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Obtaining high-resolution maps of precipitation data can
provide key insights to stakeholders to assess a sustainable
access to water resources at urban scale. Mapping a non-
stationary, sparse process such as precipitation at very high
spatial resolution requires the interpolation of global datasets
at the location where ground stations are available with
statistical models able to capture complex non-Gaussian
global space-time dependence structures. In this work, we
propose a new approach based on capturing the spatially
varying anisotropy of a latent Gaussian process via a locally
deformed Stochastic Partial Differential Equation (SPDE)with
a buffer allowing for a different spatial structure across land
and sea. The finite volume approximation of the SPDE, cou-
pledwith IntegratedNested LaplaceApproximation ensures
feasible Bayesian inference for tens of millions of observa-
tions. The simulation studies showcase the improved pre-
dictability of the proposed approach against stationary and
no-buffer alternatives. The proposed approach is then used
to yield high resolution simulations of daily precipitation
across the United States.
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1 | INTRODUCTION

Accurate high-resolution information of precipitation data is essential to effective prediction and management of
water resources (Clark et al., 2015). Dramatic improvements in modeling physical processes driving precipitation
have resulted in more realistic simulations from global climate models and hence more reliable predictions. The high
complexity of modern climate models, however, implies a computational and storage cost which limit the spatial
resolution at which global climate simulations can be performed. As such, there are significant uncertainties and
mismatches with observations, due to precipitation patterns that coarse resolutions do not sufficiently represent as
they cannot capture the scale of the physical processes of interest (Wood et al., 2021). The consequences can be
over- or under-attribution of a particular location or incorrect timing of events, that can for example be the difference
between a local flooding or not (Sapountzis et al., 2021). It is therefore of high scientific interest to refine global
predictions and produce maps of both probability of rain occurrence and precipitation intensity at a high spatial scale,
in order to inform impact assessment models for flood resilience and agricultural models for drought predictions.

It is in principle possible to produce high resolution precipitation using a coarse global dataset as boundary con-
dition for a regional weather model such as the Weather and Research Forecasting (WRF, Skamarock et al. (2019)).
This dynamical downscaling approach (Sain et al., 2011) has the appealing advantage of producing physically consistent
spatial fields at high resolution, but comes with a substantial associated cost in terms of computational and storage
resources, as well as expertise for model setup that only few research centers, universities or businesses could afford.
A more affordable solution lies in the formulation of an empirical relationship between global data and ground obser-
vations to be fit at locations where ground data are available. Under the assumption that this relationship is at least
approximately valid at unobserved locations, high resolution maps can be produced by correcting the global dataset.
This statistical downscaling approach (Berrocal et al., 2010) is fast, computationally affordable, and has a long estab-
lished track record of success in the geoscience literature. In order to work, such approach requires that the global
and the ground data are co-located, which is not a priori the case since global data are defined as averages over large
areas. It becomes therefore necessary to use spatial statistical models to interpolate the global simulation values at
the same locations of the ground observations, and to have an assessment of the uncertainty around these estimates.

Global spatial data require the formulation of specialized models whose theoretical properties are substantially
different from spatial processes on Euclidean spaces. In fact, Gneiting (2013) highlighted how a valid process on the
sphere with great circle distance could be achieved only with severe restrictions on the parameter space of the most
widespread covariance model, the Matérn function. In the past two decades, new modeling approaches tailored for
global data have emerged. Among them, Jun and Stein (2007, 2008) proposed to embed the sphere in a three di-
mensional space, consider a Matérn model and apply partial derivatives to achieve more flexibility. The proposed
class of models was able to capture not just an isotropic behavior, but also axial symmetry, i.e., a nonstationary behav-
ior across latitude (Jones, 1963). Jun (2011) generalized this approach to multivariate global processes. A fast and
flexible spectral class of axially symmetric models was proposed in the case of gridded data by Castruccio and Stein
(2013). The approach was then generalized to non-parametric spectral estimation (Castruccio and Genton, 2014),
three-dimensional variables (Castruccio and Genton, 2016), different land/ocean behavior (Castruccio and Guinness,
2017) and also multivariate processes (Edwards et al., 2019). On the more theoretical side, substantial progress has
been made in the determination of properties of high dimensional spheres for isotropic processes via basis decom-
position see, e.g., Arafat et al. (2020); Porcu et al. (2020). We refer to Jeong et al. (2017); Porcu et al. (2018) for two
recent reviews on the topic.

A novel, different perspective was raised in the seminal work of Lindgren et al. (2011), where a subclass of Matérn
modelswas associatedwith the solution of a diffusion-reaction Stochastic Partial Differential Equation (SPDE)with the
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Markov property and inference was performed with finite elements. The key insight of this approach, as far as global
models are concerned, is that the original SPDE on the plane can be just adapted to the sphere, with the additional
benefit of not requiring boundary conditions. The original ideas for non-stationarity in Lindgren et al. (2011) have been
explored in several directions, from nested SPDE (Bolin and Lindgren, 2011) to models with physical barriers (Bakka
et al., 2019). Recently, Fuglstad et al. (2015); Fuglstad and Castruccio (2020) extended this approach by parametrizing
spatially varying anisotropy on the sphere through a spatially varying scalar and vector field, which resulted in a
local deformation of the SPDE. The proposed approach showed promising results, but has been so far limited to
the Gaussian case and generalization to non-Gaussian data is by no means straightforward, given the challenges in
modeling non-Gaussian data and the computational overhead implied by these models.

