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Abstract
In this paper, a visual simultaneous localization and mapping (VSLAM/visual SLAM) system called underwater visual
SLAM (UVS) system is presented, specifically tailored for camera-only navigation in natural underwater environments.
The UVS system is particularly optimized towards precision and robustness, as well as lifelong operations. We build upon
Oriented features from accelerated segment test and Rotated Binary robust independent elementary features simultaneous
localization and mapping (ORB-SLAM) and improve the accuracy by performing an exact search in the descriptor space
during triangulation and the robustness by utilizing a unified initialization method and a motion model. In addition, we present
a scale-agnostic station-keeping detection, which aims to optimize the map and poses during station-keeping, and a pruning
strategy, which takes into account the point’s age and distance to the active keyframe. An exhaustive evaluation is presented
to the reader, using a total of 38 in-air and underwater sequences.

Keywords Underwater VSLAM · Visual SLAM · Loop closure · Monocular SLAM · Underwater navigation

1 Introduction

Navigation systems are critical components of most
autonomous and non-autonomous robotic systems, and alter-
native localization systems are welcome, if not necessary,
especially in environments where satellite navigation is most
likely not available. In this work, we present a novel visual
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SLAMsystem for underwater camera-only navigation in nat-
ural environments.

Underwater imaging is a complex matter, particularly in
a natural environment, as many factors intervene in lower-
ing the image quality, like back-scattering from suspended
particles and distortion effects introduced by light passing
through different materials (water, glass, air). Nevertheless,
there are several positive aspects that can be exploited, like
a smooth motion of the vehicle, a much lower vehicle speed
compared to other kinds of robotic platforms, and the capa-
bility to employ more computational resources, due to much
lower restrictions on weight and available power compared
to popular robotic platforms likemulti-rotors. Our focus is on
reliability, continuity, and robustness in the pose estimation,
while generating enough mapping information for naviga-
tion, including obstacle avoidance. Our system is built upon
ORB-SLAM [36], which is currently one of the most suc-
cessful state-of-the-art visual SLAM systems.
The main contributions of this paper are:

– Three view initialization procedure, which does not use
a model selection procedure

– A fast, exact solution applied to nearest neighbor search
for triangulation, increasing tracking robustness
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Fig. 1 VSLAM estimate generated on sequence 4 of the Aqualoc
dataset. No other tested monocular VSLAM state-of-the-art system is
able to produce a meaningful result for this sequence

– Amodel that predicts the camerapose in absenceof visual
information and map consistency

– Partial synchronization between front-end and back-end
– A procedure to detect station-keeping operations while
using the available computing power for performing a
global bundle adjustment

– The same descriptor-matching solution applied for trian-
gulating new points is applied for loop closures detection

– A pruning procedure that enables lifelong operations

In summary, by strengthening the worst-performing ele-
ments of ORB-SLAM in underwater sequences and by
adding new functionalities which specifically target the
underwater scenario, we improved the overall performance
of the system both in terms of median root mean square error
(RMSE) by 34.6% and in terms of loop closure quantity
by 33.3%. As a result, we can produce SLAM estimates on
sequences where it was not possible before, see Fig. 1.

In the following section, a literature review is presented,
together with an evaluation of systems for underwater visual
navigation. Subsequentially, an overview in Sect. 2 of the
proposed system and dedicated Sects. (3–9) for each contri-
bution are presented. Finally, in Sect. 10 results are compared
against ORB-SLAM and Direct Sparse Odometry with Loop
Closure (LDSO) using in-air datasets and a newly published
underwater dataset that targets visual odometry (VO) and
visual SLAM.

1.1 Related work

1.1.1 Monocular visual odometry and SLAM

Recently [21, 31, 39], utilized edge-based features within the
VO/VSLAM pipeline, but pointed out that these methods do
performbetter than point-onlymethods only in artificial envi-
ronments. On the contrary underwater natural environments
do rarely contain geometrically well-defined edges like in an
office or street scene, so using edge features in this context
can introduce false correspondences.

Work in visual odometry includes direct methods like
direct sparse odometry (DSO) [8] and fast semi-direct

monocular visual odometry (SVO)-2 [12]. These methods
rely either partially or even completely on the change of
pixel intensity values. Usually, these methods are not able
to achieve the same performance, in terms of quality of
the estimation of geometry-based VO/VSLAMmethods like
ORB-SLAM, as they require photometric calibration to
remove vignetting effects, control, and modeling of expo-
sure, gain, and luminosity (amongst other camera-specific
parameters). Direct methods operating in underwater envi-
ronments would need to take into consideration that the
intensity of pixels is a function of the observation distance
(given that attenuation of light in water is wavelength depen-
dent). Challengeswould also arise froma likely uneven active
illumination of the scene and the presence of dynamic ele-
ments in the scene, like fish swimming in front of the camera.

Several artificial intelligence techniques that exploit con-
volutional neural networks (CNNs) have been proposed for
performing VO/VSLAM [27, 34, 44]. Also, the direct fusion
of inertia measurement unit (IMU) measurements has been
demonstrated to be possible and effective [5]. These meth-
ods have the advantage of not requiring any knowledge about
the camera and can provide a metric reconstruction with
a monocular camera. Training CNNs in such systems do
require a ground truth, but unfortunately, ground truth data
for natural underwater environments are not available. Pro-
ducing ground truth data for underwater positioning is very
challenging and in the case of real image sequences in gen-
eral of lower quality compared to what can be achieved with
in-air motion capture systems or real-time positioning (RTK-
GPS) solutions. However, synthetic underwater data sets [19,
47] exist.

1.1.2 Underwater specific

Due to various challenges present in underwater vision,many
underwater VO/VSLAM and photogrammetry-specific solu-
tions have been proposed that make use of a stereo system [3,
16, 20, 26, 40, 43, 46] whereas monocular system solutions
are rarely available. However, reduced systems, like visual
pose estimation approaches in underwater scenarios do exist
[7, 41].
Recently, a monocular geometry-based approach [9] that
makes use of the Lucas-Kanade optical flow to identify
keypoint matches has been published; while this approach
requires low computational resources, it has its limitations
regarding the tracking system. Because of its local formula-
tion, keypoint matches are restricted to similar locations in
pixel coordinates. Even if a camera with a high frame rate is
used and constant illumination is possible, in natural under-
water environments it is very likely that a series of images
is highly blurred or obstructed, further limiting the ability
to correctly match keypoints. Without a motion model, the
tracking would be lost and a new initialization from scratch
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would be needed. In addition, [9] does not take into consid-
eration loop detection and correction.

Underwater feature-based visual SLAM has been already
of interest in [1], where a scale-invariant feature transform
(SIFT)/speeded-up robust features (SURF)-based extractor
is proposed, preceded by a non-uniform light correction and
a normalization. The authors do not describe a visual SLAM
method for underwater applications, but their focus lies on
finding regions of interest (RoI) which can be utilized as
landmarks for loop detection and correction. The idea of
using only salient color RoI does limit strongly the capa-
bility of [1] to close loops as shown in our work. Features
present on sand can be used to safely close loops, thanks
to co-visibility keyframe analysis. Deep learning techniques
have been investigated in order to detect and close loops in
underwater applications, specifically, convolutional autoen-
coders [25, 32].

