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a b s t r a c t

The integration of renewable energy sources into smart grids offers a promising solution for building
sustainable and reliable energy systems. However, optimizing hybrid renewable energy systems
remains a crucial area of research. The study presents a comprehensive approach combining artificial
intelligence algorithm techniques with metaheuristic optimization algorithms for anticipating and
managing renewable energy sources in smart grid environments. With precision, recall, and accuracy
scores of 0.92, 0.93, and 0.92, respectively, the proposed Hybrid LSTM-RL model beats current
algorithms in correctly forecasting energy demand patterns. With an accuracy of 0.91 for various load
balancing measures, the RL-SA algorithm efficiently measures load balancing. With mean squared error
(MSE), mean absolute error (MAE), R-squared score, root mean square error (RMSE), and mean absolute
percentage error (MAPE) values of 345.12, 15.07, 0.78, 18.57, and 7.83, respectively, the CNN-PSO
algorithm also turns out to be the most successful at forecasting the generation of renewable energy.
These discoveries help hybrid renewable energy systems in smart grid settings advance, enabling
effective, dependable, and economical energy production and distribution. The suggested solution also
has the potential to be used in rural and off-grid settings. Overall, this research offers a useful method
for maximizing the production of renewable energy and acts as a spark for additional studies into
energy management systems.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Smart grids represent a significant advancement in energy
anagement and distribution. These intelligent electrical grids
tilize progressive sensors, communication, and regulator tech-
ologies to augment the generation, supply, and consumption of
lectricity (Islam et al., 2022). The importance of smart grids is
ulti-faceted, including increased reliability by detecting and re-
ponding to issues automatically, resulting in reduced downtime
or businesses and households. Additionally, smart grids enhance
nergy efficiency by minimizing waste and optimizing the usage
f renewable energy sources, enabling better incorporation of
enewable sources like solar and wind power, and handling the
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variability of these sources efficiently. This increased efficiency
can also help to reduce the overall cost of electricity by minimiz-
ing the need for new power plants and transmission lines while
reducing energy waste. Furthermore, smart grids (Mahmud et al.,
2020) can enhance energy management by providing consumers
with more information about their energy consumption and help-
ing them manage it more effectively, thereby promoting a more
sustainable use of energy and potentially leading to lower energy
bills. Thus, smart grids offer a range of benefits, including im-
proved reliability, efficiency, and sustainability of the electricity
system, as well as cost savings and enhanced energy management
for consumers.

The implementation of smart grids has become increasingly
important in current years, and Internet of Things (IoT) has played
a critical role in this development. IoT devices and technolo-
gies have enabled the collection and analysis of real-time data
from a range of sources, which is essential for optimizing the
generation, delivery, and consumption of power in a smart grid.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he significance of the IoT in smart grids can be summarized as
ollows (Tightiz and Yang, 2020; Bajpai and Dash, 2012):

• Real-time monitoring: IoT devices have the capability to
provide real-time monitoring of critical parameters, such as
energy usage and power quality. This information is essen-
tial for detecting and responding to issues quickly, ensuring
the reliability of the grid.

• Advanced analytics: IoT devices and platforms provide ad-
vanced analytics capabilities, enabling the analysis of large
volumes of data from multiple sources, including smart
meters and sensors. This analysis could be used to optimize
the generation, delivery, and consumption of electricity in
smart grids.

• Predictive maintenance: IoT devices can be utilized for pre-
dictive maintenance of the grid infrastructure, allowing util-
ities to identify and address issues before they cause outages
or other problems.

• Demand response: IoT devices and platforms facilitate de-
mand response programs, incentivizing consumers to de-
crease their energy utilization during crowning periods. This
helps to diminish peak demand, optimize the utilization
of renewable energy sources, and enhance the overall effi-
ciency of the grid (Bajpai and Dash, 2012).

• Integration of distributed energy resources: IoT devices can
ease integration of distributed energy resources, such as
solar panels and wind turbines, into the grid. Although
integration can be challenging, IoT technologies can help
manage the variability of these resources and ensure their
efficient use (Zhang et al., 2021).

hus, IoT is critical for the development and implementation of
mart grids, as IoT devices and technologies provide real-time
onitoring, advanced analytics, predictive maintenance, demand

esponse capabilities, and ease integration of distributed energy-
esources. All of these elements are crucial for optimizing the
erformance and efficiency of a smart grid.
Hybrid Renewable Energy Systems (HRES) offer reliable and

egitimate energy sources for smart grids by combining mul-
iple renewable sources. Benefits include increased reliability,
mproved efficiency, enhanced flexibility, reduced environmental
mpact, and cost-effectiveness. These systems optimize energy
roduction, reduce waste, and ensure a stable energy source
or the future. In the proposed work, optimization algorithms
ombined with artificial intelligence techniques are utilized to
ptimize hybrid generable energy systems.
The remaining sections of the paper are structured as follows.

ection 2 provides a comprehensive overview of recent research
onducted in the proposed area. It discusses various studies and
pproaches that have been explored, highlighting their strengths
nd limitations. Section 3 outlines the methods employed in this
esearch to achieve the desired results. It provides a detailed ex-
lanation of the Hybrid LSTM-RL model, the RL-SA algorithm, and
he CNN-PSO algorithm, describing the steps taken to implement
nd evaluate these methodologies. In Section 4, the obtained
esults are compared with existing works in the field. The per-
ormance of the proposed models and algorithms is analysed in
elation to previous approaches, offering insights into their effec-
iveness and superiority. Finally, Section 5 presents a conclusive
ummary of the research. It summarizes the main findings and
ontributions, discusses the potential implications and suggests
uture research directions.

