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ABSTRACT We explore the potential for predicting indoor photovoltaic energy on a forecasting horizon
of up to 24 hours. The objective is to enable energy management approaches that exploit harvesting
opportunities more strategically, for which they require more accurate energy intake predictions. Our study
is based on a data set covering over 3 years, for which we simulate online machine learning algorithms
with different amounts of training data and input features. Our results show that relatively simple machine
learning methods can outperform a persistent predictor considerably, and we observed a reduction of errors
of up to 56%. When devices obtain a significant amount of sunlight, adding the weather forecast improves
the prediction accuracy. We discuss prediction features, the amount of training data and analyze the sources
of errors to understand the potential of indoor photovoltaic energy harvesting predictions.

INDEX TERMS Energy harvesting, photovoltaic systems, energy predictions, machine learning.

I. INTRODUCTION
Energy harvesting is a key enabler for large-scale deploy-
ments of wireless, embedded sensor devices, as it removes the
need for manual interventions in the form of battery replace-
ments. One downside of energy harvesting, however, is that
energy is not always available, and that the devices therefore
need to do energy management and be strategic about when
to use how much energy. In the future, we expect energy
management to get even more significant. Embedded devices
are continually gaining computational capabilities, so that
they are able to performmachine learning inference and train-
ing [1], [2]. This enables use cases like anomaly detection [3]
or image recognition [4] directly on the device. In the context
of energy harvesting, such computationally complex tasks
require and enable more strategic behavior with respect to
energy management: The training of machine learning mod-
els is often delay-tolerant and can be performed at a later time
when there is an energy surplus. Other tasks may require fully
charged energy buffers at a specific time, like the transmission
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of large amounts of data when a transmission window is
available, for instance through low-orbit satellites [5]. Yet
other tasks may be performed at different quality or accuracy
levels, depending on the available energy [6]. This implies
that instead of just using whatever energy is available, devices
can act more strategically when spending their energy and
decide which tasks and when achieve the best outcomes.

For power management to be more strategic, having more
accurate predictions for the incoming energy is therefore
important, since more accurate predictions enable to perform
more advanced scheduling [7], [8], [9], [10], [11]. Instead
of using larger energy buffers and accepting the unavoidable
losses when buffering energy, delay-tolerant tasks may be
executed in phases of energy surplus and bypass the energy
buffer. Likewise, expected energy shortages can be mitigated
by early reduction of consumption if predictions are suffi-
ciently accurate [12].

Since photovoltaic cells are a promising option for energy
harvesting in indoor settings [13], we assess to which degree
and how their energy intake can be predicted. The predic-
tion of solar energy has been studied extensively in out-
door settings (see, for instance [14]), but there is little work
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related to indoor settings. Additional factors like artificial
lighting, room utilization, and obstructions play a significant
role. Most existing approaches focus on short time horizons,
and only predict the immediate next time period ahead, like
10 minutes or an hour, which is insufficient when planning
ahead for the scenarios mentioned above. Strategic planning
requires longer forecasting horizons [15], [16]. Therefore,
we analyze how predictions can be produced at midnight
for the entire upcoming day, so that they are available for
medium-term energy planning over the next 24 hours. In addi-
tion, many existing approaches use a training-test split that
implies to initially collect data for a long period. Instead,
we study an online setting that starts with little training data.

In the following, we use the comprehensive data set from
Sigrist et al. [17] to illustrate, discuss and investigate the pre-
dictability of indoor photovoltaic energy. We use simulations
of online learning with various parameter settings such as the
amount of training data and used features. We analyze the
sources of errors, which also reveal general challenges with
indoor predictions. The scope of the study is predicability
and understanding its limits, not the implementation or com-
putational complexity to which we, however, provide some
comments in the end.

Our results show that relatively simple machine learn-
ing models significantly outperform a persistence-based
predictor for all locations. Accuracy varies with the individ-
ual locations, for which we selected representative devices
from the data sets. Some locations may be subject to unpre-
dictable environment changes typical for indoor deployments
(like curtains or blinds), which lead to inaccuracies, both
for machine-learning-based and persistence-based methods.
When devices obtain a significant portion from natural sun-
light, adding the weather forecast to the prediction improves
accuracy. We also show that only a few days of training data
are sufficient, so that we can observe a reduction in errors of
up to 56% compared to persistence-based methods.

