
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

M
as

te
r’s

 th
es

is

Anders Krøger Evensen

On the equality case of the
Alexandrov-Fenchel inequality

Master’s thesis in Mathematical Sciences (MSMNFMA)
Supervisor: Xu Wang
June 2023





Anders Krøger Evensen

On the equality case of the
Alexandrov-Fenchel inequality

Master’s thesis in Mathematical Sciences (MSMNFMA)
Supervisor: Xu Wang
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract

In this thesis, we look at the Alexandrov-Fenchel inequality and its equality case. We lay out
some relevant results in Hodge theory, T -Hodge theory, and the theory of Delzant polytopes and
their associated varieties and line bundles. We conclude by proving our main result stating that
two Delzant polytopes, with the same Delzant variety, attain Alexandrov-Fenchel equality if and
only if they are homothetic.
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Sammendrag

Denne oppgaven omhandler Alexandrov-Fenchel ulikheten og dens likhets tilfelle. Vi viser til
relevante resultater om Hodge-teori, T -Hodge-teori og rundt Delzant polytoper, varieteter og
linjebunter. Vi avslutter oppgaven med vårt hovedresultat. Det sier at to Delzant polytoper med
samme Delzant varietet, gir Alexandrov-Fenchel likhet hvis og bare hvis de er homotetiske.
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Introduction

The problem of finding which closed curves maximize the area they enclose, while also minim-
izing their arclength, is an ancient one, and is called the isoperimetric problem. The answer to
the problem has long been ”known” to be that such a curve must be a circle, though a rigorous
proof was first given towards the tail-end of the 1800s. The problem can be restated as: ”For
which S do we attain equality in the, similarly named, isoperimetric inequality

|∂S| ≥ n|S|
n−1
n |B|

1
n , S ⊂ Rn closed and compact.”

An important generalization of the isoperimetric inequality, also dating back to the end of the
1800s, is the Brunn-Minkowski inequality. It gives a lower bound for the measure of Minkowski-
sums of convex bodies,

(µ(A+B))
1
n ≥ (µ(A))

1
n + (µ(B))

1
n , A,B ⊂ Rn,

where µ denotes the Lebesgue measure. A functional version of this inequality was given in 1973
by Prékopa [1]. Brascamp and Lieb gave a proof of this Prékopa theorem which reduces to an
L2-Hörmander estimate [2].

An even further generalization of the generalization of the Brunn-Minkowski, is the Alexandrov-
Fenchel inequality. Fully solving for equality in this inequality is a longstanding open problem.
In [3], X. Wang gives a new proof of the Alexandrov-Fenchel inequality, using methods similar to
the Brascamp-Lieb proof.

We will in this thesis, like in [3], consider an alternate description of the Alexandrov-Fenchel
inequality where it is given by log convexity of a certain integral of Kähler forms. This is the
so-called Khovanskii-Teissier inequality, a Kähler-geometry analog of the Alexandrov-Fenchel
inequality. We consider the equality case for a type of convex bodies called Delzant polytopes.
Restricting ourselves to the Delzant case will simplify certain computations of these integrals,
making the classification of the equality case simpler. Specifically, it will establish a direct link
between the Khovanskii-Teissier and Alexandrov-Fenchel inequalities.

In Chapter 1 we give some preliminaries on Hodge theory, stating some necessary and useful

xi
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results. We also give some generalized results in the T -Hodge theory setting. Chapter 2 con-
cerns the Alexandrov-Fenchel inequality and the related Khovanskii-Teissier inequality, as well
as some basic concept and results related to these. It will contain most of the setup for proving
our main result. Lastly, in the third and final chapter, we lay out some theory regarding Delzant
polytopes and their related varieties, culminating in the statement and proof of our main result.



Chapter 1

Hodge Theory

1.1 Hodge Theory

The study of Kähler manifolds incorporates elements from symplectic, complex and Riemannian
geometry. Hodge theory allows us to study Kähler manifolds and their cohomology through the
lense of differential equations. In this section we will present relevant and useful results for this
thesis. Proofs of these results may be found in [4], [5], and [6].

Let h be a Hermitianmetric on a complexmanifoldX . That is to say it is a hermitian inner product
on each complex tangent plane. Let dzj and dzk denote local dual coordinates for T

1,0
p (X) and

T 0,1
p (X) respectively. Then we have

h =
∑

hj,kdzj ⊗ dzk,

where hj,k is such that for a

µ =
∑

µj
∂

∂zj
,

we have
|µ|2 =

∑
hj,kµjµk.

We call the form
ω =

∑
hjkdzj ∧ dzk,

the (1, 1)-form associated to h. For clarity, we might write it as ωh. The metric is said to be
Kähler if dω = 0, where d is the exterior derivative. A Kähler form is then a real closed positive
definite (1, 1)-form. A real smooth function f onX is called strictly plurisubharmonic if the form
ω = i∂∂ f is Kähler. Then f is called a Kähler potential for ω.

Definition 1.1.1. A Kähler manifold (X,ω) is a complex manifold X along with a Kähler form ω.

1
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Equivalently onemight define it as either a Riemmanianmanifold or symplectic manifold with ex-
tra structure. That is to say that a Kähler manifold is an even-dimensional Riemmanian manifold
(X, g) together with a complex structure J on each tangent space, that preserves the metric and
is itself preserved by parallel transport. Or, one might define it as a symplectic manifold (X,ω)
along with an integrable almost complex structure J that agrees with ω.

Definition 1.1.2. Let ∂, ∂ be the Dolbeault operators on (p, q)-forms on X . Then the exterior
derivative

d : Ωk(X) → Ωk+1

is given by d = ∂ + ∂ . We then define dc = − i
2(∂ − ∂ ).

