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Abstract. The following extension of Bohr’s theorem is established: If a
somewhere convergent Dirichlet series f has an analytic continuation to the
half-plane Cθ = {s = σ + it : σ > θ} that maps Cθ to C \ {α, β} for complex
numbers α ̸= β, then f converges uniformly in Cθ+ε for any ε > 0. The
extension is optimal in the sense that the assertion no longer holds should
C \ {α, β} be replaced with C \ {α}.

1. Introduction

Let D denote the class of Dirichlet series

(1) f(s) =
∞∑

n=1
ann−s

that converge in at least one point s = σ + it in the complex plane. Associated to
each Dirichlet series f in D is a number σc(f), called the abscissa of convergence,
with the property that f converges if σ > σc(f) and f does not converge if σ < σc(f).
This note concerns an extension of Bohr’s classical theorem on uniform convergence
of Dirichlet series [3]. We therefore define the abscissa of uniform convergence
σu(f) as the infimum of the real numbers θ such that f converges uniformly in the
half-plane Cθ. Here and in what follows, we set

Cθ = {s = σ + it : σ > θ}.

Our starting point reads as follows.

Bohr’s theorem. Let f be in D. If there is a real number θ and a bounded set Ω
such that f has an analytic continuation to Cθ that maps Cθ to Ω, then σu(f) ≤ θ.

Queffélec and Seip [10] (see also [9, Theorem 8.4.1]) showed that the assumption
that Ω is a bounded set may be replaced with the weaker assumption that Ω is a
half-plane. This extension of Bohr’s theorem was applied to obtain the canonical
formulation of the Gordon–Hedenmalm characterization of composition operators [6],
which has proven to be essential for further developments (see e.g. [5, Section 6]).

The purpose of the present note is to delineate precisely the limits to how far
Bohr’s theorem may be extended in terms of the mapping properties of f in the
half-plane Cθ. We will achieve this by establishing the following results.

Theorem 1. Let f be in D. If there is a real number θ and complex numbers α ̸= β
such that f has an analytic continuation to Cθ that maps Cθ to C \ {α, β}, then
σu(f) ≤ θ.
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Theorem 2. There is a Dirichlet series f with σc(f) ≤ 1/2, σu(f) = 1, and
f(Cθ) = C \ {0}

for any 1/2 ≤ θ ≤ 1.

It must be stressed that both results are fairly direct consequences of well-known
techniques and results. The proof of Theorem 1 uses Schottsky’s theorem similarly
to how it is used by Titchmarsh in the introduction to [12, Chapter XI], while
Theorem 2 is deduced from results of Bohr [2] and Helson [8] on the Riemann zeta
function.

Acknowledgements. The authors thank Hervé Queffélec for providing helpful
comments.

2. Proof of Theorem 1 and Theorem 2

We begin with some preparation for the proof of Theorem 1. Let D(c, r) denote
the open disc with center c and radius r > 0. If f is analytic and different from 0
and 1 in D(c, r), then the effective version of Schottsky’s theorem due to Ahlfors [1]
states that

(2) |f(s)| ≤ exp
(

r + |s − c|
r − |s − c|

(
7 + max(0, log |f(c)|)

))
for all s in D(c, r). (We do not actually require the effective version of Schottsky’s
theorem, but we find it more convenient to work with explicit expressions.)

Proof of Theorem 1. We may assume without loss of generality that α = 0 and
β = 1. It is well-known (see e.g. [9, Chapter 4.2]) that σu(f) ≤ σc(f) + 1, so every
Dirichlet series in D converges uniformly in some half-plane. For ϑ > θ, we set

M(f, ϑ) = sup
t∈R

|f(ϑ + it)|.

It is plain that M(f, ϑ) < ∞ if ϑ > σu(f). We fix ϑ > σu(f) and apply (2) with
c = ϑ + it, r = ϑ − θ, and s = σ + it, to infer that if θ < σ < ϑ, then

(3) |f(s)| ≤ exp
(

2(ϑ − θ)
σ − θ

(
7 + max(0, log |M(f, ϑ)|)

))
.

This demonstrates that f is bounded in Cθ+ε for any ε > 0, and, consequently, that
σu(f) ≤ θ by Bohr’s theorem. □

Ritt [11, Theorem II] established a version of Schottsky’s theorem for convergent
Dirichlet series. This result provides an upper bound similar to (3) that is valid in
all of Cθ and that only depends on θ and a1, under the additional assumption that
a1 is not equal to 0 or 1. Here a1 denotes the first coefficient in the series (1).

To prepare for the proof of Theorem 2, we consider the vertical translation
Vτ f(s) = f(s + iτ).

The vertical limit functions of a Dirichlet series f in D are the functions which can
be obtained as uniform limits of sequences of vertical translations (Vτk

f)k≥1 in Cθ

for any fixed θ > σu(f). Recall from [7, Section 2.3] that the vertical limit functions
of the Dirichlet series (1) coincide with the Dirichlet series of the form

fχ(s) =
∞∑

n=1
anχ(n)n−s,
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where χ is a completely multiplicative function from the natural numbers to the
unit circle.

Certain properties of f are preserved under vertical limits. For instance, Bohr’s
theorem implies that if f is in D, then σu(f) = σu(fχ) for any χ. A consequence of
Rouché’s theorem (see e.g. [4, Lemma 1]) is that fχ(Cθ) = f(Cθ) for any χ and any
θ ≥ σu(f). However, the abscissa of convergence for f and fχ may in general be
different (see [7, 8] or [9, Chapter 8.4]).

Proof of Theorem 2. We begin with the Riemann zeta function

ζ(s) =
∞∑

n=1
n−s,

which satisfies σc(ζ) = σu(ζ) = 1. A result of Bohr [2] (see also [9, Chapter 4.5])
asserts that ζ(C1) = C \ {0}. By the discussion above, it follows that σu(ζχ) = 1
and that ζχ(C1) = C \ {0} for any χ. Helson [8] established that there are χ such
that the Dirichlet series ζχ converges and does not vanish in the half-plane C1/2.
Choosing f = ζχ for such a χ, we obtain the stated result. □
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