The use of monocular ORB-SLAM in an underwater
environment has been investigated in [18], in this work,
the behavior of ORB-SLAM is analyzed with challeng-
ing sequences, captured with a monocular camera mounted
on a remotely operated vehicle (ROV). The authors sug-
gest enhancing ORB-SLAM with sub-mapping capabilities,
which is also presented in this paper, with the addition of a
motion model that updates the current pose (see Sect. 6).
In ORB-SLAM keypoints detected in underwater scenes
could belong to various elements, not suitable to be used
for ego-motion tracking and mapping, for this reason, a deep
learning-based approach has been developed to reject such
keypoints [24].

ORB-SLAM has been found to be the best-performing
visual SLAM by the authors of the Aqualoc dataset [10],
justifying our goal of improving upon it for underwater
monocular VSLAM applications.

2 System overview

In this section, a brief overview of the UVS system is given (a
graphical overview of the system is shown in Fig. 2); details
are explained in the following sections.

When a new frame is recorded, it is inserted into a
first-in-first-out (FIFO) queue. In the initialization phase, a
three-view initialization is attempted utilizing the frames in
the queue. In the case initialization is successful, the system
will continue processing this queue as long as the triangula-
tion of new points is completed. This queue avoids frames
to be dropped, trading the real-time constraint for tracking
robustness. A discussion about this trade-off is presented in
the partial synchronization between front-end and back-end
Sect. 5. This queue runs on an independent thread and per-
forms the ORB feature extraction and descriptor calculation.

Fig. 2 Block diagram of the UVS system: in purple the system input,
in green the different threads, in blue the map representation, in yellow
the innovations to ORB-SLAM (Color figure online)

The ORB features are extracted homogeneously in the frame
utilizing a grid in the same way as in ORB-SLAM.

If the tracking is lost while frames are collected, a constant
velocitymotionmodel is applied to predict the current camera
pose. When initialization is available the estimation process
will restart from the last camera pose. Following the same
criteria as present in ORB-SLAM ([35] section V, subsection
B, D), several attempts to track the local map are performed,
and evaluations are made to see if it is convenient to insert a
new keyframe.

In case a new keyframe is inserted, new map points are
created considering neighbor keyframes in the covisibility
graph. The newmap points are created by considering all the
possible keypoint matches between keyframe pairs. Points
that do pass chirality, epipolar, parallax, scale consistency,
and reprojection tests are considered as high-quality points.
These points are inserted into the map and are subject to the
local bundle adjustment (BA) procedure.

At the end of the tracking, the station-keeping detection
procedure runs on an asynchronous thread. The goal is to
identify a situation where the robot is held stationary by a
dynamic positioning system so the camera is looking con-
stantly at the same scene. In such a situation the creation
of new map points and keyframes is not necessary, and the
computational resources can be allocated to performmap and
pose optimization.

Two more procedures run concurrently: the loop closing
thread and the pruning thread. The loop closing thread is in
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charge of detecting loop closure candidates and eventually
performing loop fusion and essential graph optimization. The
pruning thread is managing the memory resources, by prun-
ing first map points which are further away, then eventually
entire keyframes and all their observed map points.

3 Three-view initialization

Correct map initialization is a crucial step in VO/VSLAM
feature-based algorithms, as the tracking starts from the
initial map. In ORB-SLAM, initialization is performed by
analyzing two views. The first relative pose is estimated with
a homography or a fundamental matrix. A choice is made
between these two models considering a score that is based
on symmetric transfer errors [17]. The necessity of eventu-
ally using a homography to estimate the relative camera pose
is needed by the fact that, for collinear points, the estimation
of the fundamental matrix builds a set of possible solutions
[17]. We see three problems with this solution:

1. This procedure selects the homography model on not
perfectly planar surfaces, which leads to an approximate
solution of unknown magnitude, considering the lack of
scale information.

2. Visual SLAM, in general, is a three-view problem: esti-
mating the relative scale requires scene overlap in three
frames.

3. In a typical scenario, the underwater VSLAM system
considers a camera pointing downwards, towards the
seabed. This means that the main motion is a side-way
motion, for which the estimation of a fundamental matrix
with a 6-, 7-, and the 8-point algorithm is not recom-
mended [38].

For this reason, we propose a three-view initialization
procedure with a unique model for both planar and non-
planar scenes, based on the estimation of the essential matrix
exploiting the 5-point algorithm from [38] (it would be how-
ever preferable to use the iterative version of the 5-point
algorithm [30], due to potential ill-conditioning of the high
degree polynomials involved in the original formulation of
the 5-point algorithm). By calculating the essential matrix,
using > 2 views, and knowing the intrinsic parameters, a
unique solution can be calculated in every possible case (cf.
[38], Table 1 shows the degrees of ambiguity in the face of
planar degeneracy for pose estimation).

For each frame, the keypoints and the descriptor are
extracted, and only the frames where at least 100 keypoints
can be detected are retained, as presented in ORB-SLAM
[35].

A combination of random sample consensus (RANSAC) and
chirality tests is used to find the unique essential matrices and
the correctly triangulated corresponding keypoints. The opti-
mal triangulation method is employed ([17] Algorithm 12.1)
to estimate the initial map. A further test [28] on the sum of
a pair of two view parallax is performed to ensure the quality
of the solution, as a high parallax limits the uncertainty on the
initial map and poses. To limit the computational complexity,
the first two viewswhich would satisfy all the original initial-
ization criteria as a fundamental matrix-based initialization
in ORB-SLAM [35] are found. A map is created and a third
view is searched in the pool of available frames to guaran-
tee uniqueness, improve the 3D point estimate, and improve
the chances that no initialization has to be performed soon
again. The third view has to be subsequent to both the other
two views. Immediately after initialization, a full BA is per-
formed, refining poses and 3D points.

4 Complete keypoint set matching

When a new keyframe is inserted into the system by themap-
ping thread, new 3D points are triangulated using key-frames
present in the covisibility graph. A simple and effective
way to match keypoints is a brute force approach, where
the descriptor associated with each keypoint is compared
with other descriptors, utilizing the Hamming distance. A
brute force matching guarantees that every pair of descrip-
tors is compared, providing an exact solution to the matching
problem, at the cost of having to perform roughly O(n2)
comparison operations (assuming n keypoints in both frames
subject to this operation). In ORB-SLAM brute force match-
ing also happens, but is restricted to those features that belong
to the same vocabulary tree, speeding up the search. While
this operation does provide a sensible speed-up compared to a
brute force, it limits the number of new keypoint candidates
leading to a sparsity of the map and therefore reduces the
tracking robustness. Vocabularies are sensitive to training,
eventually contributing to an overall uneven SLAM perfor-
mance through different datasets and sequences.

The goal is to avoid using the vocabulary, but still, be
able to perform fast descriptor matching. A crucial fact is
that the actual speed of the binary descriptor matching is
very sensitive to how it is performed: naïve methods can be a
hundred times slower than deeply optimized methods, which
use proper data structures or exploit specific instruction sets.
Specifically, utilizing 64 bits integers, unrolled loops, and
X86_64 instruction _popcnt64() it is possible to obtain a
3X speedup compared to the brute force binary descriptor
matcher available in OpenCV [4].

This descriptor matcher represents already a 60X speedup
compared to a naïve implementation. All together this
implementation is 180X faster than a naïve comparison. Con-
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sidering the matching time of the distributed bag-of-word
2 (DBoW2) [13] based ORB-SLAM match, it is just 30%
slower on average (7.6milliseconds against 10milliseconds).
A public implementation of this matcher is available [2]. As
the matching procedure involves only a pair of keyframes at
the time, this process can be easily parallelized by launching
a thread for each pair of keyframes.