Note that we have ddc = i∂∂ .

Since a Kähler manifold is endowed with a Riemannian metric we get a L2-inner product, 〈·, ·〉L2 ,
on forms given by

〈µ, ν〉L2 =

∫
〈µ, ν〉ω

n

n!
,

where the inner product in the integral is just the bilinear form associated to the Riemannian
metric. With respect to this inner product, we can define formal adjoints of our differential op-
erators. For example, the adjoint of ∂ is the operator ∂∗ such that 〈∂µ, ν〉L2 = 〈µ, ∂∗ν〉L2 for any
smooth form µ , and any smooth form ν with compact support. Note that if we have a differen-
tial operator T of degree k, then the adjoint T ∗ must necessarily be of degree −k. With these
adjoints, we can define the following Laplacians.

Definition 1.1.3. Each of the differential operators ∂, ∂ , d have related Laplacian operators. They
are defined as follows,

• ∆∂ := ∂∂∗ + ∂∗∂
• ∆∂ := ∂ ∂ ∗ + ∂ ∗∂
• ∆d := dd∗ + d∗d.

For each of these, we may define the corresponding space of harmonic (p, q)-forms as the kernel
of the corresponding Laplacian,

H(p,q)
d (X) := ker(∆d), H(p,q)

∂ (X) := ker(∆∂), H(p,q)

∂
(X) := ker(∆∂ ).

Definition 1.1.4. Let (X,ω) be a Kähler manifold. We then define the Lefschetz operator

L : Ωk → Ωk+2

by Lu := ω ∧ u. We denote its adjoint by Λ := L∗.

A useful tool for describing the adjoints of our relevant operators will be the star operator.
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Definition 1.1.5. Given our Kähler form ω we get a bilinear form ω−1, defined by

ω−1(dzj , dzk) = −ω−1(dzk, dzj) = δjk, ω−1(dzj , dzk) = ω−1(dzj , dzk) = 0.

We may also define it on k-forms by ω−1(µ, ν) = det(ω−1(µ1, ν1)) where

µ1 ∧ · · · ∧ µk, ν = ν1 ∧ · · · ∧ νk.

We then define the Hodge star operator ∗ by the property

µ ∧ ∗ν = (ω−1(µ, Jν))
ωn

n!
.

Remark 1.1.6. The star operator also has a symplectic version ∗s which is defined by

µ ∧ (∗sν) = ω−1(µ, ν)
ωn

n!
.

Then we have
∗ = ∗s ◦ J = J ◦ ∗s.

The symplectic star operator has the property ∗2s = 1 and the Hodge star operator has the
property ∗2 = (−1)k(n−k)
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The star operator works as an ”adjointer” for differential operators. We have the following
adjoints:

• d∗ = − ∗ ◦ d ◦ ∗
• ∂∗ = − ∗ ◦ ∂∗
• ∂ ∗ = − ∗ ◦ ∂ ◦ ∗
• dc∗ = − ∗ ◦ dc ◦ ∗
• L∗ = Λ = ∗−1 ◦ L ◦ ∗

The next theorem, the so-called Kähler identities, describe interactions between some of the
operators we have given so far.

Theorem 1.1.7. (Kähler identities) Let [·, ·] denote the commutator. Then we have the following
identities:

• [∂ , L] = [∂, L] = [∂∗,Λ] = [∂∗,Λ] = 0.
• [∂∗, L] = −[∂∗, L] = i∂
• [Λ, ∂ ] = i∂∗, [Λ, ∂] = i∂∗

• ∆∂ = ∆∂ = 1
2∆d

• [∆, T ] = 0 for T = d, ∂, ∂ , L, d∗, ∂∗, ∂ ∗,Λ, ∗.

Instead of looking at differential operators on the usual space of (p, q)-forms, onemight consider
forms with values in some holomorphic vector bundle E → X . So at a point p, a form µ of total
degree k is a smooth multilinear alternating map

µp :

k times︷ ︸︸ ︷
TC
p ◦ · · ·TC

p → Ep.

Let h be a metric on E. We denote the differential operators defined on these forms by the
subscript −E , e.g. dE . There is then a unique connection that is compatible with h, namely the
Chern connectionDE = ∂E +∂ E . We write its associated curvature form as Θ(E, h). The Kähler
identities not involving the Laplacians also hold in this case, and we have the following identities
for the Laplacians.

Theorem 1.1.8. (Nakano identities) Let (E,X) be a holomorphic vector bundle with Hermitian
metric h. Then we have

• ∆∂E +∆∂ E
= ∆DE

• ∆∂ E
−∆∂E = [iΘ(E, h) ∧ −,Λ]. (Bochner-Kodaira-Nakano identity)
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Theorem 1.1.9. (Hodge decomposition) Let (X,ω) be a compact Käher manifold. Then we have
the following orthogonal decompositions on (p, q)-forms.

• Ω(p,q)(X) = Hp,q
∂ ⊕ im(∂)⊕ im(∂∗)

• Ω(p,q)(X) = Hp,q

∂
⊕ im(∂ )⊕ im(∂ ∗)

• Ω(p,q)(X) = Hp,q
d ⊕ im(d)⊕ im(d∗)

Note that by the identity ∆∂ = ∆∂ = 1
2∆d we have

Hp,q
d (X) ' Hp,q

∂ (X) ' Hp,q

∂
(X),

and we may therefore choose to write any of these simply asHp,q(X). As a corollary of the above
decomposition, we get the ∂∂-lemma, a useful tool for working on compact Kähler manifolds.