In this work, we propose a non-Gaussian, non-stationary SPDE-based global spatio-temporal model with spatially
varying anisotropy and a buffer between land and sea to account for abrupt changes in spatial dependence. Non-
Gaussianity is modeled via a latent Gaussian model, i.e., by assuming that the non-Gaussian marginal behavior is
conditionally independent across locations, and then the spatial dependence is captured via a latent process with a
Gaussian structure. Inference is still achievable for very large datasets by means of 1) a sparse precision matrix of
the latent Gaussian model emerging from the finite volume solution of the SPDE and 2) a fast approximation of the
high-dimensional integrals required for posterior computation via Integrated Nested Laplace Approximation (INLA,
Rue et al. (2009)). The model is ideally suited to highly non-Gaussian data such as daily global precipitation, and it is
then used to 1) fit global reanalysis data, 2) provide interpolated data at the same location as the ground observations,
3) downscale precipitation using both ground and interpolated data, so that 4) high resolution maps of precipitation
are provided.

The work proceeds as follows. Section 2 introduces the data which will be used in this work. Section 3 details the
methodology for the latent Gaussianmodel, specifically the temporal and the spatial component. Section 4 shows how
inference is performed and how sparsity and numerical approximations alleviate the computational burden. Section 5
assesses numerically the posterior consistency, as well as the improved predictability of the proposed model against
simpler alternatives. Section 6 applies the proposed model to the precipitation data and shows it can provide high
resolution maps of daily precipitation across the continental United States. Section 7 concludes with a discussion.
For reproducibility, at the end of this work we provide information about the repository where the code and data are
available.

2 | DATA DESCRIPTION

We focus on daily global precipitation data from the Modern-Era Retrospective Analysis for Research and Appli-
cations, version 2 (MERRA-2, Gelaro et al. (2017)) produced by the NASA Global Modeling and Assimilation Office
(GMAO). MERRA-2 is a reanalysis data product that incorporates observations from satellite instruments and is con-
sidered one of the best representations of the state of the Earth’s system. The data is available on a regular grid with a
resolution of 0.625◦ × 0.5◦ in longitude and latitude, respectively, for a total of n = 207, 936 locations. We focus on the
year 2021, the latest year with a continuous record available, and we use the daily Maximum Rainfall Rate (MRR, in
kg/m2 · s) . To convert the MRR into precipitation, we divided it by the water density, 1,000 (kg/m3) , and convert the
unit to millimeter by multiplying by 1,000, as well as multiply by 86,400s to obtain the daily precipitation. We assume
that for each location, the MRR lasts for the whole day, which leads to some overestimation, as it can be clearly seen
from the two different legend scales in Figure 1. The downscaling approach in Section 6 will be able to account for
this by performing a linear transformation between (interpolated) MERRA-2 and USCRN.
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F IGURE 1 Average daily precipitation (in mm) for each USCRN site and MERRA-2 grid point from January 1st,
2021 through December 31th, 2021.

For ground observations, we consider the U.S. Surface Climate Reference Network (USCRN, NOAA (2022)), a
data product containing continuous records from climate monitoring stations across the continental United States.
The USCRN monitoring stations record measurements for total precipitation, measured in millimeters (mm), in real-
time in 5-minute intervals. The data are collectedwith aGeonor T-200B precipitation gauge, whosemaximumcapacity
is 600mm. This gauge uses a precipitation collection bucket which is surrounded by a wind/snow shield and heated
in order to prevent ice buildup in cold regions. Three wires attached to this collection device vibrate with frequencies
relative to the weight of the bucket, and these vibration frequencies are then converted to gauge depth (in mm).
For this work, we consider data from 131 different monitoring stations post-processed to daily resolution forming
a continuous record from January 1st, 2021 to December, 31th 2021. Figure 1 shows the locations of the USCRN
sensors along with the average total daily precipitation throughout 2021. For comparison, the same figure also shows
the average daily precipitation for theMERRA-2 grid points during the same time frame. It is readily apparent from this
Figure that the regions of highest average daily precipitation are the northwest and southeast regions of the country
whereas the drier region of the country spans from the eastern border of California through to the Mississippi River.
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3 | METHODOLOGY

3.1 | Latent Gaussian Model

We propose a spatio-temporal latent Gaussian model (Rue et al., 2009), defined for a generic spatial point on the
sphere s ∈ Ó2 and time t = 1, 2, . . . as:

Y (s, t ) | µ (s, t ),θMRG ∼ h (µ (s, t ),θMRG), (1a)

g (µ (s, t )) =
P∑
p=1

βp fp (s) + f time (s, t ) + ε (s), (1b)

f time (s, t ) =
K∑
k=1

{
ζk (s) sin

(
2πk t

δ

)
+ ζ′k (s) cos

(
2πk t

δ

)}
, (1c)

where h ( ·) represents the marginal distribution ofY ( ·) conditional on the latent field and the hyperparameters, and
belongs to the exponential family with somemean µ (s, t ) , whose structure is determined by a latent Gaussian process
through a link function g ( ·) . The marginal parameters θMRG characterize moments higher than the first, and could be
empty. If the marginal distribution is Gaussian, we haveY (s) ∼ N(µ (s, t ),θMRG) , and the link function g ( ·) is simply
the identity function (Dunn and Smyth, 2018). For example, if the marginal distribution is the Bernoulli distribution
instead, we have Y (s) ∼ B(µ (s, t )) , and the logit function can be chosen as the link function (Dunn and Smyth,
2018). We assume that the transformed mean in the latent space g (µ (s, t )) is modeled by a location specific time
effect, f time (s, t ) , p = 1, . . . , P location-specific covariates fp (s) , and a spatial error ε (s) . The time effect f time (s, t )
is described by K harmonics with parameters ζ (s) = (ζ1 (s), . . . , ζK (s))> and ζ′ (s) = (ζ′1 (s), . . . , ζ