5 Partial front/back-end synchronization

In ORB-SLAM back-end and front-end are running asyn-
chronously. This allows the system to be as responsive as
possible to new frames. Unfortunately, the back-end and
the front-end are dependent on each other when it comes
to estimating the next camera pose: if the back-end did not
create enough map points in time, the tracking will be lost,
regardless of the quality of visual information in the frames.
ORB-SLAM is strictly dependent on the hardware configu-
ration. In ORB-SLAM, the ability to estimate new camera
poses depends on the ability of the back-end to estimate new
map points, if the latter does not happen fast enough, the
tracking could be lost. In UVS the front-end and back-end
are partially synchronized.UVSdoes accept new frames only
when a new keyframe insertion, and so the creation of new
map points, has been completed. If frames arrive before the
triangulation is completed, they are placed in the FIFOqueue.
Using this strategy the dependency from the hardware con-
figuration is not eliminated, as a fast framerate can fill the
FIFO queue, and so the SLAM estimates could be outdated,
considering the current pose of the robot. The dependency of
the hardware configuration is shifted from real-time perfor-
mance towards tracking robustness and loop closure quantity
and quality.

6 Motionmodel

ORB-SLAM uses a constant velocity motion model, see
Eq. (1). This motion model is used only for tracking the local
map given the current frame. The motion model is imple-
mented as a differential frame-to-frame camera pose, by the
mean of a homogeneous transformation matrix:

Vw
c = Xw

c Pc
w

Xw
c = Vw

c Pw
c

(1)

Here, P ∈ SE(3) represents the previous pose, X ∈
SE(3) the current pose, and V ∈ SE(3) the differential pose
between the two, where SE stands for the special Euclidean
group. While this functionality is preserved in our system,
this motion model is used also for a different purpose. When
the tracking is lost, such as in the case of a complete tempo-

rary occlusion (and a few keyframes additional to the initial
ones are created), ORB-SLAM enters into a re-localization
mode. In this mode, no re-initialization is possible, with the
consequence, that even in presence of frames with which
initialization, mapping, and tracking would be possible, no
actions are performed and all the potential map and camera
poses are lost (see Fig. 3). Our solution to this problem is to
continuously update the current pose of the camera by using
the previously described motion model, while a new initial-
ization is attempted. If a new re-initialization is successful,
then the previous map and graph information is retained, and
the system restarts tracking and mapping. This process does
not block the attempts of relocalization, instead, relocaliza-
tion attempts continue, and if relocalization is successful, the
motionmodel predictions are discarded. If the cameramotion
is in contradiction with the motion model, it is obvious that
the new map estimate starts with a substantially wrong pose.
It is worth mentioning that in case of loop closure, a global
map can be created and a valid SLAM estimate can still
be achieved, thanks to the loop alignment procedure and
the essential graph optimization. In concrete situations of
camera-only underwater navigation of autonomous under-
water vehicles, this approach is likely to be very effective, as
the motion is mostly unidirectional, with mild accelerations,
making a constant velocity motion model a valid model.

7 Loop closure

Loop closure in ORB-SLAM is composed of three main
parts: loop detection, loop validation/loop correction, and
optimization. The loop detection procedure ensures that a
loop is found in several consecutive keyframes. This proce-
dure produces loop candidates which are on average seventy
times more numerous than the number of corrected loops,
both in in-air and underwater datasets. The loop valida-
tion proceeds to compute a similarity transform with the
keyframes involved in the eventual loop closure. Using the
found transformation, a geometric validation of the loop is
performed, and if the validation is successful, the loop is
accepted, and a loop correction can be initiated. In ORB-
SLAM, loop detection and loop validation both rely on the
bag-of-words (BoW) model, but in two different ways: loop
detection uses BoW vectors to compute a similarity score
between keyframes,while loop validation does use it to speed
up feature matching. Speeding up the matching process by
using DBoW2 decreases significantly the number of valid
matches that can be obtained, and this can cause a loss of a
perfectly valid loop closure. As the loop validation is run in
the loop closure thread, the small extra computational effort
required to perform a complete keypoint set matching is not
impacting directly the tracking and mapping thread, consid-
ering the method described in Sect. 4.
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Fig. 3 Three different SLAM estimates generated on sequence 00 of
the KITTI dataset are presented. On the left, the map was generated by
ORB-SLAM. In the center, the map generated by UVS, where a series
of frames have been skipped to force the system to lose the tracking.
The sections where this skipping has been performed, are the ones sur-

rounded by red bounding boxes and enumerated.On the right, is themap
generated by ORB-SLAM, where the same frame-skipping operation is
performed. Due to the relative scale difference between the left/central
and the right figure, corresponding sections are surrounded by a green
bounding box (Color figure online)

One could expect that re-training the BoW vocabulary
would lead to higher quality and quantity of loop corrections,
but our experiments have only confirmed this hypothesis to
a minor degree. A 1 million-word vocabulary trained with
underwater images (Scott Reef 25 and Tasmania O’Hara 7
[11]) shows no improvements in loop detection and correc-
tion on the Aqualoc sequences compared to the vocabulary
supplied with ORB-SLAM. A vocabulary trained with the
same settings on the Aqualoc dataset does show improve-
ments compared to the one supplied with ORB-SLAM. It is
able to produce only 60% of the correct matches produced
by the UVS system.

8 Station-keeping detection

A typical operation in marine robotics is station-keeping.
During this operation, the robot tries to keep its position
stationary relative to an object or to the environment. It is
popular to perform this operation using vision sensors [6,
23, 33]. As the scene is almost static, many visual SLAM
operations, like keyframe insertion and new map point trian-
gulation, are not required. Ideally, it would be beneficial for
SLAM systems to receive a message from the control system
about the initialization and termination of the station-keeping
operation, keeping in mind that there could be a delay when
the station-keeping is initiated and when the visual scene is
actually static. Furthermore, it is not always practical to inter-
face the control system with the SLAM system. Therefore,
we propose to detect an ongoing station-keeping operation (a
situation where tracking is successful and no relative motion
can be estimated from images for a certain time period), and

use this information to allocate CPU time to perform global
BA, improving the poses and the map.

We propose an approach to detect station-keeping in
absence of absolute scale information, looking at three indi-
cators:

– the ratio r of commonly observed map points Obs
between an initial frame f1 and the following frames,
see Eq. (2)

– the Mahalanobis distance d�θ over the attitude derivatives
d�θ
dt , see Eq. (3)

– the average angle αavg between velocity vectors �v, see
Eq. (4)

The n frames fi , i = 1, ..., n taken into consideration
define the station-keeping detection window. The station-
keeping detection window size n is user-defined and depends
on the desired sensibility goal. As a general indication, it is
advisable to set n to 15 times the fps, so that false detections
are avoided. Station-keeping is detected when these indica-
tors verify a series of conditions, see Eq. (5). Here, follows
a detailed description of these indicators: the ratio r of com-
monly observed map points is given by

r = (Obs f1 ∩ Obs f2 ∩ ... ∩ Obs fn )

card(Obs f1)
, r ≤ 1, (2)

where Obs fi represents the set of map points observed
by frame fi , i = 1, ..., n as a set of map point IDs and
card(Obs f1) represents the number of observed map points
by the frame f1. As a consequence, the nominator of Eq. (2)
represents the intersection set, consisting of thosemap points
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with distinct IDs which can be identified in all the station-
keepingwindow frames. In an ideal station-keeping situation,
all the frames in consideration would observe the same map
points, and the ratio would be equal to one. TheMahalanobis
distance d�θ of the estimated Gaussian distribution over the
attitude derivatives, calculated as frame-to-frame attitude dif-
ferential and expressed as Euler angles, here represented as

d�θ =
√

(�0 − �μMLE )T�−1
MLE (�0 − �μMLE ), (3)

it should be equal to 0, as we expect a robot that is per-
forming station-keeping to be stationary without performing
any rotational motion. The Gaussian distributionN ( �μ,�) is
calculated using a maximum likelihood estimator (MLE):