. Related work

In the realm of IoT-based smart grids, numerous techniques
ave emerged to bolster their capabilities, spanning across com-
unication, power, and energy management domains. It provides
1300
a range of these techniques that cover genuinetime monitoring,
data analytics, predictive maintenance, demand reaction, inte-
grating renewable energy sources and cybersecurity (Islam et al.,
2022). The paper draws attention to their benefits but also dis-
cusses the challenges and provides valuable guidelines for further
research in this area. The integration of renewable energy sources
is the subject of a proposal to leverage Internet of Things tech-
nology and use Big Data Analytics, in order to facilitate timely
monitoring and control of electricity usage, make it possible
to integrate renewables into demand response schemes as well
as implementation of Demand Response Programmes (Mahmud
et al., 2020). The integration challenges are clearly identified, ac-
companied by future research directions aimed at tackling them
effectively.

In their endeavour to implement hybrid renewable energy
systems, Said et al. (2018) advocates for the combination of a
number of renewables with storage facilities in order to tackle
intermittentity and optimize grid integration performance. The
paper offers a thorough discussion of the benefits and challenges
posed by these systems, providing an insight into potential av-
enues to continue research and innovation. The review focuses
on the achievements of the Internet of Things driven smart grid
systems, including the use of various recommended techniques,
such as real time monitoring and control of energy consumption,
seamless integration of renewable energy sources into the grid,
the implementation of the Demand Response Programme, opti-
mization of the use of big data and machine learning, and the
protection of robust cybersecurity (Tightiz and Yang, 2020). The
report highlights prospects of future research and development
in this area, supported by a comprehensive evaluation of the
benefits and challenges facing smart grid systems that rely on
Internet of Things technology.

In addition, it sets out a comprehensive overview of the uti-
lization of internet of things technologies in smart grids with
particular emphasis on overcoming challenges related to im-
plementation (Bajpai and Dash, 2012). In order to address the
problem of intermittency, this document covers techniques for
hybrid energy systems incorporating different types of renew-
ables such as solar panels, wind turbines, water and biomass
combined with energy storage schemes. Consideration is given to
advanced control and monitoring techniques as well as seamless
grid integration. The paper is intended to initiate a roadmap for
the development of R&D opportunities in this dynamic area.

In the context of 5G vertical industries, Zhang et al. (2021)
introduces several techniques for implementing energy manage-
ment agent frameworks (EMAFs). Such methods make it possible
to communicate and coordinate between different devices and
systems through the use of Multi Agent Systems, which creates
Scalable and Flexible Architectures that are easily adapted for a
wide variety of applications and scenarios. The paper highlights
the importance of incorporating EMAFs into 5G networks in or-
der to monitor and control energy consumption at real time.
The study provides an overview of the potential benefits and
challenges related to EMAFs, identifies areas for further research
and development in this area. Proposed in Eltamaly et al. (2021),
a novel demand-response scheme for sizing hybrid energy sys-
tems (HESs) incorporates demand response programs with HES to
enhance the energization of end-users and optimize grid perfor-
mance. The study recommends that advanced control algorithms
such as prediction models are used for obtaining a stable and
reliable energy source. In addition, in view of the uncertainty
related to renewable energy sources and electricity demand, an
optimization model is being developed for determining the opti-
mum size of the Hydrogen Energy Storage System. The potential
advantages and disadvantages of the proposed technique are
thoroughly analysed in this paper, highlighting opportunities for
further R&D.



S. Sankarananth, M. Karthiga, Suganya E. et al. Energy Reports 10 (2023) 1299–1312
Tazay et al., 2020 developed an autonomous hybrid renewable
energy system (HRES) specifically designed for a university in
Saudi Arabia. The primary objective is to establish a reliable and
consistent energy supply by combining solar and wind power
sources with battery storage. The viability and economic feasibil-
ity of this HRES concept are evaluated through a comprehensive
technical analysis. This analysis considers crucial factors such
as initial investment, operational expenses, energy conservation,
and the time it takes to recover the investment. To enhance
the operational efficiency of the HRES and facilitate its smooth
integration with the university’s electrical grid, advanced moni-
toring and control methods are employed. The paper addresses
various challenges associated with implementing the HRES, in-
cluding the intermittent nature of renewable energy sources, the
limitations of batteries, and the necessity for effective system
maintenance and management. By emphasizing the potential of
the proposed HRES, the study aims to significantly reduce the
university’s carbon footprint, enhance overall energy efficiency,
and yield substantial economic advantages.

To enhance power distribution and source resizing in a highly
available island microgrid for a petroleum platform in Tunisia,
Abidi et al. (2019) recommends integrating renewable energy
sources, such as solar and wind power, to decrease reliance
on fossil fuels and promote microgrid sustainability. The report
suggests a more efficient approach for the distribution of energy,
which would use a hierarchical control system in order to provide
stability and reliability at various load levels. In addition, an
optimization model is suggested that will enable micro grids to
be more efficient and cost effective by identifying the optimum
size of energy sources and energy storage systems.

Conducting a pervasive economic and sensitivity analysis of
a hybrid renewable energy system (HRES) is the focus of Sawle
et al. (2021). The study proposes to perform an economic viability
and sensitivity assessment of the HRES in relation to different
input parameters and uncertainties using a Monte Carlo simu-
lation approach. In view of the cost of capital and operational
costs, energy efficiency savings as well as payback periods, a
techno economic analysis framework is proposed. Furthermore,
the sensitivity analysis methodology is used to identify which
input parameters and uncertainties have an impact on HRES’s
business performance. In order to determine optimum weighting
and configuration of HRES components, this paper emphasizes
the inclusion of an optimization model with a view to maximizing
monetary benefits. In addition, the study examines the integra-
tion of energy storage and demand response mechanisms into the
HRES analysis.

