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The blood proteome of imminent lung
cancer diagnosis

The Lung Cancer Cohort Consortium (LC3)*

Identification of risk biomarkers may enhance early detection of smoking-
related lung cancer. We measured between 392 and 1,162 proteins in blood
samples drawn at most three years before diagnosis in 731 smoking-matched
case-control sets nested within six prospective cohorts from the US, Europe,
Singapore, and Australia. We identify 36 proteins with independently repro-
ducible associations with risk of imminent lung cancer diagnosis (all
p < 4 × 10−5). These include a few markers (e.g. CA-125/MUC-16 and CEACAM5/
CEA) that have previously been reported in studies using pre-diagnostic blood
samples for lung cancer. The 36 proteins include several growth factors (e.g.
HGF, IGFBP-1, IGFP-2), tumor necrosis factor-receptors (e.g. TNFRSF6B,
TNFRSF13B), and chemokines and cytokines (e.g. CXL17, GDF-15, SCF). The
odds ratio per standard deviation range from 1.31 for IGFBP-1 (95% CI:
1.17–1.47) to 2.43 for CEACAM5 (95% CI: 2.04–2.89). Wemap the 36 proteins to
the hallmarks of cancer and find that activation of invasion and metastasis,
proliferative signaling, tumor-promoting inflammation, and angiogenesis are
most frequently implicated.

Lung cancer is the leading cause of cancer death globally1. The 5-year
survival is 20%, but varies from 60% for early-stage disease (Stage 1-2)
to 6% for late-stage disease (stage 4)2. In the United States (US), lung
cancer mortality declined by 6% annually from 2013 to 20163. This
improvement can be attributed to advancements in diagnosis and
treatment for patients with both early- and late-stage lung cancer4.
Improved surgical techniques, including stereotactic body radio-
therapy (SBRT) and adjuvant chemotherapy, have improved prognosis
for early-stage patients,whereaspatientswith locally advanceddisease
have benefitted from the introduction of radio-chemotherapy, adju-
vant immunotherapy, and neoadjuvant immune checkpoint inhibitors
(ICIs). However, most lung cancer patients are diagnosed with late-
stage disease where curative treatment is rarely possible, even though
developments in targeted and immunotherapy combinations have
improved short-term survival4.

Despite advances in lung cancer treatment, improving early
detection is the most promising strategy to improve long-term survi-
val. Screening with low-dose computed tomography (LDCT) has the
potential to substantially increase the proportion of lung cancer
patients diagnosed with early-stage disease who can be offered

treatment with curative intent. The ability of LDCT screening to
decrease lung cancer mortality among high-risk people with a history
of smoking has been demonstrated in several randomized trials5,6, but
some concerns remain, including how to best identify and reach those
individuals who are likely to benefit from screening, and how to
manage indeterminate pulmonary nodules detected on LDCT.

The advent of LDCT screening and the introduction of targeted
therapies have highlighted a need to identify lung cancer biomarkers
that can be used to (i) identify high-risk individuals who may benefit
from screening, (ii) informdiagnostic work-up and nodulemanagement
after LDCT screening, and (iii) choose optimal treatment regimens and
monitor response to treatment. In 2018, the US National Cancer Insti-
tute funded the Integrative Analysis of Lung Cancer Etiology and Risk
(INTEGRAL) program, an ambitious initiative focusing on developing
biomarkers that can refine eligibility criteria for LDCT screening and
diagnostic work-up following LDCT7. Here, we present results from the
initial large-scale analysis designed to identify circulating protein bio-
markers associated with imminent lung cancer diagnosis in the general
population of individuals with a smoking history. Using a high-
throughput proteomics approach, we screened over 1000 circulating
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proteins in blood samples drawn up to three years prior to diagnosis
within the Lung Cancer Cohort Consortium (LC3).

We here focus on identifying proteins robustly associated with
risk of imminent lung cancer diagnosis, and then describing their
epidemiological properties, the biological pathways to which they
belong, and their known relevance in carcinogenesis.

Results
Our study was designed to identify protein markers of imminent lung
cancer in people with a smoking history from the general population.
We defined imminent lung cancer as a clinical lung cancer diagnosis
within three years of blood draw and identified 731 lung cancer cases
and 731 smoking-matched controls in six prospective cohort studies
from the LC3 consortium.

Most study participants were men (980 men vs. 482 women) and
the mean age at blood collection was 65 years (standard deviation
9 years). The mean time between pre-diagnostic blood collection and
diagnosis was 1.6 years (range: 0–3 years, by design) (Table 1).

Demographic characteristics stratified by cohort are presented in
Supplementary Data 1.

Identification and description of proteins associated with
imminent lung cancer
We used the Olink Proteomics (https://www.olink.com/) platform to
measure relative concentrations of up to 1162 individual proteins
across 14 panels. We initially measured all available panels in samples
from 252 case-control pairs selected from the European Prospective
Investigation into Cancer and Nutrition (EPIC) study and the Northern
Sweden Health and Disease Study (NSHDS). Subsequently, among 479
additional case-control pairs selected from four additional cohorts, we
re-measured a subset of protein panels (totalling between 392 and 484
proteins), which were chosen to maximize coverage of the proteins
with the strongest risk associations (Supplementary Table 1). Controls
were matched to cases by age, date of blood draw, sex, cohort, and
smoking information in four categories (details in Methods section).
Quality control results are provided in SupplementaryData 2a, b and 3.
For statistical analyses, we replaced protein measurements below the
lower limit of detection (LOD) with LOD/p2 according to the manu-
facturer’s recommendation.