′
K (s))

>, and the
number of harmonics is chosen via a model selection metric, see the application and the supplementary material. If
we assume that we have a sample observed at s1, . . . , sn , the total number of temporal parameters in equation (1c)
is θtime = {θtime (s1), . . . ,θtime (sn ) }, where θtime (si ) = {ζ (si ), ζ′ (si ) }, for a total of 2Kn parameters. The period
δ ∈ {365, 366} depends on the leap/no-leap year considered. We assume that the spatial random effect ε (s) is a
realization from a mean-zero Gaussian random field independent in time, whose covariance function depends on
some parameters θspace which will be specified in the next Section.

3.2 | Spatial Correlation Structure

The simplest models for the spatial dependence of ε (s) are stationary and isotropic, i.e., they assume that the
dependence is a function of ‖s1 − s2 ‖. Among them, one of the most popular choices is arguably the Matérn model,
whose correlation between two locations s1, s2 is defined as (Stein, 1999)

Corr(ε (s1), ε (s2)) = C (s1, s2) =
1

2ν−1Γ (ν)

(
‖s1 − s2 ‖

ρ

)ν
Kν

(
‖s1 − s2 ‖

ρ

)
,

where Kν is the modified Bessel function of the second kind with smoothness parameter ν > 0 (i.e., controlling
the degree of mean squared differentiability) and range parameter ρ > 0. If inference is sought for a large dataset, a
matrix comprising of the covariance among all locations could not be stored, and likelihood evaluation could become
computationally challenging or just impossible. Instead of operating directly with the covariance matrix, a popular
solution in the past decade has been to rely on the identification of a Gaussian process with Matérn covariance as the
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(unique) stationary solution of the following fractional reaction diffusion SPDE (Whittle, 1954):

(
1

ρ2
− ∆

)ν/2+1/2
ε (s) =W(s), s ∈ Ò2, (2)

where ∆ is the Laplacian operator andW(s) is a spatial Gaussian white noise. By exploiting an ‘explicit link’ between
a continuous Markov process when ν is integer in (2) and a discrete Gaussian Markov Random Field (GMRF), Lindgren
et al. (2011) proved that if all locations are arranged on a 2D lattice, then the covariance structure of the GMRF could
be approximated by applying the convolution of a sparse precision matrix. Moreover, any location that is not on the
lattice could also be interpolated and approximated by means of a triangulation over the domain. Ultimately, this
implies that the Matérn covariance can be approximated by a sparse precision matrix, and hence allow faster and
feasible inference on the spatial structure of ε ( ·) . In this work, we rely on a similar SPDE defined on a sphere defined
as (

1

ρ2
− ∆Ó2

)ν/2+1/2
ε (s) =W(s), s ∈ Ó2, (3)

where ∆Ó2 is the Laplacian operator.
The aforementioned SPDE approach has clear computational advantages and can be generalized to allow for

nonstationary constructs, while still yielding sparse precision matrices (Lindgren et al., 2011). In this work we rely
on a spatially varying SPDE originally formulated in Fuglstad et al. (2019) for spatially varying anisotropy, but other
approaches for spatially varying parameters (Lindgren et al., 2011) or nested SPDE (Bolin and Lindgren, 2011) have
been proposed. We assume a location on the sphere has polar coordinates s = (L, l ) , where L is the latitude and l is
the longitude. We introduce two terms: a vector field v( ·) = (v1 ( ·),v2 ( ·))> and a positive-valued scalar field ρ ( ·) . We
then define the inverse deformation tensor as:

G(s)−1 = ρ (s)2 I2 + v(s)v(s)>√
1 + ‖v(s) ‖2

,

where I2 is a 2 × 2 identity matrix. One can show that with the spatially varying metric tensor defined above, the
distance along the direction v(s) is scaled by 1/(ρ (s) (1 + ‖v(s) ‖2)

1
4 . In the orthogonal direction of v(s) , the distance

is scaled by (1 + ‖v(s) ‖2)
1
4 /ρ (s) . Therefore, the vector field v( ·) specifies the direction of the local anisotropic effect

at each location, while ρ ( ·) represents its strength. After specifying the metric tensor G(s) , it case be shown that an
appropriate change of variable in the SPDE (3) yields (Fuglstad and Castruccio, 2020):

[ |G(s) |
1
2 − + · |G(s) |

1
2G(s)−1+]ε (s) = |G(s) |

1
4W(s), s ∈ Ó2 . (4)

