kinematic system, with its
surrounding obstacles, by representing a mapping between the
robot’s joint velocities or torques on one hand and its movements
or interaction forces on the other hand. A constrained snake robot’s
Jacobian matrix may, thus, be used as part of an obstacle-aided
locomotion (OAL) control scheme to allow the robot to utilize
the surrounding obstacles and its many joint actuators to move
efficiently through the environment. We have shown how Jacobians
can be estimated from proprioceptive (internal) measurements and
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proposed and tested two different strategies for obtaining such
estimates.

The two methods, one based on constrained optimization
concepts (CO-based) and one based on unscented Kalman filtering
techniques (UKF-based), have been shown to perform quite
differently. The UKF-based algorithm has a significantly lower
computation time than the CO-based algorithm, while at the
same time giving more accurate predictions of the end-effector
velocity for a variety of simulation scenarios. Importantly, the
UKF-based algorithm performs much better in scenarios where
the snake halts, in which case the CO-based algorithm is
plagued by divergence issues. This paper presents and analyzes
the algorithms from numerical perspectives, but we foresee
further research into the stability and convergence properties of
both algorithms as they are both practically identifiable. These
properties are important as they would provide some guarantee
to the correctness of the estimates, which, in turn, could prove
important in the design of control strategies that leverage these
estimates.

Further research should also be dedicated to devising and
comparing other types of methods for the purpose of finding which
one is the most suitable for OAL. Recent advances in the modeling
of snake robots using geometric algebra (Hrdina et al., 2016) may
prove useful in explicitly modeling the kinematics of a robot’s
interaction with obstacles, without the need for an estimation-based
approach.

While this paper focuses on Jacobian matrix estimation for
planar snake robots, the proposed algorithms can readily be adapted
to a range of problems within robotics where the kinematics of a
system is impractical or impossible to obtain analytically.
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