Overall discovery analysis of proteins associated with lung
cancer risk
We evaluated the association of each protein with risk of imminent
lung cancer diagnosis using conditional logistic regression models.
The associations between all 1162 proteins and lung cancer risk are
reported in Fig. 1 and Supplementary Data 4. In the full study sample,
there were 67 proteins associated with lung cancer after accounting
formultiple comparisons using the effective-number-of-tests method8

(Supplementary Data 4). We subsequently implemented a resampling
procedure to simulate 500 iterations of an independent discovery-
replication design, which was designed to more stringently identify
proteins whose associations with lung cancer had high reproducibility.
As intended, the resampling algorithm identified a smaller group of 36
proteins (Fig. 1, Supplementary Figs. 1 and 2, Supplementary Data 5). A
flow chart depicting this analysis is presented in Supplementary Fig. 1.

Among the 36 markers identified by the resampling algorithm, all
but one (SCF) were positively associated with lung cancer risk (Fig. 1).
Among these, the estimated odds ratio per standard deviation (ORsd)
ranged from 1.31 (IGFBP-1, 95% confidence interval [95% CI]: 1.17–1.47,
p = 2 × 10−6) to 2.43 (CEACAM5, 95% CI: 2.04–2.89, p = 2 × 10−23) (Sup-
plementary Data 4). The SCF protein was negatively associated with
lung cancer (OR =0.74, 95% CI: 0.66–0.84, p = 1.24 × 10−6). Compared
with the PLCOm2012 model9, a well-performing prediction model for
smoking-related lung cancer which uses questionnaire information,
the individual proteins improved discrimination between future lung
cancer cases and controls by between 0.005 (OSM) and 0.082 (CEA-
CAM5) units in the area under the receiver operating curve (AUC)
(Supplementary Data 4). All 36 proteins showed good quality control
measures and had less than 20% of values below LOD (Supplementary
Data 2, Supplementary Data 3).

In a sensitivity analysis, we compared the proteins that would be
identified if we used a single split-sample approach for discovery and
replication instead of our resampling algorithm (details in Methods
section). This showed that there were 29 proteins identified by both
methods, 7 markers identified only by the resampling algorithm, and
10 markers identified only by the single split-sample method (Sup-
plementary Fig. 3). Markers identified only by the resampling algo-
rithm typically had stronger risk associations in the full dataset and
were more consistently associated with risk across the six cohorts
compared with the proteins identified only by the single split-sample
method (Supplementary Data 6).

For the 36 proteins identified by the resampling algorithm as hav-
ing replicable associations with risk of imminent lung cancer diagnosis,

Table 1 | Characteristics of 731 lung cancer cases and 731
matched controls from the Lung Cancer Cohort Consortium
included in analyses to identify protein biomarkers of immi-
nent lung cancer diagnosis

Characteristic Cases Controls
N (%) or mean (SD) N (%) or mean (SD)

Total number of participants 731 731

Female 241 (33%) 241 (33%)

Age, years 64.8 (9.1) 64.7 (9.2)

Body mass index, kg/m2 25.5 (4.2) 26.2 (4.3)

Follow-up time, yearsa 1.6 (0.9) 11.9 (5.4)

Follow-up survival time, yearsb 4.1 (4.1) 13.0 (5.4)

Smoking status

Current 397 (54%) 400 (55%)

Former 334 (46%) 331 (45%)

Cigarettes smoked per day 20.9 (13.3) 16.3 (11.7)

Years smoked 39.5 (12.2) 36.2 (14.0)

Years since cessation, among
former

15.4 (11.7) 19.0 (13.6)

Histology

Adenocarcinoma 246 (34%)

Squamous cell carcinoma 150 (20%)

Large cell carcinoma 27 (4%)

Small cell carcinoma 118 (16%)

Other/NOS 190 (26%)

Stage

Early stage (TNM 1/2) 78 (23%)

Late stage (TNM 3/4) 256 (77%)

Unknown/missing 397

Participating cohort

CPS 115 (16%) 115 (16%)

EPIC 188 (26%) 188 (26%)

HUNT 164 (22%) 164 (22%)

MCCS 108 (15%) 108 (15%)

NSHDS 64 (9%) 64 (9%)

SCHS 92 (12%) 92 (12%)
aTime from blood draw to end of follow-up or lung cancer diagnosis.
bTime between blood draw and the end of follow-up for mortality (including death).
Age, body mass index, and smoking information is assessed at the time of blood draw.
EPIC The European Prospective Investigation into Cancer and Nutrition, NSHDS Northern Swe-
den Health and Disease Study, HUNT The Trøndelag Health Study, MCCS The Melbourne Col-
laborative Cohort Study, SCHS The Singapore Chinese Health Study, CPS-II The Cancer
Prevention Study II.
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the following results describe their epidemiological and gene expression
characteristics, as well as their known relevance in carcinogenesis.