�μMLE = argmax
�μ

N
([

d�θ
dt

wa

]
| �μ�

)
,

�MLE = argmax
�

N
([

d�θ
dt

wa

]
| �μ�

)
,

wherewa = 1
3 represents a normalization factor, expressed in

degrees. A smaller wa implies that more rotation is tolerated
when it comes to detecting station-keeping. The last indica-
tor is the average angle between velocity vectors, inside the
station-keeping detection window:

αavg = 1

n − 1

n−1∑
i=1

arccos

( �v1 · �vi+1

‖�v1‖ ‖�vi+1‖
)

(4)

where �vi , i = 1, ..., n − 1 is the velocity vector associated
with the frame fi .

During the robot’s forward or backward movement, all
of these velocity vectors would point roughly in the same
direction and, as a consequence αavg should be close to zero.
When the robot is turning, αavg should be higher than a
few degrees, note the attitude is also changing. In an ideal
station-keeping situation, αavg would have a high value, as
a stationary robot would in theory produce uniformly dis-
tributed velocity vectors, and attitude changes would be
small. Taking into consideration αavg together with r , the
ratio of commonly observed map points and d�θ , an indicator
of the attitude derivatives, is important, since the robot when
moving through a large landscape with low velocity, could
result in small attitude changes and several frames could
observe the samemap points. In such a case, the evaluation of
αavg allows distinguishing a moving robot from a stationary
one.

Finally, the three conditions which have to be satisfied for
the station-keeping to be detected are:

⎧
⎪⎨
⎪⎩

r > 0.9

d�θ < 1

αavg > 45◦
(5)

As station-keeping is detected, no new keyframes are cre-
ated and global BA starts. When the number of tracked
points in the last frame goes under 50, then the global BA
is aborted, and tracking and mapping continue as normal.
Furthermore, as the station-keeping ends, n frames have to
pass (where n represents the station-keeping window) before
station-keeping can be detected again.

9 Pruning

As an underwater robot is exploring an open environment,
the data generated by a visual SLAM system is growing
unbounded. All this data is naturally residing in the system
memory, which is limited and crucial for the operative sys-
tem and other programs. It follows that a pruning procedure
is obligatory in a system that claims to be able to perform
life-long operations. Pruning not only bounds the system
memory requirements but also bounds the computational
complexity of global operations, like loop correction and
global bundle adjustment. The pruning strategy presented
in this paper introduces a new data structure: the partially
pruned keyframes.A partially pruned keyframe is a keyframe
that observes only a fraction of the map points that it was
observed before the partial pruning operation. A central oper-
ation in visual SLAM is loop closure. The pruning strategy
that is going to be described tries to keep re-localization and
loop correction possible on partially pruned keyframes. Par-
tial pruned keyframes allow to lower the memory footprint
of the UVS system, and at the same time, allow to keep vital
information for loop closure and path planning. The map
points are pruned in such a way that the remaining points are
uniformly distributed, in this way we keep valid information
for the same region, where these map points are present for
future endeavors.

In addition, surface points uniformly sampled do maxi-
mize the probability of a correct terrain reconstruction,within
the limits of the Nyquist-Shannon sampling theorem.

The partial pruning procedure retains 33% of the points
originally observed by a keyframe. When a keyframe gets
partially pruned, a Boolean flag is set and the covisibility
graph weights are updated accordingly. As soon the first
pruning is initiated, the loop detection thresholds are low-
ered by 66%, and the loop verification procedure utilizes the
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per-keyframe Boolean’s flag to take into consideration the
lower amount of observed map points.

The utilized systemmemory is checked with a system call
when a new keyframe is inserted. No pruning is performed
until the utilized memory reaches 90% of the set threshold.
All the pruning operations start from the keyframe which is
further away from the active keyframe and proceed following
the creation order through the essential graph. When the
pruning has partially pruned all the keyframes that do not
belong to the local map, then keyframes are pruned entirely
and the covisibility graph is updated.

10 Results

In this section we present a comprehensive analysis com-
paring our modifications of the monocular ORB-SLAM(2)
to the original work, using in-air and underwater datasets.
Analysis of underwater datasets includes also the state-of-
the-art direct VSLAM LDSO [14], which adds loop closure
capabilities to the original DSO [8]. In addition, we will
present a comprehensive analysis of each stated contribu-
tion, to highlight the strengths and weaknesses of the UVS
system. Regarding benchmarking using public datasets, we
will analyze several sequences from the KITTI dataset [15],
the TUM-RGB-D dataset [42], the Aqualoc dataset [10] and
the RTMVOdataset [9]. Two additional private datasets were
used to further verify and highlight the pros and cons of the
contributions proposed in this paper. Every single experi-
ment was performed 5 times, and the median value was
reported. Reporting median values over several experiments
is necessary, as ORB-SLAM, as well as UVS, contains sev-
eral stochastic mechanisms so that results cannot be exactly
repeated. Examples of these stochastic mechanisms are the
BRIEF descriptor and the non-convex optimization.

Here is a list and a brief description of the restricted
datasets:

1. HerkulesRelict Front-Camera:A30 fps, and1080pvideo
from the front camera used to manually guide an ROV
is supplied. The sequence starts by looking at the empty
sea, then itmeets the relict of a fishing ship.As theROV is
positioned so that the front camera is facing a side of the
ship [26], the ROV activates dynamic positioning. This
sequence is used to demonstrate the ability of the UVS
system to detect the station-keeping, using only visual
information.

2. Down-looking camera on the NTNU light autonomous
underwater vehicle (LAUV) “Fridtjof” fromOceanScan-
MST registered at Kjerringholmen North, Norway: The
sequence is captured approximately at 4 fps at a reso-

lution of 1376x1032 pixels. In this sequence, a LAUV
slowly dives with a small pitch angle towards the seabed
and then keeps a constant distance to it with a constant
velocity, for a certain amount of time. It shows at the start
of the sequence that the seabed is mostly composed of
rocks, but becomes slowly sandy.
This sequenced is used to demonstrate the ability of the
UVS system to perform VSLAM in the occurrence of
low visibility and low frame-to-frame scene overlap (on
average, every 10 frames the system is presented with a
completely new scene). Natural and artificial illumina-
tion of the scene is very poor, as the seabed is located
at a depth between 40 and 60ms (Norwegian waters) for
which the illumination system of the LAUV is not pow-
erful enough. A per-frame “ground-truth” is provided,
thanks to the LAUV navigation system.