3.3 | Spherical Harmonics

Both the vector field v( ·) and the scalar field ρ ( ·) can be specified through basis decomposition such as spherical
vector harmonics and spherical harmonics, respectively. However, a more flexible approach is necessary for global
models, which must account not just for slowly changing nonstationarity, but also for abrupt changes dictated by
large geographical descriptors such as land and ocean (Castruccio and Guinness, 2017). In order to formulate a valid
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model via SPDE while still accounting for abrupt changes, we consider the buffering approach proposed by Bakka
et al. (2019). More specifically, we use a buffer area along coastlines with a separate parameter that describes the
multiplicative drop d ∈ [0, 1] in the strength of dependence in the buffer area for all triangles at the boundaryTB , so
that for each of the land/ocean domain we propose a separate spherical harmonics decomposition:

log{ρj (s) } =
L∑
l=0

l∑
m=−l

α
j
ml
Y ml (s) + d × I (s ∈ TB ),

where α j
ml

are real-valued coefficients and Y m
l
(s) are Laplace’s spherical harmonic of degree l and order m and j =

{land, ocean} specifies the geographical descriptor where s is located. Similarly, the vector field v( ·) can be described
as:

vj (s) =
L∑
l=1

l∑
m=−l
{E (1,j )
l m

+Y lm (s) + E
(2,j )
l m

r̂(s)+ ×Y lm (s) },

where r̂ is the unit vector in the positive radial direction, E (1,j )
l m

and E
(2,j )
l m

are real coefficients, L is the high-
est order in the bases. Additionally, in order to account for micro-scale variability, we assume that the process
for both land and sea also has a nugget τ2

j
. In summary, the spatial parameters of the model are θspace ={

d ,
{
τ2
j
, j ∈ {land, sea}

}
,
{
α
j
ml
, E
(1,j )
l m
, E
(2,j )
l m
,m = −l , . . . , l ; l = 1, . . . , L, j ∈ {land, sea}

}}
, for a total of 6(L2 + 2L) + 3

parameters.

We use a priori independent standard normal distributions as priors for all parameters, with log transformation
if they are constrained to be positive. The same setting is applied to the parameters used in simulation study and
application. Given the overall large amount of data, the posterior results are not expected to substantially deviate for
(reasonable) changes in the prior. Nevertheless, one could in principle use other more sophisticated choices such as
penalized complexity priors (Simpson et al., 2017), even though the implementation with a user-defined model such
as ours is not straightforward. We have added this remark in the prior discussion.

4 | INFERENCE

Wepropose a stepwise inference approach to reduce the overall dimension of the parameter space in each step. We
first estimate θtime at each location independently, then θspace conditionally on the temporal parameters. In Edwards
et al. (2020) it was shown that the stepwise approach results in an asymptotically consistent inference, and Castruccio
and Guinness (2017) showed that uncertainty and bias propagation have small impact for large yet finite datasets such
as the one we work with here.

4.1 | Step 1: Temporal Structure

In the first step, the inference is performed at each location independently. We redefine equation (1) as the follow-
ing:

Y (s, t ) ∼ h (µ (s, t ),θMRG),

g (µ (s, t )) =
∑P
p=1 βp fp (s) +

∑K
k=1

{
ζk (s) sin

(
2πk t
δ

)
+ ζ′

k
(s) cos

(
2πk t
δ

)}
.

(5)
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The vector of temporal parameters θtime and the linear parameters β1, . . . , βp are estimated using least-squares and
the parameters are considered fixed in the following inference steps. Once θ̂time, β̂1, . . . , β̂p are obtained, conditional
on them the spatial parameters θspace of the spatial process ε (s) can be estimated.

4.2 | Step 2: Spatial Covariance Structure

We define a collection of trianglesT1, . . . ,TnT on the sphere, and use a finite volume method to discretize the SPDE
in (4). We redefine the inverse matrix tensor as G(s)−1 = ρ (s)2H(s) , where |H(s) | = 1, and we integrate it over
triangles Ti generated on a global mesh and seek for a piece-wise constant solution to the SPDE. For all triangles Ti ,
we have the following equality in distribution:[∫

Ti

1

ρ (s)2
− + · H(s)+

]
ε (s)dV d

=

∫
Ti

1

ρ (s) W(s)dV . (6)

Here +· is the divergence operator, + is the gradient operator, andH( ·) is a 2×2 piecewise continuously differentiable
diffusion tensor and dV is the surface measure on the triangles. This allows to translate the SPDE into a set of linear
equations for a Gaussian vector that is assumed to be constant across each triangle.

Similarly to Bertolazzi and Manzini (2007); Fuglstad and Castruccio (2020), let ε = (ε1, ε2, ..., εn ) be the vector of
values at triangle center, then the following n × n matrix AH could be calculated to describe a discrete approximation:

©«
3∑
j=1

∫
σi ,j

(H(s)+ε (s))>ni ,j ds
ª®¬
n

i=1

≈ AHε.

Here, σi ,j represents the three faces of the triangle Ti and ni ,j is its outward-facing vector. Then, we combine this
with a n × n diagonal matrix D, in which di i = |Ti |/ρ (xi )2, so that we have:

©«
∫
Ti

ε (s)
ρ (s)2

ds −
3∑
j=1

∫
σi ,j

(H(s)+ε (s))T ni ,j ds
ª®¬
n

i=1

≈ (D − AH)ε.

With this approximation, the equality in distribution expressed in equation (6) can now be expressed as:

(D − AH)ε ∼ N(0, L),

where L is a n × n diagonal matrix with elements l i i = |Ti |/ρ (xi )2. This implies that ε ∼ N(0,Q−1) , and Q is a sparse
precision matrix defined as:

Q = (D − AH)>L−1 (D − AH) .