2.1. Research gap analysis

After reviewing the literature, several research gaps have
emerged in the field of IoT-based smart grid systems (Swastika
et al., 2017) and hybrid renewable energy systems (Krishna and
Kumar, 2015). The paper presents a novel approach by inte-
grating and exploiting three main techniques, such as power
response, load balancing and forecasting of energy usage in the
Smart Electricity System environment, to optimize Hybrid Re-
newable Energy Systems. The novelty is the demonstration of
the synergistic effects of combining these techniques, which have
traditionally been studied in isolation in previous works. The aim
of this study is to exploit the full potential of Internet of Things,
Smart Grid technologies and Hybrid Renewable Energy Systems
by solving these research gaps. Optimization of Hybrid Renewable
Energy Systems is an essential aspect of the proposed work (Palej
et al., 2019). In the smart grid context, such optimization is of
vital importance in ensuring efficient, reliable and cost effective
energy generation and distribution. A combination of strategies
including demand response, energy storage, load balancing and
accurate Renewable Energy Forecasts are being employed to this
1301
end, supported by sophisticated Analytics and Data Management
Tools as described below (Kovács, 2018; Wang et al., 2017, 2019).
The objective is to ensure energy production and distribution in
the most efficient and sustainable way, which would result in
reliable and secure energy supplies by means of implementation
of these strategies (Khan et al., 2022). The model proposes to ex-
ploit AI techniques in conjunction with optimization algorithms
for the effective management of demand response, load balancing
and renewable energy forecasting strategies (Hasan et al., 2019;
Ahmad et al., 2022; Zhang et al., 2022).

Thus, optimizing hybrid renewable-energy systems in a smart
grid environment requires a combination of these techniques,
along with advanced analytics and data management tools. Em-
ploying these strategies ensures that energy is generated and
distributed in the most efficient and cost-effective manner possi-
ble, ensuring a reliable and sustainable energy supply. Thus in the
proposed model, artificial intelligence techniques together with
optimization algorithms are utilized to manage demand response,
load balancing and renewable energy forecasting strategies.

3. Materials and methods

Artificial intelligence (AI) techniques, when combined with
optimization algorithms, can play a critical role in managing de-
mand response, load balancing, and renewable energy forecasting
in hybrid renewable energy systems operating in a smart grid
environment (Khan et al., 2022).

• Demand Response: To predict energy demand patterns and
identify opportunities for demand response, a novel long
short-term memory and reinforcement learning (LSTM-RL)
is proposed. By analysing data on energy consumption pat-
terns, weather conditions, and other variables, these tech-
niques can determine when demand is likely to be high and
when it can be reduced. Optimization algorithms can then
be used to create strategies for managing demand response,
such as prioritizing it based on the cost of energy at distinct
times, or on the availableness of renewable energy (Hasan
et al., 2019).

• Load Balancing: Reinforcement learning is an AI technique
that can optimize load balancing in a hybrid renewable
energy system (Ahmad et al., 2022). By analysing energy
production and consumption patterns, strategies for bal-
ancing energy loads across different sources are developed.
Metaheuristic optimization algorithms are then employed to
refine these strategies over time, based on changes in energy
production and consumption patterns.

• Renewable Energy Forecasting: AI techniques such as neural
networks and decision trees can be utilized to forecast re-
newable energy production (Zhang et al., 2022). By utilizing
data on weather patterns, historical energy production, and
other variables, these techniques can predict how much en-
ergy will be produced by renewable sources. Metaheuristic
optimization algorithms are then used to develop strategies
for managing renewable energy production based on these
forecasts. One potential application of energy storage sys-
tems is to store surplus renewable energy generated during
periods of high production and utilize it when production
levels are low. This enables the efficient utilization of renew-
able energy resources by balancing the supply and demand
dynamics.

The combination of AI techniques and metaheuristic optimization
algorithms can significantly improve the efficiency and reliability
of hybrid renewable-energy systems in a smart grid environ-
ment. To predict and manage renewable energy production, a
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Fig. 1. Hybrid LSTM-RL+RL-SA+CNN-PSO framework for smart grids.
ybrid approach combining LSTM-RL, RL-SA, and CNN-PSO tech-
iques is utilized. The solution comprises of three main steps:
ata collection and preprocessing, training and optimization, and
mplementation, and monitoring.

• Step 1: In the first step, data on historical energy con-
sumption, weather patterns, and other relevant variables are
collected and pre-processed for use in the models.

• Step 2: In the second step, the LSTM-RL technique is used
to predict energy demand patterns, while RL-SA is em-
ployed to develop optimal load balancing strategies. Finally,
CNN-PSO (Passricha and Aggarwal, 2019) is used to fore-
cast renewable energy production and develop strategies for
managing it.

• Step 3: The third step involves implementing the optimized
strategies in the energy system and continuously monitoring
system performance to ensure optimal efficiency.

By combining these three techniques, the proposed solution of-
fers an effective and comprehensive approach to predicting and
managing renewable energy production. A thorough overview of
the proposed framework is illustrated in Fig. 1.

3.1. Predicting demand response using the proposed LSTM-RL

The Long Short-Term Memory (LSTM) neural network (Sak
t al., 2014) is powerful tool for analysing sequential data, such as
ime series data in energy consumption patterns. By using LSTM,
istorical patterns of energy consumption can be identified and
sed to make accurate predictions about future energy demand.
owever, LSTM alone does not provide the optimal demand
esponse strategies required to maximize efficiency and reduce
osts. This is where reinforcement learning (RL) algorithms (Oh
t al., 2020) come in. RL algorithms use trial-and-error methods
o learn how to make optimal decisions based on rewards or
enalties. By combining LSTM and RL, the system can take ad-
antage of both techniques, using LSTM to predict energy demand
atterns and RL to optimize demand response strategies based on
hose predictions. The hybrid LSTM-RL neural network is trained
n a dataset of historical energy consumption patterns, weather

onditions, and other relevant variables. The LSTM component of

1302
the network is responsible for learning and predicting patterns
in energy consumption over time, while the RL component is
responsible for making decisions about demand response based
on those predictions.