Theorem 1.1.10. (∂∂ -lemma) Let α ∈ Ωp,q(X) be d-closed, i.e. dα = 0, on a compact Kähler
manifold (X,ω). Then the following are equivalent:

• α is d-exact, that is to say there is some (p− 1, q − 1)-form β with α = dβ
• α is ∂-exact. (α = ∂β)
• α is ∂ -exact. (α = ∂ β)
• α is ∂∂ -exact. (α = i∂∂ β)
• α is orthogonal to the subspace of harmonic (p, q)-forms Hp,q(X).

Remark 1.1.11. Though we have restricted ourselves to the compact case, there is a local ver-
sion of the ∂∂-lemma that also holds in the non-compact case. This can be thought of as a
complex/Kähler version of the Poincaré lemma. This assures that every Kähler form has a local
Kähler potential.

As well as the harmonic Hodge decomposition, we have the Lefschetz decomposition.

Theorem 1.1.12. Let (X,ω) be a compact Kähler manifold. Then the map

Lk :=

k︷ ︸︸ ︷
L ◦ · · · ◦ L : Ωk(X) −→ Ω2m−k(X)

u 7−→ ωm−k ∧ u

is an isomorphism for each 0 ≤ k ≤ n. We call a form primitive if it is in the kernel of Lk for
some k. We denote these kernels by

P 2n−k(X) := ker(Lk+1).

We then have the following decomposition on k-forms:

Ωk(X) =
⊕
i≥0

LiP k−2i(X).
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1.2 T-Hodge Theory

A generalization of Hodge theory that will be useful to us is that of the mixed T -Hodge theory
studied by Timorin in [5]. It is akin to adding a weight or shift to the space of forms. Most of
the above results have a T -Hodge theory counterpart. In this section, we deliberate upon these
results. Proofs may be found in [5] and [4].

Let m ≤ n and αm+1, . . . , αn be smooth positive (1, 1)-forms on a Kähler manifold (X,ω) of
complex dimension n. We define

T := αm+1 ∧ · · · ∧ αn.

Timorins mixed T -Hodge theory concerns the image of multiplication with T and of what clas-
sical results from Hodge theory still apply to this image.

Definition 1.2.1. Let T and (X,ω) be as above, and let (E, hE) be a holomorphic vector bundle
and compatible metric. We denote the multiplication-by-T operator by

fT (u) := T ∧ u,

and denote the images of fT by

Ωp,q
T (X) := fT (Ω

p,q(X)), Ωk
T (X) :=

⊕
p+q=k

Ωp,q
T (X), ΩT (X) :=

⊕
0≤p,q≤n

Ωp,q
T (X),

where Ωp,q(X) is the space of E-valued (p, q)-forms.

The operators d, ∂, ∂ and their adjoints are defined on Ωk
T (X) in the obvious way. Our first

theorem in T -Hodge theory is a generalization of the Hard Lefschetz theorem.

Theorem 1.2.2. With T and (X,ω) as above, then

fT : Ωm(X) → Ω2n−m(X)

defines is an isomorphism. Further, just as the Hard Lefschetz theorem holds in the case where
T = 1, i.e. m = n , we have that for 0 ≤ k ≤ m

Lk :=

k︷ ︸︸ ︷
L ◦ · · · ◦ L : Ωk

T (X) −→ Ω2n−k
T (X)

u 7−→ ωn−k ∧ u

is an isomorphism. Similarly to the standard case, we call a form u ∈ Ωk
T (X) primitive if it is in

the kernel of some Lk . Then every u ∈ Ωk
T has a primitive decomposition

u =
∑

Lrur, Lr :=
Lr

r!
,

with ur ∈ Ωk−2r
T primitve.
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Mixed versions of some of the Kähler/Nakano identities still hold in this setting.

Theorem 1.2.3. Let T be d-closed on a Kähler manifold (X,ω) with holomorphic vector bundle
(E, hE). Then on ΩT (X) we have the DE := ∂ E + ∂E related identities

• D∗
E = [Λ, Dc

E ]
• (Dc

E)
∗ = [DE ,Λ] ,

• ∆DE
= ∆Dc

E
= ∆∂ E

+∆∂E

and the Bochner-Kodaira-Nakano identity

∆∂ E
−∆∂E = [iΘ(, hE) ∧, Λ].

As in the standard setting, we can use the Lefschetz decomposition to define a symplectic and
a Hodge star operator, still denoted ∗s and ∗ respectively. On a primitive form, say u ∈ V k

T , we
define

∗s(Lru) := (−1)
k(k+1)

2 Lm−r−ku,

and extend it to an operator on all of ΩT . Then the Hodge star operator on ΩT is given as
∗ := ∗s ◦ J , where J = ip−q . There is also an analog of the Hodge-Riemann bilinear relations
given by

(−1)
k(k+1)

2 Tk+1 ∧ u ∧ Ju > 0.

We use these two facts to define an L2 norm and inner product on ΩT defined by

‖u‖T :=

∫
u ∧ ∗T ∧ u.





Chapter 2

The Alexandrov-Fenchel inequality

Definition 2.0.1. Let A,B be non-empty sets in Rn. Define their Minkowski sum as

A+B := {a+ b | a ∈ A, b ∈ B}.

One may think of this as placing a copy of A at every point of B or vice versa.

Example 2.0.2. Let S = {(x, y) | maxx, y ≤ 1} the unit square and Bε a small ball. Then their
sum S + Bε would be a square with rounded corners.

+ =

A classical result of Minkowski states that given some convex bodies, i.e. compact convex sets
with non-empty interiors, A1, A2, . . . , Ak ⊂ Rn, the function

F (t1, t2, . . . , tn) : [0, 1]
k → R

given by (t1, . . . , tk) 7→ V ol(t1A1 + t2A2 + · · · + tkAk) is a homogeneous polynomial. We will
denote the coefficient of the t1t2 · · · tk term by V (A1, . . . , Ak). So

V (A1, . . . , Ak) :=
∂kF (A1, . . . , Ak)

∂t1 · · · ∂tk
.