Analyses considering stage at diagnosis, histological subtype,
and lead time
Among cases with complete stage information at diagnosis, 256 of 334
cases were diagnosed at late stage (stage 3–4) (Table 1). A majority of
proteins (23 out of 36) showed stronger odds ratios for late-stage
compared with early-stage (stage 1–2) lung cancer, but a clear differ-
ence (p-heterogeneity [phet] < 0.05)was only apparent for twoproteins
(CXL17 and CEACAM5) (Supplementary Data 7, Supplementary Fig. 4).
Stage-stratified odds ratio and AUC estimates are presented in Sup-
plementary Data 7. For the subset of lung cancer cases with available
information on stage at diagnosis, we estimated the stage at blood
draw using sojourn times specific to stage, histological type, and sex
previously estimated by ten Haaf et al.10. This suggested that 78% of
cases were likely early stage (stage 2 or earlier) at the time of blood
draw (Supplementary Fig. 5).

In Supplementary Data 8, we present associations between the 36
identified proteins and lung cancer risk by the major histological
subtypes and demographic strata (sex, smoking status, cohort, and
lead time). Most of the markers displayed consistent risk associations
across the major histological subtypes. Exceptions (phet < 0.05) inclu-
ded CEACAM5, which was more strongly associated with adenocarci-
noma than squamous cell carcinoma, and MMP12, which was more
strongly associated with squamous cell carcinoma than with adeno-
carcinoma (Supplementary Data 8, Supplementary Fig. 6).

When stratifying by lead time (time between blood draw and
diagnosis), 19 proteins showed heterogeneity in associations
(phet < 0.05, Supplementary Data 8) and 11 had a clear trend in the
strength of association across categories of lead time (ptrend < 0.05,
Supplementary Fig. 7, Supplementary Data 9). For instance, EN-RAGE
displayed little evidence for an association with lung cancer at 2–3
years prior to diagnosis (OR2–3y: 1.10, 95% CI: 0.91–1.33), but was

strongly associated within one year of diagnosis (OR<1y: 2.49, 95% CI:
1.87–3.32, phet = 6 × 10−6). A similar pattern was observed for IL6
(OR2–3y: 1.36, 95% CI: 1.10–1.67 vs OR<1y: 2.56, 95% CI: 1.92–3.41,
phet < 0.001).

Analyses considering smoking history and demographic factors
Stratified analysis by smoking status highlighted two proteins,
IGFBP-1 and VWA1, that had stronger lung cancer risk associations in
current vs former smokers (phet < 0.05, Supplementary Data 8,
Supplementary Fig. 8). Additionally, accounting for smoking inten-
sity, duration and years since cessation resulted in very little
attenuation of the OR estimates (Fig. 2, Supplementary Data 10).
When evaluating cross-sectional relationships between protein
concentrations and smoking history metrics in controls using linear
regression adjusted for sex, age and cohort, we found that many
markers had different concentrations when comparing former and
current smokers, but only GDF-15 was associated with smoking
intensity after accounting for multiple comparisons (Supplementary
Fig. 9a). We also found SCF inversely associated with smoking
duration. When analyzing lung cancer cases and controls combined
(whilst additionally accounting for case-control status), we found
several additional proteins associated with smoking intensity
and duration (Supplementary Fig. 9b).

Further risk analyses stratified by demographic factors did not
identify important heterogeneity in associations (Supplementary
Data 8). However, in a separate exploratory analysis in the SCHS
cohort, whose participants are of Han-Chinese descent, we found two
proteins, RFNG and S100A4, associatedwith lung cancer risk (p < 0.05/
effective-number-of-tests), despite showing little evidence for an
association among participants of European, US, or Australian cohorts
(Supplementary Fig. 10). The ORsd for RFNG in SCHS was 2.65 (95% CI:
1.62–4.33, n case sets: 90) compared with 1.07 (95% CI: 0.93–1.23, n
case sets: 455) in the other cohorts (phet < 0.001), and the ORsd for
S100A4 in SCHSwas 2.77 (95%CI: 1.72–4.44, n case sets: 92) compared
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Fig. 1 | Identificationof 36 protein biomarkers associatedwith risk of imminent
lung cancer diagnosis among 731 cases and 731 matched controls in the Lung
Cancer Cohort Consortium. The volcano plot depicts the lung cancer odds ratio
per standard deviation increment in relative protein concentrations (log-base-2
transformed) (x axis) and the −Log10 p value (y axis). The 36 identified markers of
imminent lung cancer are labeled (seeMethods; markers were identified through a

resampling process thatmeasured the association of each protein with lung cancer
risk in a discovery set and a replication set. The riskmarkerswere required tohave a
p <0.05/effective-number-of-tests in the discovery set and p <0.05 in the replica-
tion set in at least 50% of the resampling iterations). Source data are provided as a
Source Data file.
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with 1.03 (95% CI: 0.90–1.18, n case sets: 620) in the other cohorts
(phet < 0.001).