In the following, we provide an overview of related work
and present the data set in Sect. III. We describe the metrics,
baseline and machine learning models for harvest prediction
in Sect. IV, analyze the causes or errors in Sect. V and the
amount of training data in Sect. VI-A, before we close in
Sect. VII.

II. RELATED WORK
Energy harvest prediction has been discussed for various
settings and harvesting techniques. A fundamental predic-
tion technique are persistence-based models, which take the
observed intake from previous intervals, typically referred to
as time slots, directly as estimates for future ones. For solar
energy this is often a suitable approach since it captures the
diurnal cycle of the Sun. These approaches are especially
relevant for embedded systems as they only require previ-
ous observations, that can be accumulated locally, and few
operations. Hence, they have a small memory footprint and
low computational effort. The exponentially weighted mov-
ing average (EWMA) predictor [10] computes the moving

average per time slot from the past days, which is directly
used as prediction. The weather-conditioned moving average
(WCMA) [9] combines the value of the previous time slot
and the current time slot’s mean value for a given number
of past days, where an additional scaling of an observed
(weather) trend is applied. Pro-Energy [18] is a harvesting
predictor which identifies energy profiles of ‘‘typical’’ days.
It selects the energy profile as prediction that is most similar
to previously observed time slots.

For an outdoor setting, Ahmed et al. [19] use historic obser-
vations to build a probabilistic model of the energy harvest
at a specific location. Buchli et al. [20] use an astronomical
model to estimate the available energy and adjust device oper-
ation to the actually received energy. The historical or astro-
nomical models only apply for outdoor settings and do not
take indoor effects like artificial lights into account. Machine
learning has also been used for the forecast of outdoor solar
energy, usually within the domain of renewable energy pro-
duction. Voyant et al. [14] provide a comprehensive review
over these methods. For machine learning approaches for
embedded devices, Kraemer et al. [21] have shown the posi-
tive impact of weather information into medium-term energy
predictions.

In contrast to the outdoor setting, the prediction of indoor
photovoltaic energy received much less attention. Berner [22]
applies various machine learning models on the data set,
but only studies short-term predictions, i.e., one time slot
ahead. The models use training data that implies collecting
data over a longer period before any predictions are made.
Instead, we focus on the application of online learning, where
models are frequently retrained as more observations become
available.

Stricker and Thiele [23] apply random forests on the same
indoor data set. They train models initially offline, deploy
them on the devices, and then apply pruning and weighting of
trees through online learning. This learning process increases
prediction accuracy only marginally, but reduces the number
of trees to use for computation. In contrast to our work,
they only use previously harvested energy as input feature,
and focus on a shorter prediction intervals (10 minutes) and
forecasting horizon (1 hour).

An entirely different family of approaches tries to predict
energy harvesting opportunities before devices are deployed.
Kim et al. [24] predict energy intake based on ray tracing of
light based on building plans. Schneider [25] presents an ana-
lytical model for indoor solar energy based on illuminance
measurements. Both approaches require detailed knowledge
of the room geometry. In such a setting, Ma et al. [26] show
the significance of taking the spectrum of light into account,
especially in conditions with mixed light sources.

These last works show the abundance of information
and factors to take into account when forecasting indoor
energy intake usingmanually constructedmodels. In contrast,
we study the application of a data-driven approach where
the incoming energy is directly predicted based on a set of
prediction variables. This indirectly covers effects like room
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FIGURE 1. Daily average power, EWMA of daily average power and total mean power.

geometry, mixtures of different light sources, translation from
illuminance to energy intake and solar panel efficiency. This
hence enables a more autonomous approach required when
many devices need to be deployed or when conditions change
after deployment.

III. INDOOR HARVESTING DATA
Weuse the data set by Sigrist et al. [17], which contains power
traces of device locations l, covering a period of 961 days
from 2017 to 2020.1 With pl,d,i, we denote the average power
at location l on day d during time slot i, i ∈ {0..23}. The
mean power within a day is p̄l,d =

1
24

∑
i∈0..23 pl,d,i. We also

calculate the EWMA p̃l,d of the daily means

p̃l,d =

{
p̄l,d d = 1
α p̄l,d + (1 − α) p̃l,d−1 d > 1.