Then the Alexandrov-Fenchel inequality says the following.

9
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Theorem 2.0.3. (Alexendrov-Fenchel inequality)

Given a k-tuple of convex bodies (A1, . . . , Ak) ⊂ Rn we have the following inequality

V (A1, A2, . . . , Ak)
2 ≥ V (A1, A1, A3, . . . , Ak)V (A2, A2, A3, . . . , Ak).

As discussed in the introduction, an immediate consequence is the isoperimetric inequality.
And even generalizations of the isoperimetric inequality are contained as special cases of the
Alexandrov-Fenchel inequality.

Example 2.0.4. Let B denote the unit ball in Rn, then for some convex body C , we define the
j-th quermassintegral of C as

V (C, . . . , C,︸ ︷︷ ︸
n−j times

j times︷ ︸︸ ︷
B, . . . ,B).

It gives the average volume of the projection of C onto a random j-dimensional subspace. Then
by 2.0.3 we have an isoperimetric type inequality

V (B, C, C)2 ≥ V (C,C,C)V (B,B, C).

That is to say, the area of ∂C is bounded from below by the product of the volume of C and its
average width.

2.1 The Legendre transform

To show the above-mentioned result of Minkowski we will construct a diffeomorphism from our
convex body A to all of Rn. We do this using the Legendre transform.

Definition 2.1.1. Let A ⊂ Rn be a non-empty, compact, convex set and let φ : int(A) → R be a
convex function on the interior of A. Then we define the Legendre transform of φ by

φ∗(y) := sup
x∈int(A)

x · y − φ(x),

where x · y denotes the standard Euclidean inner-product.

Example 2.1.2. Let f : R → R be given by x 7→ x2. Then

f∗(y) = sup
x∈R

x · y − f(x) = sup
x∈R

xy − x2.

Now fix a some y0. Then xy − x2 attains its max at x = y
2

=⇒ f∗(y) =
y2

4
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Theorem 2.1.3. Let A ⊂ Rn be a non-empty convex body, and let φ : A → R be a smooth,
strictly convex function. If φ tends to infinity at the boundary of A then

1. the Legendre transform φ∗ is also smooth and strictly convex
2. the gradient map

∇φ : int(A) → Rn

is a diffeomorphism with ∇φ∗ as its inverse.

Proof. We start by showing (2). By strict convexity of φ, at every interior point of A, the Hessian
matrix ( ∂2φ

∂xi∂xj
) is positive definite. So it is invertible, and by the inverse function theorem ∇φ is

a local diffeomorphism. Thus, to show that ∇φ is a diffeomorphism we only need to show that it
is bijective.

Consider the smooth, strictly convex function φy0(x) = φ(x) − y0 · x for some fixed y0 ∈ Rn.
Let ∇φ(x1) = ∇φ(x2) = y0. Then

∇φy0(x) = ∇φ(x)− y0.

So ∇φy0(x1) = ∇φy0(x2) = 0. Since ∇φy0 is a strictly convex function it must also be strictly
convex on any line segment. Specifically, it is strictly convex on the line segment connecting x1
and x2. But now a strictly convex function has at most one critical point so

∇φy0(x1) = ∇φy0(x2) = 0 =⇒ x1 = x2.

So ∇φ is injective.

As stated above the function φy0 is strictly convex for any fixed y ∈ Rn. Further, since φ tends
to infinity at the boundary, so will φy for any y ∈ Rn. These two facts give that φy has a unique
minimal point x ∈ int(A)

=⇒ ∇φy(x) = ∇φ(x)− y = 0 =⇒ ∇φ(x) = y.

So ∇φ is bijective.

Now since ∇φ is smooth and bijective we can see that

φ∗(∇φ(x)) = sup
y∈Rn

∇(x) · y − φ(y).

So we have φ∗(∇φ) = ∇φ(x) · x− φ(x) is smooth, and since ∇φ is surjective so is φ∗.

The reason we do this construction is that it gives us another description of the volume of
our convex body A. Letting ψ : int(A) → R be a strictly convex function that blows up at the
boundary, as in the theorem, and setting φ := ψ∗ we get that

|A| =
∫
Rn

Hess(φ)dx.
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Note that for a convex polytope, i.e. the convex hull of a finite set {pj} ⊂ Rn, one can choose

φ(x) = log

∑
j

e〈pj ,x〉

 .

Moreover, we have the following.

Theorem 2.1.4. Let φi, i = 1, 2, . . . , n each such that∇φi is a diffeomorphism from Rn to int(A)
and let 0 < ti then we have

|t1A1 + · · ·+ tnAn| =
∫
Hess(t1φ1 + · · ·+ tnφn)dx.

A consequence of the above theorem, as mentioned in the introduction, is that |t1A1+· · ·+tNAn|
is actually given by a homogeneous polynomial in the variables t1, . . . , tn.

2.2 Alexandrov-Fenchel inequality as log convexity

For the proof of our main theorem, we will interpret the Alexandrov-Fenchel inequality as a spe-
cial case of its complex geometric analog, the Khovanskii-Teissier inequality. Proofs of which
may be found in [7]. See [3] for how to Khovanskii-Teissier implies Alexandrov-Fenchel in the
general (i.e. not only Delzant) case.