For instance, the network can be used to predict when demand
is likely to be high and when it can be reduced, based on data in-
puts such as weather forecasts and energy consumption patterns.
These predictions can then be used to inform demand response
strategies, such as adjusting the temperature in buildings, shifting
energy use to off-peak hours, or utilizing energy storage systems.
The RL component can use these predictions to learn which
strategies are most effective and adjust them over time based on
feedback. Overall, the combination of LSTM and RL techniques
provides a powerful tool for optimizing demand response in
hybrid renewable energy systems. By taking advantage of both
techniques, the system can accurately predict energy demand
patterns and make optimal decisions to maximize efficiency and
reduce costs.
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.2. Working of LSTM and RL in optimizing demand response

LSTM is a specialized recurrent neural network utilized to
nalyse sequential data, such as historical energy consumption
ata, to forecast future demand patterns in demand response.
he input layer receives the data in a sequence, which is then
rocessed by the LSTM layer. This layer encompasses a memory
ell, input gate, output gate, and forget gate to identify patterns,
etermine relevant input data for storage, prevent overload with
rrelevant data, and use stored information for making predic-
ions. The output layer generates the predicted energy demand
ased on the LSTM layer’s output. The equations for different
ayers are represented in Eq. (1) to Eq. (6).

or input gate, it = σYi ∗ [kt−1, xt ] + ai (1)

Forget-gate is given by, ft = σYf ∗ [kt−1, xt ] + af (2)

Output_gate is given by, ot = σYo ∗ [kt−1, xt ] + ao (3)

Candidate’s memory cell is given by, Čt =
˙tanh Yc ∗
[
kt−1,xt

]
+ ac
(4)

Memory cell is represented by, Ct = ft ∗ Ct−1 + it ∗ Čt (5)

Hidden state is given by, ht = ot ∗ tanh(Ct ) (6)

herein it represents the input gate at time step t, Yi denotes
he weight matrix associated with the inputs to the input gate,
k(t−1), xt ] represents the concatenated vector of the previous
idden state (k(t−1)) and the current input (xt ). ai represents the
ias term associated with the input gate. ft represents the forget
ate at time step t, Yf denotes the weight matrix associated
ith the inputs to the forget gate. af represents the bias term
ssociated with the forget gate. ot represents the output gate at
ime step t. Yo denotes the weight matrix associated with the
inputs to the output gate, ao represents the bias term associated
with the output gate. Čt represents the candidate’s memory cell
at time step t., Yc denotes the weight matrix associated with
the inputs to the candidate’s memory cell. ac represents the bias
term associated with the candidate’s memory cell, Ct represents
he memory cell at time step t. ft represents the forget gate at
time step t. Ct−1 denotes the memory cell from the previous time
step. it represents the input gate at time step t. ht represents the
hidden state at time step t, tanh (Ct) represents the hyperbolic
tangent activation function applied to the memory cell Ct .

The accuracy of LSTM network predictions can be enhanced by
adjusting its parameters through training, thereby facilitating the
optimization of demand response tactics like energy consumption
adjustments in response to changes in demand.

RL can optimize demand response strategies based on LSTM
neural network predictions. The algorithm learns by maximiz-
ing a reward function, which incentivizes efficient and effec-
tive demand response. First, the environment is initialized with
the system’s current state, including the predicted energy de-
mand and energy storage status. The action space is defined,
including potential actions such as temperature adjustment or
energy storage use. A reward function is then created to incen-
tivize optimal behaviour, rewarding reduced consumption dur-
ing high demand and renewable energy use while penalizing
excessive consumption and non-renewable sources. The RL al-
gorithm is run, updating over time with new data inputs, and
the optimal demand response strategy is implemented. Through
this approach, effective and efficient demand response strategies
can be developed, reducing reliance on non-renewable energy
sources.
1303
3.3. Effective load balancing using proposed RL-SA

Effective load balancing in a hybrid renewable energy system
can be achieved through the following steps by utilizing the
proposed RL-SA technique:

1. First, gather data on the energy production and consump-
tion patterns (Soyhan, 2009) of each source in the system,
such as solar, wind, and traditional sources.

2. Next, reinforcement learning (RL) techniques are used to
develop initial load balancing strategies that consider pre-
dicted energy demand, current energy production, and en-
ergy storage systems.

3. Then, a metaheuristic optimization algorithm, such as sim-
ulated annealing (SA) (Rere et al., 2015) is employed, to
refine the load balancing strategies developed through re-
inforcement learning. This will enable the identification
of optimal load balancing strategies that increase the use
of renewable energy sources and decrease the need for
outmoded energy sources.

4. Continuously monitor the load balancing system’s perfor-
mance and collect new data inputs. Use these inputs to
update the reinforcement learning agent and refine the
load balancing strategies as necessary.

5. Finally, optimized load balancing strategies, should be im-
plemented and energy production and consumption should
be adjusted to ensure the efficient and effective use of all
available energy sources.

These steps are followed in the proposed model for efficient load
balancing in a hybrid renewable energy system, while reducing
dependence on traditional energy sources and maximizing the
utility of renewable energy sources in a smart grid environment.
The proposed algorithm is represented below:

In order to train it on the data available, the algorithm initially
creates a reinforcement training agent. The agent’s learned to
take action that maximizes the reward, in this case using more
renewable energy. After that, the algorithm comes up with a sim-
ulation annealing algorithm and uses an agent to optimize load
balancing strategies. The simulated annealing algorithm tries to
find the most efficient solution for this problem, namely a set of
load balancing strategies that will increase renewable energy use.
Finally, by adjusting the output of renewable energy sources and
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Fig. 2. Dataset View.
d

he energy consumption of the load, the algorithm implements
ptimized load balancing strategies.