Relationships between risk proteins and their role in cancer
development
To contextualize the biological roles of the identified markers in can-
cer development, we assigned the proteins to one or more of the ten
hallmarks of cancer as defined by Hanahan and Weinberg11,12 based on
their description and functions available on GeneCards, the Human
Protein Atlas, Uniprot13–15, and the pathways in which they are impli-
cated according to g:profiler16. Among the 36 markers, we found that
31 had documented functions within the hallmarks of cancer (Fig. 3a).
The most frequently implicated hallmark was “activating invasion and
metastasis”, to which 19 proteins where assigned, including CEACAM5,
MMP12, U-PAR and CDCP1. The second most frequently implicated
hallmark was “proliferative signaling”, to which 17 proteins were
assigned. We also found many proteins (n = 14) assigned to “angio-
genesis” or “tumor promoting inflammation”. When using g:Profiler16

to query the list of genes that code for the identified proteins, we
found that the most enriched pathways were “extracellular region”,
“responses to stimulus” and “regulation of biological processes”
(Supplementary Figs. 11 and 12, Supplementary Table 2).

To assess relationships between proteins, we first quantified
pairwise correlations between the 36 identified risk proteins using
adjusted Pearson correlation coefficients separately in cases and
controls (Supplementary Fig. 13). Most proteins were moderately and
positively correlated, except for SCF which was inversely correlated
with some proteins (as well as with lung cancer risk, see above). These
patterns were similar in cases and controls.

To consider the relationships among all proteins simultaneously,
we implemented sparse graphical networkmodels adjusted for partial
correlations between proteins, separately in cases and controls
(Fig. 3b).We foundU-PAR to be themost highly connected and central
protein in both the case and control networks (eight connections
among cases and nine among controls, Supplementary Data 11).
Although most protein connections were common to controls and
cases, we found evidence for three distinct clusters of proteins with
stable associations observed only among cases. One was centered
around SYND1 [Cluster1: U-PAR, IL2-RA, SYND1, HGF, and EN-RAGE],
one around VEGFA [Cluster2: VWA1, VEGFA and IFI30], and one around
MK and CXCL9 [Cluster3: MMP12, CXCL9, MK, and WFDC2]. The
Cluster1 network was enriched for markers related to inflammatory
response (g:profiler pathway analyses Padjusted = 7.4 × 10−3) andCluster3
was enriched for proteins involved in homeobox six-3 transcription
factor and defense and immune responses (g:Profiler Padjusted: 4 × 10−2,
g:Profiler Padjusted: 3 × 10−2 and g:Profiler Padjusted: 4 × 10−2). Notably,
several of the proteins most strongly associated with lung cancer,
including CEACAM5, IL6, and SCF, were weakly correlated with other
markers and did not have any stable connections with other identified
risk markers (Fig. 3b).

Associations with mortality among individuals with lung cancer
Using Cox proportional hazards models, we evaluated the extent to
which the 36 risk proteins were associated with all-cause mortality
following lung cancer diagnosis using both blood concentrations and
tumor gene expression in TCGA samples. Whilst 20 proteins were
nominally associated (p < 0.05) with all-cause mortality when mea-
sured in blood (Supplementary Fig. 14), these associations were weak
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in comparison to the association with incident lung cancer risk. Only
three proteins (CEACAM5, CDCP1 and VEGFA) were associatedwith all-
cause mortality after accounting for multiple comparisons (Supple-
mentary Data 12 and 13). Of the 20 proteins nominally associated with
mortality, threewerealso nominally associatedwith all-causemortality
when assessed using tumor gene expression (CDCP1, CEACAM5, and
U-PAR) in TCGA.

Gene expression in normal and tumor tissue
We used data from GTEx to assess mRNA expression for the genes
coding for 36 risk proteins in normal tissue. Relative levels of mRNA
expression in various normal cell types for 35 markers are shown in
Fig. 4a (data was not available for TNFRSF6B). Three markers (ALPP,
SFTPA1, and MUC-16) were expressed primarily by lung cell types,
while 4 others (IL2-RA, CXCL13, TNFSF13B, and EN-RAGE) were

expressed primarily in immune cells. For mRNA expression in tumor
cell types from TCGA, we found that most of the 36 markers were
expressed in lung tumor tissue to some degree, but also in a wide
variety of other cancer types (Fig. 4b). The only marker that appeared
specifically expressed in lung cancer tissue was SFTPA1.

Discussion
The INTEGRAL project is a major initiative aiming to identify circulat-
ing protein biomarkers of imminent—but yet-to-be diagnosed—lung
cancer. Based on blood samples drawn up to 3 years prior to clinical
lung cancer diagnosis, we used a high-throughput proteomics plat-
form to evaluate the association of up to 1162 circulating proteins with
imminent lung cancer diagnosis in 731 cases and 731matched controls
from six prospective population cohorts. We identified 36 proteins
associated with risk of imminent lung cancer diagnosis, most of which
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have not been previously identified as pre-diagnostic lung cancer
biomarkers.

The last decade has seenmajor investments in research aiming to
identify early cancer biomarkers.With the advent of early detection by
LDCT screening, a strong focus has been placed on lung cancer. Awide
array of circulating biomarkers have been proposed, including germ-
line gene variants17,18, microRNA19,20, epigenetic markers21,
autoantibodies22, protein markers23,24, and circulating tumor DNA25.
However, few have been independently validated, and none are widely
used in screening. In the INTEGRAL project, we decided to focus on
circulating proteins due to their demonstrated ability to improve the
discrimination of smoking-based risk prediction in an independent
validation population23,24, as well as the prospect of developing a
clinical biomarker test at a reasonable cost and sample volume
requirement.