10.1 Overall performance analysis

In this subsection, we analyze several key performance indi-
cators. The results are presented separately for in-air datasets
and underwater datasets, seeTable1 andTable 2, respectively.
All tests have been performed on an i7 5960X @ 3.0Ghz
platform with 32Gb of DDR4 and 2133 Mhz. Regarding the
trajectories, the following operations are performed before
calculating the median keyframe RMSE:

1. KITTI: 7 degree of freedom (DoF) alignment with the
method of [45].

2. TUM RGB-D: Unfortunately, the ground-truth data gi-
ven is not as friendly as the KITTI, as the ground-truth
data provided does not match exactly the frames in terms
of timestamps. To compare the estimated trajectories,
each keyframe is compared to an element in the ground
truth, considering the closer timestamp. The trajectories
are then aligned with the 7 DoF method of [45].

3. Aqualoc: Ground truth is provided for every 5th frame.
The solution here proposed is to linearly interpolate these
poses to obtain per-frame ground truth information. After
that, the trajectories are aligned with the 7 DoF method
of [45].

4. RTMVO: Same setting as the Aqualoc dataset.

Together with the raw data, we summarize the data in
terms of gain/loss percentage moving from ORB-SLAM to
UVS. This summarized data is composed of sequenceswhere
both ORB-SLAM and UVS did initialize within the first 5%
of images of a sequence. In all the tables, positive changes
are highlighted in bold italics, neutral changes are in bold,
and negative changes are highlighted in italics.
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For each table column, the argumentation is as follows:

1. The decrease in the median keyframe RMSE is positive,
as the UVS system did generate a trajectory closer to the
ground truth.

2. The increase in the number of map points is positive, as it
can potentially produce a higher amount of loop closures
and positively impact robustness.

3. The decrease/increase in the number of detected loop clo-
sures is neutral, as it is arguable that a higher number of
detected loop closures could lead to a higher number of
corrected loop closures. In Table 1 it is shown that the
number of detected loop closures is still over two orders
of magnitude higher than the number of corrected loop
closures and UVS always corrects an equal or higher
number of loops. Thus, the higher number of detected
loops in ORB-SLAM are loops that do not pass the geo-
metric verification.

4. The decrease in the number of keyframes is positive
since the UVS system is in general able to initialize ear-
lier than ORB-SLAM and creates on average a higher
amount of key-frames (the reader should compare the
map point/key-frames metric, which shows how a brute
force match increases the number of 3D points and
so tracking robustness). For this reason, this metric is
marked as neutral.

5. The increase in the map point/keyframe metric is posi-
tive, as it indicates that the keyframe insertion procedure
is more effective at creating map points, lowering the
chances of losing track in the incoming frame.

Note, all numbers listed depend directly on when the ini-
tialization occurs. In this case, one algorithm initializes at the
start of a sequence and another initializes in the middle of a
sequence, the resulting numbers cannot be used for a direct
comparison. For this reason, all the results presented in this
paper aremarked red betweenparentheses in themeanRMSE
column (initialization occurs more than 5% of the total num-
ber of frames later). An example is the fr1_xyz sequence,
where ORB-SLAM initializes roughly in the middle of the
sequence.

The in-air results are presented in Table 1. UVS performs
better with respect to ORB-SLAM in terms of the median
RMSE and does exceptionally well regarding the KITTI 09
sequence, where it is able to close the loop consistently. In
the KITTI dataset, the overall number of map points created
by UVS is slightly inferior, since a much lower amount of
keyframes is created by UVS (-18%).

An explanation of these results is that the number of key-
points matched using a brute force approach is higher and of
higher quality, requiring fewer keyframes to be created.

Regarding the TUM-RGBD dataset, we first have to
inform the reader that the number of keypoints extracted is

1000 for both systems, instead of the ordinary 2000, fol-
lowing the original ORB-SLAM configuration file for this
dataset. In this indoor dataset, theDBoW2-basedmatching in
ORB-SLAM seems to be very challenging, especially com-
pared to its performance for the KITTI dataset. This can be
observed in the number ofmap points/keyframes, as it is 12%
higher utilizing UVS, which translates to a 3X improvement
with respect to the results in the KITTI dataset. The sensible
lower amount of keypoints translates into a more difficult
initialization, which occurs in four sequences (cf. Table 1).
A high correlation can also be observed between the number
of map points and the median RMSE.
The underwater results in Table 2 show that UVS is able
to outperform ORB-SLAM in almost every sequence, and
all the summarized key indicators are positive. On aver-
age, UVS performs more than 2X better in terms of the
median RMSE compared to ORB-SLAM. Especially good
performances can be observed in the RTMVO dataset, where
UVS is 3.5X closer to the ground truth compared to ORB-
SLAM. The number of map points is also always higher,
even when the overall number of keyframes is negative, as
in the Aqualoc dataset. In several Aqualoc sequences, UVS
is able to close more loops than ORB-SLAM. In the second
sequence of the RTMVOdataset, ORB-SLAM loses tracking
and re-localizes, caused most likely by the high density of
small fish swimming in front of the camera. LDSO has been
run without enforcing any real-time constraints and without
using the “fast” option, with automatic “crop” enable, as sug-
gested by the author. LDSO is not able to run on most of the
Aqualoc sequences and performs poorly regarding the other
sequences listed. LDSO is able to run on all the sequences
of the RTMVO dataset like UVS but produces by far the
poorest results in terms of the median RMSE. LDSO is able
to produce a much denser representation compared to ORB-
SLAM, but it isn’t able to run in real time. A direct method
like the one described in DSO/LDSO shows the potential to
be utilized as a densifier, beneficial for performing underwa-
ter robotic navigation and visual obstacle avoidance.

10.2 Three-view initialization

Similarly to ORB-SLAM, we analyze the initialization
behavior for the sequence fr3_nostructure_texture_far.

Thanks to the three-view initialization, a unique solution
is provided even for planar scenes. In this sequence, the UVS
system initializes always correctly, around frame 19.

10.3 Motionmodel

Wepropose the following experiments regarding the analysis
of the efficiency and the limitation of the motion model:
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– Case 1: The motion model is predicting correctly the
motion of the camera.

– Case 2: Themotionmodel is predictingwrongly the scale
of the movement.

– Case 3: The motion model prediction is not correct, in
terms of scale, translation, and rotation.

All the experiments were conducted on the KITTI 00
sequence, as it provides a simple and familiar way to visu-
alize the VSLAM estimate. The results are present in Table
3.

Regarding Case 1, we replace the original frames of the
sequence (see listing below) with fully black frames, we call
this operation obfuscation. This is performed for three dif-
ferent parts of the sequence:

– 20 frames starting from frame 8
– 20 frames starting from frame 130
– 20 frames starting from frame 252

These three different sub-sequences have been selected
as the motion of the camera in these sub-sequences can be
approximated by a linear uniform motion, and so the motion
model predicts correctly.

Regarding Case 2, we perform a similar operation to the
one presented in Case 1, with the only difference that instead
of obfuscating the original frames, we skip these frames, we
call this operation disruption. By doing so, we simulate a
situation where the tracking is lost and the motion model
underestimates the scale of the movement several times dur-
ing the initial part of the sequence and therefore putting at risk
the entire SLAM estimate. Nevertheless, the median RMSE
is only marginally higher (cf. Table 3). While the UVS sys-
tem is able to recover and produce maps and poses of nearly
identical quality from the one generated by ORB-SLAM on
the original sequence, ORB-SLAM produces less than 5%
of the map and the poses compared to UVS. A visual repre-
sentation of the estimates is shown in Fig. 3.