.4. Forecasting renewable energy production using the proposed
NN-PSO

To forecast and manage renewable energy production using
he proposed CNN-PSO technique, the following steps can be
aken:

1. Gather data on variables such as weather patterns and
historical energy production that impact renewable energy
production.

2. Develop models to predict renewable energy production
based on these variables using a convolutional neural net-
work (CNN).

3. Metaheuristic optimization algorithms such as particle
swarm optimization (Thangaraj et al., 2011) are utilized to
create strategies for managing renewable energy produc-
tion based on forecasts.

4. Install energy storage systems, such as batteries or pumped
hydro storage, to stock surplus renewable-energy during
periods of higher production and issue it while production
is low.

5. Continuously monitor system performance and collect new
data inputs, updating the models and management strate-
gies over time.

6. Implement the optimized strategies for managing renew-
able energy production in the energy system.

y implementing these measures, renewable energy production
an be effectively managed, ensuring a consistent and stable
nergy supply while reducing dependence on non-renewable en-
rgy sources.

. Results and discussion

.1. Dataset

One of the data utilized in this study was obtained from
he "Smart Meter Power Consumption Data in London House-
olds (Dada et al., 2022)" dataset, which was collected and amasse
y UK Power Networks and made available by London Data store
ews. To further enrich the dataset, we also incorporated data
rom the Darksky API and Acorn data from Consolidated Analysis
enter, Incorporated (CACI) by utilizing a refactored version of
1304
the original dataset available on Kaggle. The categorical data were
then removed from the Darksky API, resulting in the dataset
exhibited in Fig. 2.

To better understand power consumption patterns, some data
points were removed because they were found to have no note-
worthy correlation with points in usage. These data points in-
cluded weather summary, precipType, and icon. Instead, new
parameters were created by categorizing available features: date-
time, apparent temperature, wind force, direction of wind, and
humidity. These categorical data were not used for predictive
mining, but they did provide valuable insights for pre-emptive
analysis of the data used in the LSTM. The important parame-
ters to be considered in the dataset for predicting the demand
response are energy consumption, details of the weather, time
details, seasonality (i.e. seasonal factors like temperature), and
sources of energy. The available features are utilized and other
features are dropped from the dataset.

4.2. Predicting demand response

Demand response is a process of predicting and managing en-
ergy demand during times of peak usage. To achieve this, a novel
model named hybrid LSTM-RL is developed, that uses various
parameters such as historical energy consumption data, weather
data, building characteristics, and occupancy data. These param-
eters are important inputs to the model, which can accurately
predict future energy demand and optimize demand response
strategies in real-time. For example, the model can help adjust
energy usage during peak demand periods or incentivize con-
sumers to diminish their consummation during times of higher
demand. By incorporating these parameters into the model, it is
possible to develop more effective demand response strategies
and reduce overall energy consumption during times of peak
demand. Therefore, it is essential to collect and analyse relevant
data from various sources to improve the accuracy of demand
response predictions and to ensure the optimal performance of
the model. Apart from ‘‘Smart Meter Power Consumption Data in
London Households’’, some other datasets that are included in the
study are ‘the Hourly energy demand generation and weather’’
dataset from Kaggle (Shi et al., 2021) and ‘‘Smart Building System’’
dataset from Kaggle (Dada et al., 2022). All three datasets are
thoroughly studied and a sample dataset for the study is hypo-
thetically framed considering the parameters historical energy
consumption data, weather data, building characteristics, occu-
pancy data, weather data, time details, seasonality and sources
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Table 1
Sample of the dataset utilized for the study.
Energy
Consumption

Weather
Temperature
(F)

Building Size
(sq. ft.)

Number of
Occupants

Weather
Condition

Time of Day Season Energy Source

125 67 1500 2 Sunny 8:00 AM Spring Electric
143 72 2000 3 Cloudy 9:00 AM Spring Natural Gas
168 80 2500 4 Rainy 11:00 AM Summer Solar
180 82 3000 5 Sunny 1:00 PM Summer Wind
195 77 1800 2 Cloudy 3:00 PM Fall Electric
205 72 2200 3 Rainy 5:00 PM Fall Natural Gas
180 65 2800 4 Sunny 6:00 PM Winter Solar
165 60 1800 2 Cloudy 7:00 PM Winter Wind
150 55 2000 3 Rainy 9:00 PM Spring Electric
135 50 2500 4 Sunny 11:00 PM Spring Natural Gas
Table 2
Comparing Advantages and Disadvantages of the proposed LSTM_RL model with existing algorithms.
Algorithm Advantages Disadvantages Similar Outputs

Linear
Regression

Simple and easy to interpret Assumes linear relationship between
variables

Predicted demand response values

Decision Trees Non-linear relationships between
variables can be captured

Can overfit easily Predicted demand response values,
feature importance

Random Forests Non-linear relationships between
variables can be captured and overfitting
can be reduced

Can be computationally expensive Predicted demand response values,
feature importance

SVM Can handle large datasets and capture
non-linear relationships between
variables

Can overfit easily Predicted demand response values,
feature importance

Neural
Networks

Can capture complex and non-linear
relationships between variables

Can be computationally expensive and
require significant data pre-processing

Predicted demand response values

Hybrid
LSTM-RL

Can handle sequential data and optimize
demand response strategies in real-time

Requires significant data pre-processing
and computational resources

Predicted demand response values,
optimized demand response strategies
of energy for predicting the demand response. A sample of 500
records is framed for the study. A short insight into the data
merged from all the datasets is exemplified in Table 1.