Theorem 2.2.1. (Khovanskii-Teissier inequality) LetX be a n-dimensional compact Kähler man-
ifold, and let ω1, . . . , ωn be Kähler forms. Then, putting T := ω3 ∧ · · · ∧ ωn, we have(∫

X
ω1 ∧ ω2 ∧ T

)2

≥
(∫

X
ω2
1 ∧ T

)(∫
X
ω2
2 ∧ T

)
.

In addition, the following lemma will give us equivalent descriptions of both inequalities.

Lemma 2.2.2. Let C be a cone over R. We say that a function f : C → R is 1-homogeneous if
for every t ∈ R+ we have

f(tx) = tf(x), ∀x ∈ C.

If f is 1-homogeneous then the following are equivalent:

1. f(x+ y) ≥ f(x) + f(y)
2. −log(f) is convex
3. t 7→ −log(f(tx+ (1− t)(y))) is convex on for t ∈ (0, 1) for any x, y ∈ C .

Proof. See [3]
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With this lemma, we can see that the Alexandrov-Fenchel inequality described above is equival-
ent to the following.

Theorem 2.2.3. Let A1, . . . , Ak be convex bodies and define At := tA1 + (1 − t)A2. Then the
function

t 7→ −log(V (At, At, A3, . . . , Ak))

is convex.

And the Khovanskii-Teissier inequality is equivalent to:

Theorem 2.2.4. Let (X, ω̂) be a n-dimensional compact Kähler manifold, and let ω1, . . . , ωn be
Kähler forms. Put T := ω3 ∧ · · · ∧ ωn, and let ω := tω1 + (1− t)ω2. Then the function

t 7→ −log
∫
X

ω2

2
∧ T (2.1)

is convex on (1, 0).

Note that this looks quite similar to the Prekopa (see for example [8, Chapter 1.2]). And the proof
of it in [3] is also quite similar to the proof of Prekopa by Brascamp and Lieb. We will use the
methods in the proof of Wang to solve for equality in our main result. Below we discuss how one
would go about proving it and what results are needed, but refer the reader to [3] for in-depth
proofs of these.

Remark 2.2.5. The way we have stated the Khovanskii-Teissier inequality above is just a special
case of the one given in [3]. The most significant difference is that the more general result of
Wang concerns complete, not only compact, Kähler manifolds of finite volume.

First we define G to be the function such that d
dt(

ω2

2 ∧ T ) = −G(ω2

2 ∧ T ), and call the function in
2.1 f . Then a computation gives that

ft =
d

dt

(
−log

∫
X

ω2

2
∧ T

)
=

∫
Gω2

2 ∧ T∫
ω2

2 ∧ T
.

In order to make this expression and subsequent discussion less messy we will use the following
notation:

dµ :=
ω2

2 ∧ T∫
ω2

2 ∧ T
, Eµ(G) :=

∫
X
Gdµ.

With this notation we get that ft = Eµ(G) and one can compute aswell that

ft,t =

∫
X
(Gt − (G− Eµ(G))

2)dµ.
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This is the same kind of expression as in the proof of the Prekopa theorem. So to show convexity
of f we need to show ∫

X
Gtdµ ≥

∫
X
(G− Eµ(G)

2)dµ.

This is solved by the following lemma (3.3 and 3.4 of [3]).

Lemma 2.2.6. Let ‖ · ‖T,ω denote the T-Hodge norm. And let θ := d
dtω = ω1 − ω2. Then, using

the same notation as above we have ∫
X
Gtdµ = ef‖θ‖T,ω,

and ∫
X
(G− Eµ(G))

2dµ = ef‖G− Eµ(G)‖2T,ω.

Further, we have that
T ∧G = −Λ(T ∧ θ), (in T-Hodge theory),

and T ∧ (Eµ(G)−G) is an L2-minimal solution to the equation

d(−) = (dc)∗(T ∧ θ),

with ‖G− Eµ(G)‖T,ω ≤ ‖θ‖T,ω

We end this chapter by looking at some lemmas concerning the equality cases of 2.2.2. Define
the function V (t) := (At, At, A3, . . . , An)

1
2 for t ∈ (0, 1).

Lemma 2.2.7. (A1, . . . , An) attains Alexandrov-Fenchel equality ⇐⇒ V (t) = tV (0)+(1−t)V (1)
for some t ∈ (0, 1).

Proof. We will consider the n = 2 case, but the arguments that we make will hold for any n. We
will also, for the time being, assume that t = 1

2 . First note that

V (
1

2
)2 = V (

1

2
(A1 +A2),

1

2
(A1 +A2)) =

1

4
V (A1, A1) +

1

4
V (A2, A2) +

1

2
V (A1, A2),

where the last inequality comes from the multilinearity of the mixed volume. Secondly, we note
that

(
1

2
V (0) +

1

2
V (1))2 =

1

4
V (A1, A1) +

1

4
V (A2, A2) +

1

2
V (A1, A1)

1
2V (A2, A2)

1
2 .

By our assumption these two are the same and by canceling like terms we get exactly Alexandrov-
Fenchel equality as desired. Note that by linearity we could have chosen any t, so the choice of
t = 1

2 is simply to make the calculations easier.

By scaling either of A1 or A2 we can get V (0) = V (1), in which case the Alexandrov-Fenchel
equality is simply equivalent to V (t) ≡ C .
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Lemma 2.2.8. For any function f with f(0) = f(1) we have

−log(f)is affine ⇐⇒ −log(f(t)) ≡ C.

Proof. f(0) = f(1) =⇒ −log(f(0)) = −log(f(1)) affine
=⇒ −log(f) ≡ C





Chapter 3

Delzant Polytopes and Varieties

3.1 Delzant polytopes

We start this chapter by introducing the objects of interest in our main theorem, namely Delzant
polytopes. As we will discover, these polytopes are of interest to us due to their nice com-
binatorial properties. These properties will allow us to make a nice connection between the
Alexendrov-Fenchel inequality for the polytopes and the Khovanskii-Teissier inequality for their
corresponding varieties.