Regarding Case 3, we perform the disruption of 120
frames starting from frame 8, this removes from the sequence
the first right turn. The right turn involves also a change in
the speed of the car, which results in a severely mispredicted
position, orientation, and scale. This disruption is too severe
for the system to recover: as soon as a loop closure occurs
that involves the missing turn, the essential graph optimiza-
tion induces that parts of the map grow in scale, destructing
the entire estimate.

A similar test is set up on sequence 5 of the Aqualoc
dataset. In this sequence, we take into consideration the
frames from frame 900 to frame 940. Similarly to the frames
in the KITTI dataset, in these frames, the camera movements
reassemble a rectilinear uniform motion, and so the motion
model predictions are close to the ground truth.

Fig. 4 Several UVS estimates of the Aqualoc 05 dataset: On the top is
the XY view of the normal estimate of UVS, in the middle is the XY
view (Case 4 and 5), on the bottom is the XZ view (Case 6 and 7)

Similarly to the cases previously described, several cases
are analyzed:

– Case 4: The frames are obfuscated.
– Case 5: The frames are disrupted.
– Case 6: In addition to the first set of frames, another set of
frames is considered for obfuscation, the frames between
2900 and 2940.

– Case 7: In addition to the first set of frames, another set of
frames is considered for disruption, the frames between
2900 and 2940.

InCase 4 andCase 5, the loop closure enables a validmap and
trajectory,without any tangible effects on the accuracy. Cases
6 and 7 show a limitation of this system: the tracking is lost
twice, resulting in two disconnected maps. The consequence
is that, if a loop closure occurs, only one of the two maps
benefits from it. A visual representation of these cases can
be observed in Fig. 4.

10.4 Keypoint matching

In the overall performance, we observed how a complete set
of keypoint matchings allows the production of denser maps
and therefore lowers the chances of tracking loss. A positive
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Table 1 Key performance indicators of UVS and ORB-SLAM on in-air sequences from the KITTI (outdoor) and the TUM-RGBD (indoor) dataset

System Dataset Median RMSE Map p D. loops C. loops KeyFrames Map p. / KF fps

ORB-SLAM KITTI 00 5.84 m 96610 297 4 1578 61.2 10 fps

UVS KITTI 00 6.53 m 104433 245 4 1435 72.7 10 fps

ORB-SLAM KITTI 01 ✗ – – – – – –

UVS KITTI 01 ✗ – – – – – –

ORB-SLAM KITTI 02 13.49 m 116438 182 2 2086 55.8 10 fps

UVS KITTI 02 10.23 m 107258 129 2 1727 62.1 10 fps

ORB-SLAM KITTI 03 0.70 m 18119 114 0 287 63.1 10 fps

UVS KITTI 03 0.83 m 18833 106 0 255 73.8 10 fps

ORB-SLAM KITTI 04 0.58 m 6714 65 0 109 61.6 10 fps

UVS KITTI 04 1.21 m 6644 43 0 99 67.1 10 fps

ORB-SLAM KITTI 05 6.58 m 56960 135 3 952 59.8 10 fps

UVS KITTI 05 4.21 m 52693 141 3 781 67.4 10 fps

ORB-SLAM KITTI 06 16.66 m 22348 102 1 407 54.9 10 fps

UVS KITTI 06 12.84 m 22270 215 1 345 64.5 10 fps

ORB-SLAM KITTI 07 1.91 m 27073 218 1 401 67.5 10 fps

UVS KITTI 07 1.93 m 25337 105 1 326 77.7 10 fps

ORB-SLAM KITTI 08 29.81 m 100916 225 0 1791 56.3 10 fps

UVS KITTI 08 25.98 m 94448 196 0 1491 63.3 10 fps

ORB-SLAM KITTI 09 39.24 m 42727 181 0 757 56.4 10 fps

UVS KITTI 09 6.27 m 39949 134 1 623 64.1 10 fps

ORB-SLAM KITTI 10 5.36 m 27621 112 0 489 56.4 10 fps

UVS KITTI 10 5.67 m 25289 88 0 398 63.5 10 fps

ORB-SLAM to UVS KITTI all −16% −3.6% −23.3% +9% -18% +4.4% -

ORB-SLAM fr1_xyz 0.69 cm (✗) 1544 0 0 28 55.14 30 fps

UVS fr1_xyz 0.74 cm 3221 24 0 66 48.80 30 fps

ORB-SLAM fr1_desk 10.9 cm 2818 24 0 58 48.53 30 fps

UVS fr1_desk 11.8 cm 3994 35 0 78 51.2 30 fps

ORB-SLAM fr1_floor ✗ – – – – –

UVS fr1_floor 3.16 cm 8352 100 2 165 50.61 30 fps

ORB-SLAM fr2_360_kidnap 28.3 cm 2120 30 1 40 53 30 fps

UVS fr2_360_kidnap 26.1cm 4597 74 1 81 56.75 30 fps

ORB-SLAM fr2_desk 5.9 cm 6963 225 0 162 42.98 30 fps

UVS fr2_desk 7.5 cm 8844 205 0 204 43.35 30 fps

ORB-SLAM fr2_desk_person 22.3 cm (✗) 2426 42 0 68 35.67 30 fps

UVS fr2_desk_person 0.6 cm 5167 119 0 125 41.33 30 fps

ORB-SLAM fr2_xyz 0.22 cm 1548 0 0 35 44.22 30 fps

UVS fr2_xyz 0.19 cm 1901 0 0 42 45.26 30 fps

ORB-SLAM fr3_long_office 3.59 cm 9242 155 1 187 49.42 30 fps

UVS fr3_long_office 0.72 cm 10340 134 1 180 57.44 30 fps

ORB-SLAM fr3_nstr_tex_far 4.6 cm (●) (1431) 0 0 (33) (43.36) 30 fps

UVS fr3_nstr_tex_far 3.6 cm 2286 11 0 36 63.5 30 fps

ORB-SLAM fr3_sit_halfsph 22.5 cm 1839 0 0 44 41.79 30 fps

UVS fr3_sit_halfsph 8.4 cm 2474 0 0 44 56.22 30 fps

ORB-SLAM fr3_sit_xyz 0.88 cm 1107 0 0 25 44.28 30 fps
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Table 1 continued

System Dataset Median RMSE Map p D. loops C. loops KeyFrames Map p. / KF fps

UVS fr3_sit_xyz 0.68 cm 1379 0 0 29 47.55 30 fps

ORB-SLAM fr3_str_tex_near 1.13 cm 3481 56 0 52 66.9 30 fps

UVS fr3_str_tex_near 1.09 cm 4026 54 0 59 68.23 30 fps

ORB-SLAM fr3_walk_halfsph 2.0cm 1321 0 0 44 30.02 30 fps

UVS fr3_walk_halfsph 1.29 cm 1979 6 0 59 33.54 30 fps

ORB-SLAM fr3_walk_xyz ✗ – – – – –

UVS fr3_walk_xyz 1.13 cm 1235 0 0 33 37.42 30 fps

ORB-SLAM to UVS TUM-RGBD all -27% +31.2% +11.5% 0% +19.4% +12.6% –

ORB-SLAM to UVS In-Air all −21.5% +13.8% −5.9% +4.5% +0.7% +8.5% –

The mark ✗ represents a sequence where the system was unable to initialize, while the same mark between parentheses means that the system
was able to initialize only after 5% of the frames in the sequence have passed. The mark ● represents a case where ORB-SLAM should have not
initialized as indicated in [35], but unexpectedly it did initialize around half the sequence

correlation between the number ofmap points and the overall
accuracy is found. In Table 4 we observe that the matching
using a brute force approach is only 0.2X slower in terms of
CPU time than the matching based on DBoW2 as in ORB-
SLAM.