The hybrid LSTM__RL algorithm is proposed to predict the
emand response. The proposed hybrid LSTM_RL is allied with
ther machine learning and deep learning algorithms such as Lin-
ar Regression, Decision Trees, Random Forests, Support Vector
achine (SVM) and Neural Networks technique. The advantages
f the proposed model compared with other existing approaches
re represented in Table 2.
The accuracy, precision and recall values obtained for the

roposed hybrid LSTM_RL model are represented in Fig. 3. From
ig. 3, it is understood that the suggested model is 27%, 14%,
1%, 9% and 5% far better in accuracy outcomes than the Linear
egression (Zou et al., 2003), Random Forest (Breiman, 2001),
VM (Wang and Hu, 2005), Neural Networks (Bishop, 1994) and
STM methods respectively. In terms of precision, the suggested
odel outperforms the existing algorithms Linear Regression,
andom Forest, SVM, Neural Networks and LSTM by 22%, 13%,
9%, 9%, and 5% respectively. Furthermore, the recall values for
he proposed are better than 24%, 15%, 22%, 9% and 5% from the
inear regression, random forest, SVM, neural networks and LSTM
ethods respectively.
The comparison of the proposed hybrid LSTM_RL in predicting

he demand response is detailed in Fig. 4. To evaluate the per-
ormance of a model, RMSE (Root Mean Squared Error) (Bishop,
994), MSE (Mean Squared Error) (Bishop, 1994), and MAE (Mean
bsolute Error) (Bishop, 1994) values are commonly used. These
etrics help to quantify the errors between predicted and actual
alues and provide a measure of the accuracy of the model’s
redictions. A lower value of these metrics specifies that the
odel’s predictions are nearer to the real values, and the errors
etween the predicted and actual values are smaller. However,
he ideal range of values for these metrics may differ based on
1305
the specific problem and its field. Therefore, it is crucial to con-
sider the problem context and the application necessities while
determining acceptable values for these evaluation metrics. Fig. 4
details that the RMSE value for the proposed is 3.12, the MSE
value is 9.73 and the MAE value is 2.25, which are as low as
possible compared to the other exiting algorithms. After analysing
the data, it was determined that the hybrid LSTM-RL algorithm
achieved better results than other machine learning algorithms
in terms of accuracy, precision, recall, RMSE, MSE, and MAE. This
implies that the hybrid LSTM-RL algorithm is the most suitable
method for predicting demand response and optimizing demand
response strategies. The high accuracy and precision of this model
could significantly decrease energy consumption during peak de-
mand periods, resulting in cost savings and improved energy
efficiency. The model is executed for 10 epochs and the salient
drift in the accuracy of the model and a slip in the loss of the
model during training are portrayed in Fig. 5.

Overall, from the outcomes it is clearly defined that the LSTM-
RL model is the most effective algorithm in predicting demand
response, as it has the highest accuracy, precision, recall, and
the lowest RMSE, MSE, and MAE compared to other algorithms.
Suppose we want to predict a building’s energy consumption us-
ing historical energy consumption data, weather data, and other
relevant variables. In that case, we can use our sample dataset to
train an LSTM-RL model that learns to predict energy consump-
tion based on the input variables. The model takes in the input
variables and generates a prediction for the building’s energy con-
sumption for the next hour. For instance, we can feed the model
with input variables such as historical energy consumption, tem-
perature, humidity, occupancy, and time of day and the model
generates a prediction for the next hour’s energy consumption.

Based on the prediction, we can adjust our demand response
strategy. For example, if the prediction shows that the building
will consume more energy than expected, we can incentivize
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Fig. 3. Comparison of Precision, Recall and Accuracy values of the proposed hybrid LSTM-RL with existing techniques.
Fig. 4. Comparison of RMSE, MSE and MAE values of the proposed hybrid LSTM-RL with existing techniques.
ccupants to reduce energy consumption by adjusting the tem-
erature or turning off lights. By using the LSTM-RL model to
redict energy consumption, we can optimize our demand re-
ponse strategy and reduce overall energy consumption during
eak demand times.

.3. Results for effective load balancing using the proposed RL-SA
echnique

Load balancing is another important technique for optimizing
ybrid renewable energy systems, whereby the load is distributed
cross different energy sources to improve overall efficiency.
ntelligent control systems can be utilized to analyse data on
nergy consumption and production, determining the most ef-
icient way to balance the load. Reinforcement learning is an AI
echnique that can optimize load balancing in a hybrid renewable
nergy system. By analysing energy production and consumption
1306
patterns, strategies for balancing energy loads across different
sources are developed. Metaheuristic optimization algorithms are
then employed to refine these strategies over time, based on
changes in energy production and consumption patterns. The
dataset for effective load balancing is collected from ‘‘Open Power
System Data (Wiese et al., 2019)’’ which contains data about elec-
tricity consumption, production and transmission related data for
Europe. This dataset is further refined by dropping and combining
many features. Finally, the features considered for measuring load
balancing are energy production, which refers to the total amount
of energy generated by different sources, including solar, wind,
and traditional sources. Energy Consumption, refers to the total
energy used by the system or end-users. Energy demand is the
amount of energy required to meet the system or end-users’
energy needs. Energy storage refers to the capacity and efficiency
of energy storage systems, including batteries and other storage
technologies. Energy distribution is the way energy is distributed
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Fig. 5. Training Accuracy vs. Training Loss of the proposed hybrid LSTM-RL.
Table 3
Sample of the dataset utilized for measuring load balancing.
Time Solar

Production
(kW)

Wind
Production
(kW)

Traditional
Production
(kW)

Energy Demand
(kW)

Energy Storage
Level (kWh)

Energy Surplus
(kW)

Energy Deficit
(kW)

1 20 25 30 50 100 25 0
2 25 30 30 60 90 25 0
3 30 35 35 70 80 30 0
4 25 40 40 80 70 25 0
5 20 45 40 90 60 5 5
6 15 40 35 80 50 0 0
7 10 35 30 70 40 0 0
8 5 30 25 60 30 0 0
9 0 25 20 50 20 0 0
10 0 20 15 40 10 0 0
across the system, including transformers and transmission lines.
Renewable energy usage indicates the proportion of energy gen-
erated from renewable-sources such as solar and wind, relative
to traditional energy sources. Finally, system efficiency is the
overall efficiency of the system, which takes into account energy
production, storage, and distribution. The sample dataset utilized
is represented in Table 3.