(1)

We use α = 0.095, which means that mainly the last 20 days
contribute to the average. This value is a good trade-off
between following the variations but smoothing sufficiently
to see the general trend of the data. We chose the three
locations L14, L17, L18 that are exposed differently to natural
and artificial light. Fig. 1 shows the daily average p̄l,d , the
moving average over the daily means p̃l,d and the total mean
power over the entire period. Note the different scaling of
the vertical axes. The locations receive different amounts of
artificial light, indirect and direct sunlight, summarized in
Table 1. The power harvested at the different locations varies
in the order of two magnitudes. The mean power of L18,
which receives only indirect, artificial lighting, is 3.1 µW .
In contrast, the mean power of L14 is 140 µW .
When the influence of natural light is significant, like for

L14 and L17, harvested power is subject to seasonality, and
it is lower during winter than summer periods. In addition,
we notice concept drifts (not further elaborated in [17]), indi-
cating changes in the environment: For L14, the summer of
2020 shows significantly less energy intake than the summer
of 2018. L18 shows a notable change in the autumn of 2019
(Fig. 1).

To study the data on a finer time scale, Fig. 2 shows two
weeks for each of the locations. The power available at L14
varies considerably from years 2018 to 2020. The artificial

1All data and code used in our experiments, including weather obser-
vations and forecasts,is available from https://github.com/falkr/indoor-
photovoltaic-energy-prediction

TABLE 1. Overview of the locations with a qualitative description of
lighting conditions provided by [17] and [27].

lighting for L18 must have changed, as the power profile
considerably differs between the two weeks. For L18 we see
a dependency on the weekday; power fromMonday to Friday
follows the working hours which affect the artificial lighting.

To study the influence of sunlight, we plot the power based
on the position of the Sun. The plots in Fig. 3 show the maxi-
mum power observed within combinations of the solar angles
azimuth and elevation. The azimuth describes the position of
the Sun during the year and elevation during the day. We see
that there is a significant dependency on the solar angles at
positions L14 and L17. We also see the direct sunlight in the
morning hours on L14, and the sunlight in the afternoons
at L17. The variations after sunset show dependencies on
artificial lighting. In contrast, L18 is rather independent from
the Sun’s position.

IV. ENERGY HARVESTING PREDICTION
Aiming at medium-term power management, we are inter-
ested in predictions that cover an entire day with a resolution
of 1 hour. Lower resolutions will likely not improve energy
planning, and tend to be more inaccurate [21].

A. PREDICTION PERFORMANCE METRICS
We use metrics that assign scores for a predictor for an entire
day, that means, the entire prediction horizon of 24 hours.
We define the scaled total absolute percentage error (STAPE)
and the scaled mean percentage error (SMAPE):

STAPE(l, d) =
100

24 · p̃l,d

∣∣∣∣∣ ∑
i∈0..23

pl,d,i −
∑
i∈0..23

p̂l,d,i

∣∣∣∣∣ (2)
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FIGURE 2. Detailed power over two distinct weeks for each location.

FIGURE 3. Maximum observed power over solar angles azimuth and elevation.

SMAPE(l, d) =
100

24 · p̃l,d

∑
i∈0..23

∣∣pl,d,i − p̂l,d,i
∣∣ . (3)

Both are scaled as percentages to the moving average of
the daily mean values introduced in (1). This avoids out-
liers of percentage errors and makes the metrics scale-
independent [28]. The two metrics differ in how they handle
summation within days: STAPE first sums over predictions
and actual values and compares those sums. It is hence a
measure of how many percent, relative to the average intake
during a period, the total energy for a day is off. SMAPE
first determines the absolute error for each time slot and
then summarizes the results. This means SMAPE also takes
timeliness into account, i.e., how accurate the predictions for
each time slot are. A good SMAPE implies a good STAPE,
but not vice-versa. Since both metrics are absolute, we can
evaluate the quality of a predictor by averaging the scores for
all days of a simulation run.

B. BASELINE PREDICTORS
A persistent predictor uses the value of the time slot from the
previous day, that means,

p̂LAG24l,d,i = pl,d−1,i . (4)

We also evaluated the EWMA predictor [10] explained in
Sect. II, but it only slightly outperformed the LAG predic-
tor for one location (L17) for the average STAPE, while it
scored considerably worse in terms of average SMAPE for
all locations and all parameter settings. We did not consider
WCMA since it did not show to improve predictions beyond
the next time slot [29], while our prediction should address
the entire day ahead. In Pro-Energy, predictions have a strong
dependency on similarity within the earlier time slots and is

not suitable in our setting as the time slots around midnight
are usually similar and close to zero, and hence not a good
indicator for the energy during the day ahead. We therefore
use here p̂LAG24l,d,i as simple prediction baseline and refer to it
as the LAG predictor.