Our current study analyzed 1162 circulating proteins and found 67
proteins associated with lung cancer risk after accounting for multiple
testing. Following a resampling algorithm to simulate many iterations
of split-sample discovery and replication, we identified 36 proteins
with replicable associations with risk of imminent lung cancer diag-
nosis, 35 of which showed positive associations with risk. Comparing
results from the resampling algorithm vs. a single-split discovery/
replication analysis demonstrated that our procedure for identifying
proteins is conservative, thus allowing us to comfortably conclude that
they are associated with risk of imminent lung cancer across the

studied populations. Six of the 36 markers have been previously
reported to be associated with lung cancer in pre-diagnostic samples,
including several well-known tumor markers such as CEACAM5/CEA
and CA-125/MUC-1624, as well as IL6, CDCP1, CXCL9 and CXCL1326–28.

We characterized the epidemiological properties of the identified
proteins and their associations to known risk factors such as smoking.
Despite several proteins being associated with smoking history cross-
sectionally29,30, we found limited evidence for heterogeneity in risk
associations for most of the 36 markers when stratifying by smoking
status, and little impact of additional adjustment for smoking char-
acteristics. However, we did find stronger risk associations formany of
the 36 markers when measured in blood drawn closer to diagnosis.
This is expected for markers indicative of forthcoming disease, as
opposed to markers of disease etiology. Among these proteins, two
markers from the S100 family (EN-RAGE and S100A11) displayed par-
ticularly strong associations closer to diagnosis. Proteins in the S100
family are implicated in tumorigenesis and cancer progression
through different mechanisms of inflammation, cell differentiation,
and cell proliferation31, and have been proposed as biomarkers for
prognosis of melanoma32,33. These observations suggest that the risk
associations are likely to reflect a somatic response to (or the direct
action of) a subclinical lung tumor, rather than differences in tobacco
exposure. Together with the risk discrimination analysis that indicated
improvements over the PLCOm2012 model for several individual
proteins, they also suggest that the identified markers provide
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additional risk information to thatof detailed smokinghistory.Weplan
to evaluate the extent to which a combination of proteins may inform
risk discrimination in a separate study. Of note, somemarkers did not
display stronger risk associations closer to diagnosis, although we
could only analyze trends over a maximum of 3 years lead time, by
design. Future studies should therefore seek to describe patterns in
risk associations for the identified markers over longer lead times.

A potential role for the identified protein markers in early detec-
tion of lung cancer is supported by our analysis estimating that 78% of
cases with known stage at diagnosis were stage 2 or earlier at the time
of blood draw, and 68% stage 1 or earlier, which suggests that the
markers may be able to detect many lung cancers at a curable stage.
Further, we observed improvements in risk discrimination when the
proteins were individually added to the established PLCOm2012
smoking-based risk prediction model. We find these results encoura-
ging given the overall aim of the INTEGRAL program to use these
markers to improve short-term lung cancer risk assessment prior to
LDCT screening7,23,24,34.

When evaluating the known mechanistic roles of the 36 proteins,
we found that they have a wide range of molecular functions and
include multiple growth factors (HGF, MK, IGFBP-1, IGFBP-2, TGF-
alpha, VEGFA), tumor necrosis factor-receptors (TNFRSF6B,
TNFRSF13B), and chemokines and cytokines (CXL17, GDF-15, OSM,
SCF). SCF, the only protein that we found to be negatively associated
with lung cancer, is involved in regulation of cell survival, proliferation
and hematopoiesis35. The marker most strongly associated with lung
cancer in our study—CEACAM5 (CEA)—had a stronger association for
adenocarcinoma than for squamous cell carcinoma. CEACAM5 is a
surface glycoprotein that is involved in cell adhesion, intracellular
signaling, and tumor progression36. CEACAM5 is routinely used to
monitor recurrence among colorectal cancer patients37, and was
recently highlighted as a promising target for antibody-drug conjugate
therapy of non-small cell lung cancer38.

When mapping the identified markers to the hallmarks of cancer,
we found that themost frequently implicated hallmark was “activating
invasion and metastasis” (19 markers), which was associated with
proteins with known roles in the modulation of extracellular matrix
during metastasis such as MMP12 and U-PAR39,40. The second most
frequently implicated hallmarkwas “proliferative signaling”, whichwas
associated with 17 markers, including growth factors such as HGF41,
TGF-alpha42, and IGFBP-241. Changes in proliferative signaling are
common in lung tumors, as exemplified by the impact of deleterious
mutations in well-described oncogenes, such as EGFR and KRAS43. The
third most frequently implicated hallmark (14 proteins) was “tumor-
promoting inflammation”, including markers such as CXCL9, CXCL13,
CXL17, IL6, and IL2-RA. This highlights the central role for inflamma-
tion and the immune system in responding to or initiating the devel-
opment of lung tumors11,44. Inflammation and metastasis in cancer are
closely related45, as the invasion of vital organs by a tumor is regulated
by matrix metalloproteases (MMP) and urinary plasminogen activator
(UPA), both of which are regulated by NF-κB (regulator of a large
array of genes involved in different processes of the immune
and inflammatory responses)45. “Angiogenesis” was also associated
with 14 proteins, including ANGPT2, CASP-8, and CEACAM5 which
highlights the close relationship between invasion and metastasis and
angiogenesis46.