Definition 3.1.1. A convex polytope P ⊂ Rn is a compact finite intersection of half-planes
with non-empty interior. That is to say, there exists some normal vectors αj ∈ Rn together with
scalars βj ∈ R, 1 ≤ j ≤ N, such that

P = {x ∈ Rn | 〈x, αj〉 ≤ βj , ∀j} .

We say that a polytope P is Delzant if in addition:

1. αj ∈ Zn and βj ∈ Z
2. At every vertex ν exactly n half-planes meet. That is to say, if we define the following index

set
Iν := {j | 〈αj , ν〉 = βj},

then |Iν | = n.
3. The set {αj | j ∈ Iν} generates the lattice Zn for all ν and⋃

ν vertex

Iν = {1, 2, . . . , N}.

Let’s consider some examples and non-examples.

17
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Example 3.1.2. The very simplest example of a Delzant polytope would be to consider the one-
dimensional case. Then every Delzant polytope is just an interval of the form [a, b] for some
integers a, b.

Example 3.1.3. Another simple example is that of a triangle. One way would be to construct it as
follows. Let {αj} = {(1, 0), (0, 1), (−1,−1)} and set {βj} = {1, 1, 1}.
Example 3.1.4. {αj} = {±ei} ⊂ R2 together with bj = 1, ∀j gives a Delzant square with a side
lenght of 2 and center in the origin.

α1

α2

α3

Figure 3.1: A Delzant triangle

α1

α2

α3

α4

Figure 3.2: A Delzant square

The following are examples of polytopes that aren’t Delzant.

Example 3.1.5. A pyramid in R3, say the convex hull of a square and a point, can not be Delzant
as it does not satisfy condition 2) in the definition 3.1.1. That is more than three half-planes meet
at the top vertex.

Example 3.1.6. The same construction of the square as described above, but replacing the nor-
mal vectors with the vectors {(2, 0), (0, 2), (−2, 0), (0,−2)}, would not be Delzant. This is because
at each vertex, even though the associated normal vectors are integral lattice points and linearly
independent, they would not generate Zn. They would generate (2Z)n.
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Figure 3.3: A pyramid in R3 can not be Delzant

Given a Delzant polytope we can easily construct a complete fan.

Definition 3.1.7. Given a vertex ν of a Delzant polytope P we define its associated cone as

σν := cone({αi}i∈Iν ) =

{∑
i∈Iν

| tiαi, ti ≥ 0

}
.

We also define the fan of the polytope to be

ΣP :=
⋃
ν

σν

Recall that a complex manifold consists of a collection of open subsets of Cn together with
holomorphic charts between them. With this in mind, we proceed with the construction of a
complex manifold from a Delzant polytope. Given a vertex ν let σ∨ν denote the dual cone at
that vertex. Since σν is rational polyhedral we know that σ∨ν is as well. Denote the dual basis by
{α∨

j }j∈Iν ⊂ Zn. This basis is also a generating set for Zn. Then for each ν we get an embedding

Φν : (C∗)n → Cn,

given by

Φν(z1, . . . , zn) = (z
−α∨

j1
1 , . . . , z

−α∨
jn

n ).

These embeddings give us a complex manifoldXP covered byN copies of Cn, defined by gluing
these embeddings together via Φνi ◦ Φνj .

One way of visualizing the dual cone σ∨ν geometrically is that it is ”generated by the corner”
at the vertex ν . Below is an illustration of a Delzant polytope, its fan consisting of the cones of
each vertex and its dual fan consisting of the dual cones of each vertex. In that order.
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So given a Delzant polytope P , we can recover all information on its vertices and normal vectors
up to scaling. And we know that two homothetic Delzant polytopes give the same fans and dual
fans, and therefore also the same varieties.

Example 3.1.8. Consider P = [0, n] for some integer n and let the normal vector to 0 be −1 and
the normal vector to n be 1. So since P has two veritces, we know that Xp is covered by two
copies of C. And we have two isomorphisms of C∗, namely

Φ0 = id, Φn(w) = w−1.

And since Φn is its own inverse we get that

XP ' C
∐

C/(z =
1

W
).

The right-hand side can be seen to be the Riemann sphere, so we get that XP ' P1.

Example 3.1.9. If we were to consider the P as the Delzant triangle above, then XP ' P2. In
fact, if we let P ⊂ Rn be bounded by the planes {xi = −1} and the plane {

∑n
j xj = 1}, i.e. P is

something like a n-simplex, then XP ' Pn

Example 3.1.10. Let P be the Delzant square as above. Then XP ' P1 × P1

As with any convex body, we can construct a function φ : Rn → R such that its gradient is a
diffeomorphism onto the interior of P . And since P is a polytope, i.e. the hull of a finite set of
points, we can choose

φ(x) := log

( ∑
u∈P∩Zn

e〈u,x〉

)
.

In the same vein, we can define a function on XP that is surjective onto P , continuous and
proper. Using the above function φ we get a function ϕ : XP → P on each copy of (C∗)n by
setting

ϕ(z) := ∇φ(log|z1|2, . . . , log|zn|2).

This map has a unique extension to all of XP with the desired properties.

3.1.1 Delzant line bundles

We may also add more structure to the variety XP in the form of a line bundle. This construction
will again use, and encode, the combinatorial Delzant information of P . Recall that a line bundle
may be constructed by gluing together open sets Ui×C ⊂ X×C, identifying (z, ξ) ∼ (z, gi,j(ξ))
using transition maps gi,j on Ui ∩ Uj .
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Given a Delzant polytope P , we construct a line bundle on XP in the following way. On each
toric embedding, i.e. for each vertex, we give the following embedding into Cn × C,

Ψν(z, ξ) = (φν(z), z
−νξ).