Row 0 of Table 2 shows the results of the LAG predictor
for the different locations. The STAPE is between 31.52% and
58.54%, and the SMAPE is even higher, since it also requires
the predictor to be accurate for each hour.

C. ONLINE MACHINE LEARNING MODELS
We have seen in the previous sections that the energy intake
in the given indoor setting is highly specific for the individual
locations, and in practice only known after the deployment.
We hence study machine learning models for the energy
prediction in an online learning setting, that means, a set-
ting where data is used as it becomes available over time
and new machine learning models are trained frequently.
Training of the models as new data arrives takes care of the
non-stationarity, and we split between training and test data
according to what real deployments would have available.
We produce predictions at midnight for the entire next day
ahead, which can be exploited for energy planning with
hourly intervals as input.

To evaluate a prediction method, we create a series of
prediction models Ml,d . We train new models Ml,d at the
beginning of each day d for position l to produce predictions
p̂Ml,d,i for the 24 time slots ahead.2 The training and test data

2We assume here that the training is executed at midnight, at the same
instance data from the previous day d − 1 becomes available and the
predictions for the next day are due. This is an idealization to make the
discussion simpler but is no significant limitation in practice.
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TABLE 2. Mean STAPE and SMAPE of the different predictors.

available for a model at the beginning of day d is hence

trainl,d = {pl,δ,i∀δ, i | δ < d ∧ δ ≥ d − trainmax} , (5)

testl,d = {pl,δ,i∀δ, i | δ = d} . (6)

The value of trainmax allows us to constrain how many days
of training data we keep.

D. CHOICE OF MACHINE LEARNING MODEL
We have experimented with a variety of machine learn-
ing models, including support vector machines (SVMs),
XGBoost, neural networks and random forests. For neu-
ral networks, we explored shallow and deep models, and
searched through a wide range of layer sizes and hyper
parameters. However, despite of the high search effort, neural
networks and the other models did in general not score bet-
ter than the random forest regressors. For brevity, we don’t
quantify these results here but refer to similar experiences for
outdoor predictions [21], where random forests outperform
other models. Another benefit of random forests is their
low number of parameters. We therefore use random forests
regressors for our study, and select the implementation from
Scikit-learn [30].

In the following, we describe our experiments and the
feature sets. We discuss the results and explore sources of
errors in the next section.

E. BASIC FEATURES
Table 2 shows the results for the different locations. The
second column shows which features are provided to the
predictor:

• power_lag24 is the power harvested in the time slot
24 hours ago.

Since the harvested energy shows correlations with time in
Sect. III, we add the following features:

• workday encodes if the day is a working day, as 1 or 0,
• dayofweek encodes the day of the week, with Monday
encoded as 0 and Sunday as 6,

• timecount encodes the time slot, 0 to 23.
Column tmax shows the maximum number of training days
that were used to build the predictor model. Before we con-
sider their significance systematically in Sect. VI-A, we use

tmax with 10 and 30 days as the maximum number of days
worth of training data. In this run, we set the number of
estimators (trees) to 40, and leave the maximum depth uncon-
strained, which results in a maximum observed tree depth of
31. A more detailed analysis in Sect. VI will show that much
lower numbers for these parameters and hence less complex
models perform well, too. Depending on the days available
for each location in the data set and tmax, each simulation run
evaluates between n = 873 and 926 days.
With the features workday, timecount, dayofweek,

power_lag24 (rows 1 and 2) the RFR predictor scores similar
to the LAG predictor for locations L14 and L17, but is
significantly better for L18. Motivated by the dependency of
the harvested energy to the solar angles, we further add solar
angles elevation and azimuth as features. Rows 3 and 4 show
that the RFR predictor performs now slightly better than the
LAG predictor for each location.

F. ADDING WEATHER FEATURES
Fig. 3 reveals a significant dependency of the harvested
energy with the Sun’s position for some locations. However,
the solar angles alone could only slightly improve the predic-
tion as shown above, as it also depends on the intensity of
the sunlight, which in turn depends on the weather. Similar
to the prediction of outdoor solar power [21], we hence add a
weather forecast to the prediction variables.