10.5 Partial synchronization

Partial synchronization was not required for the in-air and
underwater datasets. Its effectiveness comes into play when
frames arrive in the system at a higher rate than the ones at
which tracking and keyframe insertion can occur.

Simplifying, this situation happens when the frame rate
is too high. An analysis of how the increase in fps affects
the system is present in Table 5. Even if the UVS system is
utilizing a 30% slower on-average keypoint matching proce-
dure, it is able to clearly outperform ORB-SLAM when the
framerate is increased, both in terms of median RMSE and
in terms of the ability to complete a sequence without losing
the camera localization. When using a thread for each set of
features to match, the framerate can be increased even more,
without a significant decrease in accuracy.

10.6 Station-keeping detection

Table 6 shows the in-air performance of the station-keeping
detection. The proposed set of conditions (see Eq.5) is able
to detect when the car stops at crossroads. A nice plot of the
evolution of the three station-keeping indicators in the KITTI
00 sequence is present in Fig. 5.
Unfortunately, neither the Aqualoc nor the RTMVO dataset
contains any sequence which does reassemble a station-
keeping situation, and so we resort to our previously
described “Herkules Relict Front-Camera” sequence. In this
sequence, station-keeping is detected, as the ROV is kept sta-
tionary by an operator and the camera is looking at the ship.

In addition, the station-keeping is interrupted multiple times.
The proposed station-keeping detection is able to detect the
absence of motion and a persistent stationary state. At the
same time, this allows the system to continue its operation as
soon as the scene starts to evolve, without loss of tracking.

10.7 Pruning

To evaluate the effectiveness of the pruning we performed
two different experiments. The first experiment aims to eval-
uate the impact of partially prunedkeyframes on loop closing.
To achieve this goal we avoid performing full key-frame
pruning, but partial pruning is always active (memory target
of 0 Megabytes). The second experiment aims to simulate a
realistic situation, where pruning starts in the middle of the
sequence.

To analyze the effects of the pruning, we present to the
reader a table with the main indicators, Table 7, using one
in-air and one underwater sequence. In addition, an excep-
tional case is presented, where instead of the previously
described 66%map point pruning, the percentage is raised to
90%, see Fig. 6. While the number of map points decreases
accordingly, no significant disturbances can be observed on
the median keyframes RMSE, especially in the underwater
dataset, where, thanks to the high scene overlap of the frames,
no decrease in accuracy is observed. Due to the adjustments
on the loop validation of partially pruned keyframes, no loops
are missed.

10.8 Kjerringholmen North dataset

The Kjerringholmen North is a different dataset with regards
to the previously presented ones. It is recorded by an
autonomous underwater vehicle instead of a manually con-
trolled ROV, like the Aqualoc or the RTMVO sequences. As
previously mentioned, most of the trajectories of the LAUV
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Fig. 5 Station-keeping indicators on the sequence 00 of the KITTI dataset, obtained with a station-keeping detection with n = 10. Station-keeping
is detected when the car briefly stops at a crossroad. dθ = 10 to improve the visualization

Fig. 6 Left: Original SLAM estimate produced by the ORB-SLAM
system. Center: UVS estimate, where a pruning of 66% of the map
points is performed after half of the sequence has been processed by
the system. No significant difference can be observed. Right: SLAM
estimate produced by the UVS system, when partial keyframe pruning
is set to 90%, and the memory target is set to 0megabytes. The loop clo-

sures occur in the same quantity and at the same position compared to
ORB-SLAM, even with 66% fewer map points. However, the top-right
part of the map is incorrectly rotated: Sparsifying an already sparse rep-
resentation can lower the quality of the final estimates. Note, that this
is a particular case, as many runs with continuous 90% pruning did not
contain any trajectory alternation

Fig. 7 Visual representation of the sequence Kjerringholmen North. A sub-sequence is selected, representing the typical, mostly rectilinear path
of LAUV
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Table 2 Key performance indicators of UVS and ORB-SLAM on underwater sequences from the Aqualoc and the RTMVO dataset

System Dataset Median RMSE Map p D. loops C. loops KeyFrames Map p. / KF fps

LDSO Aqualoc 01 ✗ – – – – – –

ORB-SLAM Aqualoc 01 ✗ – – – – – –

UVS Aqualoc 01 0.44 m 17564 361 1 210 83.6 20 fps

LDSO Aqualoc 02 ✗ – – – – – –

ORB-SLAM Aqualoc 02 0.44 m 32016 284 1 402 79.6 20 fps

UVS Aqualoc 02 0.19 m 39212 178 2 216 181.5 20 fps

LDSO Aqualoc 03 ✗ – – – – – –

ORB-SLAM Aqualoc 03 0.031 m 20401 209 1 209 97.6 20 fps

UVS Aqualoc 03 0.025 m 23804 186 1 221 107.7 20 fps

All others Aqualoc 04 ✗ – – – – – –

UVS Aqualoc 04 0.29 m 40610 166 1 400 101.5 20 fps

LDSO Aqualoc 05 0.70 m 2268303 43 0 1595 1422 16 fps

ORB-SLAM Aqualoc 05 0.14 m 44100 171 1 324 136.1 20 fps

UVS Aqualoc 05 0.11 m 43379 179 1 331 131.0 20 fps

LDSO Aqualoc 06 0.78 m 660066 0 0 443 1490 16 fps

ORB-SLAM Aqualoc 06 0.11 m 20700 141 0 187 110.69 20 fps

UVS Aqualoc 06 0.09 m 27427 141 1 208 131.8 20 fps

All systems Aqualoc 07 ✗ – – – – – –

ORB-SLAM to UVS Aqualoc all avg −28.95% +14.2% −17.7% +66.6% −14.9% +25.2% -

LDSO RTMVO 01 8.29 m 251001 0 0 484 518.59 16 fps

ORB-SLAM RTMVO 01 8.97 m 20007 378 0 212 94.37 16 fps

UVS RTMVO 01 1.52 m 24726 336 0 242 106.30 16 fps

LDSO RTMVO 02 5.50 m 138463 0 0 268 516.65 16 fps

ORB-SLAM RTMVO 02 4.47 m 6281 108 0 82 76.59 16 fps

UVS RTMVO 02 1.75 m 8695 124 0 96 90.57 16 fps

LDSO RTMVO 03 7.53 m 19982 0 0 64 312.21 16 fps

ORB-SLAM RTMVO 03 0.36 m 761 12 0 23 33.08 16 fps

UVS RTMVO 03 0.56 m 1074 14 0 26 41.30 16 fps

LDSO RTMVO 04 4.48 m 269114 2 0 575 468.02 16 fps

ORB-SLAM RTMVO 04 4.01 m 16099 343 0 201 80.09 16 fps

UVS RTMVO 04 1.10 m 20223 318 0 239 84.61 16 fps

LDSO RTMVO 05 4.37 m 151504 0 0 348 435.35 16 fps

ORB-SLAM RTMVO 05 ✗ – – – – – –

UVS RTMVO 05 1.44 m 13933 285 0 178 78.27 16 fps

ORB-SLAM to UVS RTMVO all −40.2% +26.8% −6.1% 0% +16.4% +13.6% –

ORB-SLAM to UVS Underw. all avg −34.57% +20.5% −11.9% +33.3% +0.75% +19.4% –

The mark ✗ represents a sequence where the system was unable to initialize

are rectilinear, see Fig. 7. While ORB-SLAM does not ini-
tialize at all, LDSO initializes, but fails in the state estimate,
see Table 8. In underwater imaging applications, it is com-
mon to use contrast limited adaptive histogram equalization
(CLAHE) to improve the quality of underwater images, espe-
cially in low-light conditions.