Then we glue together these N copies of Cn×C along the maximal extensions of Ψν ◦Ψ−1
ν . We

will call this line bundle LP . The following theorem gives one reason for using this specific line
bundle construction.

Theorem 3.1.11. Let u ∈ P ∩ Zn, then u gives a global section su ∈ H0(XP , LP ) of LP . In fact
we have that H0(LP , XP ) ' spanC{su}u∈P∩Zn

Proof. We wish to construct a section of (C∗) × C that also has a holomorphic extension on
each embedding Ψν . The section we want to extend is defined by (z) 7→ (z, zu). So we need
Ψν(z, z

u) = (Φν , z
u−ν) to be holomorphic on the coordinates {z−α∨

k }k∈Iν . But that is simply to
say that u − ν is in the dual cone σ∨ν , which is guaranteed by P − ν ∈ σ∨ν , which we again get
from our geometric description of σ∨ν . And in fact, since this must hold simultaneously for all the
vertices, for this construction to work for an arbitrary u′ ∈ Zn we must have u ∈ P . So we have
proved the first part of the statement.

For the second part, consider the (C∗)n action on LP defined by the action

χt(z, ξ) = (t1z1, . . . , tnzn, ξ), t ∈ (C∗)n

on each embedding of (C∗)n × C. Then by the below lemma, we can write the Laurent series
expansion of a global section

s =
∑
u∈Zn

cuz
u.

Then we must have that zu ∈ H0(XP , LP ) as long as cu 6= 0. But as we have already shown, this
can only happen when u ∈ P .

Lemma 3.1.12. Let λ be a group action of (C∗)n on Cm. Then there is a basis {ei} of Cm and a
k ∈ Zn such that

λ(t)ei = tkei.

Proof. Setting
Wk := {z ∈ Cm | λ(t)z = tkz},

we have a decomposition of Cm given

Cm =
⊕
k∈Zn

Wk.

This is a standard result in representation theory. See for example [9, 3.2.3].
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This description of the space of global sections will be useful for connecting the Khovanskii-
Teissier inequality to the Alexandrov-Fenchel inequality in the Delzant case.

We can on each toric embedding define a Hermitian hP metric on the LP by

hP (z, ξ) =
|z−νξ|2∑

u∈P∩Zn |zu−ν |2
.

This extends to all of XP . and we get that LP is positively curved by the Chern curvature

iΘ(LP , hP ) = i∂∂log(
∑

u∈P∩Zn

|zu−ν |2).

Positivity will allow us to make use of the Hörmander L2 estimate and its consequences.

Theorem 3.1.13. Let P be a Delzant polytope, then vol(LP ) = |P |

Proof. Noting that
(XmP , LmP ) = (XP ,mLP ),

for any positive integer m, the Bergmann kernel asymptotic formula [10] gives

vol(LP ) := lim
m→∞

H0(XP ,mLP )

mn
=

∫
( iΘ(LP ,hP )

2π )n

n!
=:

LP

n!
.

By our description of the space of global sections, we get

lim
m→∞

H0(XP ,mLP )

mn
= lim

m→∞

{mP ∩ Zn}
mn

.

The right-hand side, however, is just the Lebesgue measure of P . So we get |P | = vol(LP ).

We used in this proof the statement that (XmP , LmP ) = (XP ,mLP ). One might then wonder,
can we show something similar for an arbitrary Minksowski sum of Delzant polytopes? It turns
out that we can!

We start by considering a general question concerning the Minkowski sum of polytopes. Re-
call that a polytope is given by a set of normal vectors {αj} and corresponding scalars {βj}. We
look at two, not necessarily Delzant, polytopes Pr, Ps with the same set of normal vectors αj but
different scalars {sj = s} and {rj} = r respectively. We then ask whether or not we have the
homomorphism-like property

Ps + Pr = Pr+s,

where
Pr+s := {x ∈ Rn | 〈α, x〉 ≤ rj + sj}.

It is not hard to see that the inclusion Pr + Ps ⊂ Pr+s holds, but the other direction is not true
in general.
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Figure 3.4: From left to right, Pr, Ps, Pr + Ps, Pr+s

Example 3.1.14. Let {αj} = {(−1, 0), (0,−1), (1, 1), (0, 1)}, and let {rj} = {0, 0, 1, 2} and {sj} =
{0, 0, 2, 1}. Then Pr + Ps 6= Pr+s. (See the figure, 3.4)

In the Delzant case, however, we always have equality. We will not give a detailed proof, but do
give an outline of how one would prove it. The idea is to represent line bundles ofXP by divisors,
which may always be done in the Delzant case. One can show that if Ps and Pr define the same
toric variety, then

LPs+Pr = LPs + LPr = LPr+s .

Further, one shows that if two Delzant Pr, Ps define the same XP then Pr+s also defines XP ,
and that if Pr and Ps are Delzant then they always define the same XP . In more detailed terms
we have the following result.

Theorem 3.1.15. Let Pr, Ps be defined using the notation used above, and let both be Delzant.
Then they give the same variety XP , and Pr+s also gives the same variety XP . In addition, we
have both that

LPs + LPr = LPs+r = LPs + LPr ,

and
Pr + Ps = Pr+s.

Using this we can establish a connection between the Khovanskii-Teissier inequality forXP and
Alexandrov-Fenchel inequality for Pi.

Theorem 3.1.16. Let Psi , 1 ≤ i ≤ n, be Delzant polytopes with the same normal vectors
{αj}j=1,...,N .