1) RESULTS WITH RADIATION OBSERVATIONS
To first explore the dependency of the radiation from the
Sun, we add the observed radiation as feature. These observa-
tions are available from the weather station Zürich Fluntern,
in about 1 km distance of the building where the energy
harvesting data set was collected, through the Federal Office
of Meteorology and Climatology (MeteoSwiss) [31]. Note
that this would not be feasible in practice, as the values are
observations and hence not available at model prediction
time. The results are shown in rows 5 and 6 of Table 2.
For L14, the median STAPE improves considerably and is
now as low as 13.57%. Also L17 improves, but less sig-
nificantly than for L14. The scores for L18 stay almost
unaffected.
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2) RESULTS WITH WEATHER FORECASTS
Since the radiation observations are not available at pre-
diction time, we need to use radiation forecasts instead.
We obtained the forecasts based on a COSMO-1 model from
MeteoSwiss [31]. Forecasts were computed retroactively by
MeteoSwiss for the coordinates of the university building,
eight times a day. This means forecasts were produced for
every three hours, starting at midnight, so that every obser-
vation time slot is covered by several forecasts with different
lead times. For our experiments, we selected the forecasts that
would be available at or before midnight, to keep causality
with our online setting; we hence only use data that would be
indeed available at prediction time. The forecasts contain the
prediction of the downward shortwave radiation flux at the
surface, here shortly described as radiation_forecast, which
correspond to the value described by the radiation observa-
tions from above. (We have also experimented with using the
cloud coverage at different levels as input, but leave them out
here for brevity.)

The results using the weather forecasts are shown in rows
7 and 8, for different amount of training days. For L14 and
L17 we still see a significant improvement of the predictions,
although not as good as with the radiation observations. For
all locations, RFR now outperforms the baseline consider-
ably. Row 9 shows the percentage improvement of the best
available RFR compared to the LAG predictor baseline. For
L14, metrics are improved by 32% and 23%, for L17 by 22%
and 16%. For L18, metrics are improved by 56% and 47%.
This means for instance that the RFR for L18 estimates the
total energy harvested within a day with an average error of
13,65% compared to the moving average from (1). Fig. 4
shows example predictions, together with the daily values for
STAPE and SMAPE.

V. ANALYSIS OF PREDICTION ERRORS
In Table 2 we see that the three locations score differently for
the various prediction variables. In the following, we discuss
these differences, which mainly depend on different sources
for errors affecting the locations.

A. EFFECT OF WEEKENDS
For L18, artificial lighting is dominant. The energy intake
follows the schedule of the lights in the hallway, which are
in turn correlated with the working hours during a day. For
this location, we found a significant dependency of the error
metrics on the weekday, as shown in Fig. 5. This explains the
large error of the LAG predictor, since it takes data from a
Friday (a working day) as input for Saturday (where lights
are off) and hence overestimates energy for Saturday. Vice
versa, it takes the time slots from Sunday and uses them for
forecasting the ones for Monday, hence underestimating the
energy intake.

In contrast, the RFR predictor scores much more similar
over the weekdays. Compared with the LAG predictor, RFR

FIGURE 4. Sample predictions for four consecutive days for the different
locations, using the predictors from row 8 of Table 2. The bar plots show
SMAPE and STAPE for each day.

FIGURE 5. Mean SMAPE for LAG and RFR predictor for position L18 for
each weekday.

learns the effect of the weekend. One could of course build a
LAG-predictor that is aware of working days, but this would
require this insight, creating the predictor, and enabling it
for locations with that characteristic; all manual steps that
are to be avoided once a large number of devices should be
deployed. Also, if working patterns change, this manually
created predictor would be obsolete, while the online RFR
predictor would adapt.

B. ACCURACY OF WEATHER FORECASTS
For L14, the SMAPEwhen using the observed radiation from
the remote weather station is with 22.13% for tmax = 30 quite
low (Table 2, row 6). With the use of the actually available
radiation forecast, this error increases to 37.79% (row 8),
which implies that the prediction error is mainly due to
the inaccuracy of the weather forecast, i.e., the difference
between forecasted and observed radiation. We can con-
firm this by considering the correlation of weather forecast
errors and prediction errors. To distinguish between over-
and underestimation, we calculate the scaled percentage
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FIGURE 6. Power trace at location L18, located in the hallway. During one
night (A), the light was left on. The prediction does not capture this.

error as SPE(l, d, i) = 100 · (pl,d,i − p̂l,d,i)/p̃l,d . We then
calculate theweather forecast error as radiation_observation−
radiation_forecast. For L14, the correlation of SPE and
weather forecast error is 0.44, for L17 it is 0.35. For L18,
where natural sunlight has little influence, the correlation is
only 0.03. This further indicates that much of the difference
between the prediction score with radiation observation and
prediction in L14 can be explained by inaccuracies of the
weather forecast.