Since load balancing is not a classification problem, the per-
ormance metrics utilized in the proposed study to effectively
onitor load balancing are energy surplus/deficit, frequency and
uration of outages, energy storage efficiency and cost of energy
roduction and consumption. To compare the outcomes of load
alancing measures of the proposed RL-SA algorithm, Artificial
eural Network, Decision Trees and Support Vector Machine
lgorithms are used. There are various metrics that can be used
o quantify the performance of load balancing algorithms for an
nergy system. One such metric is the energy surplus or deficit,
hich can be calculated by comparing the energy produced and
onsumed by the system using the available dataset. The pre-
icted energy surplus/deficit values by the algorithms can then
e compared to the actual values to determine the accuracy,
recision, recall, and F1 score. Another metric to consider is the
requency and duration of outages. To measure this, the dataset
an be analysed to identify the number of power outages that
1307
occurred and their average duration. The predicted number and
duration of outages by the algorithms can then be compared to
the actual values to calculate their accuracy, precision, recall, and
F1 score. Energy storage efficiency is another metric that can be
used to evaluate the performance of load balancing algorithms.
This can be measured by analysing the dataset to determine the
amount of energy that can be stored and later released for use.
The energy storage efficiency values predicted by the algorithms
can then be compared to the actual values to calculate their
accuracy, precision, recall, and F1 score. Finally, the cost of energy
production and consumption can also be utilized as a metric to
evaluate performance of load balancing procedures. The dataset
can be analysed to determine the total cost of energy production
and consumption in the energy system. The predicted total cost
by the algorithms can then be compared to the actual values
to calculate their accuracy, precision, recall, and F1 score. By
comparing, the performance of load balancing procedures using
the above metrics, we can determine which algorithm is the most
suitable for a particular energy system.

The energy surplus prediction using the proposed RL_SA in
terms of accuracy, precision and recall is represented in Fig. 6,
wherein the proposed RL_SA algorithm outperforms ANN, deci-
sion trees, and SVM in terms of accuracy, precision, and recall for
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Fig. 6. Energy surplus prediction of the proposed hybrid RL-SA algorithm.
Fig. 7. Frequency and duration of outages of the proposed hybrid LSTM-RL in comparison with the existing.
easuring the energy surplus. The frequency and duration of out-
ges for the proposed RL-SA algorithm are compared with those
f exiting algorithms such as ANN (Agatonovic-Kustrin and Beres-
ord, 2000), decision trees (Kotsiantis, 2013) and SVM (Wang and
u, 2005) and the same is represented in Fig. 7. The output
llustrates that the RL_SA algorithm performs better than the
ther three procedures in terms of the frequency and duration
f outages, with higher accuracy, precision, recall, and F1 scores.
One way to evaluate the energy storage efficacy of the con-

idered dataset is to examine how much energy is stored and
eleased by the system during a specific period. Then, we can
ompare the predicted energy storage efficiency generated by
ifferent load balancing algorithms with the actual values, and
alculate metrics such as accuracy, precision, recall, and F1 score.
ltimately, the procedure that achieves the highest scores in
hese metrics would be deemed the most suitable for optimizing
1308
energy storage efficiency. The analysis outcomes for the sug-
gested are likened with the existing ANN, decision trees and
SVM and the same is pictured in Fig. 8. From Fig. 8, it is clearly
understandable the proposed hybrid RL-SA algorithm is better
than 7%, 13% and 4% in terms of accuracy than ANN, Decision
Tress and SVM respectively. In terms of precision, the proposed
hybrid RL-SA algorithm is better than 6%, 14% and 3% than ANN,
Decision Tress and SVM respectively. In terms of recall, the pro-
posed hybrid RL-SA algorithm is better than 8%, 12% and 6% than
ANN, decision tress and SVM, respectively.

The energy production and consumption outputs achieved
by means of proposed hybrid RL-SA algorithm are represented
in Fig. 9. The energy production and consumption patterns are
highly improved when the proposed RL-SA algorithm is utilized.
The existing algorithms produced lower resultants when com-
pared to the proposed algorithm.
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Fig. 8. Energy Storage Efficiency of the proposed hybrid RL_SA in comparison with the existing.
Fig. 9. Energy Production and Consumption Efficiency of the proposed hybrid RL_SA in comparison with the existing.
Thus the proposed RL_SA algorithm is an effective tool for
measuring load balancing, as it outperforms existing algorithms
by achieving higher accuracy values for various load balancing
measures such as energy surplus prediction, frequency and dura-
tion of outages, energy storage efficiency, and energy production
and consumption. The higher accuracy values demonstrate that
the RL_SA algorithm is proficient in predicting and managing
imbalances between energy supply and demand, resulting in
more effective load balancing. This algorithm achieves its effec-
tiveness by using reinforcement learning and simulated annealing
techniques to optimize the decision-making process, which leads
to more efficient energy storage, distribution, and usage. Table 4
outputs the comparison results of the load balancing measures
obtained with the proposed hybrid RL_SA algorithm.
1309
4.4. Forecasting and managing renewable energy production using
proposed hybrid CNN-PSO technique