Therefore, the finite volume method ensures a sparse precision matrix, which mitigates the computational burden for
large global data and boosts the computing speed of the nonstationary model during inference.
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4.3 | Inference for Latent Gaussian model

In order to perform inference on the latent Gaussian Model, in this work we make use of the Integrated Nested
Laplace Approximation (INLA, Rue et al. (2009)) a method for Bayesian inference alternative to traditional Markov
Chain Monte Carlo (MCMC), which could further ease the computational burden. INLA is a deterministic method
for fast approximation of high dimensional integrals which takes advantage of computational properties of mod-
els that can be expressed as a latent GMRF. Thus, the INLA approach is used for performing the inference in this
study. Under the proposed latent Gaussian Model structure, we have the observed data vector denoted here as
Y = (Y (s1), . . . ,Y (sn ))> at locations si that can be described by hyperparameter vector θspace. For simplicity,
throughout this section, we will use θ to represent hyperparameter vector θspace. If conditioned on latent spatial
field X, the observations are marginally independent with likelihood:

π (Y |X,θ) =
n∏
i=1

π (Y (si ) |X (si ),θ),

whereX = (X (s1), . . . ,X (sn ))> is a Gaussian field with mean zero and modeled by a SPDE approach with precision
matrix Q(θ) . Therefore, the joint distribution of latent effect and hyperparameters can be written as:

π (X,θ |Y) ∝ π (θ)π (X |θ)∏n
i=1 π (Y (si ) |X (si ),θ)

∝ π (θ) |Q (θ) |1/2exp{− 12X>Q (θ)X}
∏n
i=1 π (Y (si ) |X (si ),θ),

where |Q(θ) | is the determinant of the precision matrix. The main goal is to approximate the posterior marginals
π (X (si ) |Y) , π (θ |Y) and π (θj |Y) . The marginal posterior distributions of interest can be written as:

π (X (si ) |Y ) =
∫
π (X (si ) |θ,Y )π (θ |Y )dθ

π (θj |Y ) =
∫
π (θ |Y )dθ−j .

The key idea of INLA approach is to use the form above to construct nested approximations. The approximations of
the marginals for the latent field π (X (si ) |Y) are computed by approximating π (θ |Y) and π (X (si ) |θ,Y) , and using
numerical integration to integrate out θ. In other words, the posterior marginals of the latent parameter would be
obtained by:

π̃ (X (si ) |Y ) =
∑
k

π̃ (X (si ) |θk ,y) × π̃ (θk |Y ) × ∆k ,

where ∆k are the weights associated with a vector θk of hyperparameters in a grid.

5 | SIMULATION STUDIES

Throughout this section, we denotewith NS-LS the proposed nonstationary latent Gaussianmodel (4) with land/sea
effect with NS the nonstationary model with no land/sea effect. We further consider the stationary SPDE model (3),
and denote with S-LS the model with land/sea effect and with S without it. In Section 5.1, we perform simulations
from the Gaussian marginal distribution for NS-LS to numerically assess posterior consistency for both the hyperpa-
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rameters and the resulting covariance matrix. In Section 5.2 and Section 5.3, we perform simulations from Gaussian
and Bernoulli marginal distributions with identity and logit link, respectively, to assess the interpolation (kriging) per-
formance of the NS-LS against NS, S-LS and S.

Since the key contribution of this work lies in the spatial component of the model, throughout this section we
will assume a purely spatial process with no covariates. In other words, model (1) simplifies to

Y (s) ∼ h (µ (s),θMRG), (7a)

g (µ (s)) = ε (s) ∼ N(0, Σ (θspace)) . (7b)

In the Gaussian case we also have θMRG = σ2 = 0.05, while in the Bernoulli case no marginal parameters are
defined, so that θMRG = ∅.

For each simulation, we sample n = 2, 000 data points on the unit sphere, and then draw the parameters of θspace
from a Normal distribution with mean 1 and standard deviation 0.5, assume them fixed. Each simulation comprises of
nr = 100 replicates from the resulting covariance matrix Σ (θspace) , and could be intuitively interpreted as the number
of independent replicates in time. We simulate data from a NS-LS model with L = 1, so that there is a total of
6(L2 + L) + 3 = 21 hyperparameters. In other terms, we perform ns independent simulations, each one comprising
nr replicates to aid the identifiability of the parameters.

5.1 | Posterior consistency in the Gaussian case

In order to numerically assess posterior consistency, for each simulation we consider an increasing number of repli-
cates nr = 10, . . . , 100. Inference is performed assuming the same model (7) and with a mesh of nT = 2, 000 triangles.
The choice of the number/size of triangles is dictatedmostly by computational constraints. While it would be desirable
to have a mesh as fine as possible, this would require in larger matrices and hence more challenging likelihood evalua-
tion. On the other hand, a mesh too coarse would loose some fundamental structure in the spatial field, so there is a
tradeoff. Our choice allowed for challenging yet not impossible inference. For varying levels of nr , the hyperparame-
ters’ posterior distributions is retrieved and is compared with the true value. Posterior consistency can be empirically
verified in the extent to which the hyperparameters’ posterior distributions converges to the true parameters θspace
as nr increases.