TheKjerringholmenNorthdataset contains images recorded
under poor light conditions. Therefore, this sequence repre-

sents a good example to analyze the different settings of the
CLAHE.

The CLAHE used in Table 8 is provided by OpenCV,
where the first element represents the clip limit and the sec-
ond one the tile size. The table presented provides evidence
of how a correct CLAHE setting could further improve per-
formance.
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Table 3 Results from different
kind of obfuscations and
disruptions of the KITTI
sequence 00 showing the
median RMSE

System Sequences Case Median RMSE

ORB-SLAM KITTI 00 – 5.84 m

UVS KITTI 00 – 6.53 m

ORB-SLAM KITTI 00 All cases ✗

UVS KITTI 00 1 +47.8%

UVS KITTI 00 2 +28.2%

UVS KITTI 00 3 +875.5%

ORB-SLAM Aqualoc 05 - 0.14 m

UVS Aqualoc 05 – 0.11 m

ORB-SLAM Aqualoc 05 All cases ✗

UVS Aqualoc 05 1 −0.8%

UVS Aqualoc 05 2 +2.2%

UVS Aqualoc 05 3 ✗

UVS Aqualoc 05 4 ✗

Table 4 A comparison between
UVS (Full) and ORB-SLAM
(DBoW2) on the procedure to
match keypoint descriptors, in
terms of running time and
amount of valid matches

Matching Sequence Time Triangulations

DBoW2 KITTI 00 0.77 ms 128

Full KITTI 00 0.95 ms 168

DBoW2 fr1_desk 0.58 ms 141

Full fr1_desk 0.80 ms 208

DBoW2 to Full In-Air +29.6% +39.7%

DBoW2 Aqualoc 05 0.46 ms 144

Full Aqualoc 05 0.55 ms 195

DBoW2 RTMVO 01 0.49 ms 99

Full RTMVO 01 0.53 ms 134

DBoW2 to Full Underwater +13.6% +35.3%

DBoW2 to Full All avg +21.6% +37.5%

11 Conclusion and further work

11.1 Conclusion

We presented a series of modifications to the monocular
ORB-SLAMsystem, in order to achieve a better performance
regarding underwater environments in terms of robustness,
loss of tracking, and lifelong operations. As this series of
modifications and extensions is quite extensive, we defined a
new term for the system: Underwater Visual SLAM (UVS).
Several tests have been performed to show how these mod-
ifications impact the performance of ORB-SLAM, utilizing
publicly available datasets, both in-air and underwater. Our
system outperforms both ORB-SLAM and LDSO in under-
water environments, both in terms of the median RMSE
and in terms of the ability to close loops. Compared to
ORB-SLAM and LDSO, UVS is able to operate in poorer
light conditions, with lower scene overlap between frames
and also it tolerates loss of tracking, all without the need
for any image pre-processing. Several generic issues with

ORB-SLAM have been addressed, leading to a system that
performs better even in-air.

11.2 Further work

Systems that are dependent on hardware resources, like every
VSLAM system available today, could benefit from a bench-
mark dataset that aims to determine the maximum framerate
for a particular hardware configuration.

In addition, integer overflowmust also be addressed. New
points and new keyframes do use an integer-based unique ID.
During the execution of VSLAM, this integer will eventually
overflow and so a proper strategy must be implemented to
avoid this problem.

While the integration of ORB-SLAM with global navi-
gation satellite system (GNSS) and IMU has been already
investigated [22, 37], it would be interesting to investigate
sensor fusion for ORB-SLAM regarding underwater-specific
sensors, like a Doppler velocity log (DVL).
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Table 5 This table shows how
the partial synchronization in
UVS allows it to run at a higher
framerate than ORB-SLAM on
the same hardware platform,
with a relatively small cost in
terms of accuracy

System Sequence fps median RMSE

ORB-SLAM KITTI 00 10 5.84 m

UVS KITTI 00 10 6.53 m

ORB-SLAM KITTI 00 14 +2.1%

UVS KITTI 00 14 +1.6%

ORB-SLAM KITTI 00 > 14 ✗

UVS S KITTI 00 23 +22.5%

UVS S KITTI 00 > 23 ✗

UVS M KITTI 00 26 +1.7%

UVS M KITTI 00 > 26 ✗

ORB-SLAM Aqualoc 05 16 0.14m

UVS S Aqualoc 05 16 0.11 m

ORB-SLAM Aqualoc 05 17 ✗

UVS S Aqualoc 05 17 ≈ 0%

ORB-SLAM Aqualoc 05 > 17 ✗

UVS S Aqualoc 05 20 +78.2%

UVS S Aqualoc 05 > 20 ✗

UVS M Aqualoc 05 32 +1.0%

UVS M Aqualoc 05 > 32 ✗

The mark ✗ is shown when the tracking is lost at least once

Table 6 Scale-agnostic
detection of a pseudo-stationary
situation in the KITTI dataset

Sequence fps n Frame range

KITTI 00 10 10 557–570

KITTI 05 10 10 2348–2356

KITTI 08 10 10 4014–4045

KITTI 00 10 20 560–568

KITTI 05 10 20 2351–2357

KITTI 08 10 20 ✗

KITTI 00 10 30 ✗

KITTI 05 10 30 2366–2357

KITTI 08 10 30 ✗

KITTI 05 10 ≥70 ✗

The frame range column shows for which frame the station-keeping is detected and for which frame it is
terminated

Table 7 Effects of map point
pruning with different settings
on the median RMSE, the global
amount of map points and
corrected loop closures

Sequence begin P. % m. RMSE Map p C. l

KITTI 00 – – 5.84 m 104433 4

KITTI 00 2276 4541 66% −8.7% −66.4% 4

KITTI 00 0 66% +17.8% −72.3% 4

KITTI 00 0 90% +19.2% −89.4% 4

Aqualoc 05 – – 0.11 m 43379 1

Aqualoc 05 1833 3457 66% ≈ 0 % −42.5% 1

Aqualoc 05 0 66% ≈ 0 % −45.8% 1

Aqualoc 05 0 90% ≈ 0 % -84,7% 1
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Table 8 Indicators of SLAM
estimates for the
Kjerringholmen North dataset

System CLAHE Frames m. RMSE Map p

UVS – 692–1448 9.64 m 28641

UVS 2 – 8x8 673–1840 9.43 m 36420

ORB-SLAM any setting ✗ no init –

LDSO any setting ✗ wrong est –

Pre-processed images utilizing CLAHE to enhance the tracking capability of UVS

Most of the underwater cameras have a flat port enclo-
sure integrated which represents a substantial contribution to
the underwater 3D structure estimate and the relative camera
motion. A pinhole camera model correction map generator
for underwater imaging, for cameraswithflat port enclosures,
has been recently presented [29]. Preliminary experiments
regarding the correction model show that the water refrac-
tion index and the distance of the focal point of the camera
from the flat port are very difficult to estimate. The model
can be effectively calibrated by using a checkerboard placed
underwater and performing a grid search on these parameters
by minimizing the re-projection error.
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