To better understand the relationships between the 36 markers,
we conducted a sparse graphical LASSO-based network analysis and
observed specific associations between 12 proteins among lung cancer
cases that did not appear among controls. These case-specific protein
connections were clustered in three groups and were all broadly
implicated in an extracellular defense response to somatic stress. In
contrast, connections that were specific to controls appeared to be
more strongly associated with a signaling response to cell prolifera-
tion. In seeking to establish a risk prediction model including multiple

proteins, we would anticipate some redundancy in the risk dis-
criminative performance of connected proteins. An interesting
observation was that several of the proteins most strongly associated
with lung cancer, including CEACAM5, IL6, and SCF, did not have any
stable connections with the identified markers.

To understand why circulating concentrations of the identified
proteins are associated with lung cancer diagnosis, and to assess
whether they are likely to be specific to lung cancer—as opposed to
cancer at other sites—we used publicly available expression data for a
range of normal and tumor tissues. This analysis yielded two notable
observations; first, that only three proteins, ALPP, SFTPA1, and MUC-
16, were predominantly expressed in normal lung cells compared to
cell types of other origins. In contrast, several proteins appeared to be
primarily expressed by immune cells, although most were also
expressed by other cell types. The second notable observation was
that only one protein—SFTPA1—was predominantly expressed by lung
tumor tissue compared to other tumor tissues, whereasmost proteins
were expressed in a wide range of cancer types. These complementary
data suggest that few of the identified markers are likely to have ori-
ginated in yet-to-be diagnosed lung tumor tissue, but rather are pre-
sent in the circulation as a somatic response to subclinical cancer.

Associations between the identified markers and all-cause mor-
tality after lung cancer diagnosis were weak. Three markers (U-PAR,
CEACAM5, and CDCP1) were also weakly associated with all-cause
mortality when measured as mRNA in lung tumor tissue in TCGA.
Although these associations donot appear important, also considering
that stagewasnot accounted for, theymaybe consistentwith a role for
some of the identified markers in tumor progression or an immune or
inflammation response in lung tissue. For example, CDCP1 was pre-
viously associated with an increased risk of lung cancer in pre-
diagnostic blood28, is overexpressed in lung cancer tissue47, and is
associated with metastases and poor prognosis47–50. High U-PAR
expression has been found associated with lower overall survival in
patientswithNSCLC51, andU-PAR is also studied as a therapeutic target
in cancer52.

The key strength of our study is our large, rich data resource
whichwas generated specifically to identify early detectionmarkers of
lung cancer. The study design, with pre-diagnostic samples drawn up
to 3 years prior to clinical (not screen-detected) lung cancer diagnosis,
ensured that identified markers were not influenced by the diagnosis
itself or subsequent treatment, as in a retrospective case-control study
of diagnosed cases53. By drawing samples from multiple studies, we
were able to verify the consistency of associations across populations
from the US, Europe, Southeast Asia, and Australia. Furthermore, our
sample size provided 80% power to identifymarkerswith anORsd of at
least 1.26 after considering multiple testing, suggesting it is unlikely
that we failed to identify anymarker among the 1162 proteins that is of
major use for early detection. Future discovery studies seeking to
identify proteinmarkers for early lung cancer detectionmay therefore
consider using our results as an initial reference and focus additional
investments on measuring non-overlapping sets of markers.

An important limitation of our study was that information on
clinical stage was lacking for many cases. This limited our ability to
comprehensively evaluate whether the identified markers were pri-
marily driven by lung cancer diagnosed at late stage. However, based
on the stage information available, we did not observe important dif-
ferences between the OR estimates for early vs. late stage lung cancer.

Our controls were sampled directly from the same source popu-
lation as cases and were individually matched to cases by detailed
smoking characteristics, age, sex, and date of blood draw. This design
protects againstmultiple types of bias that frequently affect biomarker
studies. However, our nested case-control design does not readily
allow us to establish absolute riskmodels, nor to evaluate the utility of
ourmarkers for riskprediction in the general population, because such
metrics are strongly influenced by the highly selected controls. As
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described by Robbins et al.,7 we will address this question in a large,
independent validation phase by analyzing pre-diagnostic blood
samples from a larger sample of 1700 lung cancer cases and 2900
randomly selected cohort representatives including 10 additional
cohorts participating in the Lung Cancer Cohort Consortium.

In future work, we plan to study the dynamics of the identified
markers by evaluating repeat blood samples collected from the same
individuals over time. As the majority of study participants in the
cohorts were of European descent (except for the SCHS cohort which
comprises mainly Han-Chinese participants), an important future aim
is to determine whether any additional markers might be important
specifically for populations of non-European ancestry. In addition, our
study focused explicitly on people with a smoking history, and we
consider it unlikely that the most relevant set of markers for lung
cancer among people who never smoked were identified. Finally, we
note that there is substantial scope for future studies to explore the
potential biological roles of the identified markers in lung cancer
development and progression.