To develop a model dataset for forecasting renewable energy
production, it is necessary to gather historical data on multi-
ple factors that affect renewable energy production, including
weather patterns, solar radiation, energy production, energy de-
mand, and energy storage. These data can be utilized to train a
machine learning model to forecast renewable energy production
based on various inputs. By leveraging advanced techniques such
as CNN and PSO, the accuracy and performance of the model
can be optimized over time. Ultimately, this approach can help
improve the efficiency and effectiveness of renewable energy
production and management. The dataset for forecasting and
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Table 4
Load balancing measures for the proposed hybrid RL_SA algorithm.
Load Balancing Measure Proposed RL-SA Algorithm Accuracy ANN Accuracy SVM Accuracy

Energy Surplus Prediction 0.91 0.82 0.87
Frequency of Outages 0.80 0.75 0.72
Duration of Outages 0.70 0.65 0.62
Energy Storage Efficiency 0.85 0.78 0.81
Energy Production 0.85 0.78 0.77
Energy Consumption 0.85 0.78 0.81
Table 5
Sample of the dataset utilized for forecasting renewable energy production.
Time Solar Production (kW) Wind Production

(kW)
Traditional Production
(kW)

Energy Demand
(kW)

Energy Storage
Level (kWh)

Renewable Energy
Production (kW)

2022-01-01 00:00:00 250 1000 800 1200 200 1250
2022-01-01 01:00:00 200 800 700 1100 150 1000
2022-01-01 02:00:00 150 700 600 1000 100 850
2022-01-01 03:00:00 100 600 500 900 50 700
2022-01-01 04:00:00 50 500 400 800 0 550
2022-01-01 05:00:00 0 400 300 700 0 400
2022-01-01 06:00:00 0 300 400 800 50 300
2022-01-01 07:00:00 50 400 500 900 100 450
2022-01-01 08:00:00 100 500 600 1000 150 700
2022-01-01 09:00:00 150 600 700 1100 200 850
managing renewable energy using the hybrid CNN-PSO technique
is collected from ‘‘Open Power System Data (Wiese et al., 2019)
which provides the open-access data with respect to electricity
fields. The sample dataset that is used for the prediction is given
in Table 5. The features considered for the study are as follows:

• Time: The timestamp of when the data were recorded
• Solar Production (kW): The amount of energy produced by

solar power
• Wind Production (kW): The amount of energy produced by

wind power
• Traditional Production (kW): The amount of energy gener-

ated by traditional sources such as fossil fuels
• Energy Demand (kW): The amount of energy consumed

during that hour
• Energy Storage Level (kWh): The level of energy stored in

batteries or other storage systems at the end of that hour.

These variables provide important information on the production,
consumption, and storage of energy and can be used to develop
a model for forecasting renewable energy production. The as-
sessment metrics used for measuring the performance of the
suggested hybrid CNN-PSO algorithms are Mean Squared Error
(MSE), Mean Absolute Error (MAE), R-squared (R2) score, Root
Mean Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE).

MSE is a measure of the average squared distance between
redicted and original values. MAE is a measure of the average
istance between predicted and original values. The R2 score
easures the proportion of the variance in the dependent vari-
ble that is clarified by the independent variables. RMSE is the
quare root of the average of squared differences among pre-
icted and original values. MAPE measures the average percent-
ge difference among predicted and actual values. Lower val-
es for each of these metrics specify better performance of the
egression model in predicting the target variable.

The results from Fig. 10 indicate that the CNN-PSO algorithm
ields improved performance compared to the other procedures
n terms of all evaluation metrics, except for MAPE where SVM
erforms marginally better. Considering the dataset and the eval-
ation metrics used, the CNN-PSO algorithm appears to be the
ost effective for predicting renewable energy production.
1310
5. Conclusion

This research presents a comprehensive solution for optimiz-
ing renewable energy production in a smart grid environment.
The proposed Hybrid LSTM-RL model is a comprehensive solution
for optimizing renewable energy production in a smart grid en-
vironment. In the area of energy demand pattern prediction, this
model performs better than existing algorithms as regards accu-
racy, precision and recall rate at 0.92, 0.93 and 0.92. The RL_SA
algorithm, a helpful tool for measuring load balancing, is able
to reach an accuracy of up to 0.91 with regard to different load
balancing measures. The CNN-PSO algorithm is the most effective
in predicting renewable energy production, with a mean squared
error (MSE) of 345.12, a mean absolute error (MAE) of 15.07,
an R-squared score of 0.78, a root mean square error (RMSE) of
18.57, and a mean absolute percentage error (MAPE) of 7.83. The
study results have helped the development of renewable hybrid
power systems in a Smart Grid environment that is essential
for efficiency, reliability and cost effective electricity generation
and distribution. Using artificial intelligence and mathematical
optimization algorithms, this proposal provides a real solution
for the prediction and management of energy production from
renewables. The approach also has the potential to be used to
predict and manage renewable energy production in other set-
tings, such as off-grid and rural areas. We hope that this research
will inspire further investigations in this field and promote the
development of more efficient and effective energy management
systems.

The model shows promising results, but it is crucial to recog-
nize the drawbacks of relying on precise input data and the com-
putational complexity when used with large-scale systems. Fu-
ture research paths may focus on integrating more data sources,
analysing dynamic pricing systems and demand response tac-
tics, and researching alternative machine learning algorithms and
optimization methods in order to get beyond these restrictions.
Despite these drawbacks, our research strongly encourages the
development of renewable hybrid power systems in smart grid
settings since they provide advantages such effective electric-
ity generation and distribution that are reliable, efficient, and
affordable. The suggested method offers a workable alternative
for forecasting and managing renewable energy generation by
combining artificial intelligence and mathematical optimization
methods. Furthermore, it has the potential to be used in off-grid
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Fig. 10. Renewable energy forecasting in comparison with CNN, SVM and decision trees.
.

and rural locations in addition to smart grids. We believe that our
study will spur additional research in the area and lead to im-
provements in more effective and efficient energy management
systems.
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