TABLE 1 Median MSE (IQR) between the true hyperparameter and the posterior distribution across all
simulations ns for Gaussian case.

nr 20 40 60 80 100

Median MSE (IQR) 0.32 (0.13) 0.25 (0.07) 0.14 (0.05) 0.05 (0.05) 0.01 (0.007)

Figure 2 shows the functional boxplot (Sun and Genton, 2011) for all ns of the posterior distributions, for two hyper-
parameters for increasing values of realizations nr . It is readily apparent how the posterior mean aligns to the true
parameter value and the posterior standard deviations decreases as the replicates increase. While results are shown
for NS-LS, similar patterns have been observed across all other models (NS, S-LS and S). Table 1 shows the median
MSE and InterQuartile Range (IQR) of the hyperparameters posterior means estimated from the NS-LS model and
the true values across all hyperparameters and across all ns = 100 simulations. The median MSE decreases as the
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F IGURE 2 Functional boxplots (Sun and Genton, 2011) across ns simulations of the posterior distribution of two
hyperparameters (a) α211 and (b) E (2,2)10 for different number of replicates nr . The vertical dashed lines represent the
true hyperparameter values.

replicates increases.

In order to perform a uniform comparison across all hyperparameters, whose number quickly becomes overbear-
ing (e.g., with L = 4 we would have 6(42 + 4) + 3 = 123 hyperparameters), we also compare the covariance matrix
implied by the hyperparameters with the true one. We assess the discrepancy in the covariances via the Kullback-
Leibler Divergence (KLD), which in the case of an n-dimensional Gaussian distributions with mean µ0 and µ1 and
covariance matrices Σ0 and Σ1 simplifies to:

1

2

(
tr(Σ−11 Σ0) − n + (µ1 −µ0)>Σ−11 (µ0 −µ1) + ln

(
detΣ1
detΣ0

))
.

In our caseµ0 = µ1 = 0, Σ0 = Σ (θspace) and Σ1 = Σ (θ̂space) , so that the KLDmeasures the distance between the true
and estimated covariance. The results as shown in Figure 3 for NS-LS (panel (a)) and S (panel (b)), where the functional
boxplot (Sun and Genton, 2011) of KLD across all ns = 100 simulations for an increasing number of realizations nr is
shown. The functional boxplot is used to report the envelope of the 50% central region (pink area), the median curve
(black line) and the maximum non-outlying envelope (outer blue line). As in the case of the estimated parameters,
we observe how even with a relatively small number of replicates in the training set, the estimated covariance is
converging to the true one. In particular, after 40 replicates the estimated covariance is practically indistinguishable
from the true one.

5.2 | Interpolation performance in the Gaussian case

In order to assess the interpolation performance, we perform inference on the hyperparameters for all four models
and use them to interpolate at specified locations. We consider two cases (1) all n data points are used in the training
set and interpolation is performed at the same sites (2) 92% of the n locations are considered in the training set, and
the others 8% are withheld for crossvalidation. The test locations are located in within three selected areas indicated
in Figure S1. Interpolation performance is measured with the MSE.

Results for both cases are reported in Table 2, and it is readily apparent how the MSE of NS-LS model is the small-
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F IGURE 3 Functional boxplot across ns = 100 simulations of the KLD between the true covariance matrix and
the estimated one according to (a) NS-LS and (b) S-LS.

est among all four models for the both the all location case (1) and the cross-validation setting (2). More specifically,
compared to the S-LS model, the NS-LS model shows an improvement of the median MSE across all locations by
14.6%. The NS-LS model also shows an appreciable improvement in MSE by 10.4% and 16.7%, compared with the
NS and S models respectively. From these results it is clear how the land/sea effect and buffer area construction yield
significant improvement when used in conjunction with the NS model.

TABLE 2 Comparison of interpolation performance across models. The first two rows show the median MSE
(IQR) across all ns = 100 simulations in the Gaussian case for both (1) all locations and (2) for crossvalidation. The last
two rows show the median AUC (IQR) for the Bernoulli case across the same two cases.

Model locations NS-LS S-LS NS S

Gaussian All locations 90.12 (8.17) 105.47 (9.94) 100.55 (11.25) 108.25 (11.23)

Gaussian Crossvalidation 9.11 (1.04) 21.88 (1.18) 19.35 (1.62) 21.39 (1.59)

Bernoulli All locations 0.824 (0.048) 0.769 (0.074) 0.782 (0.051) 0.753 (0.050)

Bernoulli Crossvalidation 0.707 (0.072) 0.676 (0.081) 0.672 (0.079) 0.641 (0.079)

5.3 | Interpolation performance in the Bernoulli case

We now assess predictability in the case of a Bernoulli distribution with logit link, and as in Section 5.2 we assess
both the case where all locations are used as training set, as well as cross-validation with the same testing locations
as before. Figure 4 shows the average differences across all ns = 100 simulations between receiver operating charac-
teristic curve (ROC) for NS-LS and S-LS, using S as reference for all locations and validation locations. The ROC for
NS are visually indistinguishable to that of the S-LS model, so the results associated to that model are not show. The
ROC difference in both cases show how the NS-LS model is uniformly better than the stationary S model (as the ROC
difference is always positive), and also uniformly better than the S-LS model, especially in the middle of the curve. As
expected, the extent of improvement of NS-LS is larger in the case of cross-validation (panel (b)), where the added
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value of the model at unobserved locations is more apparent.