To summarize, after screening 1162 proteins, we identified 36
markers of imminent lung cancer diagnosis with a wide range of
functions and relevance across the hallmarks of cancer. Forthcoming
studieswill address the extent towhich thesemarkers candiscriminate
future lung cancer cases and their utility for early detection. Our study
provides a potential view of the blood proteome in the years leading
up to diagnosis of smoking-related lung cancer and can serve as a
reference for investigations seeking to identify early protein markers
of lung cancer.

Methods
Ethical approval
The protocol of the Lung Cancer Cohort Consortium (INTEGRAL
project) was approved by the Ethics Committee of the International
Agency for Research on Cancer (Project number 11–13). This study
involved only secondary analysis of existing specimens and data. This
research was performed in accordance with the Declaration of
Helsinki.

Study sample
A detailed justification for the study design and description of the
study sample is available in Robbins et al.7. In brief, we included six
prospective cohorts of diverse geographical origin amongst cohorts
participating in LC3, all of which collected plasma or serum samples
which were processed according to standard protocols and stored at
−80C or in liquid nitrogen. These included the European Prospective
Investigation into Cancer and Nutrition (EPIC)54 from several countries
in Europe, The Northern Swedish Health and Disease Study (NSHDS)55

from Sweden, the Trøndelag Health Study (HUNT)56 from Norway, the
American Cancer Society Cancer Prevention Study-II (CPS-II)57 from
the US, the Melbourne Collaborative Cohort (MCCS)58 from Australia,
and the Singapore Chinese Health Study (SCHS)59 from Singapore
(descriptions of each cohort are provided in Robbins et al.7). Lung
cancer cases were eligible if they reported a current or former history
of daily cigarette smoking at recruitment and were diagnosed with a
histologically confirmed lung cancer (C34) at most three years after
blood draw. Controlswere selected by incidence density sampling and
matched 1:1 to cases based on age at blood draw (±1 year, relaxed to ±3
years for sets without available controls), date of blood draw
(±1 month, relaxed to ±3 months), sex (self-reported), and cohort, as
well as smoking status in four categories (people who formerly
smoked and quit <10 or ≥10 years prior, and people who currently
smoked <15 or ≥15 cigarettes per day). The final study sample included
731 lung cancer cases and 731 matched controls. All research partici-
pants provided written, informed consent, and the study was
approved by the relevant Institutional Review Boards.

Proteomic measurements
Circulating blood proteins were measured in plasma or serum using
the Olink platform at Olink Proteomics (https://www.olink.com/) in
Uppsala, Sweden. The Olink platform is based on proximity extension
assays (PEA) that are highly sensitive, avoid cross-reactivity, and have
high reproducibility60. Relative concentrations of up to 1162 unique
proteins, distributed over 14 Olink panels, were measured by quanti-
tative PCR (qPCR) (Supplementary Table 1). Measurements are
expressed as normalized protein expression (NPX) values which are
log-base-2 transformed. Details on quality control metrics and coeffi-
cients of variation are available in the Supplementary Methods and
Supplementary Data 2a, b. Due to the high cost of Olink assays, we
initially measured the complete available protein library only among
the EPIC and NSHDS samples (n = 252 case-control pairs), and then
assayed the HUNT, CPS-II, SCHS and MCCS samples (n = 479 case-
control pairs) for a subset of promising panelswhich includedbetween
392 and 484 proteins (see Robbins et al.7 and Supplementary Table 1).
For proteins measured on multiple panels within a single cohort
(n = 112 proteins with more than one measurement), we used the
measurement with the highest variance and lowest missingness (see
Supplementary Methods). Protein measurements were standardized
within each cohort.

Statistical analyses
The first step of our analysis aimed to identify proteins associatedwith
imminent lung cancer diagnosis. Instead of using a single split-sample
design, which can be subject to substantial influence from random
chance, we applied a resampling-based algorithm which simulates a
split-sample discovery and replication analysis repeated many times
with many different random splits of the data. Specifically, in each of
500 iterations, we split the data into discovery (70%) and replication
(30%) sets. In each of the 500 discovery and replication sets, we
applied conditional logistic regression to estimate the odds ratio of
lung cancer per standard deviation increment in relative concentra-
tion (log-base-2 transformed) of each protein [ORsd]. We applied this
algorithm twice: once for the subset of 484 proteinsmeasured in all six
cohorts, and separately for the 678proteinsmeasuredonly in EPIC and
NSHDS. In both algorithms, we balanced by cohort when splitting the
data into random discovery (70%) and replication (30%) sets. In the
algorithm including all 6 cohorts, we also ‘forced’ EPIC andNSHDS into
the discovery set in every iteration since those data were used to
choose the panels tested in the remaining four cohorts (Supplemen-
taryMethods, Supplementary Fig. 1). Additional details onhowmissing
protein data were handled during the resampling algorithm are in the
Supplementary Methods.