C. UNPREDICTABLE ENVIRONMENT CHANGES
One source of unpredictability is the artificial lighting. Usu-
ally, artificial lights are correlated with working hours and
predictable. In some cases, however, we observe that that
the energy harvested during night is larger than usual, like
in Fig. 6. Here we see the harvested power of L18 in the
dark hallway follows the working hours, but during one night
we see that the power does not reduce, probably because
someone left the light on.

For L17, even the predictor with access to the radiation
observations (rows 5 and 6 in Table 2) shows a significantly
higher error than for location L14. A potential explanation
for this can be found in Draskovic and Thiele [27], who men-
tion that there is a curtain that ‘‘sometimes partly obstructs
the window’’ at location L17. The curtain is probably con-
trolled manually by people in the room, and as such impos-
sible to predict. This is an example of an inherent source
of unpredictability that significantly affects the harvesting
prediction.

VI. COMPLEXITY OF THE PREDICTION MODEL
A. AMOUNT OF TRAINING DATA
In Table 2 we only show results for tmax = 10 and 30 days for
brevity. To study more values for tmax, Fig. 7 shows the mean
SMAPE for different values of tmax, using the feature set that
includes the radiation forecast. The dashed lines show the
mean SMAPE of the LAG predictor, which uses one day of
training data. For L14, RFR is better than LAG already with
a single training day, and improves with further training days.
It reaches the best results with around 20 days of training data.
For L17, RFR follows the same trend as L14, but does not
benefit frommore than 7 days of training data. For L18, RFR
is initially worse than the LAG predictor but increases once
it receives 7 days of training data, indicating that learning
about the weekend (ref. Sect. V-A) is most critical. For both
L14 and L17 we observe that keeping more training data does

FIGURE 7. Mean SMAPE over the amount of training days.

FIGURE 8. STAPE and SMAPE for L14 for different depths and number of
estimators.

not necessarily help. Seasonality and non-stationarity in the
data is one explanation for this. This strategy is also called
managed forgetting [32].

B. COMPLEXITY OF RANDOM FORESTS
Although we are not primarily concerned with the compu-
tational complexity of the predictors, we are interested in
the most relevant parameter settings for the random forests.
Fig. 8 shows the results of the prediction for location L14
with tmax = 10 training days and different values for the
the number of estimators (trees) and their maximum depth.
Already a depth of 2 delivers results close to the best values,
and for both STAPE and SMAPE a depth of 4 and 5 esti-
mators seem like a good tradeoff between achieved accuracy
and model complexity. This means, that relatively simple
machine learning models in terms of model complexity and
required training data are sufficient to achieve the scores
presented above.

VII. CONCLUSION
We have not addressed computational effort in this study,
as we are initially interested in the accuracy of machine-
learning-based methods and their application in principle.
Even though machine learning approaches become increas-
ingly feasible on embedded devices [2], they are certainly
more resource-intensive than the LAG predictor, which
only has to store a value for each of the 24 time slots.
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The feasibility of using RFR with weather forecasts will
therefore depend on the overall energy budget of the device,
and how significant a more efficient planning algorithm
through more accurate intake predictions turns out to be.
For future scenarios where wireless embedded sensors also
execute other, more computationally demanding machine
learning tasks, such tradeoffs may be significantly different
than for the typical operations of today’s devices, and hence
justify approaches like the one presented.

The data set of Sigrist et al. [17] reveals the large vari-
ance of the energy harvested by indoor photovoltaic cells,
both in amount and the patterns in which they depend on
natural and artificial lighting and other factors of their envi-
ronment. We have shown that a machine learning model in
form of a random forest regressor (RFR) can outperform a
persistence-based predictor for all locations when taking the
weather forecast into account, as shown in row 9 of Table 2.
We have also presented an analysis to explain relevant sources
of errors.

The potential benefit of machine-learning-based
approaches is their better accuracy while working
autonomously. The proposed prediction models require no
manual adjustment or oversight and the same setup can
capture quite diverse locations, from a dark hallway to a
sunny place near a window. In addition, they are operational
with little training data, as discussed in the previous section.
For a setting with many embedded, wireless devices these
facts are crucial and promising, as sensor devices can indeed
learn autonomously. Overall, our study reveals that in future
scenarios where prediction of energy intake is a critical
component, model complexity or amount of training data
are not the main problems; it is rather the availability of
accurate weather forecasts and that some locations are subject
to unpredictable obstructions.
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