In order to have a comprehensive assessment across all possible choice of thresholds, we consider the area under
the curve (AUC) of the ROC for all models and we report it in Table 2. In the best case of a perfect prediction, i.e.,
100% true positive rate uniformly across the choice the threshold the AUC should equal 1, and in the worst case of
a random guess it should be 0.5. The extent to which the AUC is close to 1 is a measure of predictive performance in
this case. As it is shown in Table 2, the NS-LS outperforms every other model in both cases. More specifically, across
all locations, the NS-LS yields an improvement by 7.2%, 5.3% and 9.4% for the S-LS, NS and S models respectively.
These results agree with those presented in Section 5.2, for the use of the land/sea effect and buffer area construction
definitively yields improved performance when included in the NS model.

F IGURE 4 Average differences across all ns = 100 simulations between ROC curves of NS-LS and S (black line),
and S-LS and S (red line) for (a) all locations and (b) cross-validation. The ROC for NS are visually indistinguishable to
that of the S-LS model, so the results associated to that model are not show.

6 | APPLICATION

In this section, we use the data detailed in Section 2 and the proposed latent Gaussian model with nonstationary
SPDE introduced in Section 3 to estimate the global probability of a rain event and the precipitation intensity. In
section 6.1, we discuss both the fit of the global MERRA-2 dataset and the downscaling approach to adjust interpo-
lated MERRA-2 data with ground USCRN precipitation measurement. In section 6.2, we provide evaluation metrics
to assess the model performance.

6.1 | Modeling global precipitation and downscaling

We initially focus on theMERRA-2 data and consider two global data sets 1) a binary rain occurrence event and 2) in
case of rain, the actual rain intensity. We then fit the latent Gaussianmodel (1) with nonstationary SPDE (4) with L = 1,
using a Bernoulli marginal distribution with a logit link function g ( ·) for rain occurrence and a Gamma distribution with
negative inverse link function for rain intensity. Validation for the choice of the marginal distribution can be found in
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F IGURE 5 Average (a) daily precipitation and (b) precipitation probability. The global dataset is interpolated at
the same sites as the ground observations according to the nonstationary global SPDE model (4), the linear model (9)
is fit, and the resulting relationship is used to produce the downscaled maps.
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F IGURE 6 The fitted lines using downscaling models described in (a) equation (9a) and (b) equation (9b) on
February 1st, 2021.

the supplementary along with Figure S3 showing the histogram of precipitation at 456 sample locations (resolution
of 18.75◦ × 15◦ in longitude and latitude) with estimated Gamma density. The sample locations are sparse in space to
mitigate any spatial influences.

In both cases, no additional covariates are assumed, andwe assume K = 2 harmonics for the temporal component,
as it was shown to be the optimal choice according to the model selection in Figure S2. Formally, model (1) now
specializes in the following two models:

log
(
µ (s, t )

1 − µ (s, t )

)
= f time (s, t ) + εpr (s), precipitation probability, (8a)

−µ (s, t )−1 = f time (s, t ) + εin (s), precipitation intensity, (8b)

where εpr (s) and εin (s) are independent processes between them and in time. The histogram shows that precip-
itation intensity follows a Gamma distribution with shape parameter 0.826 and scale parameter 0.184. Inference is
performedwith a global triangulation of nT = 2, 340 triangles, of which 1, 134 arewithin the area of interest (contiguous
United States), while the remaining 1, 206 cover the rest of the world.

The hyperparameters’ posterior distributions is obtained and used to predict both the precipitation probability
and intensity at the locations where the 131 USCRN ground observations locations are located, see Figure 1. These
predictions are then adjusted (downscaled) to point resolution via linear regression. Since we perform downscaling
independently for every time point, for simplicity we now drop the time dependence, and we denote as YG (s) and
YS (s) the precipitation intensity for USCRN andMERRA2, respectively (G=ground, S=simulation), and with pG (s) and
pS (s) the probability of precipitation occurrence. We further denote as ŶS (s) and p̂S (s) the estimated intensity and
probability of occurrence, respectively, according to the proposed SPDEmodel. Finally, we estimate the probability of
precipitation occurrence for the USCRN data by fitting the latent Gaussian model (1) for each location independently
as a time series model, i.e., assuming no spatial dependence and denote the estimate as p̂G (s) . We further assume a
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linear relationship between USCRN and MERRA2 precipitation occurrence probability and intensity:

log
(
p̂G (s)

1 − p̂G (s)

)
= β (O )0 + β (O )1 log

(
p̂S (s)

1 − p̂S (s)

)
+ ξO (s), precipitation probability (9a)

log (YG (s)) = β (I )0 + β (I )1 log
(
ŶS (s)

)
+ ξI (s), precipitation intensity (9b)

where ξj (s) ∼ N(0,σ2j ), j ∈ {O , I } independent and identically distributed in space. A functional boxplot of the
variogram of the residuals in Figure S4 (with each curve representing a different time point) lends support to the
assumption of spatial independence of the error. The downscaling parameters β (I )0 and β (I )1 for precipitation intensity
are then estimated using the ordinary least squares.