We considered proteins to show replicable associations with
imminent lung cancer if, in at least 50% of iterations, the p value was
below p <0.05/effective-number-of-tests (ENT)8 in the discovery set
and below 0.05 in the corresponding replication set. The ENTmethod
accounts for multiple testing by applying a Bonferroni correction, but
determines the number of independent tests as the number of prin-
cipal components needed to explain 95% of the variance in protein
abundance8.

As a sensitivity analysis, we assessed the difference between the
results of our resampling approach and a standard, single split-sample
design. Here, we included only EPIC and NSHDS in the discovery set,
since these data were used to choose the panels measured in the other
four cohorts, which were defined as the replication set. We identified
proteins that had a false-discovery-rate (FDR)-adjusted p value below
0.05 in the discovery set and a p value below0.05 in the replication set.
We chose the less conservative FDR significance instead of ENT sig-
nificance because the power in the discovery set for the single split-
sample analysis was lower than in the resampling algorithm due to
smaller sample size.
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For the group of markers identified as associated with imminent
lung cancer by the resampling algorithm, we carried out additional
analyses using the full dataset. For each marker, we calculated odds
ratios for lung cancer stratified by histological type, stage, smoking
status, cohort, and lead time (time between blood draw and diagnosis)
and examined trends by lead time (see Supplementary Methods).
These stratified analyses did not account formultiple comparisons. To
describe the association between each marker and smoking intensity,
duration, and timesincecessation,we used linear regressionmodelsfit
among controls with adjustment for cohort, age, sex, and smoking
status. Similar analysis was run in the full dataset (among cases
and controls) while additionally adjusting for case-status. We
also estimated stage at the time of blood draw for participants with
available information on stage and histology using sojourn times
specific to stage, sex, and histological type previously estimated by ten
Haaf et al.10.

For the 36 identified proteins we ran pathway enrichment analysis
using g:Profiler16 to examine the biological processes in which they are
implicated, and we mapped these outcomes using Cytoscape version
3.9.1 with the EnrichmentMap and AutoAnnotate applications61–63. We
then used the enrichment analysis results along with information
available on GeneCards, the Human Protein Atlas, and Uniprot13–15 to
match each protein’s function(s) to one or more of the Hallmarks of
Cancer described by Hanahan andWeinberg11,12 in order to understand
their biological roles within the development of cancer.

We also examined relationships between the identified markers.
Separately among cases and controls, for pairs of proteins, we calcu-
lated Pearson’s correlation coefficients between the residuals of pro-
tein measurements after removing variance due to age, sex, and
smoking status (‘residualized proteins’). To consider the relationships
among all proteins simultaneously, we implemented sparse graphical
network models. These models use a graphical LASSO-based resam-
plingmethodon the partial correlations between residualizedproteins
to estimate a sparse set of connections among a set of proteins (see
Supplementary Methods)64.

We subsequently evaluated the association between each
identified marker and overall survival among participants with
lung cancer, separately using circulating blood measurements
and tumor gene expression. For blood measurements, we applied
Cox proportional hazards regression based on the time from lung
cancer diagnosis to death from any cause, with stratification of
the baseline hazard by cohort and sex and adjustment for age at
recruitment. Models also included an interaction between lead
time and the protein measurement, so that the coefficient for the
protein is interpretable as its effect at the time of lung cancer
diagnosis. For tumor gene expression, we extracted lung tumor
RNA-seq gene expression for 480 adenocarcinoma and
420 squamous cell lung cancer patients from The Cancer Genome
Atlas (TCGA) (see Supplementary Methods).

We finally compared the cell-specific expression of the markers
(mRNA expression) in tissue extracted from cancer-free individuals
with expression in tumor tissue. Expression data were extracted from
the Human Protein Atlas65 and the Pathology Atlas66. Details of these
analyses are in the Supplementary Methods.

All statistical tests were two-sided, and all statistical analyses were
performed using R version 4.1.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mission of the Lung Cancer Cohort Consortium (LC3) is to facil-
itate and carry out collaborative research on lung cancer risk and
aetiology. The LC3 is committed to facilitating the use of LC3 data by

the wider research community for research within its scientific man-
date, including: 1- Research on the aetiology of lung cancer incidence
and survival. 2- Research on lung cancer risk assessment, early detec-
tion, and screening. 3- Research on tobacco exposure and tobacco-
related health outcomes. Access to the LC3 Data are restricted to
researchers, who are affiliated with academic, non-profit, or govern-
mental research institutions, and who have no links to the tobacco or
arms industries. Access to LC3 Data cannot be granted to commercial
entities and/or for commercial purposes, including development of
patents. The LC3Access Committee processes proposals to access LC3
data on a bi-monthly basis. Access to LC3 data can be obtained via the
procedure outlined in the LC3 Access Policy which is available at the
following link: https://www.iarc.who.int/wp-content/uploads/2021/12/
LC3_Access_Policy.pdf. Other data sources: We also used publicly
available mRNA expression from the Human Protein Atlas65 and the
Pathology Atlas66. We also used lung tumor RNA-seq gene expression
data fromTheCancer GenomeAtlas (TCGA)67 which is accessible upon
request. Source data are provided with this paper.

Code availability
Codes are available on github: GitHub- IET-IARC /
LungCancerProteomics.
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