Then we have the following Alexandrov-Fenchel type inequality:

(V (Ps1 , . . . , Psn))
2 ≥ V (Ps1 , Ps1 , Ps3 , . . . , Psn)V (Ps2 , Ps2 , Ps3 , . . . , Psn)

Proof. For a set of Delzant polytopes Pi, we define

LP1 · · ·LPn .

Then the result follows by the proof of the previous theorem and the Khovanskii-Teissier inequal-
ity

(LP1 · · ·LPn)
2 ≥ (LP1LP1LP3 · · ·LPn)(LP2LP2LP3Pn).
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3.2 Main result and proof

Theorem 3.2.1. Let P,Q be Delzant polytopes defining the same Delzant variety X . Then we
attain, for any tuple of Delzant polytopes (A1, . . . , An−2), Alexandrov-Fenchel equality

V (P,Q,A1, . . . , An−2)
2 = V (P, P,A1, . . . , An−2)V (Q,Q,A1, . . . , An−2)

if and only if P and Q are homothetic.

Proof. We handle first the n = 2. We will assume that V (0) = V (1) as in the discussion of
2.2.7, 2.2.8. Using 2.2.7, 2.2.8, 2.2.6 and the fact that the Alexandrov-Fenchel inequality is equi-
valent to the Khovanskii-Teissier inequality in the Delzant case, we know that P and Q attaining
Alexandrov-Fenchel equality is equivalent to(

t 7→ −log
(∫

X
ω2

))′′

= 0, ω = tiΘ(LP , hP ) + (1− t)iΘ(LQ, hQ).

This again by lemma 3.4 of [3] is equivalent to saying, using their notation,

‖Eµ(G)−G‖2 = ‖θ‖2, θ := iΘ(LP , hP )− iΘ(LQhQ). (3.1)

Note that since we are in the 2-dimensional case, n = 2, we have that T = 1 so the T -Hodge
theory norm is just the standard norm. So we know that u := Eµ(G) − G is the L2-minimal
solution of

d(·) = (dc)∗(θ).

Using the Hodge-decomposition we can split θ into its harmonic and minimal parts, θ = θmin +
θharm, and since it is an orthogonal decomposition we get

‖θ‖ = ‖θmin‖+ ‖θharm‖.

Then we have
‖θ‖ = ‖u‖ = ‖umin‖ = ‖θmin‖.

So we get that 3.1 is equivalent to ‖θharm‖ = 0 ⇐⇒ θharm = 0. By the ∂∂ -lemma, this implies
that θ = ddc(G) for some smooth globally defined G. Note that G must be bounded since XP is
compact.

On each toric embedding, we have ddc(G) = θ = ddc(φP−φQ), where∇φP (Rn) = P, ∇φQ(Rn) =
Q. In other words,

ddc(φP − φQ −G) = 0.

So ddc(φP −φQ−G) is simultaneously plurisubharmonic and plurisuperharmonic. On each toric
embedding

(C∗)n ' Rn × Tn
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with coordinates (x+iy), we have that φP−φQ−G is only dependent on x. So plurisubharmonicity
and plurisupeharmonicity are equivalent to convexity and concavity respectively. Then what we
have shown so far is that, up to scaling of each of ddc(φP ) and ddc(φQ), the function

(φP − φQ −G)(x)

is affine and therefore equal to 〈α, x〉+ β for some fixed α, β. Then we get

∇(φP − φQ −G) = ∇(〈α, x〉+ β) = α.

Since φP and φQ differ by only a bounded function we get that∇φP (Rn) = ∇φQ(Rn)+α. Taking
into consideration the scaling assumption we made at the start, we have shown what we needed.
In other words

Q = kP + α,

for some scalar k ∈ R.

Increasing n and again assuming V (0) = V (1) we still only need to solve for(
t 7→ −log

(∫
X
ω2 ∧ T

))′′

= 0,

where T := (iΘ(LA1 , hA1) ∧ · · · ∧ iΘ(LAn−2 , hAn−2). Now note that by 2.2.6, this is equivalent to
solving for

‖T ∧ u‖ = ‖T ∧ θ‖.

And as in the n = 2 case we get

‖T ∧ u‖min = ‖T ∧ u‖ = ‖T ∧ θ‖min =⇒ ‖T ∧ θ‖harm = 0.

And again by the ∂∂ -lemma we have that θ ∧ T is d-exact. So we get θ ∧ T = d(u ∧ T ), and by
the Leibniz rule and dT = 0 we get

θ ∧ T − d(u ∧ T ) = (θ − du) ∧ T = 0.

Finally, by the Hard Lefschetz theorem for T -Hodge theory 1.2.2, we get θ − du = 0. So we have
showed that θ is d-exact, and therefore also ddc-exact. Then the result follows from the proof of
the n = 2 case.

3.3 Closing remarks

Our main result is by no means novel. In fact, a relatively recent paper by van Handel and Shen-
feld [11] classifies the equality case in a much more general setting. With the notation in our
main result, they solved for equality when P,Q are any two convex bodies, and A1, . . . , An−2 are
convex polytopes (not necessarily Delzant). The methods in this thesis however differ signific-
antly from theirs. One possible avenue for furthering the methods in this thesis is to consider not
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only Delzant polytopes. Instead, we would look at V (P1, . . . , Pn) where there are convex bodies
A1, . . . , AN such that each Pj can be given as

Pj =
N∑
i=1

tijAi, tij > 0.

We conjecture that in this case, a similar result to our main result holds. That is to say

V (P1, . . . , Pn)
2 = V (P1, P1, P3, . . . , Pn)V (P2, P2, P3, . . . , Pn) ⇐⇒ P1, P2 are homothetic.
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