6.2 | Results and Evaluation

Downscaled probabilities of precipitation occurrence and precipitation intensity according to the aforementioned
model are displayed in Figure 5(a) and (b), respectively, with the dark bubbles representing average values from the
USCRN data. The prediction maps of the United States show high daily precipitation and high precipitation intensity
around Seattle, while the lowest values can be found near Las Vegas, and overall the model prediction resembles
the ground observation values across the United States. To evaluate the model performance, we calculate the root
mean squared error (RMSE) for both probability of precipitation occurrence and precipitation intensity. The RMSE
for intensity and probability of precipitation occurrence is 2.01 mm and 0.14 mm, respectively. In order to assess the
value added by the smoothing of our SPDE model, we also perform downscaling with the linear models in (9), but
assuming that no spatial model is fit, i.e., that the MERRA-2 data are not interpolated at the locations of the USCRN
sites. Instead, we consider MERRA-2 data at their original resolution, and attribute to each USCRN site the value in
the same cell. In other words, we consider as covariates pS (s, t ) and YS (s, t ) . The resulting RMSE for this model in
the case of precipitation intensity and probability of precipitation occurrence is 82.74 mm and 0.28 mm, respectively.
Therefore, the proposed SPDE approach has narrowed the discrepancy between MERRA-2 and USCRN significantly,
as it has reduced the RMSE for precipitation intensity and probability of precipitation occurrence by 97.6% and 50%,
respectively. Figure 6 shows the fitted lines using downscaling model in (9a) and (9b) on February 1st, 2021. The R 2

for the two linear models are 0.78 and 0.67 for precipitation probability and intensity, respectively.
We also evaluate the model uncertainty by crossvalidation. First, we remove the data from one ground observa-

tion location and fit the model using the remaining observations. Next, we construct the 95% credibility interval for
the posterior mean of the probability of precipitation occurrence or precipitation intensity at the removed location
with the estimated posterior distributions of the hyperparameters of the model. Then, we repeat the same procedure
for all the 131 locations in USCRN. Finally, we determine how many intervals among the 131 the 95% credibility
intervals cover the true value. For precipitation, 93.1% (122/131) of the 95% credibility intervals cover the true value,
while for probability of raining, 91.6% (120/131) of the 95% credibility intervals cover the true value.

7 | CONCLUSION AND DISCUSSION

In this work, we have proposed a novel non-stationary spatio-temporal SPDE model able to smooth both probability
of precipitation occurrence and probability intensity from a global datasets. Such interpolated dataset is then used
in conjuction with ground observation to produce high resolution (downscaled) precipitation maps, which allow to
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predict what would ground observations would look like in unsampled location with a higher degree of accuracy
compared to the original simulated data (i.e., the global data at their native resolution). One may in principle use
MERRA-2 as a boundary condition to drive regional simulations with models such as WRF to obtain precipitation
maps at equally high spatial resolution, with the added benefit of being able to produce predictions compliant with
physical laws. Such dynamical downscaling approach is however considerably more involved as it require substantial
computational and storage resources, as well as considerable expertise to set upWRF properly. As such, our proposed
statistical downscaling approach is considerably faster and easier to implement without specialized computational
resources. The proposed method of adjustment of a simulation via ground observation can also be seen as a bias
correction approach, i.e., a method to correct simulations (see, e.g., Yuan et al. (2019); Kim et al. (2015) and Ho et al.
(2012); Hawkins et al. (2013) for a general review). While a large body of literature in geoscience focuses on bias
correction as a means to adjust the first (Hemer et al., 2012; Chen et al., 2012) and possibly the second moment
(Teutschbein and Seibert, 2012; Li et al., 2019) of the marginal distribution, such approach can be used also to adjust
non-Gaussian features, similarly to other recent efforts (Piani and Haerter, 2012; Vrac and Friederichs, 2014).

The proposed statistical model is scalable to future reanalysis data products with even higher spatial resolution,
owing to the finite volume approximation of the SPDE generating the spatial model. Even more realistic downscaled
patters could be generated if additional physical variables such as temperature and humidity could be considered as
covariates. An incorporation of covariates could be performed either as the latent Gaussianmodel in (1b), as suggested
in this work, or as as additional input of the scalar or vector field which dictate the deformation of the SPDE model.
This could be implemented assuming either a linear contribution, or a non-linear one by means of neural networks
(Hu et al., 2022). In principle, multiple variables could be modeled jointly. However, this would considerably increase
both the methodological challenge and the computational overhead, as fast, flexible, multivariate and non-Gaussian
global models are currently an active area of investigation (Genton and Kleiber, 2015).

While the proposed approach has many advantages over the chosen alternative models, there are also limitations
which are ultimately inherited by and inextricably linked with the general modeling strategy chosen. In primis, the use
of latent Gaussian models for non-Gaussian data has a long history in statistics, allows flexible hierarchical modeling
while retaining computational affordability but by its own nature does not allow explicit control over some basic
statistical properties such as the moments. Secondly, the use of SPDE requires a discretization, whose resolution is
limited by how many triangles can be used in the domain: more triangles result in a more accurate solution but imply
larger matrices. Finally, for this particular model, the choice of basis function for the scalar and vector fieldmay require
a lot of parameters, and other choices are possible.

Code and Data Availability

The code for this work is available at the GitHub repository: https://github.com/Env-an-Stat-group/23.Zhang.
public. The MERRA-2 data are freely available from the Global Modeling and Assimilation Office (GMAO) at https:
//disc.gsfc.nasa.gov/datasets/M2SDNXSLV_5.12.4/summary and the ground observation data from the USCRN
is also freely available at https://www.ncei.noaa.gov/access/crn/qcdatasets.html.
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